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Introduction

In the �rst chapter we deal with rank two globally generated vector bundles with

c1 ≤ 5 on Pn, where c1 indicates the �rst Chern class of vector bundle. We classify

this bundles through their Chern class. To do it, we use the lemma 1.1.6 and 1.1.8,

in particulary on P3 we play on the following remark 1.1.9

Remark 0.0.1 If E is a globally generated rank two vector bundle on P3 we have

an exact sequence:

0→ O → E → IC(t)→ 0

where t = c1(E) and where C is a smooth curve. It follows that C is linked to a

smooth curve, X, by a complete intersection (t, t). Moreover if h1(E(−t)) = 0, then

C is irreducible and then, if h1(IC(2t− 4)) = 0, X also is irreducible.

The last assertion follows from the liaison formula: if C,X are two curves in P3

linked by a complete intersection of type (a, b), then:

h1(IX(k)) = h1(IC(a+ b− k − 4)),∀k ∈ Z.

In the end we summarize our classi�cation with the following theorem 1.6.30:

Theorem 0.0.2 Let E be a rank two vector bundle on Pn, n ≥ 3, generated by

global sections with Chern classes c1, c2, c1 ≤ 5.

1. If n ≥ 4, then E is the direct sum of two line bundles

2. If n = 3 and E is indecomposable, then

(c1, c2) ∈ S = {((2, 2), (4, 5), (4, 6), (4, 7), (4, 8), (5, 8), (5, 10), (5, 12)}.

iii



iv INTRODUCTION

If E exists there is an exact sequence: 0 → O → E → IC(c1) → 0 (∗), where
C ⊂ P3 is a smooth curve of degree c2 with ωC(4− c1) ' OC. The curve C is

irreducible, except maybe if (c1, c2) = (4, 8): in this case C can be irreducible

or the disjoint union of two smooth conics.

3. For every (c1, c2) ∈ S, (c1, c2) 6= (5, 12), there exists a rank two vector bundle

on P3 with Chern classes (c1, c2) which is globally generated (and with an exact

sequence as in (2)).

In the second chapter we study the normal bundle of projectively normal curves.

More precisely there is a conjecture (see Conj.2.2.2), due to Hartshorne, which

predicts when a "su�ciently" general projectively normal curve of invariants (d, g, s)

should have a semi-stable normal bundle. We �rst reformulate in a more precise way

this conjecture (see Conj. 2.2.3, Conj. 2.2.4).

Then we generalize a little bit the method of [8] (see Prop. 2.4.7, Corollary

2.4.12) and prove the conjecture in some special cases (see Theorem 2.6.3).

In the last chapter we deal with subschemes of P2 with fat points. In particulary

given Z subscheme of P2, we want to calculate the dimension of linear system of

plane curves of degree d that contained Z. This problem is connect to speciality

of linear system. About this argument there exists a conjecture due to Harbourne-

Hirschowitz (see Conjecture 3.2.4) which predicts that a linear system of plane

curve L, with general multiple base points is special if and only if there exists an

exceptional curve with multiplicity at least two in the base locus. This conjecture

is partial proved by Ciliberto-Miranda (see Theorem 3.2.9) and by S. Yang (see

Theorem 3.2.10). We improved this results with the proposition 3.6.1:

Proposition 0.0.3 The conjecture of Harbourne-Hirschowitz holds in all the linear

system LZ(v), where Z = (b1P1 + ...+ bnPn) is a subscheme of P2, with n ≤ 10 and

bi ≤ 8 for all i = 1, ..., n, and v is its critical value.

Moreover we prove that every analyzed subscheme is of maximum rank (see

Theorem 3.6.4):

Theorem 0.0.4 Every subscheme of P2 in the form Z = (b1P1 + ... + bnPn) with

n ≤ 10 and 4 ≤ bi ≤ 8 for all i = 1, ..., n, is of maximum rank.



Chapter 1

Rank two globally generated vector

bundles with c1 ≤ 5.

1.1 General facts.

We recall (without proofs) some de�nitions and some well-known general facts we

will use in the sequel.

Definition 1.1.1 A coherent sheaf, F , on the projective scheme X is globally

generated (or generated by global sections) if the natural morphism of evaluation:

ev : H0(F)⊗OX → F is surjective.

Remark 1.1.2 In case F is locally free and globally generated, the kernel of ev is

also locally free.

The next lemma almost follows from the de�nition:

Lemma 1.1.3 Let F ,G be two coherent sheaves on the projectve scheme X. If F is

globally generated and if there exists a surjective morphism F → G → 0, then G is

globally generated. In particular if Y ⊂ X is a subscheme, F|Y is globally generated

if F is.

Let E be a rank r vector bundle on Pn. According to a famous theorem, for every

line L ⊂ Pn there is an r-uple aE(L) = (a1(L), ..., ar(L)) ∈ Zr; a1(L) ≥ ... ≥ ar(L)

1



2 1. Rank two globally generated vector bundles with c1 ≤ 5.

such that

EL ∼= OL(a1(L))⊕ ...⊕OL(ar(L)).

We have c1(E) =
r∑
i=1

ai(L).

Moreover if E is globally generated, then ai(L) ≥ 0,∀i (apply Lemma 1.1.3). In

particular c1(E) ≥ 0 for every globally generated vector bundle on Pn.
The r-uple aE(L) ∈ Zr is called the splitting type of E on L.

Let G(1, n) be the Grassmannian of lines in Pn and de�ne a map:

aE : G(1, n)→ Zr : L→ aE(L)

by semi-continuity there is a dense open subset U ⊂ G(1, n) such that aE is constant

on U , the corresponding splitting type (i.e. the one of L ∈ U) is called the generic

splitting type of E. If U = G(1, n) (i.e. if aE is constant), the vector bundle E is

said to be uniform.

Lemma 1.1.4 Let E be a globally generated rank r vector bundle on Pn. If r > n

there is an exact sequence:

0→ (r − n).O → E → F → 0

where F is a rank n vector bundle generated by global sections.

Proof 1.1.5

See [18] o4, Lemma 4.3.1.

Lemma 1.1.6 Let E be a rank two vector bundle on Pn. If E is globally generated

then a general section of E vanishes along a smooth codimension two subscheme.

Proof 1.1.7

See [14].

We shall also need the following:

Lemma 1.1.8 Let C ⊂ P3 be a smooth curve. If IC(k) is globally generated and if S

and S ′ are su�ciently general in H0(IC(k)), the complete intersection S ∩ S ′ links
C to a smooth curve.
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Remark 1.1.9 If E is a globally generated rank two vector bundle on P3 we have

an exact sequence:

0→ O → E → IC(t)→ 0

where t = c1(E) and where C is a smooth curve. It follows that C is linked to a

smooth curve, X, by a complete intersection (t, t). Moreover if h1(E(−t)) = 0, then

C is irreducible and then, if h1(IC(2t− 4)) = 0, X also is irreducible.

The last assertion follows from the liaison formula: if C,X are two curves in P3

linked by a complete intersection of type (a, b), then:

h1(IX(k)) = h1(IC(a+ b− k − 4)),∀k ∈ Z.

Finally we recall Horrocks criterion for a vector bundle to split:

Theorem 1.1.10 (Horrocks)

A rank r vector bundle E on Pn is a direct sum of line bundles (E '
r⊕
i=1

O(ai)) if

and only if hi(E(m)) = 0, 1 ≤ i ≤ n− 1 and all m ∈ Z.

As a corollary we have:

Proposition 1.1.11 Let E be a rank r vector bundle on Pn, n > 2. Then E '
r⊕
i=1

O(ai) if and only if there exists a plane Π ⊂ Pn such that: EΠ '
r⊕
i=1

OΠ(ai).

Proof 1.1.12

See [18] Chap. I, 2.3.

1.2 Globally generated vector bundle on Pn, with
c1 = 0

In this section we recall the classi�cation of globally generated vector bundles with

c1 = 0. This is well known and follows directly from a more general result of Van

de Ven on uniform vector bundles, here we provide an elementary direct proof.
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Lemma 1.2.1 Let E be a rank r vector bundle on P2, with c1(E) = 0. If E is

generated by global sections then E is trivial (E ' r.O).

Proof 1.2.2

Let's �rst proof that E has a nowhere vanishing section.

Let L ⊂ P2 be a line, then by Grothendieck theorem EL splits. We have EL =

OL(a1)⊕ ...OL(ar); since EL (being a quotient of E) is generated by global sections,

ai ≥ 0, ∀i. Since c1(E) = 0 =
∑
ai, it follows that ai = 0,∀i i.e. EL = rOL. We

note that the bundle E splits in the same way for all lines of P2, hence E is a uniform

bundle. Since E is generated by global sections, there exists a non zero section s and

if L is general, sL 6= 0. We have sL = (λL1 , ..., λ
L
r ), where the λLi are constants. Since

sL 6= 0, (λL1 , ..., λ
L
r ) 6= (0, ..., 0). Suppose that s vanishes at a point p ∈ P2, consider

a line D through p. As before sD = (λD1 , ..., λ
D
r ), but since sD(p) = 0, λDi = 0, ∀i.

Now consider the point q = L ∩ D, we must have (λ1L
,..., λLr ) = (λD1 , ..., λ

D
r ) and

we get a contradiction. We conclude that s is nowhere vanishing hence yields an

injective morphism of vector bundles: 0→ O → E, it follows that we have an exact

sequence:

(∗∗) 0→ O → E → F → 0

where F is a rank (r − 1) vector bundle. Moreover c1(F ) = c1(E) = 0 and F , being

a quotient of E, is globally generated. Let's conclude the proof by induction on r. If

r = 1 there is nothing to prove. Assume the statement holds for r − 1. It follows

that F ' (r − 1).O. The exact sequence (∗∗) belongs to

Ext1(F,O) ' (r − 1).H1(O), since h1(O) = 0, the exact sequence splits. So E =

O ⊕ F = r.O.

Proposition 1.2.3 Let E be a vector bundle of rank r on Pn, generated by global

sections and with c1(E) = 0. Then E is trivial.

Proof 1.2.4

We prove the prop by induction on n. The case n = 1 is clear and the case n = 2

is Lemma 1.2.1. Let's assume n > 2. Let Π ⊂ Pn be a plane. We have c1(EΠ) = 0

and EΠ is generated by global sections. By Lemma 1.2.1, EΠ ' r.OΠ. It follows (cf

Proposition 1.1.11) that E ' r.O.
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Remark 1.2.5 The following result is due to Van de Ven ([23]):

Let E be a uniform vector bundle of rank r on Pn, if the splitting type of E is

(a, ..., a), then E ' r.O(a). As we have seen it is fairly immediate that a globally

generated vector bundle, E, with c1(E) = 0 is uniform of splitting type (0, ..., 0).

From Van de Ven's result it follows that E ' r.O. Observe that in Van de Ven's

theorem no assumption is made on the existence of a non-zero section of E.

1.3 Globally generated vector bundles on Pn, with
c1 = 1.

Goal of this section is to prove the following:

Proposition 1.3.1 Ler E be a rank r vector bundle on Pn with c1(E) = 1. If E is

globally generated then:

1. E ' O(1)⊕ (r − 1).O, or:

2. E ' T (−1)⊕ (r − n).O.

This result is not new and follows from a (less known, but) more general result

on uniform vector bundles (see 1.3.11). Here we will give a di�erent and more

elementary proof using the extra asumption that E is globally generated.

To start with let us observe the following:

Lemma 1.3.2 Let E be a rank r vector bundle on Pn with c1(E) = 1. If E is globally

generated, then E is uniform of splitting type (1, 0, ..., 0).

Proof 1.3.3

Il L ⊂ Pn is a line, then EL ' ⊕OL(ai(L)) with ai(L) ≥ 0,∀i and
r∑
i=1

ai(L) = 1. It

follows that (a1(L), ..., ar(L)) = (1, 0, ...0), which is independant of L.

This being said we will distinguish two cases:

1. h0(E(−1)) 6= 0
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2. h0(E(−1)) = 0.

For case (1) we have:

Proposition 1.3.4 Let E be a globally generated vector bundle of rank r on Pn

with c1(E) = 1. If h0(E(−1)) 6= 0, then E ' O(1)⊕ (r − 1).O.

Proof 1.3.5

(a) The result is clear if n = 1. Let's assume n = 2.

If L ⊂ P2 is a line we have an exact sequence:

0→ E(−m− 1)→ E(−m)→ EL(−m)→ 0 (∗)

From Lemma 1.3.2 it follows that h0(EL(−m)) = 0 if m ≥ 2. It follows that

h0(E(−m− 1)) = h0(E(−m)) for m ≥ 2. Since h0(E(−m)) = 0 if m >> 0, we get

h0(E(−m)) = 0 if m ≥ 2, in particular h0(E(−2)) = 0 and the map, rL, induced by

(∗) for m = 1:

0→ H0(E(−1))
rL→ H0(EL(−1))→ ...

is an isomorphism (because h0(E(−1)) 6= 0 and h0(EL(−1)) = 1). Let 0 6= s ∈
H0(E(−1)), then sL := rL(s) is a non zero section of EL(−1) ' OL(−1)⊕(r−1).OL,
in particular sL doesn't vanish at any point of L. Since this holds for every line L,

we conclude that s is a nowhere vanishing section, hence we have:

0→ O → E(−1)→ F → 0

where F is a vector bundle. Twisting by O(1) we get:

0→ O(1)→ E → F (1)→ 0

The vector bundle F (1) is globally generated with c1(F (1)) = c1(E)− c1(O(1)) = 0.

By Proposition 1.2.3, F (1) ' (r − 1).O. Since h1(O(1)) = 0, the exact sequence

splits and E ' O(1)⊕ (r − 1).O.
(b) Now assume n > 2. Take 0 6= s ∈ H0(E(−1)). There exists a plane Π ⊂ Pn

such that sΠ 6= 0. Then EΠ is a globally generated vector bundle with c1(EΠ) = 1

and h0(EΠ(−1)) 6= 0. From (a): EΠ ' OΠ(1) ⊕ (r − 1).OΠ. We conclude with

Proposition 1.1.11.
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Now we turn to case (2):

Lemma 1.3.6 Let E be a rank r globally generated vector bundle on Pn with c1(E) =

1. If h0(E(−1)) = 0, then h0(E) ≤ r + 1.

Proof 1.3.7

Observe that the condition h0(E(−1)) = 0 implies n ≥ 2. We will prove the state-

ment by induction on n.

Assume n = 2. Let L ⊂ P2 be a line. We have an exact sequence:

0→ E(−1)→ E → EL → 0

Since h0(E(−1)) = 0, h0(E) ≤ h0(EL). We have (see Lemma 1.3.2): EL ' OL(1)⊕
(r − 1).OL. Hence h0(E) ≤ 2 + (r − 1) = r + 1.

Now assume n > 2 and that the statement holds for n − 1. Let H ⊂ Pn be an

hyperplane and consider:

0→ E(−1)→ E → EH → 0

We have h0(E) ≤ h0(EH). The vector bundle EH is globally generated with c1(EH) =

1. If h0(EH(−1)) 6= 0, then (cf Proposition 1.3.4) EH ' OH(1)⊕ (r − 1).OH . This
in turn implies (cf Proposition 1.1.11) E ' O(1)⊕ (r− 1).O, in contradiction with

the assumption h0(E(−1)) = 0. We conclude that h0(EH(−1)) = 0. By inductive

assumption h0(EH) ≤ r + 1 and we are done.

Proposition 1.3.8 Let E be a rank r globally generated vector bundle on Pn with

c1 = 1. If h0(E(−1)) = 0, then E ' T (−1) ⊕ (r − n).O. (In particular n ≥ 2 and

r ≥ n.)

Proof 1.3.9

From Lemma 1.3.6, h0(E) ≤ r+1. Since E is globally generated we have a surjective

morphism:

ev : H0(E)⊗O → E

This implies h0(E) ≥ r. Moreover if h0(E) = r, ev is a surjective morphism between

two vector bundles of the same rank hence it is an isomorphism. This is impossible
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(c1(H0(E)⊗O) = 0 while c1(E) = 1). We conclude that h0(E) = r+ 1 and that we

have an exact sequence:

0→ O(−1)→ H0(E)⊗O → E → 0

Dualizing, we get:

0→ E∗ → H0(E)∗ ⊗O → O(1)→ 0

This exact sequence expresses that O(1) is globally generated, so it is:

0→ (r − n).O ⊕ Ω(1)→ (r − n).O ⊕ (H0(O(1))⊗O)→ O(1)→ 0

and the statement follows.

Gathering everything together:

Proof 1.3.10 (Proof of Proposition 1.3.1)

It follows from Proposition 1.3.4 and Proposition 1.3.8.

Remark 1.3.11 In [6] (IV. Prop. 2.2) the following is proved:

Let E be a uniform vector bundle on Pn, n ≥ 2 with splitting type (1, 0..., 0),

then E ' O(1)⊕ (r − 1).O or E ' T (−1)⊕ (r − n)O.
So Proposition 1.3.1 readily follows from this result and Lemma 1.3.2, but the

proof of Ellia's result (which makes no assumption on the existence of global sections

of E) is much more involved.

1.4 A general result.

As a �rst general result we have:

Lemma 1.4.1 Let E be a rank r globally generated vector bundle on Pn, n ≥ 2, with

c1(E) = c.

(i) h0(E(−c− 1)) = 0

(ii) If h0(E(−c)) 6= 0, then E ' O(c)⊕ (r − 1).O



1.4 A general result. 9

Proof 1.4.2

(i) This is clear if n = 1 (E ' ⊕O(ai) with 0 ≤ ai ≤ c,∀i). Let's prove the lemma

for n = 2.

Let L ⊂ P2 be a line. Consider the exact sequence:

0→ E(−m− 1)→ E(−m)→ EL(−m)→ 0

We have EL(−m) ' ⊕O(aL(i) − m) with 0 ≤ aL(i) ≤ c,∀i. It follows that

h0(EL(−m)) = 0 if m ≥ c + 1. So h0(E(−m − 1)) = h0(E(−m)) for m ≥ c + 1.

Since h0(E(−m)) = 0 if m >> 0, the result follows.

Now assume n > 2. Let Π ⊂ Pn be a plane. The vector bundle EΠ is globally

generated with c1(EΠ) = c. By the previous step: h0(EΠ(−c− 1)) = 0. Since ths is

true for any plane Π ⊂ Pn, we get h0(E(−c− 1)) = 0.

(ii) Let's prove it for n = 2 (the result clearly holds for n = 1). Let L ⊂ P2 be a

line. From the exact sequence:

0→ E(−c− 1)→ E(−c)→ EL(−c)→ 0

we get (since h0(E(−c−1)) = 0 by (i)), that h0(EL(−c)) 6= 0. Since EL ' ⊕Oai(L)

with
∑
ai(L) = c, 0 ≤ ai(L),∀i, the only possibility is (ai(L)) = (c, 0, ..., 0). Since

this is true for any line L ⊂ P2, the vector bundle E is uniform of splitting type

(c, 0, ..., 0). If c = 0 or c ≥ 2 it follows that E ' O(c) ⊕ (r − 1).O If c = 1, then

E ' T (−1) ⊕ (r − 2).O or E ' O(1) ⊕ (r − 1).O (see 1.3.11). In the �rst case

h0(E(−1)) = 0, so if c = 1, under our assumptions, E ' O(1)⊕ (r − 1).O and the

lemma is proved for n = 2.

Now assume n > 2. If h0(E(−c)) 6= 0, take 0 6= s ∈ H0(E(−c)). Then there

exists a plane Π such that sΠ 6= 0. The vector bundle EΠ is globally generated with

h0(EΠ(−c)) 6= 0. By the �rst part of the proof EΠ ' OΠ(c) ⊕ (r − 1).OΠ. We

conclude with Lemma 1.1.11.

Remark 1.4.3 This lemma is already proved in [20].

Without the assumption that E is globally generated the lemma is not true. For

instance if E is a rank two vector bundle on P3 with c1 = 0, the assumption

h0(E(−c − 1)) = 0 just means that E is semi-stable. There are many, indecom-

posable, non semi-stable, rank two vector bundles with c1 = 0 on P3.
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There are also many semi-stable but non stable (h0(E) 6= 0) indecomposable rank

two vector bundles with c1 = 0 on P3.

The next result, which is new, goes one step further:

Theorem 1.4.4 Let E be a rank r globally generated vector bundle on Pn, n ≥ 2,

with c1(E) = c. If h0(E(−c)) = 0 and h0(E(−c + 1)) 6= 0, then: either E '
O(c− 1)⊕O(1)⊕ (r − 2).O or there is an exact sequence:

0→ O → O(c− 1)⊕ T (−1)⊕ (r − n).O → E → 0.

First we have:

Lemma 1.4.5 Let E be a rank r globally generated vector bundle on Pn, n ≥ 2,

with c1(E) = c ≥ 2. Assume h0(E(−c)) = 0 and h0(E(−c + 1)) 6= 0 and E not

a direct sum of line bundles. If s ∈ H0(E(−c + 1)), s 6= 0, then (s)0 = {p} (the

scheme of zeroes of s is a single point), h0(E(−c + 1)) = 1 and the jumping lines

of E are precisely the lines through p. If H is an hyperplane with p /∈ H, then

EH ' TH(−1)⊕OH(c− 1)⊕ (r − n)OH ; in particular r ≥ n.

Proof 1.4.6

Let s ∈ H0(E(−c+ 1)), s 6= 0.

(a) If L ⊂ Pn is a line we denote by sL the restriction of s to L. Let's show that

∀L ⊂ Pn, sL 6= 0.

Suppose sL = 0 for some line L. Let L = K1 ⊂ K2 ⊂ ... ⊂ Kn−1 ⊂ Kn = Pn be a

�ag of linear spaces (dimKi = i). We claim that if sL = 0, then sKi
= 0, 1 ≤ i ≤ n,

which is of course a contradiction.

We prove the claim by induction on i. The initial case holds by assumption.

Assume sKi−1
= 0. Consider:

0→ EKi
(−c)→ EKi

(−c+ 1)
r→ EKi−1

(−c+ 1)→ 0

If sKi
6= 0, then r(sKi

) = sKi−1
= 0, so h0(EKi

(−c)) 6= 0. By Lemma 1.4.1, EKi

is a direct sum of line bundles. By Lemma 1.1.11, E also is a direct sum of line

bundles. This contradicts our assumption, so sKi
= 0 and the claim is proved.
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(b) If s ∈ H0(E(−c + 1)), s 6= 0, then s vanishes precisely at one point, more

precisely (s)0 = {p} (as schemes).

Observe that the possible splitting types for E(−c + 1) are: (0,−c + 2,−c +

1, ...,−c + 1), (1,−c + 1, ...,−c + 1). Indeed EL '
⊕OL(ai(L)) with a1(L) ≥

... ≥ ar(L) ≥ 0 and
∑
ai(L) = c. Since h0(EL(−c + 1)) 6= 0 by (a), we have

a1(L) − c + 1 ≥ 0 hence: (ai(L)) = (c − 1, 1, 0, ..., 0) or (c, 0, ..., 0). It follows that

∀L ⊂ Pn, sL (which is non zero by (a)) can vanish at at most one point of L (with

multiplicity one). If s(p) = s(q) = 0 with p 6= q, then sD = 0 where D = 〈p, q〉,
in contradiction with (a). This shows that (s)0 = {p} (as a scheme, the zero locus

being de�ned by linear forms).

We see that the jumping lines (where the splitting is (1,−c + 1, ...,−c + 1)) are

precisely the lines through p, moreover if p /∈ H then sH doesn't vanish and we have

an exact sequence:

0→ OH → EH(−c+ 1)→ FH(−c+ 1)→ 0 (∗)

where FH is a vector bundle. The vector bundle FH has c1(FH) = 1 and is globally

generated. By Proposition 1.3.1 either FH is a direct sum of line bundles or FH '
TH(−1) ⊕ t.OH . In the �rst case we will have that EH also is a direct sum of line

bundles, which in turn implies that E itself is a direct sum of line bundles, since this

is excluded by assumption, we have FH ' TH(−1)⊕ t.OH . Since h1(Ω(c)) = 0, the

exact sequence (∗) splits and EH ' TH(−1)⊕OH(c− 1)⊕ (r − n)OH .

If F is a coherent sheaf on Pn we denote by Sing(F) its singular set : Sing(F) =

{x ∈ Pn | Fx is not a free OPn,x-module}.
We also recall that given a point p ∈ Pn, there exists σ ∈ H0(T (−1)) such that

(σ)0 = {p}. This can be seen as follows: if Pn = P(V ) (projective space of lines), a

point x ∈ Pn corresponds to a line lx ⊂ V and the exact sequence:

0→ O(−1)(x)→ V ⊗O(x)→ T (−1)(x)→ 0

is:

0→ lx → V → V/lx → 0
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so that we may identify the (vector bundle) �ber T (−1)(x) := T (−1) ⊗ k(x) with

V/lx. With this identi�cation any v ∈ V yields a section, sv, of T (−1) with sv(x) =

v ∈ V/lx. Clearly sv(x) = 0⇔ lx = 〈v〉.

Lemma 1.4.7 Let G be a rank n − 1, globally generated torsion free sheaf on Pn,
n ≥ 2, with Sing(G) = {p}, c1(G) = 1 and h0(G) = n. If n = 2 then G ' Ip(1); if

n > 2, G is re�exive. In any case there is an exact sequence:

0→ O → T (−1)→ G → 0

Proof 1.4.8

Since G is globally generated with h0(G) = n there is an exact sequence:

0→ L → n.O → G → 0

Since G is torsion free and n.O is re�exive, L is normal ([18], Chap. II, Lemma

1.1.16). Since L is torsion free and normal, L is re�exive ([18], Chap. II, Lemma

1.1.12). Finally since L has rank one and is re�exive, it is locally free ([18], Chap.

II, Lemma 1.1.15). Looking at Chern classes we get that L ' O(−1). In conclusion

we have:

0→ O(−1)
f→ n.O → G → 0 (+)

The map f is given by n linear forms ϕ1, ..., ϕn. Since Sing(G) = {p}, ϕ1, ..., ϕn are

linearly independent and de�ne the point p.

If n = 2 we clearly have G ' Ip(1); moreover if n > 2, G is re�exive (just take

the bidual of (+) and take into account that Ext1(O, Ip) = 0 if n > 2).

After a change of coordinates we may assume p = (1 : 0 : ... : 0) and f given by
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(x1, ..., xn). Consider the following commutative diagram:

0 0

↓ ↓
O = O
↓ j ↓ σ

0 → O(−1)
(x0,...,xn)−→ (n+ 1).O → T (−1) → 0

|| ↓ p ↓ g
0 → O(−1)

(x1,...,xn)−→ n.O → Q → 0

↓ ↓
0 0

where σ is the section of T (−1) vanishing at p.

The rightmost vertical exact sequence yields the result.

We can now prove the main result of this section:

Proof 1.4.9 (Proof of Theorem 1.4.4)

First of all we observe that the statement makes sense only for c > 0; moreover the

case c = 1 follows from Proposition 1.3.1. So we may assume c > 1.

(a) We observe that E is a direct sum of line bundles if and only if E ' O(c−
1) ⊕ O(1) ⊕ (r − 2).O, (*). Indeed if E ' ⊕O(ai), with a1 ≥ ... ≥ ar ≥ 0,∑
ai = c, the condition h0(E(−c)) = 0 implies ai < c,∀i and then the condition

h0(E(−c + 1)) 6= 0 implies a1 = c − 1. Finally we observe that if E(−c + 1)

has a nowhere vanishing global section, then E is a direct sum of line bundles or

E ' O(c−1)⊕T (−1)⊕ (r−n−1).O. Indeed if E(−c+1) has a nowhere vanishing

section we have:

0→ O(c− 1)→ E → F → 0

where F is a globally generated vector bundle with c1(F ) = 1. By 1.3.1, h1(F ∗(c −
1)) = 0, the exact sequence splits and the result follows.

(b) From (a) we may assume that E is not a direct sum of line bundles and

that (any) non zero section of E(−c + 1) has a non empty zero locus. By Lemma

1.4.5 if 0 6= s ∈ H0(E(−c + 1)) then (s)0 = {p}, h0(E(−c + 1)) = 1 and if p /∈ H,

EH ' TH(−1)⊕O(c− 1)⊕ (r − n).OH . In particular r ≥ n.
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(b.1) Assume �rst r = n. The section s yields:

0→ O → E(−c+ 1)→ Q(−c+ 1)→ 0 (+)

We have Sing(Q) = {p} (because (s)0 = {p}). Moreover if p /∈ H, QH is locally free

(s has constant rank one on H), in particular Q is torsion free and we have:

0→ OH(c− 1)→ TH(−1)⊕OH(c− 1)→ QH → 0

It follows that h0(QH(−m)) = 0 if m > 0. This implies h0(Q(−m)) = 0 if m > 0

and h0(Q) ≤ h0(QH) = n. Now Q, as a quotient of E is globally generated, since

rk(Q) = n − 1 and Q is not trivial, h0(Q) = n. Finally c1(Q) = 1 (exact sequence

(+) twisted by O(c− 1)). By Lemma 1.4.7 there is an exact sequence:

0→ O → T (−1)
g→ Q→ 0 (+)

From this we get:

0

↓
O
↓ σ

T (−1)

↓ g
0 → O(c− 1) → E

π−→ Q → 0

↓
0

Applying Hom(T (−1),−) to the bottom row, since Ext1(T (−1),O(1)) = H1(Ω(2)) =

0, we get that the morphism:

Hom(T (−1), E)→ Hom(T (−1), Q) : f → π ◦ f

is surjective, so there exists ϕ : T (−1)→ E such that π ◦ ϕ = g. Finally we get:
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0 0

↓ ↓
O = O
↓ ↓ σ

0 → O(c− 1)
s−→ O(c− 1)⊕ T (−1) → T (−1) → 0

|| ↓ (s, ϕ) ↓ g
0 → O(c− 1)

s−→ E → Q → 0

↓ ↓
0 0

In conclusion:

0→ O → O(c− 1)⊕ T (−1)→ E → 0

(b.2) Assume now r > n.

By Lemma 1.1.4 we have an exact sequence:

0→ (r − n).O → E → E → 0

where E is a rank n, globally generated vector bundle with h0(E(−t)) = h0(E(−t)),∀t >
0 and c1(E) = c1(E). If E is a direct sum of line bundles, then E also is, in contrast

with our assumption. So E is as in (b.1), i.e there is an exact sequence:

0→ O → O(c− 1)⊕ T (−1)→ E → 0

We have:

0

↓
O
↓

O(c− 1)⊕ T (−1)

↓ g
0 → (r − n).O → E

π−→ E → 0

↓
0
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Applying Hom(O(c− 1)⊕ T (−1),−) to the bottom row, since Ext1(O(c− 1)⊕
T (−1),O) = H1(Ω(1)⊕O(−c+ 1)) = 0, we get that the morphism:

Hom(O(c− 1)⊕ T (−1), E)→ Hom(O(c− 1)⊕ T (−1), Q) : f → π ◦ f

is surjective, so there exists ϕ : O(c− 1)⊕ T (−1)→ E such that π ◦ϕ = g. Finally

we get:

0→ O → O(c− 1)⊕ T (−1)⊕ (r − n).O → E → 0

and the proof is over.

1.5 Globally generated vector bundles on Pn with

c1 = 2.

