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INTRODUCTION 

 

1.1 TNF-Superfamily 

The Tumor Necrosis Factor (TNF) superfamily of cytokines and their receptors  regulates 

many areas of metazoan biology, and specifically plays foundamental roles in regulating 

myriad aspects of immune development and functions (Chan, 2007). The biological functions 

of this system encompass beneficial effects for the host  in inflammation and protective 

immune responses in infectious diseases as well as crucial roles in organogenesis of 

secondary lymphoid organs and the maintenance of lymphoid structures throughout the body. 

At the same time, some members of this superfamily are responsible for host damaging 

effects in sepsis, fever syndromes,  cachexia, and autoimmune diseases (e.g., psoriasis, 

inflammatory bowel disease, rheumatoid arthritis) (Hehlgans and Pfeffer, 2005; Aggarwal, 

2003; Ware, 2003; Kwon et al., 2003). 

 In 1984, two forms of TNF, TNFα and LTα (lymphotoxin, TNFβ), were isolated from 

activated macrophages and T cells, respectively. Since their identification, these proteins have 

become representative of a unique superfamily of ligands, which currently includes at least 18 

different human homologues (Baker and Reddy, 1998; MacEwan, 2008). The TNF-related 

ligands are type II transmembrane proteins (intracellular N-terminus) with a short cytoplasmic 

tail (15 to 25 residues in length) and a larger extracellular region (approximately 150 amino 

acids) containing the signature ‘TNF homology domain’ (THD) where the receptor-binding 

sites are located (Figure 1). The THD, that shares approximately 20-25% of sequence identity 

between family members, folds into an antiparallel β-sandwich that assembles into trimers, 

the functional unit of the ligand (Paul, 2008). 

Some of these ligands, e.g. TNF, are active both as a membrane integrated and as a soluble 

form released after proteolytic cleavage, mainly by metalloproteinases induced by various 

stimuli. Certain ligands are expressed only as soluble molecules, e.g. LTα; but may also be 

recruited to the cell membrane to form heterotrimeric membrane anchored complexes and 

thereby enhancing regulatory specificity and complexity (Hehlgans and Pfeffer, 2005). 

Thus far, 29 TNF receptor family members have been identified in humans (Figure 1). These 

are primarily type I transmembrane proteins characterized by cysteine-rich domains (CRD) 

that are the hallmark of the TNF superfamily receptors (TNFR). These 40 amino acid 

pseudorepeats are typically defined by 3 intrachain disulphides generated by 6 highly 

conserved cysteine residues within the receptor chains (Locksley et al., 2001). Most receptors 
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also exist in a soluble form, and the solubility is achieved by proteolitic cleavage or by 

alternative splicing of the exon encoding the transmembrane domain (Baker and Reddy, 

1998). 

 

 

Figure 1.  The TNF/TNFR superfamily. The TNF-related ligands are shown in blue and arrows indicate 

interactions with their receptors (Hehlgans and Pfeffer, 2005). 

 

Although  most members of the TNF superfamily of ligands interact with more than one 

receptor of the corresponding superfamily of cognate receptors, genetic based approaches, 

mainly conducted in gene targeted mouse strains, have clearly demonstrated that almost each 

receptor-ligand system have a unique and non-redundant function. 

Receptor activation by the TNF family ligands causes recruitment of several intracellular 

adaptor proteins which activate multiple signal transduction pathways. Based on their 

intracellular sequences the members of the TNFR superfamily can be classified into three 

major groups. The first group, including molecules such as FAS and TNFRI, contains the so 

called death domains (DD) in their cytoplasmic domains. Activation of these receptors leads 

to recruitment of intracellular death domain containing adaptors such as FAS-associated death 

domain (FADD) and TNFR-associated death domain (TRADD), which subsequently promote 

the activation of  the caspase cascade and induction of apoptosis. The second group of 
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receptors, that includes members like CD30, CD40 and receptor activator of NF-kB (RANK), 

contains one or more TNF-receptor associated factor (TRAF)- interacting motif (TIMs) in 