The classi�cation of globally generated vector bundles on Pn with c1 = 2 has been

achieved recently by Sierra-Ugaglia ([21]). Their result is:

Theorem 1.5.1 Let E be a globally generated, rank r, vector bundle on Pn, n ≥ 2,

with c1 = 2, then one of the following holds:

1. E ' O(2)⊕ (r − 1).O

2. E ' 2.O(1)⊕ (r − 2).O

3. there is an exact sequence:

0→ O → O(1)⊕ T (−1)⊕ (r − n).O → E → 0

4. there is an exact sequence:

0→ 2.O(−1)→ (r + 2).O → E → 0

5. there is an exact sequence:

0→ O(−2)→ (r + 1).O → E → 0
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6. n = 3 and E ' Ω(2)⊕ (r − 3).O

7. n = 3 and E ' N (1) ⊕ (r − 2).O, where N is a normalized null-correlation

bundle.

As we can see the number of possibilities increases and also some �exceptional�

cases appear (for n = 3). We observe that h0(E(−2)) 6= 0 in case (1), h0(E(−2)) = 0

but h0(E(−1)) 6= 0 in cases (2), (3) and h0(E(−1)) = 0 in the remaining cases.

Let's sketch the proof of the theorem.

Lemma 1.5.2 Let E be a rank r globally generated vector bundle on Pn, n ≥ 2 with

c1 = 2. If h0(E(−1)) 6= 0, then one of the cases (1), (2), (3) of Theorem 1.5.1

occurs.

Proof 1.5.3

Follows from Lemma 1.4.1 and Theorem 1.4.4.

From now on we may assume h0(E(−1)) = 0. Let's prove the Theorem for n = 2:

Lemma 1.5.4 Let E be a rank r globally generated vector bundle on P2 with c1 = 2.

If h0(E(−1)) = 0 then one of the following occurs:

1.

0→ O(−2)→ (r + 1).O → E → 0

2.

0→ 2.O(−1)→ (r + 2).O → E → 0

Proof 1.5.5

Let L ⊂ P2 be a line, the exact sequence:

0→ E(−1)→ E → EL → 0

shows, since h0(E(−1)) = 0, that h0(E) ≤ h0(EL) = r+2. So r+1 ≤ h0(E) ≤ r+2

and if h0(E) = r + 1, we are in case (1). If h0(E) = r + 2, we have:

0→ E → (r + 2).O → E → 0
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where E has rank two and c1 = −2. We have h1(E(−m)) = 0 if m ≥ 0. Since

h1(E(m)) = h1(E∗(−m− 3)) = h1(E(−m− 1)), we conclude that H1
∗ (E) = 0 and (by

Theorem 1.1.10), E is a direct sum of line bundles. Since E∗ is globally generated

and h0(E) = r + 2 we get E ' 2.O(−1).

So far the Theorem is proved for n = 2. The following lemma shows that the

case n = 3 is special.

Lemma 1.5.6 Let E be a globally generated rank r vector bundle on Pn, n ≥ 3, with

c1(E) = 2. If h0(E(−1)) = 0 but h0(EH(−1)) 6= 0 for some hyperplane H, then

n = 3.

Proof 1.5.7

If EH is a direct sum of line bundles, then E also is a direct sum of line bundles,

but this is impossible since h0(E(−1)) = 0. By 1.4.4 we conclude that:

0→ OH → TH(−1)⊕OH(1)⊕ (r − n+ 1).OH → EH → 0

In particular r ≥ n − 1. If n > 3, hi(EH(−m)) = 0 for i = 0, 1 and m ≥ 2. It

follows that h0(E(−2)) = h1(E(−2)) = 0. From the exact sequence:

0→ E(−2)→ E(−1)→ EH(−1)→ 0

we get h0(E(−1)) = h0(EH(−1)) > 0: a contradiction if n > 3, hence n = 3.

Proposition 1.5.8 Let E be a globally generated vector bundle of rank r on P3

with c1(E) = 2. Assume h0(E(−1)) = 0 but h0(EH(−1)) 6= 0 for some hyperplane.

Then:

E ' Ω(2)⊕ (r − 3).O or E ' N (1)⊕ (r − 2).O

where N is a normalized null-correlation bundle.

Proof 1.5.9

We have

0→ OH → TH(−1)⊕OH(1)⊕ (r − n+ 1).OH → EH → 0 (+)
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In particular r ≥ 2, c1(E) = c2(E) = 2.

(a) If r = 2, E(−1) is stable with c1 = 0, c2 = 1, hence E(−1) is a null-

correlation bundle. This can be seen also as follows: a general section yields: 0 →
O → E → IC(2) → 0, where C is a smooth curve with ωC(2) ' OC. It follows

that C is a disjoint union of lines. Since IC(2) is globally generated, C has degree

≤ 2; it can't be 1 because E doesn't split, so C is the union of two skew lines (or

deg(C) = c2(E) = 2) and E = N (1).

(b) Assume r = 3. We have h0(E) ≤ h0(EH) = 6. By Riemann-Roch, since

c1 = c2 = 2, χ(E) = c3
2

+ 6. Using the dual of (+) we have hi(E∗H(−m)) = 0 if

m ≥ 4, i = 0, 1. From 0 → E∗(−m − 1) → E∗(−m) → E∗H(−m) → 0, we get

h1(E∗(−4)) = h2(E) = 0. So χ(E) = h0(E) − h1(E) − h3(E) = c3
2

+ 6. Since

h0(E) ≤ 6 and c3 ≥ 0 (because E is globally generated), it follows that c3 = 0. This

implies (??) that a general section of E doesn't vanish, hence we have:

0→ O → E → F → 0

where F is a rank two globally generated vector bundle with c1(F ) = 2. Since

h0(F (−1)) = 0 and h0(FH(−1)) 6= 0, F ' N (1). We have dimExt1(O,N (1)) =

h1(N ∗(−1)) = 1 and it is well known that there are two extensions: the trivial one

and

0→ O → Ω(2)→ N (1)→ 0

We conclude that E ' Ω(2) or E ' N (1)⊕O.
(c) Finally if r > 3 there is an exact sequence:

0→ (r − 3).O → E → E → 0

where E is globally generated of rank three, with c1(E) = 2, h0(E(−1)) = 0 and

h0(EH(−1)) 6= 0. Then E is as in (b) and we easily conclude that E ' Ω(2)⊕(r−3).O
or E ' N (1)⊕ (r − 2).O.

We can now conclude the proof of the Theorem for n = 3:

Lemma 1.5.10 Let E be a globally generated vector bundle of rank r on P3 with

c1 = 2. If h0(E(−1)) = 0 and h0(EH(−1)) = 0 for all (some) hyperplane, then
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either:

0→ O(−2)→ (r + 1).O → E → 0

or

0→ 2.O(−1)→ (r + 2).O → E → 0

Proof 1.5.11

Since h0(E(−1)) = h0(EH(−1)) = 0, we have h0(E) ≤ h0(EH) ≤ h0(EL) = r+2. If

h0(E) = r + 1 we are in the �rst case. If h0(E) = r + 2 there is an exact sequence:

0→ E → (r + 2).O → E → 0

restricting to H we get (see 1.5.4) E ' 2.O(−1).

The �nal touch:

Proof 1.5.12 (Proof of theorem 1.5.1)

According to the previous results we may assume n ≥ 4 and h0(E(−1)) = 0. By

Lemma 1.5.6, h0(EH(−1)) = 0 for some (in fact all) hyperplane. Let's prove by

induction on n that under these assumptions either case (4) or case (5) of 1.5.1

holds.

Assume �rst n = 4. From Proposition 1.5.8 and Lemma 1.5.10, either h0(EH) ≤
r + 2 or EH ' ΩH(2)⊕ (r− 3)OH or EH ' N (1)⊕ (r− 2).OH . The last two cases

are impossible. Indeed there is no globally generated vector bundle E on P4 with

EH ' ΩH(2)⊕ (r − 3).OH or N (1)⊕ (r − 2).OH : such a vector bundle would have

c1 = c2 = 2 and c3(E) = 0; r−2 general sections would give a morphism of constant

rank (because c3 = 0) hence a rank two vector bundle as quotient with c1 = c2 = 2,

but this contradicts Schwarzenberger's conditions. So h0(EH) ≤ r + 2, hence, since

h0(E(−1)) = 0, h0(E) ≤ r + 2 and we easily conclude (see proof of 1.5.10).

Assume the result for n− 1. In particular this means h0(EH) ≤ r+ 2. It follows

that h0(E) ≤ r + 2 and we are home.
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1.6 Globally generated rank two vector bundles on

Pn, n ≥ 3, with c1 ≤ 5.

In this section we consider rank two globally generated vector bundles on Pn with

c1 ≤ 5. The �nal result is:

Theorem 1.6.1 Let E be a rank two vector bundle on Pn, n ≥ 3, generated by

global sections with Chern classes c1, c2, c1 ≤ 5.

1. If n ≥ 4, then E is the direct sum of two line bundles

2. If n = 3 and E is indecomposable, then

(c1, c2) ∈ S = {((2, 2), (4, 5), (4, 6), (4, 7), (4, 8), (5, 8), (5, 10), (5, 12)}.

If E exists there is an exact sequence: 0 → O → E → IC(c1) → 0 (∗), where
C ⊂ P3 is a smooth curve of degree c2 with ωC(4− c1) ' OC. The curve C is

irreducible, except maybe if (c1, c2) = (4, 8): in this case C can be irreducible

or the disjoint union of two smooth conics.

3. For every (c1, c2) ∈ S, (c1, c2) 6= (5, 12), there exists a rank two vector bundle

on P3 with Chern classes (c1, c2) which is globally generated (and with an exact

sequence as in (2)).

Remark 1.6.2 The case n = 3, (c1, c2) = (5, 12) remains open: we are unable to

prove or disprove the existence of such bundles.

1.6.1 Globally generated rank two vector bundles on P3 with

c1 = 3.

The following result has been proved in [22] (with a di�erent and longer proof).

Proposition 1.6.3 Let E be a rank two globally generated vector bundle on P3. If

c1(E) = 3 then E splits.
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Proof 1.6.4 Assume a general section vanishes in codimension two, then it van-

ishes along a smooth curve C such that ωC ' OC(−1). Moreover IC(3) is generated

by global sections. We have C = ∪ri=1Ci (disjoint union) where each Ci is smooth

irreducible with ωCi
' OCi

(−1). It follows that each Ci is a smooth conic. If r ≥ 2

let L = 〈C1〉 ∩ 〈C2〉 (〈Ci〉 is the plane spanned by Ci). Every cubic containing C

contains L (because it contains the four points C1∩L, C2∩L). This contradicts the
fact that IC(3) is globally generated. Hence r = 1 and E = O(1)⊕O(2).

1.6.2 Globally generated rank two vector bundles on P3 with

c1 = 4.

Let's start with a general result:

Lemma 1.6.5 Let E be a non split rank two vector bundle on P3 with Chern classes

c1, c2. If E is globally generated and if c1 ≥ 4 then:

c2 ≤
2c3

1 − 4c2
1 + 2

3c1 − 4
.

Proof 1.6.6 By our assumptions a general section of E vanishes along a smooth

curve, C, such that IC(c1) is generated by global sections. Let U be the complete

intersections of two general surfaces containing C. Then U links C to a smooth

curve, Y . We have Y 6= ∅ since E doesn't split. The exact sequence of liaison:

0→ IU(c1)→ IC(c1)→ ωY (4− c1)→ 0 shows that ωY (4− c1) is generated by global

sections. Hence deg(ωY (4− c1)) ≥ 0. We have deg(ωY (4− c1)) = 2g′−2 +d′(4− c1)

(g′ = pa(Y ), d′ = deg(Y )). So g′ ≥ d′(c1−4)+2
2

≥ 0 (because c1 ≥ 4). On the

other hand, always by liaison, we have: g′ − g = 1
2
(d′ − d)(2c1 − 4) (g = pa(C),

d = deg(C)). Since d′ = c2
1 − d and g = d(c1−4)

2
+ 1 (because ωC(4− c1) ' OC), we

get: g′ = 1 + d(c1−4)
2

+ 1
2
(c2

1 − 2d)(2c1 − 4) ≥ 0 and the result follows.

Now we have:

Proposition 1.6.7 Let E be a rank two globally generated vector bundle on P3. If

c1(E) = 4 and if E doesn't split, then 5 ≤ c2 ≤ 8 and there is an exact sequence:
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0→ O → E → IC(4)→ 0, where C is a smooth irreducible elliptic curve of degree

c2 or, if c2 = 8, C is the disjoint union of two smooth elliptic quartic curves.

Proof 1.6.8 A general section of E vanishes along C where C is a smooth curve

with ωC = OC and where IC(4) is generated by global sections. Let C = C1∪ ...∪Cr
be the decomposition into irreducible components: the union is disjoint, each Ci is a

smooth elliptic curve hence has degree at least three.

By Lemma 1.6.5 d = deg(C) ≤ 8. If d ≤ 4 then C is irreducible and is a complete

intersection which is impossible since E doesn't split. If d = 5, C is smooth irre-

ducible.

Claim: If 8 ≥ d ≥ 6, C cannot contain a plane cubic curve.

Assume C = P ∪X where P is a plane cubic and where X is a smooth elliptic curve

of degree d − 3. If d = 6, X is also a plane cubic and every quartic containing C

contains the line 〈P 〉 ∩ 〈X〉. If deg(X) ≥ 4 then every quartic, F , containing C

contains the plane 〈P 〉. Indeed F |H vanishes on P and on the deg(X) ≥ 4 points

of X ∩ 〈P 〉, but these points are not on a line so F |H = 0. In both cases we get a

contradiction with the fact that IC(4) is generated by global sections. The claim is

proved.

It follows that, if 8 ≥ d ≥ 6, then C is irreducible except if C = X∪Y is the disjoint

union of two elliptic quartic curves.

Now let's show that all possibilities of Proposition 1.6.7 do actually occur. For

this we have to show the existence of a smooth irreducible elliptic curve of degree d,

5 ≤ d ≤ 8 with IC(4) generated by global sections (and also that the disjoint union

of two elliptic quartc curves is cut o� by quartics).

Lemma 1.6.9 There exist rank two vector bundles with c1 = 4, c2 = 5 which are

globally generated. More precisely any such bundle is of the form N (2), where N is

a null-correlation bundle (a stable bundle with c1 = 0, c2 = 1).

Proof 1.6.10 The existence is clear (if N is a null-correlation bundle then it is well

known that N (k) is globally generated if k ≥ 1). Conversely if E has c1 = 4, c2 = 5

and is globally generated, then E has a section vanishing along a smooth, irreducible

quintic elliptic curve (cf 1.6.7). Since h0(IC(2)) = 0, E is stable, hence E = N (2).
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Lemma 1.6.11 There exist smooth, irreducible elliptic curves, C, of degree 6 with

IC(4) generated by global sections.

Proof 1.6.12 Let X be the union of three skew lines. The curve X lies on a smooth

quadric surface, Q, and has IX(3) globally generated (indeed the exact sequence

0 → IQ → IX → IX,Q → 0 twisted by O(3) reads like: 0 → O(1) → IC(3) →
OQ(3, 0) → 0). The complete intersection, U , of two general cubics containing

X links X to a smooth curve, C, of degree 6 and arithmetic genus 1. Since, by

liaison, h1(IC) = h1(IX(−2)) = 0, C is irreducible. The exact sequence of liaison:

0→ IU(4)→ IC(4)→ ωX(2)→ 0 shows that IC(4) is globally generated.

In order to prove the existence of smooth, irreducible elliptic curves, C, of degree

d = 7, 8, with IC(4) globally generated, we have to recall some results due to Mori

([16]).

According to [16] Remark 4, Prop. 6, there exists a smooth quartic surface

S ⊂ P3 such that Pic(S) = ZH ⊕ ZX where X is a smooth elliptic curve of degree

d (7 ≤ d ≤ 8). The intersection pairing is given by: H2 = 4, X2 = 0, H.X = d.

Such a surface doesn't contain any smooth rational curve ([16] p.130). In particular:

(∗) every integral curve, Z, on S has degree ≥ 4 with equality if and only if Z is a

planar quartic curve or an elliptic quartic curve.

Lemma 1.6.13 With notations as above, h0(IX(3)) = 0.

Proof 1.6.14 A curve Z ∈ |3H −X| has invariants (dZ , gZ) = (5,−2) (if d = 7)

or (4,−5) (if d = 8), so Z is not integral. It follows that Z must contain an integral

curve of degree < 4, but this is impossible.

Lemma 1.6.15 With notations as above |4H − X| is base point free, hence there

exist smooth, irreducible elliptic curves, X, of degree d, 7 ≤ d ≤ 8, such that IX(4)

is globally generated.

Proof 1.6.16 Let's �rst prove the following: Claim: Every curve in |4H − X| is
integral.
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If Y ∈ |4H − X| is not integral then Y = Y1 + Y2 where Y1 is integral with

deg(Y1) = 4 (observe that deg(Y ) = 9 or 8).

If Y1 is planar then Y1 ∼ H, so 4H−X ∼ H+Y2 and it follows that 3H ∼ X+Y2,

in contradiction with h0(IX(3)) = 0 (cf 1.6.13).

So we may assume that Y1 is a quartic elliptic curve, i.e. (i) Y 2
1 = 0 and (ii)

Y1.H = 4. Setting Y1 = aH+bX, we get from (i): 2a(2a+bd) = 0. Hence (α) a = 0,

or (β) 2a+ bd = 0.

(α) In this case Y1 = bX, hence (for degree reasons and since S doesn't contain

curves of degree < 4), Y2 = ∅ and Y = X, which is integral.

(β) Since Y1.H = 4, we get 2a + (2a + bd) = 2a = 4, hence a = 2 and bd = −4

which is impossible (d = 7 or 8 and b ∈ Z).
This concludes the proof of the claim.

Since (4H − X)2 ≥ 0, the claim implies that 4H − X is numerically e�ective.

Now we conclude by a result of Saint-Donat (cf [16], Theorem 5) that |4H −X| is
base point free, i.e. IX,S(4) is globally generated. By the exact sequence: 0→ O →
IX(4)→ IX,S(4)→ 0 we get that IX(4) is globally generated.

Remark 1.6.17 If d = 8, a general element Y ∈ |4H − X| is a smooth elliptic

curve of degree 8. By the way Y 6= X (see [2]). The exact sequence of liaison:

0 → IU(4) → IX(4) → ωY → 0 shows that h0(IX(4)) = 3 (i.e. X is of maximal

rank). In case d = 8 Lemma 1.6.15 is stated in [5], however the proof there is

incomplete, indeed in order to apply the enumerative formula of [12] one has to

know that X is a connected component of
3⋂
i=1

Fi; this amounts to say that the base

locus of |4H −X| on F1 has dimension ≤ 0.

To conclude we have:

Lemma 1.6.18 Let X be the disjoint union of two smooth, irreducible quartic elliptic

cuvres, then IX(4) is generated by global sections.

Proof 1.6.19 Let X = C1 t C2. We have: 0 → O(−4) → 2.O(−2) → IC1 → 0,

twisting by IC2, since C1 ∩ C2 = ∅, we get:

0→ IC2(−4)→ 2.IC2(−2)→ IX → 0 and the result follows.
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Summarizing:

Proposition 1.6.20 There exists an indecomposable rank two vector bundle, E,

on P3, generated by global sections and with c1(E) = 4 if and only if 5 ≤ c2(E) ≤ 8

and in these cases there is an exact sequence:

0→ O → E → IC(4)→ 0

where C is a smooth irreducible elliptic curve of degree c2(E) or, if c2(E) = 8, the

disjoint union of two smooth elliptic quartic curves.

1.6.3 Globally generated rank two vector bundles on P3 with

c1 = 5.

We start by listing the possible cases:

Proposition 1.6.21 If E is an indecomposable, globally generated, rank two vector

bundle on P3 with c1(E) = 5, then c2(E) ∈ {8, 10, 12} and there is an exact sequence:

0→ O → E → IC(5)→ 0

where C is a smooth, irreducible curve of degree d = c2(E), with ωC ' OC(1).

In any case E is stable.

Proof 1.6.22 A general section of E vanishes along a smooth curve, C, of degree

d = c2(E) with ωC ' OC(1). Hence every irreducible component, Y , of C is a

smooth, irreducible curve with ωY ' OY (1). In particular deg(Y ) = 2g(Y ) − 2 is

even and deg(Y ) ≥ 4.

1. If d = 4, then C is a planar curve and E splits.

2. If d = 6, C is necessarily irreducible (of genus 4). It is well known that any

such curve is a complete intersection (2, 3), hence E splits.



1.6 Globally generated rank two vector bundles on Pn, n ≥ 3, with c1 ≤ 5. 27

3. If d = 8 and C is not irreducible, then C = P1 t P2, the disjoint union of

two planar quartic curves. If L = 〈P1〉 ∩ 〈P2〉, then every quintic containing

C contains L in contradiction with the fact that IC(5) is generated by global

sections. Hence C is irreducible.

4. If d = 10 and C is not irreducible, then C = P tX, where P is a planar curve

of degree 4 and where X is a degree 6 curve (X is a complete intersection

(2, 3)). Every quintic containing C vanishes on P and on the 8 points of

X ∩ 〈P 〉, since these 8 points are not on a line, the quintic vanishes on the

plane 〈P 〉. This contradicts the fact that IC(5) is globally generated.

5. If d = 12 and C is not irreducible we have three possibilities:

(a) C = P1 t P2 t P3, Pi planar quartic curves

(b) C = X1 tX2, Xi complete intersection curves of types (2, 3)

(c) C = Y t P , Y a canonical curve of degree 8, P a planar curve of degree

4.

(a) This case is impossible (consider the line 〈P1〉 ∩ 〈P2〉).
(b) We have Xi = Qi∩Fi. Let Z be the quartic curve Q1∩Q2. Then Xi∩Z =

Fi∩Z, i.e. Xi meets Z in 12 points. It follows that every quintic containing C

meets Z in 24 points, hence such a quintic contains Z. Again this contradicts

the fact that IC(5) is globally generated.

(c) This case too is impossible: every quintic containing C vanishes on P and

on the points 〈P 〉 ∩ Y , hence on 〈P 〉.

We conclude that if d = 12, C is irreducible.

The normalized bundle is E(−3), since in any case h0(IC(2)) = 0 (every smooth

irreducible subcanonical curve on a quadric surface is a complete intersection), E is

stable.

Now we turn to the existence part.

Lemma 1.6.23 There exist indecomposable rank two vector bundles on P3 with Chern

classes c1 = 5 and c2 ∈ {8, 10} which are globally generated.
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Proof 1.6.24 Let R = tsi=1Li be the union of s disjoint lines, 2 ≤ s ≤ 3. We may

perform a liaison (s, 3) and link R to K = tsi=1Ki, the union of s disjoint conics.

The exact sequence of liaison: 0 → IU(4) → IK(4) → ωR(5 − s) → 0 shows that

IK(4) is globally generated (n.b. 5− s ≥ 2).

Since ωK(1) ' OK we have an exact sequence: 0→ O → E(2)→ IK(3)→ 0, where

E is a rank two vector bundle with Chern classes c1 = −1, c2 = 2s− 2. Twisting by

O(1) we get: 0 → O(1) → E(3) → IK(4) → 0 (∗). The Chern classes of E(3) are

c1 = 5, c2 = 2s + 4 (i.e. c2 = 8, 10). Since IK(4) is globally generated, it follows

from (∗) that E(3) too, is generated by global sections.

Remark 1.6.25

1. If E is as in the proof of Lemma 1.6.23 a general section of E(3) vanishes along

a smooth, irreducible (because h1(E(−2)) = 0) canonical curve, C, of genus

1+ c2/2 (g = 5, 6) such that IC(5) is globally generated. By construction these

curves are not of maximal rank (h0(IC(3)) = 1 if g = 5, h0(IC(4)) = 2 if

g = 6). As explained in [13] o4 this is a general fact: no canonical curve of

genus g, 5 ≤ g ≤ 6 in P3 is of maximal rank. We don't know if this is still true

for g = 7.

2. According to [13] the general canonical curve of genus 6 lies on a unique quartic

surface.

3. The proof of 1.6.23 breaks down with four conics: IK(4) is no longer globally

generated, every quartic containing K vanishes along the lines Li (5− s = 1).

Observe also that four disjoint lines always have a quadrisecant and hence are

an exception to the normal generation conjecture(the omogeneous ideal is not

generated in degree three as it should be).

Remark 1.6.26 The case (c1, c2) = (5, 12) remains open. It can be shown that if

E exists, a general section of E is linked, by a complete intersections of two quintics,

to a smooth, irreducible curve, X, of degree 13, genus 10 having ωX(−1) as a base

point free g1
5. One can prove the existence of curves X ⊂ P3, smooth, irreducible, of

degree 13, genus 10, with ωX(−1) a base point free pencil and lying on one quintic
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surface. But we are unable to show the existence of such a curve with h0(IX(5)) ≥ 2

(which will imply the existence of our vector bundle).

1.6.4 Globally generated rank two vector bundles on Pn, n ≥ 4

with c1 ≤ 5.

For n ≥ 4 and c1 ≤ 5 there is no surprise:

Proposition 1.6.27 Let E be a globally generated rank two vector bundle on Pn,
n ≥ 4. If c1(E) ≤ 5, then E splits.

Proof 1.6.28 It is enough to treat the case n = 4. A general section of E vanishes

along a smooth (irreducible) subcanonical surface, S: 0 → O → E → IS(c1) → 0.

By [10], if c1 ≤ 4, then S is a complete intersection and E splits. Assume now

c1 = 5. Consider the restriction of E to a general hyperplane H. If E doesn't split,

by 1.6.21 we get that the normalized Chern classes of E are: c1 = −1, c2 ∈ {2, 4, 6}.
By Schwarzenberger condition: c2(c2 + 2) ≡ 0 (mod 12). The only possibilities are

c2 = 4 or c2 = 6. If c2 = 4, since E is stable (because E|H is, see 1.6.21), we

have ([?]) that E is a Horrocks-Mumford bundle. But the Horrocks-Mumford bundle

(with c1 = 5) is not globally generated.

The case c2 = 6 is impossible: such a bundle would yield a smooth surface S ⊂ P4,

of degree 12 with ωS ' OS, but the only smooth surface with ωS ' OS in P4 is the

abelian surface of degree 10 of Horrocks-Mumford.

Remark 1.6.29

For n > 4 the results in [?] give stronger and stronger (as n increases) conditions for

the existence of indecomposable rank two vector bundles generated by global sections.

Putting everything together we have:

Theorem 1.6.30 Let E be a rank two vector bundle on Pn, n ≥ 3, generated by

global sections with Chern classes c1, c2, c1 ≤ 5.
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1. If n ≥ 4, then E is the direct sum of two line bundles

2. If n = 3 and E is indecomposable, then

(c1, c2) ∈ S = {((2, 2), (4, 5), (4, 6), (4, 7), (4, 8), (5, 8), (5, 10), (5, 12)}.

If E exists there is an exact sequence: 0 → O → E → IC(c1) → 0 (∗), where
C ⊂ P3 is a smooth curve of degree c2 with ωC(4− c1) ' OC. The curve C is

irreducible, except maybe if (c1, c2) = (4, 8): in this case C can be irreducible

or the disjoint union of two smooth conics.

3. For every (c1, c2) ∈ S, (c1, c2) 6= (5, 12), there exists a rank two vector bundle

on P3 with Chern classes (c1, c2) which is globally generated (and with an exact

sequence as in (2)).

Remark 1.6.31 As already said the case n = 3, (c1, c2) = (5, 12) remains open: we

are unable to prove or disprove the existence of such bundles.



Chapter 2

On the normal bundle of projectively

normal space curves.

2.1 Basic facts on a.C.M. curves.

Throughout this chapter a curve C ⊂ P3 is a one-dimensional, equidimensional,

closed subscheme which is locally Cohen-Macaulay.

Definition 2.1.1 A curve C ⊂ P3 is arithmetically Cohen-Macaulay (a.C.M.) if

H1
∗ (IC) = 0.

A curve is projectively normal (p.n) if it is a.C.M. and smooth (hence irreducible).

It turns out that C ⊂ P3 is a.C.M. if and only if its graded ideal, I(C) := H0
∗ (IC),

has a length one minimal resolution:

0→ L1 → L0 → IC → 0 (∗)

(L1 =
⊕k

j=1O(−bj), L0 =
⊕k+1

i=1 O(−ai)). If H is any plane such that Γ := C ∩H
is zero-dimensional, then (∗) yields a free resolution of I(Γ):

0→ L1 → L0 → IΓ → 0 (∗H)

Now (∗H) determines the Hilbert function of Γ ⊂ P3w. There are several ways to

encode the Hilbert function of a zero-dimensional subscheme of P2, here we will use

31
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the numerical character, χ(Γ) (cf [13]). We recall that χ(Γ) is a sequence of integers

(n0, ..., ns−1) such that:

1. n0 ≥ n1 ≥ ... ≥ ns−1 ≥ s

2. s = min {k | h0(IΓ(k)) 6= 0}

3. h1(IΓ(n) =
s−1∑
i=0

([ni − n− 1]+ − [i− n− 1]+)

4. In particular deg(Γ) =
s−1∑
i=0

(ni − i).

More generally:

Definition 2.1.2 A numerical character χ, of degree d, length s is a sequence of

integers: χ = (n0, ..., ns−1), n0 ≥ ... ≥ ns−1 ≥ s, with
∑s−1

i=0 (ni − i) = d. The genus

of χ is: g(χ) =
∑

n≥1 hχ(n), where:

hχ(n) =
s−1∑
i=0

([ni − n− 1]+ − [i− n− 1]+).

The numerical character χ is said to be connected if ni ≤ ni+1 + 1, 0 ≤ i ≤ s− 2.

Definition 2.1.3 If C ⊂ P3 is a curve (one dimensional, equidimensional, locally

Cohen-Macaulay subscheme) its numerical character, χ(C), is the numerical char-

acter of its general plane section.

If C ⊂ P3 is integral then the basic observation of Castelnuovo's theory is:

pa(C) ≤ g(χ(C)). From this we get another characterization of a.C.M. curves:

Proposition 2.1.4 Let C ⊂ P3 be an integral curve. Then: C is a.C.M. if and

only if pa(C) = g(χ(C)).

In fact it turns out that a.C.M. curves (and in particular projectively normal

curves) are classi�ed by their numerical character. More precisely we have:

Theorem 2.1.5
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1. An a.C.M. curve C ⊂ P3 corresponds to a smooth point of Hilb(P3)

2. Two a.C.M. curves C,X ⊂ P3 are in the same irreducible component of the

Hilbert scheme if and only χ(C) = χ(X)

3. The numerical character of an integral curve is connected. Moreover every

connected numerical character is realized by a projectively normal curve

4. Let Hχ denote the irreducible component of Hilb(P3) parametrizing a.C.M.

curves with numerical character χ. The general curve of Hχ is smooth (hence

irreducible) if and only if χ is connected.

5. Let χ be a connected character of length s, then the general curve of Hχ is

projectively normal and lies on a smooth surface of degree s.

Proof 2.1.6 For the convenience of the reader we include a proof of (5) (cf [7]),

which will be used frequently in the sequel.

We take over the proof of Thm. 2.5 in [13]. The argument is by induction.