their cytoplasmic domain. Activation of  TIM containing TNFR family members leads to the 

recruitment of TRAF family members and the subsequent activation of signal transduction 

pathways like nuclear factor kB (NF-kB), Jun N-terminal kinase (JNK), p38, extracellular 

signal-related kinase (ERK) and phosphoinositide 3-kinase (PI3K), which regulate cellular 

processes ranging from proliferation and differentiation to cell death. Finally, the third group 

of receptors, including TRAIL-R3 (DcR1), DcR3 and Osteoprotegerin, doesn’t contain 

functional intracellular signaling domains or motifs, but instead compete with the other two 

groups of receptors for their corresponding ligands (Hehlgans and Pfeffer, 2005, Dempsey et 

al., 2003). 

 

1.2 OPG structure and expression 

Osteoprotegerin (OPG) is a secreted glycoprotein belonging to the TNFR superfamily and 

was initially identified by two separate groups in 1997. Both groups observed OPG to be 

central in the regulation of bone turnover through the inhibition of osteoclastogenesis. 

However, it was not until 1998 that the newly discovered proteins were found to be identical, 

hence OPG was alternatively termed osteoclast inhibitory factor (OCIF) (Reid and Holen, 

2009). Its international name according to the TNF nomenclature is TNFRSF11B (Baud’huin 

et al., 2007). 

The mouse and the human OPG genes have been cloned and characterized, and the human 

OPG gene is a single-copy gene that consists of five exons and spans 29 kb of the human 

genome located on chromosome 8 q23-24  (Morinaga et al, 1998; Mizuno et al.,a 1998).  

Murine and human OPG proteins comprise 401 amino acids of which 21 form a signal 

peptide that is cleaved to generate a mature form of 380 amino acids (Figure 2). At the N 

terminus, there are four domains (D1-D4), which have cysteine-rich TNFR homologous 

motifs and are necessary and sufficient for inhibiting osteoclastic differentiation and activity 

both in vitro and in vivo. The carboxy-terminal portion of the protein with domains 5 and 6 

(D5 and D6) contains two death domain homologous regions, motifs that are found in the 

cytoplasmic region of mediators of apoptosis such as TNFR 1, DR3 or CD95/Fas. In fact, D5 

and D6 of OPG have been demonstrated to transduce an apoptotic signal when expressed as 

an OPG/Fas fusion protein in which the transmembrane region of Fas is inserted between 

domains 4 and 5 of OPG. Finally, domain 7 (D7) harbors a heparin-binding region, a common 

feature of peptide growth factors and signal molecules, as well as an unpaired cysteine residue 
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at position 400 required for homodimerization of the molecule (Zauli et al., 2009; Schoppet et 

al., 2002). OPG represents an atypical member of the TNFR family since it is a secreted 

protein with no transmembrane domain. OPG is produced as a monomer (55-62 kDa), 

undergoes homodimerization, and is secreted as a disulfide linked homodimeric glycoprotein 

with four or five potential glycosylation sites, generating a mature form of OPG of 110-120 

kDa. The monomeric and the homodimeric forms are indistinguishable in stability, but the 

homodimeric exerts more potent biological activity and is stronger in heparin binding ability 

(Zauli et al., 2009; Tomoyasu et al., 1998). 

 

 

Figure 2. Schematic representation of the protein structure of OPG and OPG-Fc. Main domains and their 
biochemical and/or functional properties are indicated. Numbers in figure represent amino acids. NH2 indicates 

N terminus, COOH, C terminus, Cys400, dimer formation site. Human OPG-Fc is a recombinant fusion protein, 

in which the Fc fragment of human IgG1 is fused to the C terminus of the 22-194 fragment of native OPG to 

maintain a dimeric molecule with a sustained circulating half-life (Zauli et al., 2009). 