Assume C is a p.n. curve with χ(C) = (n0, ..., ns−1) and that C lies on, S, a smooth

surface of degree s. (If s = 1 this is clearly satis�ed). Following [13] we show the

existence of a p.n. curve C1 (resp. C2) with χ(C1) = (n0+2, n0+1, n1+1, ..., ns−1+1)

(resp. χ(C2) = (n0+1, n0+1, n1+1, ..., ns−1+1)), lying on a smooth surface of degree

s+ 1. Moreover, as in [13], the following condition is also part of the induction:

ωC(−e(C)) has a section σ, with smooth zero− locus (σ)0 (+)

The curve C1 (resp. C2) is constructed as follows: there exists a smooth surface, F ,

of degree n0 +2 (resp. n0 +1) containing C (observe that n0 = e+3). If L = OF (C),

then C1 (resp. C2) is a general section of L(1). This means that Ci is obtained by

double linkage from C: U := F ∩ Ga = X ∪ C and F ∩ Ta+1 = X ∪ Ci. If we take

Ga = S, it is enough to show that X lies on a smooth surface of degree s + 1, T .

The exact sequence of liaison:

0→ IU(s+ 1)→ IX(s+ 1)
r→ ωC(−e+ i− 1)→ 0

shows that H0(IX(s+ 1)) contains (at least) V = 〈HiS, T
′〉, where r(T ′) = (σ)0 (see

(+)). Hence T ′ is not a multiple of S. The base locus of V is B = T ′ ∩ S. By
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Bertini's theorem the general surface in H0(IX(s+ 1)) is smooth out of B. Since S

is smooth, the general surface T = HS + T ′ ∈ V is smooth with r(T ) = (σ)0. For

general T ∈ V the linked curve Ci will be smooth and will satisfy (+) (ωCi
(−e−3+i)

has a section with zero-locus (σ)0 cut out by S residually to X ∩ Ci). We conclude

as in [13].

For parts (1),...,(4), see [6], [13]. For the computation of the dimension of Hχ

(that we won't need here), see [6].

It turns out that projectively normal curves are classi�ed by the connected nu-

merical character of length s, s ≥ 1.

Let's see now how to compute the genus of a p.n. (projectively normal) curve

by means of its character:

Lemma 2.1.7 Let χ = (n0, ..., ns−1) be a numerical character of degree d, length s.

Then: g(χ) = g− + g+, where:

g− = 1 + d(s− 1)−
(
s+ 2

3

)

g+ =
s−1∑
i=0

(ni − s− 1)(ni − s)
2

Proof 2.1.8 We may assume that χ is the numerical character of a zero-dimensional

subscheme Z ⊂ P2 (see [7]). Then g(χ) =
∑

n≥1 h
1(IZ(n)). If n ≤ s − 1, then

h1(IZ(n)) = d− h0(OP2(n)), so:

s−1∑
n=1

h1(IZ(n)) =
s−1∑
n=1

(d− h0(OP2(n))

= d(s− 1) + 1− h0(O(s− 1)) =: g−

For n ≥ s we have h1(IZ(n)) =
∑s−1

i=0 [ni − n − 1]+ (where [x]+ = max{0, x}). It

follows that
∑

n≥s h
1(IZ(n)) = g+.

Finally we will also need the following:
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Lemma 2.1.9 Let C ⊂ P3 be a p.n. curve of degree d with χ(C) = (n0, ..., ns−1).

De�ne s(C) = min {n | h0(IC(n)) 6= 0}, e(C) = max {n | h1(OC(n)) 6= 0} and

τ(C) = max {n | h1(IC∩H(n)) 6= 0} (H ⊂ P3 a general plane). Then: s(C) = s,

e(C) = n0 − 3 = τ(C)− 1 and IC(n) is generated by global sections for n ≥ n0.

Proof 2.1.10 It is clear that s(C) = s (because H1
∗ (IC) = 0) and that τ = n0 − 2

(because h1(IC∩H(n)) =
∑s−1

i=0 [ni−n− 1]+− [i−n− 1]+). From the exact sequence:

0→ IC(n− 1)→ IC(n)→ IC∩H(n)→ 0

we easily get that e = τ − 1. Finally the last statement follows from Castelnuovo-

Mumford's lemma.

2.2 A conjecture on the normal bundle.

Let C ⊂ P3 be a smooth irreducible curve, of degree d, genus g. The normal bundle

NC is de�ned by the exact sequence:

0→ TC → TP3 | C → NC → 0

From this it follows that:

det(NC) ' ωC(4); hence : degNC = 2g − 2 + 4d

We recall the following:

Definition 2.2.1 Let C be a smooth irreducible curve. A rank two vector bundle

E on C is semi-stable (resp. stable) if for any sub-line bundle L ⊂ E, we have

degL ≤ µ(E) (resp. degL < µ(E)), where µ(E) := deg(E)/2.

This is the de�nition of Mumford-Takemoto of stability. In fact for the general

de�nition one considers torsion-free subsheaves L ⊂ E, but on a nonsingular curve

a torsion-free sheaf is locally free (structure of modules over a P.I.D.). Also if the

quotient, Q, of 0 → L → E has torsion (so that L is not a sub-bundle) then

Q 'M ⊕T where M is locally free and where T is a torsion sheaf (again structure
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of modules over a P.I.D.). By composing the surjection E → Q 'M ⊕T → 0, with

M ⊕ T → M → 0, we get: E → M → 0, whose kernel, L̂, is locally free (because

torsion-free). In conclusion we have:

0→ L̂→ E →M → 0

and:

0→ L→ L̂→ T → 0

Since deg L̂ = degL + deg T , we see that it is enough to test (semi)-stability with

sub-line bundles.

Going back to our normal bundle we see that NC is semi-stable (resp. stable) if

and only if for every sub-line bundle L ↪→ NC we have: degL ≤ 2d + g − 1 (resp.

degL < 2d+ g − 1).

Concerning projectively normal curves we have the following (see [15], Conj.

4.2):

Conjecture 2.2.2 (Hartshorne)

Let C ⊂ P3 be a su�ciently general projectively normal curve of degree d, genus g

with s(C) = s. If

g ≤ d(s− 2) + 1 (∗s)

then NC is semi-stable.

Let's explain where does the inequality of the conjecture come from. If C is

su�ciently general it is reasonable to think that C will lie on a smooth surface, S,

of degree s. And, indeed, this is true (see Thm. 2.1.5 (5)). The inclusion C ⊂ S

yields the exact sequence:

0→ NC,S → NC → NS | C → 0

using the adjunction formula and the fact that S is a divisor, this exact sequence

reads like:

0→ ωC(4− s)→ NC → OC(s)→ 0
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If NC is semi-stable then ωC(4−s) doesn't destabilize, i.e. degωC(4−s) ≤ 2d−g+1.

Since degωC(4 − s) = 2g − 2 + d(4 − s), we get: 2g − 2 + d(4 − s) ≤ 2d + g − 1,

which is precisely the inequality (∗s).
The conjecture then means that if NC is not destabilized for evident numerical

reasons, then it is semi-stable, if C is su�ciently general. Observe that a smooth

degree k > s surface containing C will yield a subbundle, ωC(4−k) ↪→ NC , of smaller

degree. The bet of the conjecture is that singular surfaces containing C won't give

subbundles L ↪→ NC of too high degree (always if C is su�ciently general).

Indeed let C ⊂ F where F is a surface of degree k such that dim(C∩Sing(F )) =

0. The inclusion C ⊂ F corresponds to a section O → IC(k). Twisting by OC
and using the isomorphism IC ⊗ OC ' IC/I2

C ' N ∗C , we get a section, σ, of

N ∗C(k) ' IC/I2
C(k) which vanishes (to some order) on Sing(F ) ∩ C. Let ∆ be the

divisorial part of (σ)0, then dividing by (the equation of) ∆, we get a non-vanishing

section: OC ↪→ N ∗C(k)⊗OC(−∆), hence an exact sequence:

0→ OC → N ∗C(k)⊗OC(−∆)→M → 0

where M is a line-bundle. By dualizing, twisting by OC(k) and looking at determi-

nants we get:

0→ ωC(4− k)⊗OC(∆)→ NC → OC(k)⊗OC(−∆)→ 0

The line bundle L = ωC(4− k)⊗OC(∆) is the "normal bundle of C in F", the

divisor ∆ has support on Sing(F )∩C and it (or its degree) is called the contribution

of the singularities of F . If Sing(F ) ∩ C = {P1, ..., Pr} where any Pi is an ordinary

double point of F , then ∆ = P1 + ...+Pr ([19]). For other singularities the behaviour

of ∆ is quite mysterious.

Of course if C ⊂ Sing(F ), the corresponding section of N ∗C(k) is identically zero

and F doesn't de�ne any subbundle of NC .
In conclusion surfaces containing C with isolated singularities along C contribute

to subbundles of NC of higher degrees than smooth surfaces. The bet in the con-

jecture is that surfaces containing C don't have too many singularities on C, if C is

su�ciently general.



38 2. On the normal bundle of projectively normal space curves.

This being said let's notice that Conjecture 2.2.2 is not very precise since it

envolves just the invariants d, g, s whereas p.n. curves are classi�ed by numerical

characters. Now it may well happen that two di�erent characters (hence corre-

sponding to di�erent irreducible components of the Hilbert scheme) have the same

invariants. For example

χ1 = (s+ 3, s+ 2, s+ 1, s+ 1, s+ 1, s+ 1, ss−6)

and

χ2 = (s+ 2, s+ 2, s+ 2, s+ 2, s+ 1, s, ss−6)

have the same d, g, s but χ1 6= χ2.

For s = 6, χ1 = (9, 8, 7, 7, 7, 7), χ2 = (8, 8, 8, 8, 7, 6) both have d = 30, g = 99

and s = 6.

So we may rephrase Conjecture 2.2.2 in two di�erent ways:

Conjecture 2.2.3 (Strong)

Let χ be a connected character of length s, degree d and genus g. Assume:

g ≤ d(s− 2) + 1 (∗s)

then the general curve of Hχ has a semi-stable normal bundle.

Or:

Conjecture 2.2.4 (Weak)

Let d, g, s be integers such that there exist p.n. curves with these invariants. If

g ≤ d(s− 2) + 1 (∗s)

then there exist a connected numerical character, χ, of length s, degree d, genus g

such that the general curve of Hχ has a semi-stable normal bundle.

Remark 2.2.5 Finally it is worth observing that if the inequality (∗s) is not satis-

�ed, then every curve of degree d, genus g lying on a surface of degree s has a non

semi-stable normal bundle.
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2.3 Numerical characters and the inequality (∗s).
Our �rst task here is to try to understand, for �xed s, which numerical characters

are concerned with the inequality

g ≤ d(s− 2) + 1 (∗s)

of the conjecture.

First let's observe an equivalent formulation of (∗s):

Lemma 2.3.1 Let χ = (n0, ..., ns−1) be a length s character of degree d, genus g.

Then

d+ g+ ≤
(
s+ 2

3

)
⇔ g ≤ 1 + d(s− 2) (∗s)

where g+ =
s−1∑
i=0

(ni − s− 1)(ni − s)/2.

Proof 2.3.2 Follows from the fact that g = g−+g+ where g− = 1+d(s−1)−
(
s+2

3

)
(see lemma 2.1.7).

Now let's consider a complete intersection of type (s, s). The degree is s2 and

the genus is g = 1 + d(s − 2) (recall that for, C, a complete intersection (a, b),

ωC ' OC(a+ b− 4)). So inequality (∗s) is an equality in this case.

By the way NC ' 2.OC(s) is (properly) semi-stable.

The numerical character of a complete intersection (s, s) is:

Φ = (2s− 1, 2s− 2, ...., s+ 1, s)

We claim that this is the biggest (for lexicographical order) character of length s

satisfying (∗s).

Lemma 2.3.3 Let χ = (n0, ..., ns−1) be a connected character of length s, degree d

and genus g. If g ≤ d(s− 2) + 1, then:

1. χ = Φ, or

2. n0 ≤ 2s− 2.
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Proof 2.3.4 First let's show that n0 ≤ 2s − 1. If n0 > 2s − 1, then ni > mi,∀i
(Φ = (mi)). In particular dχ > dΦ and also g+(χ) ≥ g+(Φ). Set dχ = dΦ + r. Then

g−(χ) = 1 + (dΦ + r)(s− 1)−
(
s+2

3

)
, it follows that: g−(χ)− g−(Φ) = r(s− 1). Since

g+(χ) ≥ g+(Φ), we get g(χ) > g(Φ) + r(s− 1). It follows that:

g(χ) > g(Φ) + r(s− 1) = dΦ(s− 2) + 1 + r(s− 1)

= (dΦ + r)(s− 2) + 1 + r = dχ(s− 2) + 1 + r

This shows n0 ≤ 2s− 1.

Now if n0 = 2s − 1 and χ 6= Φ, we have ni ≥ mi,∀i and ni > mi if i ≥ i0, for

some i0, 2 ≤ i0 ≤ s− 1 and the same argument applies.

Corollary 2.3.5 Let C be a p.n. curve with invariants (d, g, s). If g ≤ d(s−2)+1,

then e(C) ≤ 2s− 4, with equality if and only if C is a complete intersection (s, s).

Proof 2.3.6 Since e = n0− 3 (see 2.1.9) the inequality follows from Lemma 2.3.3,

moreover if e = 2s − 4, then χ(C) = Φ. Since degC = deg Φ = s2 and since

h0(IC(s)) = 2, it follows (C is integral) that C is a complete intersection (s, s).

We also have:

Lemma 2.3.7 Let χ = (n0, ..., ns−1) be a connected character of length s, degree d,

genus g.

1. If ns−1 = s, then χ satis�es (∗s) (i.e. g ≤ 1 + d(s− 2))

2. If χ satis�es (∗s), then:

ns−1 ≤
−3 +

√
12s2 − 3

6
+ s <

5s

3
.

Proof 2.3.8 (1) Let Φ = (m0, ...,ms−1). If ns−1 = s, then mi ≥ ni, ∀i. It follows

that d ≤ dΦ and g+ ≤ g+(Φ). Since dΦ + g+(Φ) =
(
s+2

3

)
, we conclude by Lemma

2.3.1.

(2) Let χa = (s+a, ..., s+a). We have degχa = s(s+1)/2+as, g+(χa) = sa(a−
1)/2. A short computation shows that (∗s) is equivalent to: 3a2+3a−s2+1 ≤ 0, and
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this implies a ≤ −3+
√

12s2−3
6

=: s(a). If ns−1 > s(a) + s, then χa, with a = ns−1 − s,
doesn't verify (∗s). Since ni ≥ a + s = ns−1, χ also doesn't verify (∗s). The last

inequality is a simple computation.

The "smallest" character of length s is (s, ..., s) (the �at character), since ns−1 =

s it satis�es (∗s), then we have:

Lemma 2.3.9 (1) If s ≥ 3, then χ = ((s+ 1)s) satis�es (∗s).
(2) Let χ = ((s + 2)a, (s + 1)b), a + b = s, be a connected character of length s. If

s ≥ 5, then χ satis�es (∗s).

Proof 2.3.10 (1) We have d = s(s+3)
2

and g+ = 0 and we easily conclude.

(2)This time d = s(s+1)/2+2a+b, g+ = a. It follows that (∗s) is equivalent to:
3a+ b ≤ s(s2−1)/6. Since 3a+ b ≤ 3s, it is enough to check that: 3s ≤ s(s2−1)/6,

which holds for s ≥ 5.

Remark 2.3.11 In particular if s = 4 the character (6, 6, 6, 6) doesn't satisfy (∗s).
(More generally χ = ((2s− 2)s) never satis�es (∗s) for s ≥ 4.) This shows that not

every character χ ≤ Φ (lexicographical order) satis�es (∗s).
Projectively normal curves with h1(OC(s− 1)) = 0 are precisely the curves with

χ = ((s+ 1)a, sb): for s ≥ 3, they all satisfy (∗s).

It seems quite tricky to determine exactly all the characters satisfying (∗s). For
more on this topic see Section 2.6 and the Appendix.

2.4 Double structures and normal bundle.

Let C ⊂ P3 be a smooth irreducible curve. If L is a sub-bundle of NC :

0→ L→ NC →M → 0

dualizing we get:

0→M∗ → N ∗C → L∗ → 0

Using the de�ning sequence of the conormal bundle we get a commutative diagram:
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0

↓
0 M∗

↓ ↓
0 → I2

C → IC → N ∗C → 0

↓ || ↓
0 → IX → IC → L∗ → 0

↓ ↓
M∗ 0

↓
0

The ideal IX de�nes a double structure on C, i.e. a locally complete intersection

subscheme, with support C and degree 2d (d = degC). From the exact sequence:

0→ IX → IC → L∗ → 0

we see that L∗ ' IC,X hence we have:

0→ L∗ → OX → OC → 0

So χ(OX) = χ(OC) + χ(L∗) and it follows that:

pa(X) = l + 2g − 1

where g = g(C), l := degL. So to bound the degree of L is equivalent to bound the

(arithmetic) genus of X.

Although double structures seem awful, they are not really:

Proposition 2.4.1 A double structure on a smooth irreducible curve has a con-

nected character.

Proof 2.4.2 See [8], Thm. 10.

This prop means that we can use Castelnuovo's method of studying the general

plane section to bound the genus of double structures. For example:
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Theorem 2.4.3 Let X be a double structure on a smooth irreducible curve C of

genus g and degree d ≥ 3. Let t ≥ 1 be an integer such that 2d > t2 + 1 and

h0(IC(t)) = 0. Then pa(X) ≤ GCM(2d, t + 1) with equality if and only if X is

a.C.M.

In particular if GCM(2d, t+ 1)− 2d− 3g + 2 < 0 (resp. ≤ 0), then NC is stable

(resp. semi-stable).

Proof 2.4.4 See [8], Thm. 13.

Here GCM(d, s) = max {g(C) | ∃C an a.C.M. curve of degree d with h0(IC(s −
1)) = 0}. We recall (see [13]) that:

• if 2d > s(s− 1) and if 2d+ r = st, 0 ≤ r < s, then:

GCM(2d, s) = 1 + d(s2 − 4s+ 2d)/s− r(s− r)(s− 1)/2s

Moreover, under these assumptions, GCM(2d, s) is the genus of a curve linked to

a plane curve of degree r by a complete intersection (s, t) (cf [13]).

Corollary 2.4.5 Let C be a projectively normal curve with invariants (d, g, s). If

GCM(2d, s)− 2d− 3g + 2 ≤ 0

then NC is semi-stable (and if the inequality is strict then NC is stable).

Proof 2.4.6 Apply 2.4.3 with t = s− 1 (observe that d ≥ s(s+1)
2

).

This yields a purely numerical criteria for testing (semi)-stability. Before to start

tricky computations, let's try to improve our numerical criteria.

Proposition 2.4.7 Let χ = (n0, ..., ns−1) be a connected character of degree d ≥ 3,

genus g, length s. Assume (d, g, s) satis�es (∗s) (i.e. g ≤ d(s − 2) + 1). Set

t := ns−1 − 1. If:

1. 2d > t2 + 1

2. and GCM(2d, ns−1)− 2d− 3g + 2 ≤ 0 (resp. < 0)
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then the general curve of Hχ has a semi-stable (resp. stable) normal bundle.

Proof 2.4.8 Let C denote a su�ciently general curve in Hχ. By Thm. 2.1.5 we

may assume that C lies on a smooth surface of degree s, S. Let L ⊂ NC be a sub-

line bundle. If degL ≤ degωC(4 − s), then L doesn't destabilize (because (d, g, s)

satis�es (∗s)). Assume degL > degωC(4 − s) and let X denote the corresponding

double structure. The curve X is not contained in S (because S being smooth,

NC,S ' ωC(4− s)). The next minimal generator of I(C) has degree ns−1. Since any

surface containing X also contains C, we conclude that h0(IX(t)) = 0 (t = ns−1−1).

If 2d > t2 + 1, we claim that pa(X) ≤ GCM(2d, t+ 1).

Indeed let χ′ denote the character of X and let σ denote its length. If pa(X) >

GCM(2d, t+ 1), then:

GCM(2d, σ) > g(χ′) ≥ pa(X) > GCM(2d, t+ 1)

and this implies σ ≤ t. Since by assumption 2d > t2 + 1 ≥ σ2 + 1, it follows from

[8] Lemma 12, that h0(IX(σ)) 6= 0, in contradiction with: h0(IX(t)) = 0 (note that

case (ii) of Lemma 12 loc. cit. cannot occur because C is integral of degree ≥ 3).

Since pa(X) = degL+ 2g− 1, the inequality G(2d, t+ 1)− 2d− 3g+ 2 ≤ 0 (resp.

< 0) implies degL ≤ µ(NC) (resp. <), so NC is semi-stable (resp. stable).

Remark 2.4.9 Since GCM(2d, k) is a decreasing function of k for 2d �xed, Prop.

2.4.7 improves Corollary 2.4.5 if ns−1 > s i.e. if h0(IC(s)) = 1.

If we try to improve these results for curves with h0(IC(s)) > 1 we are faced

with the following di�culty: there could exist surfaces S ′ ∈ H0(IC(s)) having sin-

gularities on C, to use our method we have to control the contribution of such

singularities to the normal bundle. In general this is an almost impossible task.

However if h0(IC(s)) = 2, something can be done.

Lemma 2.4.10 Let χ = (n0, ..., s+1, s) be a connected numerical character of length

s, degree d, genus g. If C ∈ Hχ is su�ciently general, then any surface of degree

s containing C has at most one ordinary double point as singularity (the general

degree s surface being smooth).
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Proof 2.4.11 If C ∈ Hχ, C is linked by a complete intersection, Y , of type (s, s)

to an a.C.M. curve Γ. We observe that χ′ = χ(Γ) is completely determined by χ.

This follows from the fact that χ determines the minimal free resolution of C (up to

repeated terms), by liaison this determines a free resolution of IΓ, hence the Hilbert

function of Γ, i.e. its numerical character. More precisely if:

0→
⊕
O(−bj)→

⊕
ai>s

O(−ai)⊕ 2.O(−s)→ IC → 0

is the minimal free resolution of IC, then, by mapping cone, we obtain:

0→
⊕
O(−(2s− ai))→

⊕
O(−(2s− bj))→ IΓ → 0

which is a (minimal in fact) free resolution of IΓ. In particular we see that s(Γ) =

2s− b+ = 2s− n0 − 1 ≤ s− 2 since n0 ≥ s+ 1.

This establishes a correspondence between Hχ and Hχ′. The linked curve satis�es

h1(OΓ(s− 4)) = 0. This follows from the exact sequence of liaison:

0→ IY (s)→ IC(s)→ ωΓ(s− 4)→ 0.

It follows from Castelnuovo-Mumford's lemma that IΓ(n) is globally generated if

n ≥ s− 2.

Now take Γ ∈ Hχ′ su�ciently general (hence smooth). It follows from [19] Prop.

4.8, Corollary 4.10, that if P ⊂ P(H0(IΓ(s)) is a su�ciently general pencil, then

any surface in P has at most an ordinary double point as singularity (the general one

being smooth). (Observe that the proof of [19] loc. cit. applies for s > s(Γ).) If C is

linked to Γ by two general elements of P, then C is smooth and P(H0(IC(s)) = P:
we are done.

Corollary 2.4.12 Let χ = (n0, ..., s+ 1, s) be a connected numerical character of

length s, degree d, genus g. If C ∈ Hχ is su�ciently general and if:

GCM(2d, s+ 1)− 2d− 3g + 2 ≤ 0 (∗)

then NC is semi-stable (and stable if the inequality is strict).
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Proof 2.4.13 As in the proof of Prop. 2.4.7 it is enough to show that h0(IX(s)) = 0

where X is the double structure given by a quotient N ∗C → L∗ → 0 , where degL >

µ = 2d+g−1. Observe that since ns−1 = s, we already know that g ≤ 1+d(s−2) (∗s)
(see Lemma 2.3.7).

Assume S is a degree s surface containing X. If S is smooth then X is 2C on

S i.e. L ' ωC(4 − s). This is impossible since (∗s) says that ωC(4 − s) doesn't

destabilize NC. If S is singular then, by 2.4.10 S has at most one ordinary double

point on C and NC,S = ωC(4− s)⊗OC(P ). It follows that L ' ωC(4− s)⊗OC(P )

which has degree degL = 2g − 2 + d(4− s) + 1. If L destabilizes:

degL = 2g − 2 + d(4− s) + 1 > µ ≥ 2g − 2 + d(4− s)

It follows that µ = 2g−2+d(4−s) i.e. g = 1+d(s−2) or, equivalently d+g+ =
(
s+2

3

)
(see Lemma 2.3.1). If Φ = (2s− 1, ..., s) is the character of a complete intersection

(s, s), then ni ≤ mi, ∀i (because ns−1 = s) and this implies d ≤ d(Φ), g+ ≤ g+(Φ).

It follows that: (
s+ 2

3

)
= d+ g+ ≤ d(Φ) + g+(Φ) =

(
s+ 2

3

)
This implies d = d(Φ) = s2, g+ = g+(Φ). From d = s2 and h0(IC(s)) ≥ 2 we get

that C is a complete intersection (s, s), hence NC is semi-stable: a contradiction.

This proves h0(IX(s)) = 0 if degL > µ. Since χ(X) is connected, pa(X) =

degL+ 2g − 1 ≤ GCM(2d, s+ 1) and we conclude as usual.

2.5 Some general results.

We now apply the results of the previous section.

Proposition 2.5.1 Let χ = ((s + 1)a, sb), 0 ≤ a ≤ s, a + b = s, s ≥ 3. Then the

general curve of Hχ has a semi-stable normal bundle.

Proof 2.5.2 The invariants d, g of χ are given by: d = s(s + 1)/2 + a, g = g− =

1 + d(s − 1) −
(
s+2

3

)
. In particular: 2d = s(s + 1) + 2a. The cases a ≤ s/2 follow

from [8] Remark 20 (v). So we may assume a > s/2. We will apply Cor. 2.4.5. We
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have 2d+ 2(s− a) = s(s+ 3) and 0 ≤ 2(s− a) < s, so r = 2(s− a) in the formula

of GCM(2d, s) and:

GCM(2d, s) = 1 +
d(2s2 − 3s+ 2a

s
− (s− a)(2a− s)(s− 1)

2s

After some computations:

GCM(2d, s) = 1 + d(2s− 3) + s(s− 1) + 2a(a+ 2)− 2as

and it follows (after some other computations) that:

GCM(2d, s)− 2d− 3g + 2 = 2a2 + a(2− 3s) + s2 − s (∗)

So the inequality GCM(2d, s)− 2d− 3g + 2 ≤ 0 (+) is satis�ed if:

3s− 2−
√
s2 − 4s+ 4

4
≤ a ≤ 3s− 2 +

√
s2 − 4s+ 4

4

Since s
2
≥ 3s−2−

√
s2−4s+4
4

and s− 1 ≤ 3s−2+
√
s2−4s+4
4

, we conclude that (+) holds for

s/2 ≤ a ≤ s − 1. For a = s (i.e. χ = (s + 1, ..., s + 1)), the inequality doesn't hold

(in this case GCM(2d, s)− 2d− 3g+ 2 = s). However in this case we may use Prop.

2.4.7. Indeed ns−1 > s and χ satis�es (∗s) (see Lemma 2.3.9), also 2d > s2 + 1.

We have 2d + 2 = (s + 1)(s + 2), so r = 2 and G := GCM(2d, s + 1) is the genus

of a curve linked to a conic in a complete intersection (s+ 1, s+ 2). It follows that:

G = (d− 1)(2s− 1) and with some computations we get: G− 2d− 3g+ 2 = −s < 0.

Remark 2.5.3

1. The p.n. curves with character χ = ((s+ 1)a, sb) are precisely the p.n. curves

with s(C) = s and h1(OC(s− 1)) = 0.

2. The proof shows that if a 6= s, then any p.n. curve with character χ has a

semi-stable normal bundle.

3. If a = s the genericity assumption is necessary. Indeed if χ = (4, 4, 4), then

d = 9 and g = 9. If the cubic containing C is smooth, then NC is stable ([17]),

but if the cubic is singular NC can be not semi-stable ([9], Remarque 11).
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The characters considered so far are the "smallest" ones (for lexicographical

order), now we turn to the greatest ones (under the assumption ns−1 = s).

Lemma 2.5.4 Let C be a projectively normal curve with χ(C) = (n0, ..., ns−1). The

following are equivalent:

1. n0 = 2s− 2 and ns−1 = s

2. C is linked to a plane curve of degree r, 1 ≤ r ≤ s−1 by a complete intersection

(s, s)

If the conditions (1), (2) are satis�ed then χ = (2s − 2, ..., (2s − 1 − r)2, ..., s) for

some r, 1 ≤ r ≤ s− 1. In particular the invariants (d, g, s) of C satisfy (∗s).

Proof 2.5.5 (1)⇒ (2): If n0 = 2s−2 and ns−1 = s, then χ contains (2s−2, ..., s):

these are s − 1 terms, so only one is missing. It follows that χ = (2s − 2, ..., (2s −
1−r)2, ..., s) with 1 ≤ r ≤ s−1. The degree is s2−r. Since ns−1 = s, h0(IC(s)) ≥ 2

and we can make a liaison (s, s). The exact sequence of liaison:

0→ IU(1)→ IP (1)→ ωC(5− 2s)→ 0 (∗)

shows that h0(IP (1)) 6= 0 (indeed n0 = 2s− 2 implies e(C) = 2s− 5).

(2) ⇒ (1): If C is linked to a plane curve P of degree r, 1 ≤ r ≤ s− 1 by (s, s),

then the exact sequence of liaison (∗) shows that s(C) = s, e(C) = 2s− 5. So χ has

length s and n0 = 2s− 2. Since h0(IC(s)) ≥ 2, ns−1 = s.

From the �rst part of the proof it follows that χ is as claimed. Since ns−1 = s,

the inequality g ≤ 1 + d(s− 2) (∗s) is satis�ed (cf Lemma 2.3.7).

Instead of running into speci�c computations in order to apply 2.4.5 or 2.4.12,

we will set a general framework.

Let's set 2d+ r = kσ, 0 ≤ r < σ. Then, if 2d > σ(σ − 1)

GCM(2d, σ) = 1 +
kσ2 + σ(−4k + k2 − 2r)− 2kr + r2 + 5r

2

Now with g = 1 + d(s− 1)− h0(O(s− 1)) + g+, we have:

GCM(2d, σ)− 2d− 3g + 2 =

1

2
[kσ2 + σ(−3k + k2 − 2r)− 2kr + r2 + 4r − 3ksσ + 3rs+ s(s+ 1)(s+ 2)− 6g+]
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Definition 2.5.6 We de�ne C(σ) := GCM(2d, σ)− 2d− 3g + 2

Lemma 2.5.7

1. We have

C(s) = [s3 + s2(−2k + 3) + s(k2 − 3k + α + 2)− 2αk + 4α + α2 − 6g+]/2

(where 2d+ α = ks, 0 ≤ α < s)

2. We have:

C(s+1) =
1

2
[s(s−k)2 +(k2−4ks+3s2)+(sβ+β2−2kβ)+2(s+β−k)−6g+]

(where 2d+ β = (s+ 1)k, 0 ≤ β < s+ 1)

Proof 2.5.8 Just replace σ with s (resp. s+ 1) in the formula above.

Proposition 2.5.9 Let C be a p.n. curve linked to a plane curve of degree r,

1 ≤ r ≤ s− 1, by a complete intersection (s, s), s ≥ 3.

1. If r = 1, NC is semi-stable

2. If r = s− 1, NC is stable

3. If 1 < r < s− 1 and if C is su�ciently general, then NC is stable.

Proof 2.5.10 (1) If r = 1 then C is linked to a line by a complete intersection

(s, s), so d = s2 − 1 and by liaison g = (s2 − 2)(s − 2). We have 2d + 2 = 2s2,

so GCM(2d, s) is the genus of a curve linked to a conic by a complete intersection

(2s, s), it follows that GCM(2d, s) = (s2 − 2)(3s − 4). A short computation shows

that:

GCM(2d, s)− 2d− 3g + 2 = 0.

We conclude with 2.4.5.

(2) As above if r = s − 1, we get d = s2 − s + 1, g = (s − 2)(s − 1)(2s − 1)/2

and GCM(2d, s) = (s− 1)(3s2 − 6s+ 4). It follows that:

GCM(2d, s)− 2d− 3g + 2 = −(s− 1)(s− 2)/2 < 0.
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We conclude with 2.4.5.

(3) Here we will use Cor. 2.4.12, hence C(s + 1). We have to compute g+.

For a complete intersection (s, s), we have G+ + s2 =
(
s+2

3

)
. We have g+ = G+ −

r(2s−3−r)
2

, indeed χ(C) is obtained from the character of a complete intersection (s, s)

by replacing m0 = 2s−1 by 2s−1−r. Finally 6g+ = s(s−1)(s−2)−3r(2s−3−r).
If r ≤ s/2 + 1 we write: 2d + (2r − 2) = (2s − 2)(s + 1) and apply 2.5.7 with

β = 2r− 2, k = 2s− 2. We �nd that: C(s+ 1) ≤ 0⇔ r2− 5r− 2s2 + 6s ≤ 0, which

is satis�ed (with strict inequality) for s ≥ 3. We conclude that, for general C, NC
is stable.

If r > s/2 + 1, we write: 2d+ (2r− s− 3) = (2s− 3)(s+ 1) and apply 2.5.7 with

β = 2r− s− 3, k = 2s− 3. We �nd that: C(s+ 1) ≤ 0⇔ r2− r(4s+ 5) + 12s ≤ 0.

Since (s + 3)/2 > 4s+5−
√

16s2−8s+25
2

and s − 2 < 4s+5+
√

16s2−8s+25
2

for s ≥ 2, we get

C(s+ 1) < 0.

2.6 Small values of s and conclusion.

In this section we investigate the conjecture for small values of s. For this we will

make use of a computer. The strategy is as follows:

• For given s we list (by decreasing lexicographical order), all connected charac-

ters between (2s−2, ..., 2s−2) (see Lemma 2.3.3) and (s, ..., s). The algorithm

for this is quite simple: given χ = (n0, ..., ns−1) we look for the greatest i such

that ni = ni−1 > s. If we �nd it we set: χ− = (mj) with mj = nj, 0 ≤ j < i,

mj = ni − 1 for j ≥ i. If we don't �nd such a i, we set mj = n1,∀j. Then

χ− < χ and if χ′ < χ, then χ− ≥ χ′. We make the program run while n0 > s.

The program will list all the characters up to the �at one (ss).

Here is the code in Java language:

public int[] lexico(int[] T){
int t=0;

int s = T.length;

for(int i=0; i < s-1;i++){
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if(t==0){
if(T[s-1-i-1]==T[s-1-i] && T[s-1-i] > s){
for(int j=s-1-i;j <s;j++){
T[j] = T[s-1-i-1]-1;}
t=1;

}
}
}
if(t==0){
for(int i=0; i<s; i++){
T[i]=T[1];}
}
return T;

}

• For any listed character we compute its degree and genus and (∗s) := g−d(s−
2) − 1, if (∗s) > 0, the character is not in the range of the conjecture and is

no longer considered.

• For the remaining characters, χ, we compute C(s) = GCM(2d, s)−2d−3g+2.

If C(s) ≤ 0 (resp. < 0), then any p.n. curve with character χ has a semi-stable

(resp. stable) normal bundle (cf 2.4.5).

• For the remaining characters (those with (∗) ≤ 0 and C(s) > 0, we compute

Lft := 2d−(ns−1−1)2−1. If Lft > 0, the lifting condition of 2.4.7 is satis�ed

and we compute C(ns−1) = GCM(2d, ns−1)−2d−3g+2. If C(ns−1) ≤ 0 (resp.

< 0) then the general curve of Hχ has a semi-stable (resp. stable) normal

bundle (2.4.7).

• The remaining characters with ns−1 = s have: (∗) ≤ 0, C(s) > 0. If ns−2 =

s + 1, we compute C(s + 1). If C(s + 1) ≤ 0, the general curve of Hχ has a

semi-stable normal bundle (2.4.12).
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• If no character remains, the strong conjecture (2.2.3) is proved for s, otherwise

we get the list of the character of length s that the methods developed so far

are unable to handle.

In this way we get:

Proposition 2.6.1 The strong conjecture 2.2.3 holds for s ≤ 6.

The strong conjecture holds for s = 7 but for one case: χ = (9, 9, 8, 8, 8, 7, 7),

d = 35, g = 129.

Proof 2.6.2 See the complete listings in the appendix.

Summarizing our results are:

Theorem 2.6.3 The strong conjecture 2.2.3 holds in the following cases:

1. if ni ≤ s+ 1, ∀i (curves with h1(OC(s− 1)) = 0)

2. n0 = 2s − 2 and ns−1 = s (curves linked to a plane curve by a complete

intersection (s, s))

3. s ≤ 6

4. s = 7 and χ 6= (9, 9, 8, 8, 8, 7, 7)

Actually our results are more precise since in some cases we are able to state

them for every curve (and also sometime we get stability).

For s > 7 we also get some results but it is di�cult to make a precise statement.

The advantage (or disadvantage, depending on the point of view) of our approach

is to reduce the problem to a purely numerical check.

So the �rst case the methods developed so far can't handle is a case with

h0(IC(s)) = 3. However inspections with the computer show that, as s get big-

ger, also other cases "at the top" of the list (i.e. with ns−1 > s) will not be covered.

For s = 8, the conjecture is proved except for two cases:

χ1 = (11, 10, 10, 10, 10, 9, 8, 8) (d = 48g=217g+ = 7, g = 224) and:
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χ2 = (10, 10, 9, 9, 9, 9, 8, 8) (d = 44, g=189, g+ = 2, g = 191). These are still cases

with h0(IC(s)) > 2.

For s = 11 there are plenty of cases which are not proved and among them two

cases with ns−1 > s:

χ1 = (17, 17, 17, 16, 16, 16, 16, 15, 14, 13, 12), (d = 114, g=855, g+ = 95, g = 950)

and:

χ2 = (17, 16, 16, 15, 15, 15, 15, 15, 14, 13, 12),(d = 108, g=795, g+ = 69, g = 864).

The situation gets worst as s increases...

We have refrained from using the "good old time" method of degeneration to

construct examples in the cases not proved.

2.7 Appendix

The complete listing for s = 3:

If C(s)<=0, any p.n. has a semi-stable character. If Lft >0, the lifting cdt is

veri�ed and if C(ns−1)<=0, the general curve has a semi-stable normal bundle. If

ns−1 = s, ns−2 = s+ 1 and C(s+1)<=0, the general curve has a semi stable normal

bundle.

(4,4,4) [degree = 9 g- = 9 g+ = 0 genus = 9] (C(s) =3 is > 0, but C(ns−1)= -3

the general curve has a semi-stable n.bdle)

(4,4,3) [degree = 8 g- = 7 g+ = 0 genus = 7] ( C(s)= 0 every curve has a

semi-stable n.bdle)

(4,3,3) [degree = 7 g- = 5 g+ = 0 genus = 5] ( C(s)= -1 every curve has a

semi-stable n.bdle)

(3,3,3) [degree = 6 g- = 3 g+ = 0 genus = 3] ( C(s)= 0 every curve has a

semi-stable n.bdle)

The complete listing for s = 4:

If C(s)<=0, any p.n. has a semi-stable character. If Lft >0, the lifting cdt is

veri�ed and if C(ns− 1)<=0, the general curve has a semi-stable normal bundle. If

ns−1 = s, ns−2 = s+ 1 and C(s+1)<=0, the general curve has a semi stable normal

bundle.
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(6,6,6,6) [degree = 18 g- = 35 g+ = 4 genus = 39] ((*s)= 2 every curve has a

NON semi-stable normal bdle)

(6,6,6,5) [degree = 17 g- = 32 g+ = 3 genus = 35] (C(s) =7 is > 0, but C(ns−1)=

-5 the general curve has a semi-stable n.bdle)

(6,6,5,5) [degree = 16 g- = 29 g+ = 2 genus = 31] (C(s) =6 is > 0, but C(ns−1)=

-6 the general curve has a semi-stable n.bdle)

(6,6,5,4) [degree = 15 g- = 26 g+ = 2 genus = 28] ( C(s)= 0 every curve has a

semi-stable n.bdle)

(6,5,5,5) [degree = 15 g- = 26 g+ = 1 genus = 27] (C(s) =3 is > 0, but C(ns−1)=

-3 the general curve has a semi-stable n.bdle)

(6,5,5,4) [degree = 14 g- = 23 g+ = 1 genus = 24] (dim(I(s))=2, C(s+1)= -7 the

general curve has a semi-stable n.bdle)

(6,5,4,4) [degree = 13 g- = 20 g+ = 1 genus = 21] ( C(s)= -3 every curve has a

semi-stable n.bdle)

(5,5,5,5) [degree = 14 g- = 23 g+ = 0 genus = 23] (C(s) =4 is > 0, but C(ns−1)=

-4 the general curve has a semi-stable n.bdle)

(5,5,5,4) [degree = 13 g- = 20 g+ = 0 genus = 20] ( C(s)= 0 every curve has a

semi-stable n.bdle)

(5,5,4,4) [degree = 12 g- = 17 g+ = 0 genus = 17] ( C(s)= 0 every curve has a

semi-stable n.bdle)

(5,4,4,4) [degree = 11 g- = 14 g+ = 0 genus = 14] ( C(s)= -2 every curve has a

semi-stable n.bdle)

(4,4,4,4) [degree = 10 g- = 11 g+ = 0 genus = 11] ( C(s)= 0 every curve has a

semi-stable n.bdle)

The complete listing for s = 5:

If C(s)<=0, any p.n. has a semi-stable character. If Lft >0, the lifting cdt is

veri�ed and if C(ns−1)<=0, the general curve has a semi-stable normal bundle. If

ns−1 = s, ns−2 = s+ 1 and C(s+1)<=0, the general curve has a semi stable normal

bundle.

(8,8,8,8,8) [degree = 30 g- = 86 g+ = 15 genus = 101] ((*s)= 10 every curve has

a NON semi-stable normal bdle)
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(8,8,8,8,7) [degree = 29 g- = 82 g+ = 13 genus = 95] ((*s)= 7 every curve has

a NON semi-stable normal bdle)

(8,8,8,7,7) [degree = 28 g- = 78 g+ = 11 genus = 89] ((*s)= 4 every curve has

a NON semi-stable normal bdle)

(8,8,8,7,6) [degree = 27 g- = 74 g+ = 10 genus = 84] ((*s)= 2 every curve has

a NON semi-stable normal bdle)

(8,8,7,7,7) [degree = 27 g- = 74 g+ = 9 genus = 83] ((*s)= 1 every curve has a

NON semi-stable normal bdle)

(8,8,7,7,6) [degree = 26 g- = 70 g+ = 8 genus = 78] (C(s) =11 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(8,8,7,6,6) [degree = 25 g- = 66 g+ = 7 genus = 73] (C(s) =9 is > 0, but C(ns−1)=

-11 the general curve has a semi-stable n.bdle)

(8,8,7,6,5) [degree = 24 g- = 62 g+ = 7 genus = 69] ( C(s)= 0 every curve has

a semi-stable n.bdle)

(8,7,7,7,7) [degree = 26 g- = 70 g+ = 7 genus = 77] (C(s) =14 is > 0, but

C(ns−1)= -14 the general curve has a semi-stable n.bdle)

(8,7,7,7,6) [degree = 25 g- = 66 g+ = 6 genus = 72] (C(s) =12 is > 0, but

C(ns−1)= -8 the general curve has a semi-stable n.bdle)

(8,7,7,6,6) [degree = 24 g- = 62 g+ = 5 genus = 67] (C(s) =6 is > 0, but C(ns−1)=

-6 the general curve has a semi-stable n.bdle)

(8,7,7,6,5) [degree = 23 g- = 58 g+ = 5 genus = 63] (dim(I(s))=2, C(s+1)= -13

the general curve has a semi-stable n.bdle)

(8,7,6,6,6) [degree = 23 g- = 58 g+ = 4 genus = 62] (C(s) =4 is > 0, but C(ns−1)=

-10 the general curve has a semi-stable n.bdle)

(8,7,6,6,5) [degree = 22 g- = 54 g+ = 4 genus = 58] ( C(s)= -1 every curve has

a semi-stable n.bdle)

(8,7,6,5,5) [degree = 21 g- = 50 g+ = 4 genus = 54] ( C(s)= -6 every curve has

a semi-stable n.bdle)

(7,7,7,7,7) [degree = 25 g- = 66 g+ = 5 genus = 71] (C(s) =15 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(7,7,7,7,6) [degree = 24 g- = 62 g+ = 4 genus = 66] (C(s) =9 is > 0, but C(ns−1)=

-3 the general curve has a semi-stable n.bdle)
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(7,7,7,6,6) [degree = 23 g- = 58 g+ = 3 genus = 61] (C(s) =7 is > 0, but C(ns−1)=

-7 the general curve has a semi-stable n.bdle)

(7,7,7,6,5) [degree = 22 g- = 54 g+ = 3 genus = 57] (dim(I(s))=2, C(s+1)= -10

the general curve has a semi-stable n.bdle)

(7,7,6,6,6) [degree = 22 g- = 54 g+ = 2 genus = 56] (C(s) =5 is > 0, but C(ns−1)=

-7 the general curve has a semi-stable n.bdle)

(7,7,6,6,5) [degree = 21 g- = 50 g+ = 2 genus = 52] ( C(s)= 0 every curve has

a semi-stable n.bdle)

(7,7,6,5,5) [degree = 20 g- = 46 g+ = 2 genus = 48] ( C(s)= -1 every curve has

a semi-stable n.bdle)

(7,6,6,6,6) [degree = 21 g- = 50 g+ = 1 genus = 51] (C(s) =3 is > 0, but C(ns−1)=

-3 the general curve has a semi-stable n.bdle)

(7,6,6,6,5) [degree = 20 g- = 46 g+ = 1 genus = 47] (dim(I(s))=2, C(s+1)= -8

the general curve has a semi-stable n.bdle)

(7,6,6,5,5) [degree = 19 g- = 42 g+ = 1 genus = 43] ( C(s)= -3 every curve has

a semi-stable n.bdle)

(7,6,5,5,5) [degree = 18 g- = 38 g+ = 1 genus = 39] ( C(s)= -4 every curve has

a semi-stable n.bdle)

(6,6,6,6,6) [degree = 20 g- = 46 g+ = 0 genus = 46] (C(s) =5 is > 0, but C(ns−1)=

-5 the general curve has a semi-stable n.bdle)

(6,6,6,6,5) [degree = 19 g- = 42 g+ = 0 genus = 42] ( C(s)= 0 every curve has

a semi-stable n.bdle)

(6,6,6,5,5) [degree = 18 g- = 38 g+ = 0 genus = 38] ( C(s)= -1 every curve has

a semi-stable n.bdle)

(6,6,5,5,5) [degree = 17 g- = 34 g+ = 0 genus = 34] ( C(s)= -2 every curve has

a semi-stable n.bdle)

(6,5,5,5,5) [degree = 16 g- = 30 g+ = 0 genus = 30] ( C(s)= -3 every curve has

a semi-stable n.bdle)

(5,5,5,5,5) [degree = 15 g- = 26 g+ = 0 genus = 26] ( C(s)= 0 every curve has

a semi-stable n.bdle)

The complete listing for s = 6:
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If C(s)<=0, any p.n. has a semi-stable character. If Lft >0, the lifting cdt is

veri�ed and if C(ns−1)<=0, the general curve has a semi-stable normal bundle. If

ns−1 = s, ns−2 = s+ 1 and C(s+1)<=0, the general curve has a semi stable normal

bundle.

(10,10,10,10,10,10) [degree = 45 g- = 170 g+ = 36 genus = 206] ((*s)= 25 every

curve has a NON semi-stable normal bdle)

(10,10,10,10,10,9) [degree = 44 g- = 165 g+ = 33 genus = 198] ((*s)= 21 every

curve has a NON semi-stable normal bdle)

(10,10,10,10,9,9) [degree = 43 g- = 160 g+ = 30 genus = 190] ((*s)= 17 every

curve has a NON semi-stable normal bdle)

(10,10,10,10,9,8) [degree = 42 g- = 155 g+ = 28 genus = 183] ((*s)= 14 every

curve has a NON semi-stable normal bdle)

(10,10,10,9,9,9) [degree = 42 g- = 155 g+ = 27 genus = 182] ((*s)= 13 every

curve has a NON semi-stable normal bdle)

(10,10,10,9,9,8) [degree = 41 g- = 150 g+ = 25 genus = 175] ((*s)= 10 every

curve has a NON semi-stable normal bdle)

(10,10,10,9,8,8) [degree = 40 g- = 145 g+ = 23 genus = 168] ((*s)= 7 every

curve has a NON semi-stable normal bdle)

(10,10,10,9,8,7) [degree = 39 g- = 140 g+ = 22 genus = 162] ((*s)= 5 every

curve has a NON semi-stable normal bdle)

(10,10,9,9,9,9) [degree = 41 g- = 150 g+ = 24 genus = 174] ((*s)= 9 every curve

has a NON semi-stable normal bdle)

(10,10,9,9,9,8) [degree = 40 g- = 145 g+ = 22 genus = 167] ((*s)= 6 every curve

has a NON semi-stable normal bdle)

(10,10,9,9,8,8) [degree = 39 g- = 140 g+ = 20 genus = 160] ((*s)= 3 every curve

has a NON semi-stable normal bdle)

(10,10,9,9,8,7) [degree = 38 g- = 135 g+ = 19 genus = 154] ((*s)= 1 every curve

has a NON semi-stable normal bdle)

(10,10,9,8,8,8) [degree = 38 g- = 135 g+ = 18 genus = 153] (C(s) =22 is > 0,

but C(ns−1)= -26 the general curve has a semi-stable n.bdle)

(10,10,9,8,8,7) [degree = 37 g- = 130 g+ = 17 genus = 147] (C(s) =15 is > 0,
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but C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(10,10,9,8,7,7) [degree = 36 g- = 125 g+ = 16 genus = 141] (C(s) =12 is > 0,

but C(ns−1)= -18 the general curve has a semi-stable n.bdle)

(10,10,9,8,7,6) [degree = 35 g- = 120 g+ = 16 genus = 136] ( C(s)= 0 every

curve has a semi-stable n.bdle)

(10,9,9,9,9,9) [degree = 40 g- = 145 g+ = 21 genus = 166] ((*s)= 5 every curve

has a NON semi-stable normal bdle)

(10,9,9,9,9,8) [degree = 39 g- = 140 g+ = 19 genus = 159] ((*s)= 2 every curve

has a NON semi-stable normal bdle)

(10,9,9,9,8,8) [degree = 38 g- = 135 g+ = 17 genus = 152] (C(s) =25 is > 0, but

C(ns−1)= -23 the general curve has a semi-stable n.bdle)

(10,9,9,9,8,7) [degree = 37 g- = 130 g+ = 16 genus = 146] (C(s) =18 is > 0, but

C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(10,9,9,8,8,8) [degree = 37 g- = 130 g+ = 15 genus = 145] (C(s) =21 is > 0, but

C(ns−1)= -21 the general curve has a semi-stable n.bdle)

(10,9,9,8,8,7) [degree = 36 g- = 125 g+ = 14 genus = 139] (C(s) =18 is > 0, but

C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(10,9,9,8,7,7) [degree = 35 g- = 120 g+ = 13 genus = 133] (C(s) =9 is > 0, but

C(ns−1)= -11 the general curve has a semi-stable n.bdle)

(10,9,9,8,7,6) [degree = 34 g- = 115 g+ = 13 genus = 128] (dim(I(s))=2, C(s+1)=

-21 the general curve has a semi-stable n.bdle)

(10,9,8,8,8,8) [degree = 36 g- = 125 g+ = 13 genus = 138] (C(s) =21 is > 0, but

C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(10,9,8,8,8,7) [degree = 35 g- = 120 g+ = 12 genus = 132] (C(s) =12 is > 0, but

C(ns−1)= -8 the general curve has a semi-stable n.bdle)

(10,9,8,8,7,7) [degree = 34 g- = 115 g+ = 11 genus = 126] (C(s) =7 is > 0, but

C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(10,9,8,8,7,6) [degree = 33 g- = 110 g+ = 11 genus = 121] (dim(I(s))=2, C(s+1)=

-21 the general curve has a semi-stable n.bdle)

(10,9,8,7,7,7) [degree = 33 g- = 110 g+ = 10 genus = 120] (C(s) =6 is > 0, but

C(ns−1)= -18 the general curve has a semi-stable n.bdle)
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(10,9,8,7,7,6) [degree = 32 g- = 105 g+ = 10 genus = 115] ( C(s)= -4 every curve

has a semi-stable n.bdle)

(10,9,8,7,6,6) [degree = 31 g- = 100 g+ = 10 genus = 110] ( C(s)= -10 every

curve has a semi-stable n.bdle)

(9,9,9,9,9,9) [degree = 39 g- = 140 g+ = 18 genus = 158] ((*s)= 1 every curve

has a NON semi-stable normal bdle)

(9,9,9,9,9,8) [degree = 38 g- = 135 g+ = 16 genus = 151] (C(s) =28 is > 0, but

C(ns−1)= -20 the general curve has a semi-stable n.bdle)

(9,9,9,9,8,8) [degree = 37 g- = 130 g+ = 14 genus = 144] (C(s) =24 is > 0, but

C(ns−1)= -18 the general curve has a semi-stable n.bdle)

(9,9,9,9,8,7) [degree = 36 g- = 125 g+ = 13 genus = 138] (C(s) =21 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(9,9,9,8,8,8) [degree = 36 g- = 125 g+ = 12 genus = 137] (C(s) =24 is > 0, but

C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(9,9,9,8,8,7) [degree = 35 g- = 120 g+ = 11 genus = 131] (C(s) =15 is > 0, but

C(ns−1)= -5 the general curve has a semi-stable n.bdle)

(9,9,9,8,7,7) [degree = 34 g- = 115 g+ = 10 genus = 125] (C(s) =10 is > 0, but

C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(9,9,9,8,7,6) [degree = 33 g- = 110 g+ = 10 genus = 120] (dim(I(s))=2, C(s+1)=

-18 the general curve has a semi-stable n.bdle)

(9,9,8,8,8,8) [degree = 35 g- = 120 g+ = 10 genus = 130] (C(s) =18 is > 0, but

C(ns−1)= -16 the general curve has a semi-stable n.bdle)

(9,9,8,8,8,7) [degree = 34 g- = 115 g+ = 9 genus = 124] (C(s) =13 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(9,9,8,8,7,7) [degree = 33 g- = 110 g+ = 8 genus = 118] (C(s) =12 is > 0, but

C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(9,9,8,8,7,6) [degree = 32 g- = 105 g+ = 8 genus = 113] (dim(I(s))=2, C(s+1)=

-14 the general curve has a semi-stable n.bdle)

(9,9,8,7,7,7) [degree = 32 g- = 105 g+ = 7 genus = 112] (C(s) =5 is > 0, but

C(ns−1)= -11 the general curve has a semi-stable n.bdle)

(9,9,8,7,7,6) [degree = 31 g- = 100 g+ = 7 genus = 107] ( C(s)= -1 every curve

has a semi-stable n.bdle)
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(9,9,8,7,6,6) [degree = 30 g- = 95 g+ = 7 genus = 102] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(9,8,8,8,8,8) [degree = 34 g- = 115 g+ = 8 genus = 123] (C(s) =16 is > 0, but

C(ns−1)= -16 the general curve has a semi-stable n.bdle)

(9,8,8,8,8,7) [degree = 33 g- = 110 g+ = 7 genus = 117] (C(s) =15 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(9,8,8,8,7,7) [degree = 32 g- = 105 g+ = 6 genus = 111] (C(s) =8 is > 0, but

C(ns−1)= -8 the general curve has a semi-stable n.bdle)

(9,8,8,8,7,6) [degree = 31 g- = 100 g+ = 6 genus = 106] (dim(I(s))=2, C(s+1)=

-12 the general curve has a semi-stable n.bdle)

(9,8,8,7,7,7) [degree = 31 g- = 100 g+ = 5 genus = 105] (C(s) =5 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(9,8,8,7,7,6) [degree = 30 g- = 95 g+ = 5 genus = 100] (dim(I(s))=2, C(s+1)=

-15 the general curve has a semi-stable n.bdle)

(9,8,8,7,6,6) [degree = 29 g- = 90 g+ = 5 genus = 95] ( C(s)= -5 every curve

has a semi-stable n.bdle)

(9,8,7,7,7,7) [degree = 30 g- = 95 g+ = 4 genus = 99] (C(s) =6 is > 0, but

C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(9,8,7,7,7,6) [degree = 29 g- = 90 g+ = 4 genus = 94] ( C(s)= -2 every curve

has a semi-stable n.bdle)

(9,8,7,7,6,6) [degree = 28 g- = 85 g+ = 4 genus = 89] ( C(s)= -6 every curve

has a semi-stable n.bdle)

(9,8,7,6,6,6) [degree = 27 g- = 80 g+ = 4 genus = 84] ( C(s)= -6 every curve

has a semi-stable n.bdle)

(8,8,8,8,8,8) [degree = 33 g- = 110 g+ = 6 genus = 116] (C(s) =18 is > 0, but

C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(8,8,8,8,8,7) [degree = 32 g- = 105 g+ = 5 genus = 110] (C(s) =11 is > 0, but

C(ns−1)= -5 the general curve has a semi-stable n.bdle)

(8,8,8,8,7,7) [degree = 31 g- = 100 g+ = 4 genus = 104] (C(s) =8 is > 0, but

C(ns−1)= -6 the general curve has a semi-stable n.bdle)

(8,8,8,8,7,6) [degree = 30 g- = 95 g+ = 4 genus = 99] (dim(I(s))=2, C(s+1)=

-12 the general curve has a semi-stable n.bdle)
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(8,8,8,7,7,7) [degree = 30 g- = 95 g+ = 3 genus = 98] (C(s) =9 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(8,8,8,7,7,6) [degree = 29 g- = 90 g+ = 3 genus = 93] (dim(I(s))=2, C(s+1)=

-11 the general curve has a semi-stable n.bdle)

(8,8,8,7,6,6) [degree = 28 g- = 85 g+ = 3 genus = 88] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(8,8,7,7,7,7) [degree = 29 g- = 90 g+ = 2 genus = 92] (C(s) =4 is > 0, but

C(ns−1)= -8 the general curve has a semi-stable n.bdle)

(8,8,7,7,7,6) [degree = 28 g- = 85 g+ = 2 genus = 87] ( C(s)= 0 every curve has

a semi-stable n.bdle)

(8,8,7,7,6,6) [degree = 27 g- = 80 g+ = 2 genus = 82] ( C(s)= 0 every curve has

a semi-stable n.bdle)

(8,8,7,6,6,6) [degree = 26 g- = 75 g+ = 2 genus = 77] ( C(s)= -6 every curve

has a semi-stable n.bdle)

(8,7,7,7,7,7) [degree = 28 g- = 85 g+ = 1 genus = 86] (C(s) =3 is > 0, but

C(ns−1)= -3 the general curve has a semi-stable n.bdle)

(8,7,7,7,7,6) [degree = 27 g- = 80 g+ = 1 genus = 81] (dim(I(s))=2, C(s+1)=

-9 the general curve has a semi-stable n.bdle)

(8,7,7,7,6,6) [degree = 26 g- = 75 g+ = 1 genus = 76] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(8,7,7,6,6,6) [degree = 25 g- = 70 g+ = 1 genus = 71] ( C(s)= -5 every curve

has a semi-stable n.bdle)

(8,7,6,6,6,6) [degree = 24 g- = 65 g+ = 1 genus = 66] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(7,7,7,7,7,7) [degree = 27 g- = 80 g+ = 0 genus = 80] (C(s) =6 is > 0, but

C(ns−1)= -6 the general curve has a semi-stable n.bdle)

(7,7,7,7,7,6) [degree = 26 g- = 75 g+ = 0 genus = 75] ( C(s)= 0 every curve has

a semi-stable n.bdle)

(7,7,7,7,6,6) [degree = 25 g- = 70 g+ = 0 genus = 70] ( C(s)= -2 every curve

has a semi-stable n.bdle)

(7,7,7,6,6,6) [degree = 24 g- = 65 g+ = 0 genus = 65] ( C(s)= 0 every curve has

a semi-stable n.bdle)
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(7,7,6,6,6,6) [degree = 23 g- = 60 g+ = 0 genus = 60] ( C(s)= -4 every curve

has a semi-stable n.bdle)

(7,6,6,6,6,6) [degree = 22 g- = 55 g+ = 0 genus = 55] ( C(s)= -4 every curve

has a semi-stable n.bdle)

(6,6,6,6,6,6) [degree = 21 g- = 50 g+ = 0 genus = 50] ( C(s)= 0 every curve has

a semi-stable n.bdle)

The complete listing for s = 7:

If C(s)<=0, any p.n. has a semi-stable character. If Lft >0, the lifting cdt is

veri�ed and if C(ns−1)<=0, the general curve has a semi-stable normal bundle. If

ns−1 = s, ns−2 = s+ 1 and C(s+1)<=0, the general curve has a semi stable normal

bundle.