 

To enhance the pharmacological activity of native OPG, numerous constructs have been 

created wherein the signal peptide, heparin binding domain, and death domains were removed 

and the remaining peptide was fused to the Fc domain of human IgG1 (Figure 2). The Fc 

fusion partner maintains the potent dimeric nature of OPG while significantly increasing its 

circulating half-life (Kearns et al., 2008). 

OPG is produced by a variety of tissues including the cardiovascular system (hearth, arteries, 

veins), lung, kidney, intestine, and bone, as well as hematopoietic and immune cells. The 

expression and production of the protein is modulated by various cytokines, peptides, 

hormones, and drugs. Cytokines, including TNFα, interleukin (IL)-1α, IL-18, transforming 

growth factor (TGFβ), bone morphogenetic proteins, and steroid hormones are known to up-

regulate OPG mRNA levels. In contrast, glucocorticoids (known to promote bone resorption) 

and the immunosuppressant cyclosporine A (which has the propensity to cause osteoporosis 
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and vascular disease) or basic fibroblast growth factor, all suppress the expression of OPG 

(Schoppet et al., 2002). 

 

1.3 OPG as a ‘decoy receptor’ 

OPG acts as a decoy receptor for RANKL, preventing the stimulation and maturation of 

osteoclast precursors instigated by normal binding of RANKL to its constitutive receptor and 

as a soluble receptor for TRAIL (Emery et al, 1998). 

 

1.3.1 OPG/RANKL and bone system 

The important role of OPG in bone metabolism has been clearly demonstrated by the 

development of transgenic and knock-out mice. OPG knock-out mice are viable and fertile, 

but exhibit an osteoporotic phenotype due to enhance osteoclastogenesis. They are 

characterized by marked bone loss accompanied by destruction of growth plate and lack of 

trabecular bone in their femurs, and the strength of their bones dramatically decrease (Mizuno 

et al.,b 1998). In contrast, systemic delivery of OPG via the expression of rat or murine opg 

transgenes results in severe yet nonlethal osteopetrosis. The ostopetrotic phenotype caused by 

OPG overexpression differs significantly from those observed in other ostopetrotic models. 

opg transgenic mice are of normal size, have no apparent defects in tooth eruption, and have 

normally shaped bones. Histologically, they have a marked reduction in trabecular osteoclast 

but no deficiency of osteoclast precursors, suggesting a defect in the later stages of osteoclast 

differentiation (Simonet et al., 1997). These evidences, supported by confirmations in the in 

vitro experiments, demonstrate that the presence of OPG is absolutely required to maintain 

bone mass in physiological situations. Subsequently, molecular binding experiments have 

shown that OPG associates with the ligand of the receptor activator of NF-kB (RANKL), a 

member of  TNF superfamily ligand, functioning as a decoy receptor. RANKL genes gives 

rise to splice variants that encode two forms of type II transmembrane proteins and one form 

of a secreted protein. Although high RANKL expression can be found in lymph nodes, 

thymus and lung, only low levels of RANKL can be detected in spleen, bone marrow, 

peripheral blood, leukocytes, hearth, placenta, skeletal muscle, stomach or the thyroid. In 

addition, RANKL expression is induced in mammary gland epithelial cells in pregnancy, 

activated T cells, and malignant tumor cells (Wong et al., 1999; Wada et al., 2006).  

The receptor that mediates all known activities for RANKL is called receptor activator of NF-

kB (RANK). The binding and activation of RANK, that  is a homotrimeric TNFR family 

member, involve direct interactions between the extracellular receptor binding domain of 
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trimeric RANKL and the extracellular cysteine-rich domains of trimeric RANK. This 

interaction is thought to cause oligomerization of  RANK and the subsequent  activation of 

several signal transduction cascades, as the NF-kB, MAPK, and phosphatidylinositol 

pathways (Kearns et al., 2008; Wada et al., 2006). 