(12,12,12,12,12,12,12) [degree = 63 g- = 295 g+ = 70 genus = 365] ((*s)= 49

every curve has a NON semi-stable normal bdle)

(12,12,12,12,12,12,11) [degree = 62 g- = 289 g+ = 66 genus = 355] ((*s)= 44

every curve has a NON semi-stable normal bdle)

(12,12,12,12,12,11,11) [degree = 61 g- = 283 g+ = 62 genus = 345] ((*s)= 39

every curve has a NON semi-stable normal bdle)

(12,12,12,12,12,11,10) [degree = 60 g- = 277 g+ = 59 genus = 336] ((*s)= 35

every curve has a NON semi-stable normal bdle)

(12,12,12,12,11,11,11) [degree = 60 g- = 277 g+ = 58 genus = 335] ((*s)= 34

every curve has a NON semi-stable normal bdle)

(12,12,12,12,11,11,10) [degree = 59 g- = 271 g+ = 55 genus = 326] ((*s)= 30

every curve has a NON semi-stable normal bdle)

(12,12,12,12,11,10,10) [degree = 58 g- = 265 g+ = 52 genus = 317] ((*s)= 26

every curve has a NON semi-stable normal bdle)

(12,12,12,12,11,10,9) [degree = 57 g- = 259 g+ = 50 genus = 309] ((*s)= 23

every curve has a NON semi-stable normal bdle)

(12,12,12,11,11,11,11) [degree = 59 g- = 271 g+ = 54 genus = 325] ((*s)= 29

every curve has a NON semi-stable normal bdle)

(12,12,12,11,11,11,10) [degree = 58 g- = 265 g+ = 51 genus = 316] ((*s)= 25

every curve has a NON semi-stable normal bdle)
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(12,12,12,11,11,10,10) [degree = 57 g- = 259 g+ = 48 genus = 307] ((*s)= 21

every curve has a NON semi-stable normal bdle)

(12,12,12,11,11,10,9) [degree = 56 g- = 253 g+ = 46 genus = 299] ((*s)= 18

every curve has a NON semi-stable normal bdle)

(12,12,12,11,10,10,10) [degree = 56 g- = 253 g+ = 45 genus = 298] ((*s)= 17

every curve has a NON semi-stable normal bdle)

(12,12,12,11,10,10,9) [degree = 55 g- = 247 g+ = 43 genus = 290] ((*s)= 14

every curve has a NON semi-stable normal bdle)

(12,12,12,11,10,9,9) [degree = 54 g- = 241 g+ = 41 genus = 282] ((*s)= 11 every

curve has a NON semi-stable normal bdle)

(12,12,12,11,10,9,8) [degree = 53 g- = 235 g+ = 40 genus = 275] ((*s)= 9 every

curve has a NON semi-stable normal bdle)

(12,12,11,11,11,11,11) [degree = 58 g- = 265 g+ = 50 genus = 315] ((*s)= 24

every curve has a NON semi-stable normal bdle)

(12,12,11,11,11,11,10) [degree = 57 g- = 259 g+ = 47 genus = 306] ((*s)= 20

every curve has a NON semi-stable normal bdle)

(12,12,11,11,11,10,10) [degree = 56 g- = 253 g+ = 44 genus = 297] ((*s)= 16

every curve has a NON semi-stable normal bdle)

(12,12,11,11,11,10,9) [degree = 55 g- = 247 g+ = 42 genus = 289] ((*s)= 13

every curve has a NON semi-stable normal bdle)

(12,12,11,11,10,10,10) [degree = 55 g- = 247 g+ = 41 genus = 288] ((*s)= 12

every curve has a NON semi-stable normal bdle)

(12,12,11,11,10,10,9) [degree = 54 g- = 241 g+ = 39 genus = 280] ((*s)= 9 every

curve has a NON semi-stable normal bdle)

(12,12,11,11,10,9,9) [degree = 53 g- = 235 g+ = 37 genus = 272] ((*s)= 6 every

curve has a NON semi-stable normal bdle)

(12,12,11,11,10,9,8) [degree = 52 g- = 229 g+ = 36 genus = 265] ((*s)= 4 every

curve has a NON semi-stable normal bdle)

(12,12,11,10,10,10,10) [degree = 54 g- = 241 g+ = 38 genus = 279] ((*s)= 8

every curve has a NON semi-stable normal bdle)

(12,12,11,10,10,10,9) [degree = 53 g- = 235 g+ = 36 genus = 271] ((*s)= 5 every

curve has a NON semi-stable normal bdle)
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(12,12,11,10,10,9,9) [degree = 52 g- = 229 g+ = 34 genus = 263] ((*s)= 2 every

curve has a NON semi-stable normal bdle)

(12,12,11,10,10,9,8) [degree = 51 g- = 223 g+ = 33 genus = 256] (C(s) =24 is >

0, but C(ns−1)= -18 the general curve has a semi-stable n.bdle)

(12,12,11,10,9,9,9) [degree = 51 g- = 223 g+ = 32 genus = 255] (C(s) =27 is >

0, but C(ns−1)= -39 the general curve has a semi-stable n.bdle)

(12,12,11,10,9,9,8) [degree = 50 g- = 217 g+ = 31 genus = 248] (C(s) =19 is >

0, but C(ns−1)= -23 the general curve has a semi-stable n.bdle)

(12,12,11,10,9,8,8) [degree = 49 g- = 211 g+ = 30 genus = 241] (C(s) =15 is >

0, but C(ns−1)= -27 the general curve has a semi-stable n.bdle)

(12,12,11,10,9,8,7) [degree = 48 g- = 205 g+ = 30 genus = 235] ( C(s)= 0 every

curve has a semi-stable n.bdle)

(12,11,11,11,11,11,11) [degree = 57 g- = 259 g+ = 46 genus = 305] ((*s)= 19

every curve has a NON semi-stable normal bdle)

(12,11,11,11,11,11,10) [degree = 56 g- = 253 g+ = 43 genus = 296] ((*s)= 15

every curve has a NON semi-stable normal bdle)

(12,11,11,11,11,10,10) [degree = 55 g- = 247 g+ = 40 genus = 287] ((*s)= 11

every curve has a NON semi-stable normal bdle)

(12,11,11,11,11,10,9) [degree = 54 g- = 241 g+ = 38 genus = 279] ((*s)= 8 every

curve has a NON semi-stable normal bdle)

(12,11,11,11,10,10,10) [degree = 54 g- = 241 g+ = 37 genus = 278] ((*s)= 7

every curve has a NON semi-stable normal bdle)

(12,11,11,11,10,10,9) [degree = 53 g- = 235 g+ = 35 genus = 270] ((*s)= 4 every

curve has a NON semi-stable normal bdle)

(12,11,11,11,10,9,9) [degree = 52 g- = 229 g+ = 33 genus = 262] ((*s)= 1 every

curve has a NON semi-stable normal bdle)

(12,11,11,11,10,9,8) [degree = 51 g- = 223 g+ = 32 genus = 255] (C(s) =27 is >

0, but C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(12,11,11,10,10,10,10) [degree = 53 g- = 235 g+ = 34 genus = 269] ((*s)= 3

every curve has a NON semi-stable normal bdle)

(12,11,11,10,10,10,9) [degree = 52 g- = 229 g+ = 32 genus = 261] (C(s) =42 is

> 0, but C(ns−1)= -32 the general curve has a semi-stable n.bdle)
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(12,11,11,10,10,9,9) [degree = 51 g- = 223 g+ = 30 genus = 253] (C(s) =33 is >

0, but C(ns−1)= -33 the general curve has a semi-stable n.bdle)

(12,11,11,10,10,9,8) [degree = 50 g- = 217 g+ = 29 genus = 246] (C(s) =25 is >

0, but C(ns−1)= -17 the general curve has a semi-stable n.bdle)

(12,11,11,10,9,9,9) [degree = 50 g- = 217 g+ = 28 genus = 245] (C(s) =28 is >

0, but C(ns−1)= -30 the general curve has a semi-stable n.bdle)

(12,11,11,10,9,9,8) [degree = 49 g- = 211 g+ = 27 genus = 238] (C(s) =24 is >

0, but C(ns−1)= -18 the general curve has a semi-stable n.bdle)

(12,11,11,10,9,8,8) [degree = 48 g- = 205 g+ = 26 genus = 231] (C(s) =12 is >

0, but C(ns−1)= -18 the general curve has a semi-stable n.bdle)

(12,11,11,10,9,8,7) [degree = 47 g- = 199 g+ = 26 genus = 225] (dim(I(s))=2,

C(s+1)= -31 the general curve has a semi-stable n.bdle)

(12,11,10,10,10,10,10) [degree = 52 g- = 229 g+ = 31 genus = 260] (C(s) =45 is

> 0, but C(ns−1)= -39 the general curve has a semi-stable n.bdle)

(12,11,10,10,10,10,9) [degree = 51 g- = 223 g+ = 29 genus = 252] (C(s) =36 is

> 0, but C(ns−1)= -30 the general curve has a semi-stable n.bdle)

(12,11,10,10,10,9,9) [degree = 50 g- = 217 g+ = 27 genus = 244] (C(s) =31 is >

0, but C(ns−1)= -27 the general curve has a semi-stable n.bdle)

(12,11,10,10,10,9,8) [degree = 49 g- = 211 g+ = 26 genus = 237] (C(s) =27 is >

0, but C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(12,11,10,10,9,9,9) [degree = 49 g- = 211 g+ = 25 genus = 236] (C(s) =30 is >

0, but C(ns−1)= -28 the general curve has a semi-stable n.bdle)

(12,11,10,10,9,9,8) [degree = 48 g- = 205 g+ = 24 genus = 229] (C(s) =18 is >

0, but C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(12,11,10,10,9,8,8) [degree = 47 g- = 199 g+ = 23 genus = 222] (C(s) =10 is >

0, but C(ns−1)= -22 the general curve has a semi-stable n.bdle)

(12,11,10,10,9,8,7) [degree = 46 g- = 193 g+ = 23 genus = 216] (dim(I(s))=2,

C(s+1)= -31 the general curve has a semi-stable n.bdle)

(12,11,10,9,9,9,9) [degree = 48 g- = 205 g+ = 23 genus = 228] (C(s) =21 is >

0, but C(ns−1)= -33 the general curve has a semi-stable n.bdle)

(12,11,10,9,9,9,8) [degree = 47 g- = 199 g+ = 22 genus = 221] (C(s) =13 is >

0, but C(ns−1)= -19 the general curve has a semi-stable n.bdle)
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(12,11,10,9,9,8,8) [degree = 46 g- = 193 g+ = 21 genus = 214] (C(s) =9 is > 0,

but C(ns−1)= -25 the general curve has a semi-stable n.bdle)

(12,11,10,9,9,8,7) [degree = 45 g- = 187 g+ = 21 genus = 208] ( C(s)= 0 every

curve has a semi-stable n.bdle)

(12,11,10,9,8,8,8) [degree = 45 g- = 187 g+ = 20 genus = 207] (C(s) =3 is > 0,

but C(ns−1)= -27 the general curve has a semi-stable n.bdle)

(12,11,10,9,8,8,7) [degree = 44 g- = 181 g+ = 20 genus = 201] ( C(s)= -8 every

curve has a semi-stable n.bdle)

(12,11,10,9,8,7,7) [degree = 43 g- = 175 g+ = 20 genus = 195] ( C(s)= -15 every

curve has a semi-stable n.bdle)

(11,11,11,11,11,11,11) [degree = 56 g- = 253 g+ = 42 genus = 295] ((*s)= 14

every curve has a NON semi-stable normal bdle)

(11,11,11,11,11,11,10) [degree = 55 g- = 247 g+ = 39 genus = 286] ((*s)= 10

every curve has a NON semi-stable normal bdle)

(11,11,11,11,11,10,10) [degree = 54 g- = 241 g+ = 36 genus = 277] ((*s)= 6

every curve has a NON semi-stable normal bdle)

(11,11,11,11,11,10,9) [degree = 53 g- = 235 g+ = 34 genus = 269] ((*s)= 3 every

curve has a NON semi-stable normal bdle)

(11,11,11,11,10,10,10) [degree = 53 g- = 235 g+ = 33 genus = 268] ((*s)= 2

every curve has a NON semi-stable normal bdle)

(11,11,11,11,10,10,9) [degree = 52 g- = 229 g+ = 31 genus = 260] (C(s) =45 is

> 0, but C(ns−1)= -29 the general curve has a semi-stable n.bdle)

(11,11,11,11,10,9,9) [degree = 51 g- = 223 g+ = 29 genus = 252] (C(s) =36 is >

0, but C(ns−1)= -30 the general curve has a semi-stable n.bdle)

(11,11,11,11,10,9,8) [degree = 50 g- = 217 g+ = 28 genus = 245] (C(s) =28 is >

0, but C(ns−1)= -14 the general curve has a semi-stable n.bdle)

(11,11,11,10,10,10,10) [degree = 52 g- = 229 g+ = 30 genus = 259] (C(s) =48 is

> 0, but C(ns−1)= -36 the general curve has a semi-stable n.bdle)

(11,11,11,10,10,10,9) [degree = 51 g- = 223 g+ = 28 genus = 251] (C(s) =39 is

> 0, but C(ns−1)= -27 the general curve has a semi-stable n.bdle)

(11,11,11,10,10,9,9) [degree = 50 g- = 217 g+ = 26 genus = 243] (C(s) =34 is >

0, but C(ns−1)= -24 the general curve has a semi-stable n.bdle)
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(11,11,11,10,10,9,8) [degree = 49 g- = 211 g+ = 25 genus = 236] (C(s) =30 is >

0, but C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(11,11,11,10,9,9,9) [degree = 49 g- = 211 g+ = 24 genus = 235] (C(s) =33 is >

0, but C(ns−1)= -25 the general curve has a semi-stable n.bdle)

(11,11,11,10,9,9,8) [degree = 48 g- = 205 g+ = 23 genus = 228] (C(s) =21 is >

0, but C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(11,11,11,10,9,8,8) [degree = 47 g- = 199 g+ = 22 genus = 221] (C(s) =13 is >

0, but C(ns−1)= -19 the general curve has a semi-stable n.bdle)

(11,11,11,10,9,8,7) [degree = 46 g- = 193 g+ = 22 genus = 215] (dim(I(s))=2,

C(s+1)= -28 the general curve has a semi-stable n.bdle)

(11,11,10,10,10,10,10) [degree = 51 g- = 223 g+ = 27 genus = 250] (C(s) =42 is

> 0, but C(ns−1)= -30 the general curve has a semi-stable n.bdle)

(11,11,10,10,10,10,9) [degree = 50 g- = 217 g+ = 25 genus = 242] (C(s) =37 is

> 0, but C(ns−1)= -21 the general curve has a semi-stable n.bdle)

(11,11,10,10,10,9,9) [degree = 49 g- = 211 g+ = 23 genus = 234] (C(s) =36 is >

0, but C(ns−1)= -22 the general curve has a semi-stable n.bdle)

(11,11,10,10,10,9,8) [degree = 48 g- = 205 g+ = 22 genus = 227] (C(s) =24 is >

0, but C(ns−1)= -6 the general curve has a semi-stable n.bdle)

(11,11,10,10,9,9,9) [degree = 48 g- = 205 g+ = 21 genus = 226] (C(s) =27 is >

0, but C(ns−1)= -27 the general curve has a semi-stable n.bdle)

(11,11,10,10,9,9,8) [degree = 47 g- = 199 g+ = 20 genus = 219] (C(s) =19 is >

0, but C(ns−1)= -13 the general curve has a semi-stable n.bdle)

(11,11,10,10,9,8,8) [degree = 46 g- = 193 g+ = 19 genus = 212] (C(s) =15 is >

0, but C(ns−1)= -19 the general curve has a semi-stable n.bdle)

(11,11,10,10,9,8,7) [degree = 45 g- = 187 g+ = 19 genus = 206] (dim(I(s))=2,

C(s+1)= -24 the general curve has a semi-stable n.bdle)

(11,11,10,9,9,9,9) [degree = 47 g- = 199 g+ = 19 genus = 218] (C(s) =22 is >

0, but C(ns−1)= -28 the general curve has a semi-stable n.bdle)

(11,11,10,9,9,9,8) [degree = 46 g- = 193 g+ = 18 genus = 211] (C(s) =18 is >

0, but C(ns−1)= -16 the general curve has a semi-stable n.bdle)

(11,11,10,9,9,8,8) [degree = 45 g- = 187 g+ = 17 genus = 204] (C(s) =12 is >

0, but C(ns−1)= -18 the general curve has a semi-stable n.bdle)
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(11,11,10,9,9,8,7) [degree = 44 g- = 181 g+ = 17 genus = 198] (dim(I(s))=2,

C(s+1)= -19 the general curve has a semi-stable n.bdle)

(11,11,10,9,8,8,8) [degree = 44 g- = 181 g+ = 16 genus = 197] (C(s) =4 is > 0,

but C(ns−1)= -16 the general curve has a semi-stable n.bdle)

(11,11,10,9,8,8,7) [degree = 43 g- = 175 g+ = 16 genus = 191] ( C(s)= -3 every

curve has a semi-stable n.bdle)

(11,11,10,9,8,7,7) [degree = 42 g- = 169 g+ = 16 genus = 185] ( C(s)= -6 every

curve has a semi-stable n.bdle)

(11,10,10,10,10,10,10) [degree = 50 g- = 217 g+ = 24 genus = 241] (C(s) =40 is

> 0, but C(ns−1)= -20 the general curve has a semi-stable n.bdle)

(11,10,10,10,10,10,9) [degree = 49 g- = 211 g+ = 22 genus = 233] (C(s) =39 is

> 0, but C(ns−1)= -19 the general curve has a semi-stable n.bdle)

(11,10,10,10,10,9,9) [degree = 48 g- = 205 g+ = 20 genus = 225] (C(s) =30 is >

0, but C(ns−1)= -24 the general curve has a semi-stable n.bdle)

(11,10,10,10,10,9,8) [degree = 47 g- = 199 g+ = 19 genus = 218] (C(s) =22 is >

0, but C(ns−1)= -10 the general curve has a semi-stable n.bdle)

(11,10,10,10,9,9,9) [degree = 47 g- = 199 g+ = 18 genus = 217] (C(s) =25 is >

0, but C(ns−1)= -25 the general curve has a semi-stable n.bdle)

(11,10,10,10,9,9,8) [degree = 46 g- = 193 g+ = 17 genus = 210] (C(s) =21 is >

0, but C(ns−1)= -13 the general curve has a semi-stable n.bdle)

(11,10,10,10,9,8,8) [degree = 45 g- = 187 g+ = 16 genus = 203] (C(s) =15 is >

0, but C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(11,10,10,10,9,8,7) [degree = 44 g- = 181 g+ = 16 genus = 197] (dim(I(s))=2,

C(s+1)= -16 the general curve has a semi-stable n.bdle)

(11,10,10,9,9,9,9) [degree = 46 g- = 193 g+ = 16 genus = 209] (C(s) =24 is >

0, but C(ns−1)= -22 the general curve has a semi-stable n.bdle)

(11,10,10,9,9,9,8) [degree = 45 g- = 187 g+ = 15 genus = 202] (C(s) =18 is >

0, but C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(11,10,10,9,9,8,8) [degree = 44 g- = 181 g+ = 14 genus = 195] (C(s) =10 is >

0, but C(ns−1)= -10 the general curve has a semi-stable n.bdle)

(11,10,10,9,9,8,7) [degree = 43 g- = 175 g+ = 14 genus = 189] (dim(I(s))=2,

C(s+1)= -21 the general curve has a semi-stable n.bdle)
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(11,10,10,9,8,8,8) [degree = 43 g- = 175 g+ = 13 genus = 188] (C(s) =6 is > 0,

but C(ns−1)= -18 the general curve has a semi-stable n.bdle)

(11,10,10,9,8,8,7) [degree = 42 g- = 169 g+ = 13 genus = 182] (dim(I(s))=2,

C(s+1)= -25 the general curve has a semi-stable n.bdle)

(11,10,10,9,8,7,7) [degree = 41 g- = 163 g+ = 13 genus = 176] ( C(s)= -8 every

curve has a semi-stable n.bdle)

(11,10,9,9,9,9,9) [degree = 45 g- = 187 g+ = 14 genus = 201] (C(s) =21 is > 0,

but C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(11,10,9,9,9,9,8) [degree = 44 g- = 181 g+ = 13 genus = 194] (C(s) =13 is > 0,

but C(ns−1)= -7 the general curve has a semi-stable n.bdle)

(11,10,9,9,9,8,8) [degree = 43 g- = 175 g+ = 12 genus = 187] (C(s) =9 is > 0,

but C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(11,10,9,9,9,8,7) [degree = 42 g- = 169 g+ = 12 genus = 181] (dim(I(s))=2,

C(s+1)= -22 the general curve has a semi-stable n.bdle)

(11,10,9,9,8,8,8) [degree = 42 g- = 169 g+ = 11 genus = 180] (C(s) =9 is > 0,

but C(ns−1)= -19 the general curve has a semi-stable n.bdle)

(11,10,9,9,8,8,7) [degree = 41 g- = 163 g+ = 11 genus = 174] ( C(s)= -2 every

curve has a semi-stable n.bdle)

(11,10,9,9,8,7,7) [degree = 40 g- = 157 g+ = 11 genus = 168] ( C(s)= -9 every

curve has a semi-stable n.bdle)

(11,10,9,8,8,8,8) [degree = 41 g- = 163 g+ = 10 genus = 173] (C(s) =1 is > 0,

but C(ns−1)= -19 the general curve has a semi-stable n.bdle)

(11,10,9,8,8,8,7) [degree = 40 g- = 157 g+ = 10 genus = 167] ( C(s)= -6 every

curve has a semi-stable n.bdle)

(11,10,9,8,8,7,7) [degree = 39 g- = 151 g+ = 10 genus = 161] ( C(s)= -9 every

curve has a semi-stable n.bdle)

(11,10,9,8,7,7,7) [degree = 38 g- = 145 g+ = 10 genus = 155] ( C(s)= -14 every

curve has a semi-stable n.bdle)

(10,10,10,10,10,10,10) [degree = 49 g- = 211 g+ = 21 genus = 232] (C(s) =42 is

> 0, but C(ns−1)= -24 the general curve has a semi-stable n.bdle)

(10,10,10,10,10,10,9) [degree = 48 g- = 205 g+ = 19 genus = 224] (C(s) =33 is

> 0, but C(ns−1)= -21 the general curve has a semi-stable n.bdle)
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(10,10,10,10,10,9,9) [degree = 47 g- = 199 g+ = 17 genus = 216] (C(s) =28 is >

0, but C(ns−1)= -22 the general curve has a semi-stable n.bdle)

(10,10,10,10,10,9,8) [degree = 46 g- = 193 g+ = 16 genus = 209] (C(s) =24 is >

0, but C(ns−1)= -10 the general curve has a semi-stable n.bdle)

(10,10,10,10,9,9,9) [degree = 46 g- = 193 g+ = 15 genus = 208] (C(s) =27 is >

0, but C(ns−1)= -19 the general curve has a semi-stable n.bdle)

(10,10,10,10,9,9,8) [degree = 45 g- = 187 g+ = 14 genus = 201] (C(s) =21 is >

0, but C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(10,10,10,10,9,8,8) [degree = 44 g- = 181 g+ = 13 genus = 194] (C(s) =13 is >

0, but C(ns−1)= -7 the general curve has a semi-stable n.bdle)

(10,10,10,10,9,8,7) [degree = 43 g- = 175 g+ = 13 genus = 188] (dim(I(s))=2,

C(s+1)= -18 the general curve has a semi-stable n.bdle)

(10,10,10,9,9,9,9) [degree = 45 g- = 187 g+ = 13 genus = 200] (C(s) =24 is >

0, but C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(10,10,10,9,9,9,8) [degree = 44 g- = 181 g+ = 12 genus = 193] (C(s) =16 is >

0, but C(ns−1)= -4 the general curve has a semi-stable n.bdle)

(10,10,10,9,9,8,8) [degree = 43 g- = 175 g+ = 11 genus = 186] (C(s) =12 is >

0, but C(ns−1)= -12 the general curve has a semi-stable n.bdle)

(10,10,10,9,9,8,7) [degree = 42 g- = 169 g+ = 11 genus = 180] (dim(I(s))=2,

C(s+1)= -19 the general curve has a semi-stable n.bdle)

(10,10,10,9,8,8,8) [degree = 42 g- = 169 g+ = 10 genus = 179] (C(s) =12 is >

0, but C(ns−1)= -16 the general curve has a semi-stable n.bdle)

(10,10,10,9,8,8,7) [degree = 41 g- = 163 g+ = 10 genus = 173] (dim(I(s))=2,

C(s+1)= -19 the general curve has a semi-stable n.bdle)

(10,10,10,9,8,7,7) [degree = 40 g- = 157 g+ = 10 genus = 167] ( C(s)= -6 every

curve has a semi-stable n.bdle)

(10,10,9,9,9,9,9) [degree = 44 g- = 181 g+ = 11 genus = 192] (C(s) =19 is > 0,

but C(ns−1)= -17 the general curve has a semi-stable n.bdle)

(10,10,9,9,9,9,8) [degree = 43 g- = 175 g+ = 10 genus = 185] (C(s) =15 is > 0,

but C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(10,10,9,9,9,8,8) [degree = 42 g- = 169 g+ = 9 genus = 178] (C(s) =15 is > 0,

but C(ns−1)= -13 the general curve has a semi-stable n.bdle)
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(10,10,9,9,9,8,7) [degree = 41 g- = 163 g+ = 9 genus = 172] (dim(I(s))=2,

C(s+1)= -16 the general curve has a semi-stable n.bdle)

(10,10,9,9,8,8,8) [degree = 41 g- = 163 g+ = 8 genus = 171] (C(s) =7 is > 0,

but C(ns−1)= -13 the general curve has a semi-stable n.bdle)

(10,10,9,9,8,8,7) [degree = 40 g- = 157 g+ = 8 genus = 165] ( C(s)= 0 every

curve has a semi-stable n.bdle)

(10,10,9,9,8,7,7) [degree = 39 g- = 151 g+ = 8 genus = 159] ( C(s)= -3 every

curve has a semi-stable n.bdle)

(10,10,9,8,8,8,8) [degree = 40 g- = 157 g+ = 7 genus = 164] (C(s) =3 is > 0,

but C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(10,10,9,8,8,8,7) [degree = 39 g- = 151 g+ = 7 genus = 158] ( C(s)= 0 every

curve has a semi-stable n.bdle)

(10,10,9,8,8,7,7) [degree = 38 g- = 145 g+ = 7 genus = 152] ( C(s)= -5 every

curve has a semi-stable n.bdle)

(10,10,9,8,7,7,7) [degree = 37 g- = 139 g+ = 7 genus = 146] ( C(s)= -12 every

curve has a semi-stable n.bdle)

(10,9,9,9,9,9,9) [degree = 43 g- = 175 g+ = 9 genus = 184] (C(s) =18 is > 0,

but C(ns−1)= -18 the general curve has a semi-stable n.bdle)

(10,9,9,9,9,9,8) [degree = 42 g- = 169 g+ = 8 genus = 177] (C(s) =18 is > 0,

but C(ns−1)= -10 the general curve has a semi-stable n.bdle)

(10,9,9,9,9,8,8) [degree = 41 g- = 163 g+ = 7 genus = 170] (C(s) =10 is > 0,

but C(ns−1)= -10 the general curve has a semi-stable n.bdle)

(10,9,9,9,9,8,7) [degree = 40 g- = 157 g+ = 7 genus = 164] (dim(I(s))=2,

C(s+1)= -9 the general curve has a semi-stable n.bdle)

(10,9,9,9,8,8,8) [degree = 40 g- = 157 g+ = 6 genus = 163] (C(s) =6 is > 0, but

C(ns−1)= -6 the general curve has a semi-stable n.bdle)

(10,9,9,9,8,8,7) [degree = 39 g- = 151 g+ = 6 genus = 157] (dim(I(s))=2,

C(s+1)= -15 the general curve has a semi-stable n.bdle)

(10,9,9,9,8,7,7) [degree = 38 g- = 145 g+ = 6 genus = 151] ( C(s)= -2 every

curve has a semi-stable n.bdle)

(10,9,9,8,8,8,8) [degree = 39 g- = 151 g+ = 5 genus = 156] (C(s) =6 is > 0, but

C(ns−1)= -12 the general curve has a semi-stable n.bdle)
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(10,9,9,8,8,8,7) [degree = 38 g- = 145 g+ = 5 genus = 150] (dim(I(s))=2,

C(s+1)= -17 the general curve has a semi-stable n.bdle)

(10,9,9,8,8,7,7) [degree = 37 g- = 139 g+ = 5 genus = 144] ( C(s)= -6 every

curve has a semi-stable n.bdle)

(10,9,9,8,7,7,7) [degree = 36 g- = 133 g+ = 5 genus = 138] ( C(s)= -9 every

curve has a semi-stable n.bdle)

(10,9,8,8,8,8,8) [degree = 38 g- = 145 g+ = 4 genus = 149] (C(s) =4 is > 0, but

C(ns−1)= -14 the general curve has a semi-stable n.bdle)

(10,9,8,8,8,8,7) [degree = 37 g- = 139 g+ = 4 genus = 143] ( C(s)= -3 every

curve has a semi-stable n.bdle)

(10,9,8,8,8,7,7) [degree = 36 g- = 133 g+ = 4 genus = 137] ( C(s)= -6 every

curve has a semi-stable n.bdle)

(10,9,8,8,7,7,7) [degree = 35 g- = 127 g+ = 4 genus = 131] ( C(s)= -5 every

curve has a semi-stable n.bdle)

(10,9,8,7,7,7,7) [degree = 34 g- = 121 g+ = 4 genus = 125] ( C(s)= -12 every

curve has a semi-stable n.bdle)

(9,9,9,9,9,9,9) [degree = 42 g- = 169 g+ = 7 genus = 176] (C(s) =21 is > 0, but

C(ns−1)= -15 the general curve has a semi-stable n.bdle)

(9,9,9,9,9,9,8) [degree = 41 g- = 163 g+ = 6 genus = 169] (C(s) =13 is > 0, but

C(ns−1)= -7 the general curve has a semi-stable n.bdle)

(9,9,9,9,9,8,8) [degree = 40 g- = 157 g+ = 5 genus = 162] (C(s) =9 is > 0, but

C(ns−1)= -3 the general curve has a semi-stable n.bdle)

(9,9,9,9,9,8,7) [degree = 39 g- = 151 g+ = 5 genus = 156] (dim(I(s))=2, C(s+1)=

-12 the general curve has a semi-stable n.bdle)

(9,9,9,9,8,8,8) [degree = 39 g- = 151 g+ = 4 genus = 155] (C(s) =9 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(9,9,9,9,8,8,7) [degree = 38 g- = 145 g+ = 4 genus = 149] (dim(I(s))=2, C(s+1)=

-14 the general curve has a semi-stable n.bdle)

(9,9,9,9,8,7,7) [degree = 37 g- = 139 g+ = 4 genus = 143] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(9,9,9,8,8,8,8) [degree = 38 g- = 145 g+ = 3 genus = 148] (C(s) =7 is > 0, but

C(ns−1)= -11 the general curve has a semi-stable n.bdle)
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(9,9,9,8,8,8,7) [degree = 37 g- = 139 g+ = 3 genus = 142] ( C(s)= 0 every curve

has a semi-stable n.bdle)

(9,9,9,8,8,7,7) [degree = 36 g- = 133 g+ = 3 genus = 136] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(9,9,9,8,7,7,7) [degree = 35 g- = 127 g+ = 3 genus = 130] ( C(s)= -2 every curve

has a semi-stable n.bdle)

(9,9,8,8,8,8,8) [degree = 37 g- = 139 g+ = 2 genus = 141] (C(s) =3 is > 0, but

C(ns−1)= -9 the general curve has a semi-stable n.bdle)

(9,9,8,8,8,8,7) [degree = 36 g- = 133 g+ = 2 genus = 135] ( C(s)= 0 every curve

has a semi-stable n.bdle)

(9,9,8,8,8,7,7) [degree = 35 g- = 127 g+ = 2 genus = 129] ( We are in the range

of the conjecture BUT CAN'T HANDLE THIS CASE)

(9,9,8,8,7,7,7) [degree = 34 g- = 121 g+ = 2 genus = 123] ( C(s)= -6 every curve

has a semi-stable n.bdle)

(9,9,8,7,7,7,7) [degree = 33 g- = 115 g+ = 2 genus = 117] ( C(s)= -9 every curve

has a semi-stable n.bdle)

(9,8,8,8,8,8,8) [degree = 36 g- = 133 g+ = 1 genus = 134] (C(s) =3 is > 0, but

C(ns−1)= -3 the general curve has a semi-stable n.bdle)

(9,8,8,8,8,8,7) [degree = 35 g- = 127 g+ = 1 genus = 128] (dim(I(s))=2, C(s+1)=

-10 the general curve has a semi-stable n.bdle)

(9,8,8,8,8,7,7) [degree = 34 g- = 121 g+ = 1 genus = 122] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(9,8,8,8,7,7,7) [degree = 33 g- = 115 g+ = 1 genus = 116] ( C(s)= -6 every curve

has a semi-stable n.bdle)

(9,8,8,7,7,7,7) [degree = 32 g- = 109 g+ = 1 genus = 110] ( C(s)= -5 every curve

has a semi-stable n.bdle)

(9,8,7,7,7,7,7) [degree = 31 g- = 103 g+ = 1 genus = 104] ( C(s)= -6 every curve

has a semi-stable n.bdle)

(8,8,8,8,8,8,8) [degree = 35 g- = 127 g+ = 0 genus = 127] (C(s) =7 is > 0, but

C(ns−1)= -7 the general curve has a semi-stable n.bdle)

(8,8,8,8,8,8,7) [degree = 34 g- = 121 g+ = 0 genus = 121] ( C(s)= 0 every curve

has a semi-stable n.bdle)
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(8,8,8,8,8,7,7) [degree = 33 g- = 115 g+ = 0 genus = 115] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(8,8,8,8,7,7,7) [degree = 32 g- = 109 g+ = 0 genus = 109] ( C(s)= -2 every curve

has a semi-stable n.bdle)

(8,8,8,7,7,7,7) [degree = 31 g- = 103 g+ = 0 genus = 103] ( C(s)= -3 every curve

has a semi-stable n.bdle)

(8,8,7,7,7,7,7) [degree = 30 g- = 97 g+ = 0 genus = 97] ( C(s)= -6 every curve

has a semi-stable n.bdle)

(8,7,7,7,7,7,7) [degree = 29 g- = 91 g+ = 0 genus = 91] ( C(s)= -5 every curve

has a semi-stable n.bdle)

(7,7,7,7,7,7,7) [degree = 28 g- = 85 g+ = 0 genus = 85] ( C(s)= 0 every curve

has a semi-stable n.bdle)



Chapter 3

Subschemes of P2 with ten fat point

of maximum rank.

3.1 Subschemes of P2 with fat point.

In this section we deal with linear systems of curves of degree d containing zero-

dimensional subschemes of P2. The aim is to understand how determining the

dimension of such systems; we will desume it is not just a mere sum up of conditions.

Let Z be a zero-dimensional subscheme of P2,then we can write Z = b1P1 + ...+

bkPk where Pi's are general points of P2 and where bi ≥ 1 for every i. We simply

denote by bP the point P ∈ P2 with multiplicity b. In other words, bP denotes

the (b-1)-th in�nitesimal neighborhood of the point P ; let C be a curve, if C has

multiplicity b in P then the curve must contain bP . That is to say, when a curve

C of equation f(x0, x1, x2) = 0 in the local coordinates x0, x1, x2 of P2, contains a

point P of multiplicity b then, any b− 1-th derivative annihilates in P . We deduce

that a point of multiplicity b imposes b(b+1)
2

conditions. Let us denote by LZ(d) the

linear system of the curves of degree d containing Z, i.e. all the curves of degree d

in P2 with multiplicity in Pi at least bi. If it is a non-empty system, then we can

compute its dimension as follows:

expdim(LZ(d) :=
d(d+ 3)

2
−

k∑
i=1

bi(bi + 1)

2

75
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where d(d+3)
2

is the dimension of the linear system of all the curves of degree d in P2,

whereas bi(bi+1)
2

is given by the number of conditions imposed by the points Pi's. In

particular, we try to understand which subschemes Z ⊂ P2 are such that, for every

d ∈ N, the linear system LZ(d) has the expected dimension. Clearly, this depends

on the choice of the points in P2 and that's why we always work with general points.

Let us set some useful de�nitions.

Definition 3.1.1 Let Z be a subscheme of P2, Z has maximum rank if and only if

for all k ∈ Z; h0(IZ(k)) ∗ h1(IZ(k)) = 0, if and only if, for all k ∈ Z the function

H0(OP2(k))→ H0(OZ(k)) is injective or surjective.

Definition 3.1.2 Let Z = b1P1, ..., bkPk a subscheme of P2, of degree z =
∑k

i=1
bi(bi+1)

2
,

then there exist a unique value v such that: h0(OP2(v)) ≥ z, h0(OP2(v − 1)) < z.

This value v is called critical value of Z.

We observe that v = min{n ∈ N|
(
n+2

2

)
> z}, therefore we expect that every

curve containing Z has degree greater or equal to v. In this setting we can prove

the following equivalence.

Proposition 3.1.3 Let Z be a zero-dimensional subscheme of P2, and let v be its

critical value, then Z has maximum rank if and only if h1(IZ(v)) = 0 and h0(IZ(v−
1)) = 0.

Proof:

⇐) Let v be the critical value of Z and let L be a line such that L ∩Z = ∅. We

consider the exact sequence:

0→ O(−1)→ O → OL → 0

twisting by IZ(k) we obtain

0→ IZ(k − 1)→ IZ(k)→ OZ(k)→ 0.

We note that if k ≥ −1 and if h1(IZ(k − 1)) = 0 then h1(IZ(k)) = 0. Since

by hypothesis h1(IZ(v)) = 0, we have h1(IZ(k)) = 0 for all k ≥ v. Moreover if
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h0(IZ(v − 1)) = 0 then h0(IZ(k)) = 0 for all k ≤ v − 1. In conclusion we have

h1(IZ(k)) = 0 for all k ≥ v − 1, h0(IZ(k)) = 0 for all k ≤ v − 1 and so Z has

maximum rank. 2

Remark 3.1.4 Let us consider a subscheme of P2 of maximum rank. Given d ∈ N
such that LZ(d) 6= ∅, then h0(IZ(d)) 6= 0 and thus h1(IZ(d)) = 0. This means that:

dim(LZ(d)) = h0(IZ(d)) = h0(OP2(d))− h0(OZ(d)) =
d(d+ 3)

2
−

k∑
i=1

bi(bi + 1)

2
=

= expdim(LZ(d)

Finally, if a zero-dimensional subscheme Z of P2 has maximum rank, then, for

every d ∈ N, or LZ(d) = 0 or dim(LZ(d)) = expdim(LZ(d)).

Subschemes of P2 has not maximum rank are very well-known. For instance,

given the following subscheme Z = 2P1 + 2P2 of P2, we note that it has degree z =

22·(2+1)
2

= 6 and its critical value is v = 2 since h0(OP2(1)) = 3 and h0(OP2(2)) = 6.

In order Z to have maximum rank, by Proposition 3.1.3 we have that h1(IZ(2)) = 0.

We observe that h1(IZ(2)) = h0(IZ(2)) and since there exists a conic in P2 containing

Z, given by the double line passing through P1 and P2, we have h0(IZ(2)) 6= 0.

Such example guarantees the existence of subschemes in P2 that has not maxi-

mum rank but we can't describe their properties.

3.2 Special linear systems of plane curves.

In this section we deal with special linear systems, L, of plane curves, i.e. those

systems with h1(L) 6= 0 in cohomology. Concerning the dimensional problem of

such systems, there exists a particular conjecture called Harbourne-Hirschowitz's

conjecture.

Let us introduce some de�nitions:

Definition 3.2.1 Let Z = b1P1+...+bnPn be a subscheme of P2. The linear system

of plane curves of degree d containing Z, LZ(d) is said non-special if h1(LZ(d)) = 0.

Otherwise the linear system is said special.
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Going back to the previous section, given a zero-dimensional subscheme Z in

P2, if LZ(d) 6= 0 is a non-special linear system, then h1(LZ(d)) = 0 and thus

dim(LZ(d)) = expdim(LZ(d)). We deduce that if Z has maximum rank, the linear

system LZ(d) is zero or non-special.

In the literature, the �rst conjecture about special linear systems goes back to

B. Segre. It states the following:

Conjecture 3.2.2 If a linear system of plane curves with general multiple base

points LZ(d) is special, then one of its general member is non-reduced, namely the

linear system has, according to Bertini's theorem, some multiple �xed component.

Such a conjecture deduce the existence of a double curve in the special linear

system of curves in P2. Later on, Hirschowitz and Harbourne determine a new

property of the double curve: it is, in fact, an exceptional curve of the system in his

locus.

Let us de�ne an exceptional curve.

Let us consider the blow-up π : P̃2 → P2 of the plane P2 at P1, ..., Pn. Let

E1, ..., En be the exceptional divisors corresponding to the blow-up points P1, ..., Pn

and let H be the pull-back of a general line of P2 via π. The strict transform of the

linear system LZ(d), where Z = b1P1 + ...+ bnPn, is

L̃Z(d) := |dH − b1E1 − ... − bnEn|. In the system L̃Z(d), the rules intersection are

the following:

H2 = 1;

Ei · Ej = δij.

Definition 3.2.3 A curve C ⊂ P2 is said exceptional curve if it is a rational curve

and with self-intersection -1.

For instance, every exceptional divisor is an exceptional curve, such as any line

passing through two blow-up points.

Now, let us state Harbourne-Hirschowitz's conjecture:

Conjecture 3.2.4 A linear system of plane curve L, with general multiple base

points is special if and only if there exists an exceptional curve with multiplicity at

least two in the base locus.
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Let us go back to the example in the �rst section, the linear system LZ(2) with

Z = 2P1 + 2P2. Since h0(IZ(2)) 6= 0, the sequence

0→ H0(IZ(2))→ H0(OP2)→ H0(OZ(2))→ ...

is not short exact, therefore h1(IZ(2)) 6= 0 and the system is special. Now, let us

consider the line R = H − E1 − E2 passing through P1, P2. We note that R2 = −1

and, since 2R is the only curve in LZ(2), such a line is in the locus of the system

with multiplicity two.

In order to see more examples, let us consider a subscheme Z in P2 of the form

Z = 2P1 + ... + 2P d(d+3)
2

and the linear system LZ(2d), with d < 4. It is easy to

prove that the curve of degree d passing through Pi is an exceptional curve and it

is in the locus of LZ(2d) with multiplicity two.

More generally, one has special linear systems in the following situation. Let L
be a linear system on P2 which is, non-empty and let C be an exceptional curve

on P̃2 corresponding to a curve Γ on P2, such that L̃ · · ·C = −N < 0. Then C

(respectively Γ ) splits o� with multiplicity N as a �xed component from all curves

of L̃ (respectively L) and one has:

L̃ = NC + M̃(respectivelyL = NΓ +M)

where M̃ (resp. M) is the residual linear system. We can see that if N ≥ 2,

then L is special.

Even more generally, consider a linear system L on P2 non-empty , C1, ...Ck

exceptional curves on P̃2 corresponding to curves Γ1, ..., Γk on P2, such that L̃ ·Ci =

−Ni < 0, i = 1, .., k. Then:

L̃ =
k∑
i=1

NiCi + M̃,L =
k∑
i=1

NiΓi +M

and M̃ · Ci = 0 for i = 1, .., k. As before, L is special as soon as there exists an

i = 1, ..., k such that Ni ≥ 2. Furthermore CiCj = −δij and C :=
∑k

i=1Ci is called

(-1)-con�guration on P̃2. Now we give another de�nition.
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Definition 3.2.5 A linear system L on P2 is called (-1)-special if, L̃ =
∑k

i=1NiCi+

M̃ where C =
∑k

i=1 Ci is a (-1)-con�guration, M̃Ci = 0, for all i = 1, .., k,

dim(M) ≥ 0 and there exists an i = 1, ..., k such that Ni > 1.

We want to remember that in the work of Ciliberto, they were classi�ed every

homogeneous linear system which are (-1)-special. Until now, we can �nd only these

linear systems as examples of special linear systems. The theorem is the following:

Theorem 3.2.6 (C.Ciliberto) The only homogeneous linear systems LZ(d), where

Z = mP1 + ...+mPh is a subscheme of P2, which are (-1)-special are:

LZ(d) with Z = mP1 + mP2 and with m ≤ d ≤ 2m− 2 LZ(d) with Z = mP1 +

mP2+mP3 and with 3
2
m ≤ d ≤ 2m−2 LZ(d) with Z = mP1+mP2+mP3+mP4+mP5

and with 2m ≤ d ≤ 5m−2
2
LZ(d) with Z = mP1 +mP2 +mP3 +mP4 +mP5 +mP6 and

with 12
5
m ≤ d ≤ 5m−2

2
LZ(d) with Z = mP1 +mP2 +mP3 +mP4 +mP5 +mP6 +mP7

and with 21
8
m ≤ d ≤ 8m−2

3
LZ(d) with Z = mP1 +mP2 +mP3 +mP4 +mP5 +mP6 +

mP7 +mP8 and with 48
17
m ≤ d ≤ 17m−2

6

As a remarkable consequence we have that the Harbourne-Hirschowitz conjecture

for homogeneous system take the form:

Conjecture 3.2.7 Every homogeneous system of the form LZ(d), where Z =

mP1 + ...+mPh is a subscheme of P2, with h ≥ 10, is non-special.

Moreover we can prove that if the Harbourne-Hirschowitz conjecture hold, then

the system L on P2 is special if and only if it is (-1)-special, and so the linear systems

of theorem 3.2.6 could be the only special systems.

Many other people studied the Harbourne-Hirschowitz conjecture. Now we want

to enunciate the most important result of this study.

Hirschowitz worked on this conjecture and formulated the following theorem:

Theorem 3.2.8 (Hirschowitz) The Harbourne-Hirschowitz conjecture holds in the

homogeneous case LZ(d) with Z = mP1 + ...+mPh subscheme of P2, with m ≤ 3.

To prove this theorem he uses a degeneration technique called the Horace's

method, which we will deal with in the next section. The application of Horace's
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method usually requires a deep geometric understanding of the problem and a special

capability of guessing the right specializations to be performed.

Afterward Ciliberto and Miranda proved the following theorem:

Theorem 3.2.9 The Harbourne-Hirschowitz conjecture holds in the quasi-homogeneous

cases, LZ, where Z = nP1 +mP2 + ...+mPh is a subscheme of P2 with m ≤ 3 and

in the homogeneous case, LZ, where Z = +mP1 + ... + mPh is a subscheme of P2

with m ≤ 12.

Despite of Hirschowitz technique, the idea of Ciriberto and Miranda which I will

explain in some detail, consists in using a degeneration technique worked out by

Z. Ran manly for studying enumerative problems of families of plane nodal curves.

It consists in degenerating the plane to a reducible surface and in following the

linear system in the degeneration. The restriction of the limit linear system to the

component of the reducible limit surface are easier than the system one starts with,

so that one can hope to successfully use induction.

Another important result is due to S. Yang:

Theorem 3.2.10 The Harbourne-Hirschowitz conjecture holds for all linear sys-

tems of plane curves with at most ten points having multiplicity up to seven.

S. Yang approach to this problem has a simple geometric description. Suppose

we are given a linear system LZ of a plane curve with multiple base point. Choose

a triangle of three lines in P2 that meet in three distinct points. We specialize the

base points by moving them onto these points and sliding the multiple points along

the three lines to collide them. Each collision creates a larger singularity in the base

locus of the limiting linear system, and the class of singularities that arise can be

completely described via a combinatorial game involving checkers on a triangular

board.

The second technique, used by S. Yang is a modi�cation of a well-known degenera-

tion, �rst exploited by Ciliberto and Miranda.

I want to start just from this result. As a matter of fact we will prove with this

thesis that such result is also valid, even if we have 10 points of multiplicity at most

eight. Actually, we will be able to do better, as we will prove that every subscheme
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Z that we are going to calculate have maximum rank, that means that the linear

system LZ(v) has to be non-special and H0(LZ(v − 1)) = 0.

3.3 The Horace's method.

In this section we are going to explain the Horace's method, the instrument we use

to prove whether a particular subscheme of P2 has maximum rank. This method

was found by Hirschowitz, who shows us the truthfulness of it. There is no time here

to enter in any detail about this idea, which is the one elaborated by A. Hirschowitz

in his paper. The approach of Hirschowitz is to argue by degeneration, meaning

with this that one specializes the base points of the linear system in order to be able

to better compute the dimension of the linear system. Recall that the dimension

of LZ (where Z = m1P1 + ... + mhPh) is upper-semicontinuous in the position of

the points P1, ..., Ph. Therefore if one �nds a particular set of points Q1, ..., Qh such

that Z1 = m1Q1 + ... + mhQh and LZ1 is non-special, then also LZ is non-special.

Unfortunately, this is often too naive: as soon as one puts the points P1, ..., Ph in a

particular position, e.g one puts them on some curves on which they should not lie,

then the dimension of LZ tends to increase, and the method, in this crude form, does

not work. However, there is still something which one can do: even if the dimension

of LZ increases, one can actually compute the limit of LZ when P1, ..., Ph approach

Q1, ...Qh.

Concretely, this method consists of the following specializations of the base point

of the system on a particular curve C, so that the whole curve results in the base

locus of the linear system and we can divide it by the equation C. This way we can

reduce the degree of the curves of the linear system getting easier to deal with and

collecting more notions of it. We would like to remind that we want to understand

whether a zero-dimensional subscheme Z of P2 has maximum rank.

In order to achieve it, we have to prove that h0(IZ(v − 1)) = h1(IZ(v)) = 0,

such connections will be demonstrated through the Horace's method. First of all

we concentrate our attention verifying that h1(IZ(v)) = 0, that is the linear system

LZ(v) is a non-special one; in a second time we will also prove that h0(IZ(v−1)) = 0.

Before to show any example we need to prove this proposition:
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Proposition 3.3.1 Let C,D be two subscheme of P2 such that C ⊂ D. If LD(d)

is non-special, then LC(d) is non-special too, where with LC(d) we denote the linear

system IZ(d).

Dimostrazione:

As C ⊂ D, the exact sequence is true:

0→ ID(d)→ IC(d)→ IC,D → 0

In cohomology we obtain:

...→ H1(ID(d))→ H1(IC(d))→ 0

Since the support of IC,D is zero-dimensional, then h1(IC,D) = 0 and it's clear that

if ID(d) = 0 then IC(d) = 0 too. 2

We give some notations. We denote by (n) a fat point of multiplicity n and we

represent it as follows

n

while we will represent a simple point as a little black disk. We bring a simple

example about the use of the Horace's method.

Example 3.3.2 Let Z = 2P1 + 2P2 + ...+ 2P10 be a subscheme of P2, Z has degree

equal to 10·3 = 30 and critical value 7 because h0(OP2(6)) = 28 and h0(OP2(7)) = 36.

We must prove that h1(IZ(7)) = 0 thus we need that h0(IZ(7)) = h0(OP2(7)) −
h0(OZ(7)) = 36−30 = 6 and so it is su�cient to show that h0(IZ(7)) = 6. Now, let

us take a new subscheme Z1 = Z + P11 + ...+ P16, composed by Z and by other six

points in general position. This subscheme has degree 36 and so the linear system

IZ1(7) is non-special if and only if h0(IZ1) = 0. Specializing the points of Z1 we

show that there doesn't exist any curve of degree 7 containing Z1, therefore IZ1(7) is

non-special and by proposition 3.3.1, IZ(7) is non-special too.

With notations as above, we represent the subscheme Z1 by 10 double points, (2)

and by 6 simple points. We start specializing seven double points and a normal point
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in a conic curve C, outside we have three double points and �ve points. On C we

have 7 ∗ 2 + 1 = 15 = 2 ∗ 7 + 1 conditions. So we can divide by the equation of the

conic and reduce to the following situation for the curves of degree �ve (i.e.v = 5).

v = 7 2 5

2
2

v = 5 2
5

We divide by eq. of conic

3

22222

3

We have on C seven simple points, outside of C there are three (2) and �ve simple

points. Now we specialize other two (2) on C.

v = 5 2
5

2
2

On conic we have 2 ∗ 2 + 7 = 11 = 5 ∗ 2 + 1 conditions and so we can divide

by the equations of conic and we obtain the following situation for curves of degree

three.



3.3 The Horace's method. 85

v = 3 2
5

We specialize �ve simple points in the conic C, so we have the right number of

the conditions 1 ∗ 7 = 7 = 3 ∗ 2 + 1 and we can divide by the equation of C.

v = 3 2

Since the remaining double point is clearly not contained in a line, we conclude

that h0(IZ1(7)) = 0. By ?? h0(IZ(7)) = 0, i.e. LZ(7) is non-special.

2

v = 1

A double point
can’t lie in a line.

For simplicity's sake, we specialize the points of Z only on curves with genus equal

to zero or one, with some singularity of order two. Moreover if we put a fat point bP

in a node, this fact imposes 2b conditions on curve. Through this method we notice

that we can't do general proves, but the only way to use it is analyzing case by case,

which is what we are going to do with this paper. In order to achieve our goal, we

have to consider every zero-dimensional subscheme of P2 composed by 10 points with

multiplicity minor or equal than 8, apply the Horace's method to everyone of them

in order to check h1(IZ(v)) = 0 and h0(IZ(v − 1)) = 0. This way the work could

get very demanding, because the cases are more than thousand. Fortunately, thank

proposition 3.3.1 and some transformations, called Cremona's transformations, we
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can just take into consideration only hundred cases. In addition, further studies

improved the Horace's method through good observations concerning the geometry

of every linear system.

3.4 Horace di�erential's method and collision of in-

�nitesimal neighborhood.

Horace di�erential

The �rst stratagem to use, in order to make our job easier, is called Horace di�er-

ential's method. It consists of seeing a fat point of size n, (n), made up by slices.

For instance, a triple point is made up by the slices (123), (see illustration).

y

xx2

xy

y2

In this illustration, every small square corresponds to one condition and the sum

of every small square corresponds to the number of conditions imposed by the fat

point. In particular, specializing the point on a curve, you can see only the condi-

tions that are on the axis x. Horace di�erential allows us, specializing a multiplicity

point n on a divisor C, we can choose a particular slice, not necessarily the one on

the axis x, but the one o�ering us the most convenient number of conditions. We

can adopt such procedure only once for a particular point, afterwards we have to

begin again counting the number of conditions as usual (that is starting from the

ones on the axis x). In the illustration below, we see what happens choosing the

slice giving us only two conditions from a triple point (3).
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y

xx2

xy

y2

y

xx

y

To represent this situation on a curve, we use a more convenient notation to our

aim as in �gure.

2

[1,3]

where the notation [1, 3] represents the remaining slices.

Dividing by the equation of C, it occurs.

3

[1]

We rest with three conditions on C and, dividing by equation of the curve, we

remain with only one condition on C.

In general we represent the slice m of a fat point (n) as in the following picture:
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m

[1,..,m-1,m+1,..n]

When we apply the Horace di�erential to a point P , we can't specialize P on an-

other curve. Moreover it's not easy to remove the rest slices. Thus we will use this

method with moderation.

We show an example.

Example 3.4.1 We consider the subscheme Z = 5P1 + 5P2 + 5P3 + 5P4 + 5P5 +

5P6 + 5P7 + 5P8 + 4P) + 3P10 of P2. The critical value of Z is 15 and LZ(15) is

non-special if and only if h=(IZ(15)) = 0. This happens only when h0(IZ(15)) =

h0(OP2(15)) − h0(OZ(15)) = 136 − 136 = 0. In this case we don't need to add any

simple point because the conditions are right to start. We begin with a nodal cubic

C and specialize one (5) at the node, seven (5) on C and, by di�erential Horace, the

slice 1 of the (3) on C; outside of C we have the (4).

5
5

4

7

[2,3]
1

On the cubic we have: 2 ∗ 5 + 7 ∗ 5 + 1 = 46 = 3 ∗ 15 + 1 conditions and so

we can divide by the equation of the cubic and we get the following situation:
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3
4

4

7

[2]
3

v = 12

On the cubic we have 2 ∗ 3 + 7 ∗ 4 + 3 = 37 = 3 ∗ 12 + 1 conditions, so we can

divide by the equation of C and we reach the following situation for curves of degree

9:

3

4

7

2

v = 9

So we have on C, one simple point at the node, one double point and 7 (3); outside

of C there is a (4). It's time to give up with the cubic (because we have only a simple

point at the node) and look for another curve to exploit. Let K be a general conic

through the support of (4). The conic K intersects C at six points (di�erent from

the node). We specialize �ve of the seven (3) to the points of C ∩K and get:

v = 9

3
3

3

3 3

3

4

2

C

K

2

On K we have: 5 ∗ 3 + 4 = 19 = 2 ∗ 9 + 1 conditions. So we can divide by the

equation of the conic and reduce to the following situation for the curves of degree
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seven:

v = 7

2

3

3

2

C

K

2

2

2

2 2

The line L through p, q intersects the cubic C in three points. We specialize the

(3) with the support r at this third point. After the specialization we have on the

line L: 2 ∗ 3 + 2 = 8 conditions.

v = 7

2

3

3

2

C

K

2

2

2

2 2

3

L

Since we are dealing with degree 7 curves we can divide by the equation of line

L. After this reduction we remain with the following situation for degree 6 curves.
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v = 6

2

2

3

2

C

K2

2

2

2

L

On the conic K we have 4 ∗ 2 + 1 + 3 = 12 conditions, so we are missing one

condition and we specialize the double point on C to the six points of C ∩K

v = 6

2

2

3

2

C

K
2

2

2

2

L

Now, on K we have the right number of conditions, i.e. 4∗2+1+3+1 = 13 = 2∗6+1

and we can divide by the equation of K and reduce to the following situation of de-

gree 4 curves (note that the residual of the double point with respect to K is just a

simple point).



92 3. Subschemes of P2 with ten fat point of maximum rank.

v = 4

2

2

C

K

2

L

One may think that, since we are left with few nilpotents and simple points in rel-

atively general position, we are done. Actually, the situation is quite tied and we

have to be very careful in order to conclude. We move the (2) on K till it arrives to

the second point of L ∩K and, by di�erential Horace, we take only its 1−slice (we

are going to exploit the divisor L)

v = 4

2

[2]

C

K

2

L

1

On L we have 2 ∗ 2 + 1 = 5 = 4 + 1 conditions and we can divide by the equa-

tion of L and reduce to the following situation for curves of degree 3:
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v = 3

2

C

K

L

Now on L we have 2 ∗ 2 ∗ 1 = 4 conditions and we can divide again by the equation

of L and �nally we get:

v = 2
C

K

Since the remaining six points are clearly not contained in a conic we conclude

that h0(IZ(15)) = 0, i.e. LZ(15) is non-special.

In this example, we move a double point in a di�erent curve, but we count only

one condition for this point and not two.

From the example we can see how this instrument makes the process of special-

izations of points of subscheme easier. At the same time it emphasizes the way the

point, to which was applied the Horace di�erential, is tied to the curve. Let's see

now which is the collision of 2 fat points. Also in this case, we don't show every step,

but we want to explain what it is concretely and we want to describe an example in

order to understand the utility.
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Collision of in�nitesimal neighborhood.

Such system consists of letting collide two fat points in the same node in order to

increase the number of conditions set out by the points on the curve. We just want

to explain the way the collision happens and how to count the conditions. Before

starting, we give piece of useful advice. Every in�nitesimal neighborhood of a fat

point (n) can be represented by an escalier, that is a step structure, where x+y < n,

and every point represents the order of derivation at which it vanishes. For instance

a fat point of size (2) represents the �rst in�nitesimal neighborhood.

x

y

First infinitesimal neighbour x + y < 2

y

x

While the ideal of fat point (2) is generated by the powers outside of the escalier

and therefore I2P = (x2, xy, y2).

x

y

y

x x2

y2

xy

The ideal of (2): I2P = (x2, xy, y2)

In general every fat point of size n can be represented as follows:

xn

yn

x

y

The ideal of (n), InP = (xn, xn−1y, ..., yn), x+ y < n.

yn−1

xn−1



3.4 Horace di�erential's method and collision of in�nitesimal neighborhood. 95

In order to proceed with the collision, we have to privilege an axis. We choose the

one of the y, that we indicate as the collision axis. In view of that, we notice that an

escalier e determines a function ê : N→ N : x→ ê(x) so that e = {(x, y)|y < ê(x)}

x

ê(x)

Given two escaliers, we can de�ne the operation of the sum in this way. Let e1, e2 be

two escalier, then the sum e1 + e2 is an escalier too, such that ˆe1 + e2 = ê1 + ê2. In

practice, we are placing an escalier upon another one, letting slide the several small

squares along the axis y.(see illustration)

Point of multiplicity 3, (3)

x

y

Double point (2)

x

y

y

x
Collision in the direction y of the fat point (2) e (3)

This is the sum along the vertical axis y, that we have considered as collision

axis.

Now we have to try to join what we have said so far with the Horace's method.

Therefore, we presume to have a double point on a node of a nodal cubic and a

point of multiplicity (3), on a branch of the same cubic, (see illustration):
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2

3

Doing the collision according the direction →, we get:

y

x

3

5

Whose trace on the curve has 5 + 3 = 8 degrees, because, being on a node, one

has to count as the conditions on the x axis, the ones on the y axis. For such point

we have to use the numbering [32211].

Considering this sequence of numbers as 32, 21, 1, these indicate the number of

conditions which there are in the �rst, second and third column of the illustration

shown above( i.e. after the collision of (3) with (2)). As matter of fact, in the �rst

column there are 3 + 2 = 5, in the second 2 + 1 = 3 and in the third one only a

small square is left. Before the collision, the number of the conditions was given by

2 · 2 + 3 = 7. Therefore we increase by one the number of the conditions. Dividing

by equation of cubic, the rest of collision results:

x

y

Double point along the direction ↑
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a double point in the direction ↑, which we denote by [11], starting from [32211]

one removes the �rst digit, 3, and decreases by one the other digits.

More generally, if we consider a point with multiplicity n on a node of a curve

and a point of multiplicity n+ r on a branch of the curve, the collision of the points

in the node determine n+ n+ r + n+ r = 3n+ 2r conditions, where n+ n+ r are

in the direction of y and n+ r in the direction of x. Note that, before the collision,

the points determined 2n+ n+ r conditions, r less that after the collision.

There are disadvantages in using collision: in fact, after that, we cannot move

anymore the point from the node of the collision and the remaining collision is not

so easy to solve. That's why we will be careful in using the process.

Let us consider an example of collision of in�nitesimal neighborhood. Let us

begin with a curve of degree �ve with 6 nodes. Obviously, after a few steps, it is

quite di�cult to treat with it, so that we specialize it in the union of a quartic with a

line. This makes sense since the dimension of the linear system of the quintc curves

in P2 is bigger than the dimension of the linear system of quartic curves with a line.

This process is true in a more general setting and it can apply to di�erent curves.

Example 3.4.2 We consider the subscheme Z = 6P1+6P2+6P3+6P4+6P5+6P6+

6P7 + 6P8 + 6P9 + 6P10 of P2. We de�ne Z a homogeneous subscheme because the

multiplicity of points of Z is constant. The critical value of Z is 19 and LZ(19) is

non-special if and only if h=(IZ(19)) = 0. As above, in this case we don't add simple

point. We start specializing all the points in a quintic curve, C, with six nodes in

this way: six (6) on the nodes and the other four on the curve.