One of the best characterized role of  RANKL/RANK system is in the osteoclastogenesis. The 

key regulators of bone turnover are osteoblasts, which are involved in bone formation, and 

osteoclasts, which are responsible for bone resorption. RANKL expressed by osteoblasts as a 

transmembrane protein binds to RANK on the surface of osteoclasts and osteoclasts 

precursor. This leads to osteoclast formation, differentiation, activation and consequently 

bone resorption (Figure 3). To regulate the balance between bone formation and bone 

resorption, the RANKL-RANK interaction is inhibited by OPG. OPG produced by 

osteoblastic cells binds as a homodimer to the homotrimeric RANKL, thus inhibiting the 

terminal stage of osteoclastic differentiation (Reid and Holen, 2009; Baud’huin et al., 2007). 

Although there are contradictory data, in general upregulation of RANKL is associated with 

downregulation of OPG, or at least lower induction of OPG, such that the ratio of RANKL to 

OPG changes in favour of osteoclastogenesis. Many reports have supported the assertion that 

the RANKL/OPG ratio is a major determinant of bone mass. Moreover, consistent with the 

osteoprotective role, mutation in the human OPG gene have been associated  with idiopathic 

hyperphosphatasia, also known as Juvenile Paget’s disease, an autosomal-recessive disorder 

characterized by increased bone remodeling, osteopenia, and fractures (Boyce and Xing, 

2007).  

 

Figure 3. In (A) Schematic representation of RANKL in osteoclastogenesis (Zauli et al., 2009). In (B) 

RANK signaling pathways (Theoleyre et al., b 2004). 
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1.3.2 OPG/TRAIL and tumorigenesis 

In 1995 TNF-related apoptosis-inducing ligand (TRAIL) was identified and characterized as a 

member of the TNF family of death-inducing ligands. TRAIL is a type II transmembrane 

protein of about 33-35 kD, which can be cleaved from the cell surface to form a soluble 

ligand that retains biological activity. The extra-cellular domain of TRAIL forms a bell 

shaped homo-trimer, much like other ligands of the TNF family, but unlike the other 

members, it carries a zinc ion at the trimer interface, coordinated by the single unpaired 

cysteine residue of each monomer. This zinc ion is essential for structural integrity of TRAIL 

and to maintain its capacity to induce apoptosis (Degli-Esposti, 1999; Corallini et al., 2008). 

TRAIL is constitutively present in many tissues at the level of mRNA, but it is expressed 

mainly by activated cells of the immune system, especially natural killer (NK) cells, B cells, T 

cells, monocytes, and dendritic cells. TRAIL plays a crucial role in maintaining T cell 

homeostasis, as well as in killing of tumor and virally transformed cells by NK cells. Over the 

years, TRAIL has generated considerable interest among clinicians for its preferential toxicity 

toward transformed cells and tumor xenografts, with generally little or no toxicity to normal 

tissues, which makes it an ideal candidate for cancer therapy. As a result, recombinant 

TRAIL, as well as agonistic antibodies against TRAIL receptors, are currently in Phase I/II 

clinical trials for treatment of solid tumors and hematological malignancies (Griffith et al., 

2009; Guicciardi and Gores, 2009; Ashkenazi and Herbst, 2008; Finnberg and El-Deiry, 

2008). 

With respect to other members of the TNF ligand superfamily, TRAIL shows the most 

complex ligand-receptor interaction, since it is able to bind to five different receptors found 

on a variety of cell types: four membrane-bound (TRAIL-R1/death receptor 4, TRAIL-

R2/death receptor 5, TRAIL-R3/decoy receptor 1, TRAIL-R4/decoy receptor 2) and one 

soluble receptor (OPG). OPG acting as a decoy receptor, binds TRAIL and prevents its 

interaction with the functional death receptors, thus allowing cells to escape cell death (Figure 

4). In this context, many different in vitro data demonstrated the ability of native OPG, 

produced by tumor cells or by bone marrow stromal cells, to efficiently counteract the pro-

apoptotic activity of TRAIL in a variety of cell lines derived from prostate and breast cancers, 

ameloblastomas and multiple myeloma (Zauli et al., 2009; Reid and Holen, 2009). 
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Of note, in the light of  recent in vitro studies  that demonstated that the affinity of OPG for 

RANKL and TRAIL under physiological conditions is of a similar order of magnitude and 

that TRAIL is able to inhibit OPG-mediated inhibition of osteoclastogenesis, OPG acquires a 

key position in the regulation of  the functions of these two important signaling pathways 

(Figure 5) (Vitovski et al., 2007). 