6

6
6

6

6

6

6

4

v = 19

On C we have: 6 · 12 + 24 = 96 = 5 · 19 + 1 conditions, so we can divide by

the equation of the quintic and we obtain the following situation
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4

4

5
4

v = 14

4

4

4 4

We do a collision of three (5) on three nodes.

4

4

5

v = 14

4

[544332211]

[544332211] [544332211]

In these nodes we have [544332211] that imposes 9 + 5 = 14 conditions. On the

quintic we have 3 · 14 + 3 · 8 + 5 = 71 = 5 · 14 + 1 conditions and so we can divide

by the equation of C and reduce to the following situation for the curve of degree nine.

2

2

4

v = 9

2

[332211]

[332211] [332211]

Now we specialize the quintic C in a union of a quartic with three nodes Q, and

a line L, in this way:
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v = 9

2 2 2

4

[332211]
[332211]

[332211]

Any [332211] gives 6+3 = 9 conditions and on Q we have 3 ·9+6+4 = 37 = 4 ·9+1

conditions, so we can divide by equation of quartic and we get the following situation

for the curves of degree 5.

v = 5

Q

[211]

[211]

[211]

3

We move the fat point (3) on the line L

v = 5

Q

[211]

[211]

[211]

3

On L we have 3 + 3 = 6 = 5 · 1 + 1 conditions and so we can divide by the equation

of the line, and we obtain the following situation for the degree 4 curves.
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v = 4

Q

[211]

[211]

[211]

2

Any [211] gives 5 conditions so that, on a quartic, we have 3 · 5 + 2 = 17 = 4 · 4 + 1

conditions and we can divide by the equation of Q. In the end we obtain

v = 0

Since the remaining point is clearly not contained in a curve of degree zero, we

conclude that h0(IZ(19)) = 0 and thus LZ(19) is non-special.

3.5 Cremona transformations.

In this section we deal with Cremona transformations. We will use them in this

work in order to reduce more linear systems to only one, decreasing the number of

cases to study.

Cremona transformations act on the blow-up points. In other words, applying a

Cremona transformation is the same as changing the basis of Pic(S), where we

denote by S the P2 blown-up in the base points of the considered system. After a

Cremona transformation, the system seems to be di�erent from the starting one,

even if it just seen in two di�erent basis.

We recall some notation. Let Z = b1P1 + ...bkPk be a subscheme of P2 and

let p : S → P2 denote the blowing-up at the Pi's. Let Ei be the corresponding

exceptional curves. A bases of Pic(S) is given by ε = (l − E1 − ...− Ek) where l is
the class of line in P2; a such basis is also called an exceptional con�guration.

If D ∈ IZ(v) where v is the critical value of Z then we can write D = (v; b1, ..., bk)



3.5 Cremona transformations. 101

in Pic(S).

Definition 3.5.1 As usual an exceptional curve (of the �rst kind), E, is a curve

isomorphic to P1 with E2 = −1.

We will say that Σ =
∑
niEi is a bunch of disjoint exceptional curves if ni ≥ 0 for

all i, each Ei is an exceptional curve and Ei · Ej = 0 if i 6= j.

We have Pic(S) ' Zk+1 with the basis (l;−E1, ...,−EK) given by exceptional con-

�guration ε. The intersection product de�nes a bilinear form on Pic(S). Let

r0 = l − E1 − E2 − E3, ri = Ei − Ei+1. Moreover associated to the ri's we have

the re�ections si : Pic(S) → Pic(S) de�ned by si(x) = x + (x · ri)ri. the si's

preserve the intersection product and �x the canonical bundle of P2, K.

We are interested in s0 (Cremona transformation). We have:

s0(l) = 2l − E1 − E2 − E3,

s0(−E1) = E2 + E3 − l,
s0(−E2) = E1 + E3 − l,
s0(−E3) = E1 + E2 − l,
s0(−Ei) = −Ei for i > 3.

If (v; b1, ..., bk) are the coordinates of D in the basis ε, then B′ = (s0(l); s0(−Ei))
is a basis of Pic(S) and the coordinates of D in this basis are (v′; ci) where:

v′ = 2v − b1 − b2 − b′3,
c1 = v − b2 − b3,

c2 = v − b1 − b3,

c3 = v − b1 − b2,

ci = bi for i > 3.

If the points Pi are distinct and in general position, the basis B′ corresponds

to an exceptional con�guration ε′ = (l′;−E ′1, ...,−E ′k); moreover the corresponding

points, obtained by blowing down, Pi are again distinct and in general position.

Finally we observe that : v′ < v if and only if a < b1 + b2 + b3.

Of course if b1 ≥ b2 ≥ ... ≥ b9 then c1 ≥ c2 ≥ c3 but it could be that c3 < c4.

We show an example

Example 3.5.2 Let D = (17; 8, 6, 6, 5, 5, 5, 5, 4, 4, 4) be a divisor in Pic(S), we ap-

ply to D the Cremona transformation. The new coordinates of D are (v′, ci) where:
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v′ = 34− 8− 6− 6 = 14,

c1 = 17− 6− 6 = 5,

c2 = 17− 8− 6 = 3,

c3 = 17− 8− 6 = 3,

ci = bi for i > 3.

After the transformations, it occurs that D′ = (14; 5, 5, 5, 5, 5, 4, 4, 4, 3, 3), since

2v−c1−c2−c3 = 28−15 = 13 < 14, we can apply again the Cremona transformation

to D′. We obtain D′′ = (13; 5, 5, 4, 4, 4, 4, 4, 4, 3, 3) and another time we apply the

transformation. In the end we have

D′′′ = (12; 4, 4, 4, 4, 4, 4, 4, 3, 3, 3) and we stop the transformation process because

2v − c1 − c2 − c3 = 12 = v.

3.6 Subschemes of P2 with ten fat points of multi-

plicity less than nine.

In this section we get to the heart of the matter focusing our attention on particular

subschemes Z = b1P1+...+b10P10 of P2 for which exists almost a point of multiplicity

like 8 so that 4 ≤ bi ≤ 8for all i.

We don't consider the subscheme with a point of multiplicity minor than 4 be-

cause the associated linear system veri�es the conjecture of Harbourne-Hirschowitz.

Let's begin with the studying of he �rst cases. Taken ten general points P1, ..., P10

we consider the subscheme Z = 8P1 +4P2 +4P3 + ...+4P10, In order to make it easy,

we indicate Z with the list (8, 4, 4, 4, 4, 4, 4, 4, 4, 4, ). The critical value of Z is 15

and we denote with x := h0(OP2(v))− h0(OZ(v)), this number indicates the dimen-

sion which LZ(v) need to have in order to be non-special and it also represents the

number of the simple points to have add to subscheme Z in order to start with Ho-

race's method. In this case x = 10. Considering now Z1 = (8, 5, 4, 4, 4, 4, 4, 4, 4, 4)

and Z2 = (8, 5, 5, 4, 4, 4, 4, 4, 4, 4), they have critical value equal 15 and respec-

tively x equal 5 and 0. By the proposition 3.3.1, if Z2 is non-special then Z1 e

Z are non-special too, afterwards lets analyze the case Z2. Before starting with

the Horace's method, we apply the Cremona's transformation s0 to Z2, we get
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s0((15; 8, 5, 5, 4, 4, 4, 4, 4, 4, 4)) = (6; 2, 2, 2, 2, 2, 2, 2, 2, 2, 1) which is a system, where

the conjecture of Harbourne-Hirschowitz holds.

This proceeding bring us to a reduction of several cases, that we list below:

Z1 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) v = 6 x = 0

Z2 = (4, 3, 3, 3, 3, 3, 3, 3, 3, 3) v = 10 x = 2

Z3 = (5, 4, 4, 4, 4, 4, 4, 4, 4, 4) v = 13 x = 0

Z4 = (3, 3, 3, 3, 3, 3, 3, 3, 2, 2) v = 9 x = 1

Z5 = (5, 4, 4, 4, 4, 4, 4, 4, 4, 3) v = 13 x = 4

Z6 = (4, 4, 4, 4, 4, 4, 4, 3, 3, 3) v = 12 x = 3

Z7 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5) v = 16 x = 0

Z8 = (6, 5, 5, 5, 5, 5, 5, 5, 5, 4) v = 16 x = 2

Z9 = (6, 6, 6, 6, 6, 6, 6, 6, 6, 6) v = 19 x = 0

Z10 = (4, 4, 4, 4, 4, 4, 4, 4, 3, 1) v = 12 x = 4

Z11 = (4, 4, 4, 4, 4, 4, 4, 4, 3, 2) v = 12 x = 2

Z12 = (5, 5, 5, 5, 5, 5, 5, 5, 4, 3) v = 15 x = 0

Z13 = (7, 6, 6, 6, 6, 6, 6, 6, 5, 5) v = 19 x = 5

Z14 = (3, 3, 3, 3, 3, 3, 3, 2, 2, 2) v = 9 x = 4

Z15 = (6, 6, 6, 6, 6, 6, 5, 5, 5, 5) v = 18 x = 4

Z16 = (6, 6, 6, 6, 6, 6, 6, 5, 5, 4) v = 18 x = 3

Z17 = (7, 6, 6, 6, 6, 6, 6, 6, 6, 4) v = 19 x = 4

Z18 = (8, 7, 7, 7, 7, 7, 7, 7, 6, 6) v = 22 x = 2

Z19 = (8, 7, 7, 7, 7, 7, 7, 7, 7, 5) v = 22 x = 1

Z20 = (4, 4, 4, 4, 4, 4, 4, 4, 4, 0) v = 12 x = 1

Z21 = (5, 5, 5, 5, 5, 5, 5, 5, 4, 2) v = 15 x = 3

Z22 = (3, 3, 3, 3, 3, 3, 3, 3, 2, 1) v = 9 x = 3

Z23 = (7, 7, 7, 7, 7, 7, 6, 6, 6, 6) v = 21 x = 1

Z24 = (7, 7, 7, 7, 7, 7, 7, 6, 6, 5) v = 21 x = 0

Z25 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 0) v = 6 x = 1

Z26 = (4, 4, 4, 4, 4, 4, 4, 4, 4, 4) v = 13 x = 5

Z27 = (6, 6, 6, 6, 6, 6, 6, 6, 4, 4) v = 18 x = 2

Z28 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) v = 3 x = 1
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Z29 = (2, 2, 2, 2, 2, 2, 2, 2, 1, 1) v = 6 x = 2

Z30 = (5, 5, 5, 5, 5, 5, 5, 4, 4, 4) v = 15 x = 1

Z31 = (5, 5, 5, 5, 5, 5, 5, 4, 4, 3) v = 15 x = 5

Z32 = (7, 7, 7, 7, 7, 7, 7, 7, 7, 6) v = 22 x = 3

Z33 = (8, 6, 6, 6, 6, 6, 6, 6, 6, 6) v = 20 x = 6

Z34 = (8, 8, 7, 7, 7, 7, 7, 7, 7, 7) v = 23 x = 4

Z35 = (8, 8, 8, 8, 8, 7, 7, 7, 7, 7) v = 24 x = 5

Z36 = (8, 8, 8, 8, 8, 8, 7, 7, 7, 6) v = 24 x = 1

Z37 = (8, 8, 8, 8, 8, 8, 8, 7, 6, 6) v = 24 x = 3

Z38 = (8, 8, 8, 8, 8, 8, 8, 7, 7, 5) v = 24 x = 2

Z39 = (8, 8, 8, 8, 8, 8, 8, 8, 6, 5) v = 24 x = 1

Z40 = (8, 8, 8, 8, 8, 8, 8, 8, 7, 7) v = 25 x = 7

Z41 = (8, 8, 8, 8, 8, 8, 8, 8, 8, 6) v = 25 x = 6

We note that the case Z10 is contained in Z11; Z21 is contained in Z12; Z31 is con-

tained in Z30; the cases Z25 and Z29 are contained in Z1; Z22 and Z14 are contained

in Z4 and Z26,Z5 are contained in Z3; proposition 3.3.1 leave us with only 32 cases to

analyze. In 11 cases we can �nd points of multiplicity eight and in these cases we will

apply the Horace's Method to prove that the conjecture of Harbourne-Hirschowitz

holds. Before proceeding with the method is better to write down some notations

. We indicate the conic curves with C, the cubic curves with K, the quartic curves

with Q, the quintic curves with Y and the lines are recognizable. As there is an

only line containing two points, you will notice, that the lines containing two points

will be not drown anymore between two passages. In order to avoid repetitions, we

are going to present just pictures in our demonstrations, because all the passages,

we are illustrating, are very similar to the ones already explained in the previous

examples and moreover they are all easy to understand.

Case (8, 6, 6, 6, 6, 6, 6, 6, 6, 6) v = 20 x = 6.
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6

6

6

8

6
6

We divide by eq. of Q

5
v = 20

Q

4

7

5
6

5

v = 16

4

4

Q

4

7

5
5

4

v = 16

14

[544332211]

3

2

We divide by eq. of Q

Q

2

6

4
5

9

[332211]

2

v = 122

Q

v = 12

4 2

69

[332211]

L

4

2

2 We divide by eq. of cubic

4

K

v = 9

55 3

[211]

4

L

4 4

K
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v = 6

2
4

3
4

We divide by eq. of R

v = 5

2
4

L

3
2

K K

L

2
4

3
v = 5

We divide by eq. of CR

C 4

2

v = 3

2
R

C

2

Case (8, 7, 7, 7, 7, 7, 7, 7, 6, 6) v = 22 x = 2

7

v = 22

7
7

7

77

7

8

6

2

2

We divide by eq. of Y

Y

67

5

2

2

v = 17

5

5

5

5
5

5

Y
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5

5

7

v = 17

5

5
5

5

17

[65544332211]

We divide by eq. of Q
2

Q

L

2

4

6

L

12

[44332211]

v = 13

4
4

4

33

2

2

Q

v = 13

4 4 4

3

3

4

612

[44332211]

We divide by eq. of cubic
L

R

8

[32211]

3 3

2

2

L

R

4

5
3

S

2

2

2

2

v = 102

K
K

3

[11]

L

R

2
2

v = 7

2
24

4 S

We divide by eq. of S

K 3

L

R

2
2

2
2

3
[11]

3

v = 6

K

L

2

v = 3

2

2

T
We divide by eq. of T

6

v = 2

K
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Case (8, 7, 7, 7, 7, 7, 7, 7, 7, 5) v = 22 x = 1

7
2

v = 22

7
7

7

77

7

8

5

We divide by eq. of Y

Y

67

4

v = 17

5
5

5

5

5 5 Y

5

4

7

v = 17

6

5

L 5
5

5

17

[65544332211]

We divide by eq. of Q

Q

3

6

5

L

1712

[44332211]

v = 13

4
4

4

33

Q

5

v = 13

4 4 4

3

3

3

612

[44332211]

We divide by eq. of cubic
L

R

v = 10

8

[32211]

3 3

2

2

L

R

4

5
4

2

SK
K
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v = 9

8

[32211]

3 3

2

2

L

R

3

4
4

S

We divide by eq. of cubic

v = 6

3

[11]

L

R

3

3

2 2

3K K

v = 5

3

[11]

L

R

3
3

2

We divide by the eq. of cubic

v = 2

22
K

K

v = 4

[11]

L

R

2

2

2

3
S

We divide by eq. of S

K

[11]

R

2

3

v = 3

K

2

Case (8, 8, 7, 7, 7, 7, 7, 7, 7, 7) v = 23 x = 4
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7
4

7

77

7

Y

v = 23

8
8

4

We divide by eq. of Y

6
4

5

55

5

Y

v = 18

6
6

4

6
3

5

5

5

Y

v = 18

6
6

2

2

[65544332211]

17

We divide by eq. of Y

5
3

3

3 Y

v = 132

[44332211]

12

4
4

3

v = 13

L

3

12

[44332211]

Q

44

5
33 3

We divide by eq. of Q

v = 9

L

8

[32211]

Q

2 2

R

2 2 2

4

4
4
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v = 8

4
K

2 2

T
2

2
L

R
3 3

8

[32211]

We divide by eq. of K

v = 5

3
K

2

T

2 2

3

[11]

2

v = 2

2
K

L

2

In the end, dividing by the equation of the line L, we rest with v = 1 and three

simple point. Absurd.

Case (8, 8, 8, 8, 8, 7, 7, 7, 7, 7) v = 24 x = 5

8

7

7

8

8

8

7

8

Y

v = 24 5

3

We divide by eq. of Y

5

6
5

7

Y

v = 19 5

3

6

6

6

6
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6
5

7

Y

v = 19 3

6

6

6

6
2

2

17
[65544332211]

We divide by eq. of Y
4

3

6

Y

v = 14 3

5
2

12

4

4

4 [44332211]

v = 14

Q

4 4

R

3
6

4

4
5

12

[44332211]

2

2

We divide by eq. of Q

v = 10

Q

4 4

R3

3
4

2

8

[32211]

L

2
54

v = 9

Q

4 4

R3

3
4

2

8

[32211]

43 Specializing

L

v = 9

4
K

T2
2

3

3

4

3 R

L

8

[32211]
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v = 6

3
K

3

3

[11]

3

2

T

2

Specializing

3

3

2
2

2

v = 6
T

R

T

3

2

2

2

v = 4

3

C

We divide by eq. of C

2
v = 2

C

2

Case (8, 8, 8, 8, 8, 8, 7, 7, 7, 6) v = 24 x = 1

7

77

v = 24

8

8
8

88
2

6

4

We divide by eq. of Y

Y
5

2

4v = 19

6

6
6

6

6

7

5 5 Y
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5

2

6
6

6

6

7

5 5

v = 19

2

20

[7665544332211] We divide by eq. of Q

Y

3

2

4

15

[5544332211]

v = 14

4
4

4

6
5

3 Y

v = 14

6

4
5

44

15

[5544332211]

We divide by eq. of Q

4
3

3

Q

R

4

3

11

[4332211]

v = 10

2

3

22

5

2

Q

R

5

v = 10

3

4

3
2

2

11

[4332211]

We divide by eq. of K

2
2

K

R L
v = 7

3

6

[2211]

4
3

2

3

K

R
L
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v = 4

3

2

2

Specializing

K
3

2
2

v = 4
L

C

v = 2

C

R

2

We divide by eq. of R

v = 1

Case (8, 8, 8, 8, 8, 8, 8, 7, 6, 6) v = 24 x = 3

7

68

v = 24

8

8
8

88
2

6

We divide by eq. of Y

3

Y
4

2

5

v = 19

37

6

6

6

6

6

6 Y
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45

7

6

6

6

6

6

v = 19

2

20

[7665544332211]

We divide by eq. of Y

Y
2

6

15

[5544332211]

v = 14

4

4
4

4

4

5

Y

v = 14

6

4
5

44

4
4

2

15

[5544332211]

We divide by eq. of Q

Q

R

4

3

11

[4332211]

v = 10

3

3

22

5

Q

R

5

v = 10

3
3

4

3
2

2

11

[4332211]

We divide by eq. of KR L

K

v = 7

2

3

6

[2211]

4
3

2

3
R

L

K

v = 7

3

2

2

Specializing

K
3

2
2

v = 4
T

C
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v = 2

C

R

2

We divide by eq. of R

v = 1

Case (8, 8, 8, 8, 8, 8, 8, 7, 7, 5) v = 24 x = 2

v = 24

7 7

5

8
8
6

2

We divide by eq. of Q

Q

5

4

6
7
6

2

v = 20

5

Q

5

4

6
7
3

2v = 20

5

R

7
7

7

We divide by eq. of R

Q

5

4

6
7
3

2

v = 19

5

R6
6

6

Q
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5

4

7
2

1v = 19

5

R

6
6

6

20

[7665544332211]

We divide by eq. of Q

Q

3

3
2

1

v = 15
3

R

5

15

[5544332211]6
5

5

Q

6
2

v = 15

3
3

5

5

5

3 15

[5544332211]

We divide by eq. of cubic

5
2

2
2

5

4

4

2 11

[4332211]

v = 12

K
K

R
R

L
L

5
2

2
2

4

3

3

2 11

[4332211]

v = 11
We divide by eq. of K

L

R

K
4
2

4

6

[2211]

v = 8

2

2 L

R

K
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4

6

[2211]

v = 8

2

2

S

4

4

We divide by eq. of S

K

L

R

4

6

[2211]

v = 7

2

2
3

3 K

L

3

6

[2211]

v = 6

3

3

3

We divide by eq. of K

L

K

v = 3

2

2

2

K

2

2
2

v = 3

We divide by eq. of C

C

R

v = 1

Case (8, 8, 8, 8, 8, 8, 8, 8, 6, 5) v = 24 x = 1
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8

5

v = 24

6

8

8

8

8

8
3

We divide by eq. of Y

Y

v = 19

4

7
3

6

6
6

6

6

4

Y

6

66

4

6 6 4

7
3

v = 19

We divide by eq. of Q

Q

R

3

5
3

6
3

v = 15

44

4

5

Q

R

3

v = 15

4

4

5
4

5
3

6
3

Dividiamo per l’eq. di K

R

K

L

v = 12

4

3

2

3
5

4

2

2

4

R

K

L
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v = 12

4
2

2
5

4

2

2
3

4

5 We divide by eq. of L

L

K

R

v = 11

2

2
5

4

2

2
3

L

4

3

3

K

R

v = 11

2

2
5

4

2

L

4

38

[32211]

We divide by eq. of K

3

R

v = 8
L

3

[11]

3

3

3

2
2
4

R

T

v = 7
L

3

[11]

3

3

3

2
2
3

We divide by eq. of L
R

K

v = 6
L

3

[11]

2
3

2
3

2

R

K
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v = 6
L

3

[11]

2
3

2

2
3

We divide by eq. of R

R

A

K

v = 5

3

[11]

2
3

2

2
2

K

v = 5

3
2 2 2

2

We divide by eq. of C

X

2 v = 3

2

2

SC
C

In the end, dividing by the equation of the line L, we rest with v = 2 and six

simple point. Absurd.

Case (8, 8, 8, 8, 8, 8, 8, 8, 7, 7) v = 25 x = 7

v = 25

7 8

7
8

We divide by eq. of Q

Q

7

8
6

v = 21

5 6

7

6

6

7

6

Q
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v = 21

5

5

6
6

2

20

[7665544332211]
We divide by eq. of Q

Q

5
7

v = 17
5

5

4

15

[5544332211]

6

5

3

Q

3

6

v = 17

15

[5544332211]

5

4 5

We divide by eq. of K

5

K

R 2

5

v = 14

11

[4332211]

5

53

5

2

K

R

5

v = 11

6

[2211]

3

5

4

2R

K

We specialize on

C

v = 11

6

[2211]

4
4 4

4

4

5

2

3 R

K

C
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v = 9

R

6

[2211]

3

4

4
3 3

We divide by eq. of L

3

3

C

K

v = 8

R

6

[2211]

3

3 3

3

3

3

3
C

K

v = 5

2

2

22

2

2

We divide by eq. of cubic

v = 2

C
K

2

2

Case (8, 8, 8, 8, 8, 8, 8, 8, 8, 6) v = 25 x = 6

6

8
8 8

8

8
8

8

3

We divide by eq. of Y

Y

6v = 25

5

7
3

6
6

6

6

6

6

6 Y

v = 20
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5

7
2

4

v = 20

6
6

6

6

6

2

20

[7665544332211]

We divide by eq. of Y

Y

4

6
2

4

v = 15

15

[5544332211]

4

4
4

4

4

Y

v = 15

4

4

4

4
6

6

4
4

4

15

[5544332211]

L
We divide by eq. of R

Q

R

v = 14

4

4

4

3
5

5

4
4

4

15

[5544332211]

Q

R

L

v = 10

2

3

2

11

[4332211]

L

4
4

3
2

3

3

Q

R

6

[2211]

L

v = 6

3
3

2
2

2

Q

R

We divide by eq. of Q
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6

[2211]

L

v = 5

2
2

2
2

2

Q

We divide by the line L

6

[2211]

L

v = 4

2
2

Q

v = 1

In conclusion we have just prove

Proposition 3.6.1 The conjecture of Harbourne-Hirschowitz holds in all the linear

system LZ(v), where Z = (b1P1 + ...+ bnPn) is a subscheme of P2, with n ≤ 10 and

bi ≤ 8 for all i = 1, ..., n, and v is its critical value.

Our aim is to prove that these subschemes of P2 have maximum rank, thus we

have to show that h1(IZ(v)) = 0 and h0(IZ(v−1)) = 0, where v is the critical value

of Z. Until now, we have proved only in eleven cases that the linear system LZ(v)

is non- special. Next step is to show that the other linear system are non-special

too. We use again the Horace's method.

Case (4, 3, 3, 3, 3, 3, 3, 3, 3, 3) v = 10 x = 2

v = 10

4

3

K
3

3
7

We divide by eq. of cubic

2
v = 7

3

2

K

3
7

2
3
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v = 4

2K

7 2
2

Specializing

C

v = 4

7

2

2
R

2

C

v = 2

R

2

2

L

We divide by eq. of L 2
v = 1

Case (5, 4, 4, 4, 4, 4, 4, 4, 4, 4) v = 13 x = 0

Q 5

4 4

4

v = 13

We divide by eq. of Q

4
6

3
6

4

3 3

3

Q

v = 9
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v = 9

K
2

3

4

2
2

3

3
4

R

L

We divide by eq. of L

v = 8

K
2

2

3

2
2

2

3
4

R

L

v = 5

K

2

2
4

R

L
2

Specializing

CR

L

T

2

2

22
3

v = 5

R

We divide by eq. of R

2

2

v = 3

C
3

6

v = 2

Case (3, 3, 3, 3, 3, 3, 3, 3, 2, 2) v = 9 x = 1
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v = 9

2K

3

3

6

3

2

v = 6

K

2
6

3

2

We divide by eq. of K

v = 3

K

5

2

R

We divide by eq. of R

v = 2

K

5

Case (4, 4, 4, 4, 4, 4, 4, 3, 3, 3) v = 12 x = 3

v = 12

4

3

K
4

4
3 3

5

We divide by eq. of K

v = 9

3

2

K
2

3 3

3

R
3

3
4

v = 8

3

2

K

3 3

2

R
2

2
3

8

[32211]

v = 5

2K

3 2

2

3

3

[11]

We divide by eq. of cubic R
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v = 5

2K

3

2

R

3

[11]

3 We divide by eq. of cubic

v = 2

K
2

2 L

In the end, dividing by the equation of the line L, we rest with v = 1 and three

simple point. Absurd.

Case (5, 5, 5, 5, 5, 5, 5, 5, 5, 5) v = 16 x = 0

Q

5 5

5
5
7

3v = 16

We divide by eq. of Q

v = 12

Q

3

4
7

3

3

3

Q

3

4
6

3

11

[4332211]

2

v = 12

Q

3
6

6

[2211]

v = 8
We divide by eq. of Q
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3K

v = 8

3

R

L

3
3

3

6

[2211]

3K

v = 7

3

2
2

2

6

[2211]

L

R

We divide by eq. of L

2K

v = 4

3
L

2

Spacializing

L

R

v = 4

2
3

2

v = 2

2

2

S

We divide by eq. of S

v = 1

Case (6, 5, 5, 5, 5, 5, 5, 5, 5, 4) v = 16 x = 2

v = 8

2

Q 3

4

6

[2211]

4

Specializing

K

v = 8

3

3
3

4

2

6

[2211]

R

L
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K

v = 7

2

3
3

3

6

[2211]

R

L

We divide by eq. of cubic

K

2

3
3

3

6

[2211]

R

L

v = 7

K

v = 4

2
3

2

L

Specializing

L

R

2

2
3

v = 4

In the end, dividing by the equation of the conic, we rest with v = 2 and six

simple point. Absurd.

Case (4, 4, 4, 4, 4, 4, 4, 4, 3, 2) v = 12 x = 2

v = 12

K

4

4

3

7 2
We divide by eq. of cubic

v = 9

K

3

2

3

7 2
3
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v = 6

K

2
7 2

2
Specializing

2
2

2
6

v = 6

2

C

2

v = 4

5

2

C

R

We divide by eq. of R

2

2
v = 3

5

2

2

R

C

Dividing by the equation of the conic, we rest with v = 2 and six simple point.

Absurd.

Case (7, 6, 6, 6, 6, 6, 6, 6, 5, 5) v = 19 x = 5

v = 19

Q 5

5

7

2

66

6

We divide by eq. of Q
6
4

v = 15 5

6

2

4

5
4

4 4

4Q



134 3. Subschemes of P2 with ten fat point of maximum rank.

v = 15

Q

3

6

2

4 4

4

14

[544332211]

We divide by eq. of Q
2

5
3

v = 11 3

5

2

4
3

2 2

3

9

[332211]

Q

v = 11

K

2

5

2 23

3

4
39

[332211]

We divide by eq. of K

R

v = 8

K

2

4

3

2

3
35

[211]

3R

v = 5

K

2

3
2
3

2 Specializing
3

2
4

2
v = 5

R

R
24

2v = 3

C

We divide by eq. of C

2v = 1
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Case (6, 6, 6, 6, 6, 6, 5, 5, 5, 5) v = 18 x = 4

6

5

4

6
4

6

Q

5
3 We divide by eq. of Q

and we collapse a node

v = 18

4

5
4

4

Q

24
2

11

[4332211]

v = 14 2

2

2

4
4

2

Q

3
2

6

[2211]

Specializing

v = 10

K
6

[2211]

v = 10 2

R

L

22
3

3

4

4

4
2

K
6

[2211]

v = 9

R

L

22
2

3

3

3

4
2

We divide by eq. of K

K

v = 6

R

L

2

2

2

2

3
2
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T2

2

2

2

3
2

C

We divide by eq. of C

R

L

v = 6 2

2

2
2

C

2

v = 4L

Dividing by the equation of the conic, we can go back to the last passage of case

(5, 5, 5, 5, 5, 5, 5, 5, 5, 5).

Case (6, 6, 6, 6, 6, 6, 6, 5, 5, 4) v = 18 x = 3

6

5
4

3

6

Q

5

v = 18

6
5

4

3
3

3

5
5

4

4

3

Q

v = 14

We divide by eq. of Q

v = 10

4

2

4
5

4

Q

3
We specialize
and we collapsa a node

v = 10

4K 8

[32211]

R2 2

5
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v = 7

3K 3

[11]
3

2
3

3L

We divide by eq. of L

v = 6

3K 3

[11]
3

2

2L

2

2
3
3

v = 6

C

L

R
2

2
3

v = 4

C

2

L

We divide by eq. of conic

Dividing by the equation of the conic, we rest with v = 2 and six simple point.

Absurd.

Case (7, 6, 6, 6, 6, 6, 6, 6, 6, 4) v = 19 x = 4

Q

6 4

6 6

7

4

We divide by eq. of Q

v = 15

5

Q

4 3

4 4

5

6

4

5
6

v = 19
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v = 15

Q

3

4 4

6

2

14

[544332211]

2
We divide by eq. of Q

4
5

v = 11

4

Q

2

4 4

4

5

2

9

[332211]

v = 11

5K

2

4

2 2

4

2
R

9

[332211]

We divide by eq. of K

v = 8

4K

2

3
4

2

5

[211]

2R

v = 5

3K

2

2
4

R Specializing

L
v = 5

3

2
4

2

C
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L
v = 3

2

4

2

C

2

We divide by eq. of L

v = 2

3

2

C

Case (7, 7, 7, 7, 7, 7, 6, 6, 6, 6) v = 21 x = 1

7

7
6

7

67

7

6
2

2

Y

We divide by eq. of Y

v = 21

6

5
4

4
5
2

2

Y

5

5

5

v = 16

v = 16

5
4

4
5

Y

5

5

5

6 6
5L

We divide by eq. of L

and we collapse a node

5
4

Y

5

5

5

L
5 5

4

14

[544332211]

v = 15
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3
2

Y

3

3

3

4 4
3

9

[332211]

We divide by eq. of L

v = 10

L

3
2

Y

3

3

3

3 3
2

9

[332211]

v = 9

L

v = 9

Q

3 3

9
[332211]

3

3

2

2

2
2

L

R We divide by eq. of Q

v = 5

Q

3 3

9
[332211]

2

2

R
L

K

v = 5

5

[211]

2
2

2 2

T

R

L

We divide by eq. of K

K

v = 2

R

Case (7, 7, 7, 7, 7, 7, 7, 6, 6, 5) v = 21 x = 0
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7

7
7

7

7

5

3

Y

6 6

v = 21

We divide by eq. of Y

6

5
5

5

5

4

3

4 4

v = 16

Y

5

6
3

Q

5 5

4

4
4 5

R

We divide by eq. of Q

v = 16

3

5

Q

3 3

3

3 4

R

3

5
5

L

v = 12

v = 11

3

5

Q

3 3

3

3 4

R

2

4
4

L

3

We divide by eq. of R

3

5

Q

3 3

2 3

R

4
4

L

v = 10

2
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v = 10

5
K

3

4

3

3
3

2 2

4
L

R T

We divide by eq. of K

v = 7

K

3

2

2
2

2

T

X

4

3
R

v = 6

K

3

2

2
2

2

T

3

2
Specializing

2
2 T

2

v = 6

3

2
3

2 R

v = 4

C 2

2

T

2

2

We divide by eq. of C

C

2

v = 2

Case (6, 6, 6, 6, 6, 6, 6, 6, 4, 4) v = 18 x = 2
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v = 18

6

5
4

2

6

Q

3

[421]

6
5

4

3

5
5

4

Q

4

[21]

4

v = 14

We divide by eq. of Q 2

4

3

2

4

4

[21]

14

[544332211]
5
4

We divide by eq. of Q 2

2

2

4
4

2

Q

2
[1]

9

[332211]

v = 14
v = 14

Q

v = 10

K

2

2 2 2

4
4

9

[332211]

2
[1]

We divide by eq. of cubic

v = 7

K

2

2

3
4

5

[211]

2



144 3. Subschemes of P2 with ten fat point of maximum rank.

v = 4

K

2

2
4

Specializing

C
R

2
4

2

Dividing by the equation of the conic, we rest with v = 2 and six simple point.

Absurd.

Case (5, 5, 5, 5, 5, 5, 5, 4, 4, 4) v = 15 x = 1

Q

4 4

5 5

2

v = 15

5
5

5

2 3

3 3

4

2

Q

v = 11

We divide by eq. of Q

Q

2 3

3 3

2
444R

4
2

We divide by eq. of R

v = 11

2

2 3

3 3

4

2
333R

Q

v = 10
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v = 10

Q

2 3

3

4

2
333R

11

[4332211] We divide by eq. of Q

2

3

2
222

6

[2211]

Q

v = 6

R

v = 6

Q

222R

6

[2211]

322L
We divide by eq. of Q
and we specialize

v = 5

K

22

2
2

6

L

T

R

[2211]

Dividing by the equation of the conic, we rest with v = 2 and six simple point.

Absurd.

Case (7, 7, 7, 7, 7, 7, 7, 7, 7, 6) v = 22 x = 3

7

v = 22

7
7

7

77

7

6

3

Y

3

We divide by eq. of Y

6

v = 17

5

3

Y

3

5
5

5

555
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6

v = 17

5

2

Y

5
5

5

55

2

17

[65544332211]

We divide by eq. of Y

5

v = 12

3

2

Y

3
3

3

34

12

[44332211]

v = 12

Q

33

12

[44332211]

3
3

3

4

5 5

R

L

We divide by eq. of L
v = 11

Q

33

12

[44332211]

2
3

3

4

4 4

R

L

v = 11

Q

8

[32211]

2

3

3 3

R

L
2

Specializing

v = 7

K

[32211]

8 3

3

2

2

3

T

R

L
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v = 4

K

[11]

3 2

2

2

2
Specializing

R

v = 4 2
2
3

C

Dividing by the equation of the conic, we can go back to the last passage of case

(5, 5, 5, 5, 5, 5, 5, 5, 5, 5).

By this proves we can improve the proposition 3.6.1 with the follow:

Proposition 3.6.2 Let Z = (b1P1 + ...+ bnPn) be a subscheme of P2, with n ≤ 10

and bi ≤ 8 for all i = 1, ..., n, the respective linear system LZ(v) is non-special,

where v is the critical value of Z.

In the end we have to prove that even h0(IZ(v − 1)) = 0. We use again the

Horace's method. As above we will deal with case by case. By de�nition of

v, we immediately note that we don't need to add simple points to Z, because

deg(Z) > h0(OP2(v − 1)). To reduce the number of case we apply the Cremona

transformations, and then the Horace's method. We indicate with a = v − 1 and

with r := deg(Z)−h0(OP2(v−1)), r represent the rest of conditions, i.e. the remain

conditions when a = 0.

After the Cremona transformations we get the following cases:

Z1 = (2, 2, 2, 2) a = 2 r = 6

Z2 = (2, 2, 2, 2, 1, 1, 1) a = 3 r = 5

Z3 = (2, 1, 1, 1, 1, 1, 1) a = 2 r = 3

Z4 = (2, 2, 2, 1, 1, 1, 1, 1) a = 3 r = 4

Z5 = (4, 4, 4, 4, 4, 4, 4, 4, 2, 2) a = 12 r = 1

Z6 = (3, 3, 3, 3, 3, 3, 3, 3, 3, 2) a = 9 r = 2

Z7 = (4, 4, 4, 4, 4, 4, 4, 4, 4, 3) a = 12 r = 5

Z8 = (4, 4, 4, 4, 4, 4, 4, 4, 4, 2) a = 12 r = 2

Z9 = (6, 5, 5, 5, 5, 5, 5, 5, 5, 5) a = 16 r = 3

Z10 = (7, 6, 6, 6, 6, 6, 6, 6, 6, 5) a = 19 r = 1
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Z11 = (1, 1, 1, 1) a = 1 r = 1

Z12 = (2, 1, 1, 1, 1, 1) a = 2 r = 2

Z13 = (3, 3, 2, 2, 2, 2, 1, 1, 1) a = 5 r = 6

Z14 = (5, 5, 5, 5, 5, 5, 5, 5, 4, 4) a = 15 r = 4

Z15 = (6, 6, 6, 6, 6, 6, 6, 5, 5, 5) a = 18 r = 2

Z16 = (2, 2, 1, 1, 1, 1) a = 2 r = 4

Z17 = (6, 6, 6, 6, 6, 6, 6, 6, 5, 4) a = 18 r = 3

Z18 = (8, 7, 7, 7, 7, 7, 7, 7, 7, 6) a = 22 r = 5

Z19 = (2, 2, 2, 2, 1, 1) a = 3 r = 4

Z20 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 2) a = 15 r = 2

Z21 = (2, 2, 2, 1, 1, 1, 1) a = 3 r = 4

Z22 = (2, 2, 2, 2, 2, 1, 1) a = 3 r = 7

Z23 = (7, 7, 7, 7, 7, 7, 7, 6, 6, 6) a = 21 r = 6

Z24 = (7, 7, 7, 7, 7, 7, 7, 7, 6, 4) a = 21 r = 2

Z25 = (2, 2, 1, 1, 1, 1, 1) a = 2 r = 6

Z26 = (7, 7, 7, 7, 7, 7, 7, 7, 7, 7) a = 22 r = 4

Z27 = (2, 2, 2, 1, 1) a = 2 r = 5

Z28 = (2, 2, 2, 2, 1, 1, 1, 1) a = 3 r = 6

Z29 = (3, 2, 2, 2, 2, 1, 1, 1) a = 4 r = 6

Z30 = (2, 2, 1, 1, 1) a = 2 r = 3

Z31 = (3, 2, 2, 2, 1, 1, 1) a = 3 r = 8

Z32 = (8, 8, 8, 8, 8, 8, 8, 7, 7, 6) a = 24 r = 4

Z33 = (8, 8, 8, 8, 8, 8, 7, 7, 7, 7) a = 24 r = 3

Z34 = (8, 8, 8, 8, 8, 8, 8, 8, 6, 6) a = 24 r = 5

Z35 = (8, 8, 8, 8, 8, 8, 8, 8, 6, 4) a = 24 r = 1

Z36 = (8, 8, 8, 8, 8, 8, 8, 8, 8, 7) a = 25 r = 1

We note that these cases are more easier and less than precedent cases.

Remark 3.6.3 Let Z ⊂ X be subschemes of P2; it easy to show that if h0(LZ(d)) =

0 then h0(LX(d)) = 0 too.

By this remark we can reduce the listed above cases because : Z19 is contained in
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Z2, Z28, Z25 and Z31; Z21 is contained in Z4 and Z5 is contained in Z7. The cases

with a = 2, 3 are easy to show, and we don't give the proof here.

Case Z5 = (4, 4, 4, 4, 4, 4, 4, 4, 3, 3) a = 12 r = 1

a = 12

K

4

4

6 We divide by eq. of cubic

3

2

[1,3]

4

a = 9

K

3

2

4

3

3

[1]

43 3
R

a = 8

K

3

2

4

2

3

[1]

32 2

We divide by eq. of K

R

a = 5

K

2
4

3 R

a = 5

K

R

3

3

2

2
L

We divide by eq. of L

a = 4

K
3
2

L

2 R
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3
2

2

C

S

a = 4

3
2

C

a = 2

2

S

We divide by eq. of C

R

Case Z6 = (3, 3, 3, 3, 3, 3, 3, 3, 3, 2) a = 9 r = 2

a = 9

Q

3 3

2
3
7

We divide by eq. of quartic

a = 4

Q

2
7

a = 5

K 2
4

a = 4

K 2
4

We divide by eq. of LR
R

2

2

2
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a = 1

K
4

R

Case Z8 = (4, 4, 4, 4, 4, 4, 4, 4, 4, 2) a = 12 r = 2

We divide by eq. of cubic

4
9

a = 12

2

K

3
9

a = 9

2

K
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2
9

a = 6

2 We divide by eq. of K

K

7

a = 3

K

2

R

2

a = 2

K

C

Case Z9 = (6, 5, 5, 5, 5, 5, 5, 5, 5, 5) a = 16 r = 3
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5
3

Y

5
5

5

55

5

6

a = 16

We divide by eq. of Y
3

5

3

3

3

33

4

Y

3

a = 11

Q

3 4
2

33

5

3 3 3

4

R

L

a = 11

We divide by eq. of L

Q

3 4
2

33

3 3 2

4

3

a = 10

L

R

a = 6

22

3

2

Q

3

3

We divide by eq. of SR

L

S

a = 5

22

3

2

Q

2

2
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a = 5

2K

2

3
3

R
2

We divide by eq. of R

a = 4

2K

3
3

R

a = 1

2
L

Case Z10 = (7, 6, 6, 6, 6, 6, 6, 6, 6, 5) a = 19 r = 1

a = 19

Q

7

66

5

6
6

We divide by eq. of Q

a = 15

Q

44

3
5
46

5
5

R

Q

44

3
55

4
45 5

5

We divide by eq. of L

L R

Q

44

3
55

4
44 4

4L

a = 13

R

a = 14
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a = 13

Q

4

5

4
4

R
4 4

4L

3

14
[544332211]

We divide by eq. of Q

Q

2

4

3
3

R
3 3

3L

9
[332211]

a = 9

a = 8

Q

2

3

2
2

R
3 3

3L

9
[332211]

We divide by eq. of L

Q

2

3

2
2

L

9
[332211]

2
22

a = 7

R

a = 7

K 9

[332211]

R

2

2 2
L

2 2 2

3S
a = 4

K 5

[211]

R L

3We divide by eq. of K



156 3. Subschemes of P2 with ten fat point of maximum rank.

a = 3

K 5

[211]

L

2
2

We divide by eq. of cubic

a = 0

Case Z13 = (3, 3, 2, 2, 2, 2, 1, 1, 1) a = 5 r = 6

2
4

3

a = 5
3

2

4

2

a = 2
3

2

K
K

We divide by eq. of cubic
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a = 2
2

K

C

22

Case Z14 = (5, 5, 5, 5, 5, 5, 5, 5, 4, 4) a = 15 r = 4

a = 15

7

Q

4

5 4

5
We divide by eq. of Q

4

Q

2

3 2

4

44
4

a = 11

R

a = 10

Q

2

3 2

3 3
3

4
4

2
4

We divide by eq. of L

R

L

Q

2

3 2

3 3
2

3
3

2
4

a = 9

L

R
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a = 9

Q

2

2

3 3
2

3
3

4

11
[4332211]

R

L

We divide by eq. of Q

a = 5

2

3

6
[2211]

2

2
2

L

R

Q

a = 5

K

R

L

3

2
2

2

6

[2211]

We divide by eq. of K
2

a = 2

K 2

2

a = 2

2

2

Case Z15 = (6, 6, 6, 6, 6, 6, 6, 5, 5, 5) a = 18 r = 2
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6

6

6

5

3

Y

6 6

5
5

We divide by eq. of Y

5

4

Y

3
3

4

4 4

R

5

5

4

a = 13
a = 18

5

4

Y

3
3

4

4 4

R

4

4

3

We collapse a (5)

on a node

a = 12

5

4

Y

3
3

4

4

R

4

4

3
14

[544332211]

a = 12

4
Y

R

3

3

2
9

[332211]
2

2

2

We divide by eq. of R

a = 7

4
Y

R

2

2

9

[332211]
2

2

2

a = 6
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a = 6

Q

9

[332211]

2 2

2

2
2

L

R

We divide by eq. of Q

Q

5

a = 2

a = 2

K
5

[211]

R Specializing

C

3

a = 2

R

Case Z17 = (6, 6, 6, 6, 6, 6, 6, 6, 5, 4) a = 18 r = 3

6
3

6
4

Y

5

6

6

66

a = 18

Y

a = 13

We divide by eq. of Y
5

2

4

4

4

4
4

4
5

5

R
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Y

a = 12

2

4

4

4
4

3
4

4

R

14

[544332211]

Y

a = 7

2

2
3

R

9

[332211]

2

2

2

3
We divide by eq. of Y

a = 7

Q

3

2
R

2L

9
[332211]

3

2

2 2
We divide by eq. of Q

Q

2
5

[211]

2

R

a = 3

a = 3

5

[211]

K

2 2
R

Case Z18 = (8, 7, 7, 7, 7, 7, 7, 7, 7, 6) a = 22 r = 5
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7

a = 22

7
7

77

7

8

We divide by eq. of Y

Y
6

3
67

a = 17

5

4

5

5
5

5

Y

3

a = 17

Q

6
5

55

4
5 5

7

3

R

a = 13

Q

3

33

4 4 3

R L

6
5
2

5

We divide by eq. of Q

a = 12

Q

3

33

4 4 2

R
L

5
5
2

4

Specializing

a = 12

K

R 2
4 4

4
L

5

3 3
3

5
2
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a = 9

R

4
L

4

2

K

S

3 3

T
2

4

We divide by eq. of T

2

a = 9

R

4
L

4

2

K

S

3 3

T
2

3

a = 7

K

S

3

T
2

3

3

3

3

2

X

a = 6

K

S

3

T
2

3

3

2

2

X

We divide by eq. of X

a = 5

K

2
2

2

2

X
We divide by eq. of Z

3

3
Z

a = 4

K

2
2

2

2

X

2

2

a = 1

K

2
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Case Z20 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 2) a = 15 r = 2

a = 15

Q

5 5

5
5
6

1

[2]

We divide by eq. of Q

Q

5 5

5
4
3

2

R

4
4

4

a = 11

Q

5 5

5
4
3

23
3

3

R

a = 10

We divide by eq. of Q

Q

3 3

3
3
3 R

2 2
2

a = 6

a = 6

K

3
2

2
2

R

L

3

We divide by eq. of K a = 3

K

2

R
3
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2
3

C

a = 3

We divide by eq. of C

C

2

a = 1

Case Z23 = (7, 7, 7, 7, 7, 7, 7, 6, 6, 6) a = 21 r = 6

7

a = 21

7
7

6

7

4

Y

6 7

6

a = 16

4

4

4 7Y

We divide by eq. of Y
7

7
7

a = 16

Q

6
4

4

5 5

4

We divide by eq. of Q

5

4

R

a = 12

Q

4

3 3

52

R3 4 3

5

5
L
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a = 11

Q

2

3 3

52

R 3 4

4

4

2

L

Specializing a = 11

5K
3 2

4

4 4
2

2

3

3 SR

L

a = 8

K

4

3 3

2

2R

L

S

4
2

T

We divide by eq. of T

a = 7

K

4

3 3

R

L

2
2

3
2

X

a = 6

K

4

3 3
L

2
2
2

XR

We divide by eq. of R
a = 5

K

3

2
2

X3

3

Z

a = 4

K

3

2
2

2

2
We divide by eq. of K

X

a = 1

K

2

2
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Case Z24 = (7, 7, 7, 7, 7, 7, 7, 7, 6, 4) a = 21 r = 2

Q

7
6

5

7

77
We divide by eq. of Q

2

[134]

a = 17

Q

5

5

55

4

[13]

6

5

a = 21

a = 12

Q

2

3

3

[1]3

3

5

4 4 R

13

[54332211]

a = 13

Q

3

3

3

[1]3

4

5

5 5 R

3

We divide by eq. of R

a = 8

Q

3

8

[32211]

R 23

4 4

L

We divide by eq. of L

a = 7

Q

3

8

[32211]

R
23

3 3

L
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a = 6

Q

2

8

[32211]

R
2

S 3

3

We divide by eq. of S

a = 5

Q

2

8

[32211]

R
2

S 2

2

a = 5

K

X

2

2
3

8
[32211]

We divide by eq. of K

a = 2

K

2

3
[11] 3

Case Z26 = (7, 7, 7, 7, 7, 7, 7, 7, 7, 7) a = 22 r = 4

7

7
7

7

7

3

Y

7 7
6

[123457]

a = 22

6

5

3

Y

7

[12345]

5
5

5

5

17

[65544332211]

a = 17

We divide by eq. of Y
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5

3

3

Y

5

[1234]

3
3

3

3
12

[44332211]

aq = 12

Specializing

Q

3

5

[1234]3

5 5
R

L 3
3

3

12

[44332211]

a = 12

Q

3

5

[1234]3

4 4

3
3

2

12

[44332211]

We divide by eq. of Q

Q

4

[123]

R

2

33

2
8

[32211]

a = 7

LL

R

a = 11

a = 7

K

8

[32211]

R
3

4

[123]

We divide by eq. of K
3

L

T

2 2

a = 7

K

3

[11]

3

[12]

2

3
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a = 4

3

[12]

2

C

2

3

We divide by eq. of C

2

[1]

C

2

2

2

a = 2

Another way to prove this case

W

7 7

7

7

7

7

7

7

7

7

Dividiamo per l’eq. di W

a = 22

W

5

6

5 5

5

5

5

5

5

5

a = 16

Y

5 5 5

5

5
5

5

5

56

Dividiamo per l’eq. di Y

a = 16

Y

4

35 3

3

3
3

3

4 4

a = 11

R
R
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a = 10

Y

3

35 3

3

3
3

3

3 3

Specializziamo

a = 10

Q

3 3

5

3
3

3

3

333

R

L
R

a = 6

Q

R

4

2
L

2
2 2

2
2

Specializziamo

a = 6

22

K
4

2

T

2
2 2 R

S

L

a = 5

22

K
3

2
2 2 R

S

L

Dividiamo per l’eq. di R
a = 4

22

K
3

R

L
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a = 5

22

K
3

2
2 2 R

S

L

Dividiamo per l’eq. di R
a = 4

22

K
3

R

L

Case Z29 = (3, 2, 2, 2, 2, 1, 1, 1) a = 4 r = 6

2
4

a = 4

K

3

We divide by eq. of cubic

4

a = 1

K

2

R

2

Case Z32 = (8, 8, 8, 8, 8, 8, 8, 7, 7, 6) a = 24 r = 4

8
3

a = 24

7
6

8

Y

8

88

7

We divide by eq. of Y 5
4

6

Y

6

66

7

a = 19

R

6
7

7
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5
4

6

Y

6

6

a = 18

R

5
6

6

20

[7665544332211]

We divide by eq. of Y
3

2

Y

a = 13

R

4
5

5

15

[5544332211]
4

4

4

3
2

Y

a = 12

R

3
4

4

15

[5544332211]
4

4

4

Specializing

a = 12

Q

4

3

4
44 4

3L

2

15
[5544332211]

R

a = 8

Q

2
R

3L

11
[4332211]

2

2
3

3

3

Specializing
a = 8

11

[4332211]

K R

L

2 2

3 3

3

3

T
2
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a = 5

6

[2211]

K R

L

2
T

2

2

2

2

We divide by eq. of R
2

a = 4

6

[2211]

K R

L

2
T

2

2

a = 1

K

L

2

Case Z33 = (8, 8, 8, 8, 8, 8, 7, 7, 7, 7) a = 24 r = 3

8
3

a = 24

7
7

7

Y

8

88

7

We divide by eq. of Y

7

5
5

5

Y

6

66

a = 19

R

7

7
6
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5
5

5

Y

6

6

a = 18

R

6

6

5

20

[7665544332211]

We divide by eq. of Q

3
3

3

Y

4

4

a = 13

R

15

[5544332211]

5

5

4

3
3

3

Y

4

4

a = 12

R

15

[5544332211]

4

4

3

Specializing

a = 12

Q

3

3

4
4 R

4 4
3

L
3

15
[5544332211]

a = 8

Q

2

RL

11
[4332211]

3 3

3
3

2
Specializing

a = 8

11

[4332211]

K R

L

2 2

3 3

3

3

T
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a = 5

6

[2211]

K R

L

2 2

2 2

2

2

a = 2

K R

L

2
2

We divide by eq. of cubic

a = 2

C R

L

2

Case Z34 = (8, 8, 8, 8, 8, 8, 8, 8, 6, 6) a = 24 r = 5

8

a = 24

6

3

Y

5

[12346]
8

8

8

8
8 We divide by eq. of Y

7

a = 19

4

3

6

[1234]
6 6

6

6
6

Y

7

a = 19

4

2

6

[1234]
6

6

6
6

Y
20

[7665544332211]

We divide by eq. of Y

6

a = 14

2

2

4

[123] Y
15

[5544332211]

4
4

4

4
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a = 14

Q

6
2

4

[123]
4 4

2

R
4 4

15

[5544332211]

We divide by eq. of Q

a = 10

Q

3

[12]
R

3 3

11

[4332211]

2 2

5
2

L

a = 9

Q

3

[12]
R

3 3

11

[4332211]

2 2

4

4

We divide by eq. of R

a = 8

Q

3

[12]

2 2

11

[4332211]

2 2

4

3 R

a = 4

Q

2

[1]
R

6

[2211]

2

3

Specializing
a = 4

K

6

[2211]

2

[1]

R
2

3
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a = 1

K

R
2

2

Case Z35 = (8, 8, 8, 8, 8, 8, 8, 8, 7, 4) a = 24 r = 1

a = 24

Q

8
7

5

8

88

2

[134]

We divide by the eq. of Q

a = 20

Q

7
5

6

4

[13]
6 6

6

a = 16

Q

6
3

4

3

[1]
4 4

6 6
5

We divide by the eq. of R

R

Q

6
2

3

[1]
4 4

5 5
4

16
[6544332211]

a = 15

R
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a = 11

Q

5
2

2 2

4 4
3

R

11

[4332211]

Specializing

a = 11

11

[4332211]

K R

4

4

5

L
23 2

2

a = 8

6

[2211]

K R

3

3

4

L

3

2

We divide by the eq. of R

a = 7

6

[2211]

K R

2

2

L

2

T4
4

a = 6

6

[2211]

K R

2

2

L

2
3

3 T

We divide by eq. of T

a = 5

6

[2211]

K R

2

2

L

2
2

2 T
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a = 4

6

[2211]

K R

2

2 We divide by eq. of K

a = 1

K

Case Z36 = (8, 8, 8, 8, 8, 8, 8, 8, 8, 7) a = 25 r = 1

8
8 7

8

8
8

8

4

Y

a = 25

7
5

6

4

Y

6

6

6

6

a = 20

We divide by eq. of Y

a = 20

Q

7
4

6

6 6

R 665

We divide by eq. of Q

Q

4

R 5

4 4

4

6
2

L
5

6

6

a = 16
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Q

R 5

4 4

4

6

L

5
5

4

16

[6544332211]

a = 15
We divide by eq. of Q

Q

R 4

2 2

3

5

L

4
4

3

11

[4332211]

a = 11

a = 11

11

[4332211]

K

24 2

L

R

T

4

43
3

5

We divide by eq. of K

a = 8

6

[2211]

K

4

L

T

2
2

4

3

3R

a = 7

6

[2211]

K

3

L

T

2

2

3R

4
S

We divide by eq. of S

a = 6

6

[2211]

K

3

L

2

2

2R

3
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a = 6

4 2

2

2

C L
3

2

3

We divide by eq. of C

R

a = 4

2

C L
3

2

R

a = 3

2R

C
2

2

a = 1

C
2

We divide by eq. of C

For all case that we have just studied the method is true. We conclude summa-

rizing our result in the following theorem

Theorem 3.6.4 Every subscheme of P2 in the form Z = (b1P1 + ... + bnPn) with

n ≤ 10 and 4 ≤ bi ≤ 8 for all i = 1, ..., n, has maximum rank.

Moreover we have just veri�ed that the conjecture 3.2.7 holds for all linear system

with exactly ten assigned point in base locus, with multiplicity minor than 9.



Bibliography

[1] E. Ballico, L. Chiantini, On smooth subcanonical varieties of codimension two

in Pn, n ≥ 4, Annali Mat. Pura Appl. 135, 99-117, (1983)

[2] Beorchia, V-Ellia, Ph.: Normal bundle and complete intersections, Rend. Sem.

Mat. Univ. Politecnico Torino, vol. 48,4, 553-562 (1990)

[3] Ciliberto, C.: Geometric aspects of polynomial interpolation in more variables

and Waring's problem, European Congress of Mathematics, Vol. I (Barcelona,

2000), 289-316.

[4] C. Ciliberto, R. Miranda: Homogeneous interpolation on ten points,

arXiv:0812.0032 (2008).

[5] D'Almeida, J.: Une involution sur un espace de modules de �brés instantons,

Bull. Soc. math. France, 128, 577-584 (2000)

[6] Ellia, Ph.: Sur les �brés uniformes de rang (n+1) sur Pn. Mémoire de la So-

ciété Mathématique de France, nouvelle série n 7, Tome 110, Fascicule 1, 1-60,

Gauthier-Villars (1982)

[7] Ellia, Ph.: Arithmetically Cohen-Macaulay space curves reloaded, preprint

(2011).

[8] Ellia, Ph.: Double structures and normal bundle, J. London Math. Soc., (2) 58,

18-26 (1998)

[9] Ellia, Ph.: Exemples de courbes de P3 à �bré normal semi-stable, stable, Math.

Ann., 264, 389-396 (1983)

183



184 BIBLIOGRAPHY

[10] Ellia, Ph.-Franco, D.-Gruson, L.: On subcanonical surfaces of P4, Math. Z.,

251, 257-265 (2005)

[11] Ellingsrud, G.: Sur le schéma de Hilbert des variétés de codimension 2 dans Pe

Ó cône de Cohen-Macaulay, Ann. scient. Éc. Norm. Sup., 4e série, t. 8, 423-432

(1975)

[12] Fulton, W.: Intersection theory

[13] Gruson, L.-Peskine, Ch.: Genre des courbes de l'espace projectif, 31-60, LNM

687 (1978)

[14] Hartshorne, R.: Stable rank two vector bundles

[15] Hartshorne, R.: On the classi�cation of algebraic space curves, II, in Alge-

braic Geometry-Bowdoin 1985, Proceedings of Symposia in Pure Mathematics,

vol.46, part 1, 145-164, Ed. A.M.S. (1987)

[16] Mori, S.: On the degree and genera of curves on smooth quartic surfaces in P3,

Nagoya Math. J., 96, 127-132 (1984)

[17] Newstead, P.E.: A space curve whose normal bundle is stable, J. London Math.

Soc., 28, 428-434 (1983)

[18] Okonek, C.-Schneider,M-Spindler, H.: Vector Bundles on complex projective

Spaces. Progress in Mathematics, J. Coates and S. Helgason.

[19] Perrin, D.: Courbes passant par m points généraux de P3, Bull. Soc. Math. de

France, Mémoire (nouvelle série), n. 28/29 (1987)

[20] Sierra, J.C.: A degree bound for globally generated vector bundles, Math. Z.,

[21] Sierra, J.C.-Ugaglia, L.: On globally generated vector bundles on projective

spaces

[22] Sukmoon Huh: On triple Veronese embeddings of Pn in the Grassmannians,

arXiv 0806.0777v6 (2010)



BIBLIOGRAPHY 185

[23] Van de Ven, A.: On uniform vector bundles, Math. Ann., 195, 245-248 (1978)

[24] C. Ciliberto, R. Miranda: Homogeneous interpolation on ten points,

arXiv:math.AG/0406591 (2005)


	Introduction
	1 Rank two globally generated vector bundles with c15.
	1.1 General facts.
	1.2 Globally generated vector bundle on Pn, with c1=0
	1.3 Globally generated vector bundles on Pn, with c1=1.
	1.4 A general result.
	1.5 Globally generated vector bundles on Pn with c1=2.
	1.6 Globally generated rank two vector bundles on Pn, n 3, with c1 5.
	1.6.1 Globally generated rank two vector bundles on P3 with c1=3.
	1.6.2 Globally generated rank two vector bundles on P3 with c1 = 4.
	1.6.3 Globally generated rank two vector bundles on P3 with c1 = 5.
	1.6.4 Globally generated rank two vector bundles on Pn, n 4 with c1 5.


	2  On the normal bundle of projectively normal space curves.
	2.1 Basic facts on a.C.M. curves.
	2.2 A conjecture on the normal bundle.
	2.3 Numerical characters and the inequality (*s).
	2.4 Double structures and normal bundle.
	2.5 Some general results.
	2.6 Small values of s and conclusion.
	2.7 Appendix

	3 Subschemes of P2 with ten fat point of maximum rank.
	3.1 Subschemes of P2 with fat point.
	3.2 Special linear systems of plane curves.
	3.3 The Horace's method.
	3.4 Horace differential's method and collision of infinitesimal neighborhood.
	3.5 Cremona transformations.
	3.6 Subschemes of P2 with ten fat points of multiplicity less than nine.