 

 

 

Recently, many studies have demonstrated that OPG can exert direct biological activities 

independently of its neutralizing effects towards RANKL or TRAIL. In fact OPG has a highly 

basic heparin-binding domain (D7) that besides being responsible for the homodimerization 

of the molecule (Yamaguchi et al., 1998), makes interactions with heparin and heparan 

sulfates possible. Heparan sulfate proteoglycans are important participants in cell-surface 

Figure 4. Role of OPG in cell survival. 
TRAIL is produced by immune cells that 

can infiltrate the tumor microenvironment. 

TRAIL can then bind to the death 

receptors 4 and 5 (DR4 and DR5) present 

on the surface of tumor cells, resulting in 

tumor cell apoptosis. OPG, secreted by 

tumor cells, acts as a decoy receptor for 
TRAIL. As a result, tumor cells escape 

from death (Reid and Holen, 2009). 

Figure 5. Mechanism of action of OPG 

on RANKL- and TRAIL- biological 

activities. The pro-apoptotic activity of 

TRAIL is mediated by two (TRAIL-R1 and 

TRAIL-R2) of its four membrane 

receptors. OPG by efficiently binding 
RANKL and TRAIL, counteracts both the 

RANKL-mediated osteoclastogenesis as 

well as the pro-apoptotic activity of TRAIL 

(Zauli et al., 2009). 
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signaling and critical in controlling cell behavior. They are involved in actin cytoskeleton 

regulation, cell adhesion and migration, and modulation of specific receptor interactions. At 

the cell surface, proteoglycans of the syndecan family are the major source of heparan sulfate 

(Wright et al., 2009). In this context, different reports indicate that the heparin binding 

domain is involved in OPG-induced chemotaxis of human peripheral blood monocytes 

(Mosheimer et al., 2005), in controlling OPG release by vascular cells (Nybo and Rasmussen, 

2008) and  in the OPG-mediated osteopontin-increasing  in human periodontal ligament cells 

(Yongchaitrakul et al., 2009). Of note, in multiple myeloma (Standal et al., 2002) and 

osteosarcoma (Lamoureux et al., 2009) it has been shown that also the decreased of  the 

biological activity of the full-length OPG might be due to its bounding, internalization and 

degradation, syndecan-1 mediated.   

 

1.4 OPG and the vascular system 

While OPG, RANK and RANKL are produced by numerous cell types and a variety of 

tissues, their expression pattern targets three main biological systems where the molecular 

triad could be more specifically involved: the osteoarticular, immune, and vascular systems 

(Figure 6). Transgenic and knockout mice models as well as many in vitro experiments 

clearly revealed the potential involvement of these effectors in the three biological systems 

(Theoleyre et al., b 2004; Feige, 2001; Grĉević et al., 2001; Hofbauer et al., 2001; Josien et 

al., 2000; Schoppet et al., 2002). 

 

 

Figure 6. OPG/RANK/RANKL as common effectors of bone, immune and vascular system (Theoleyre et 

al., b 2004). 
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In fact, the first evidence for a role of OPG in the vasculature was given by a study of OPG 

knockout mice generated on a mixed genetic background. The selective deletion of OPG in 

mice resulted in early-onset severe osteoporosis as well as significant medial calcification of 

the aorta and renal arteries. The onset of arterial calcification could be completed prevented 

by transgenic OPG delivery from mid gestation through adulthood; in contrast, post-natal 

intravenous injection of recombinant OPG had no effect on the incidence of vascular 

calcification, suggesting that OPG cannot reverse the calcification process once it had 

occurred. Interestingly, both treatments effectively reversed osteoporotic bone loss phenotype. 

A vascular-protective role for OPG was also indicated by rat studies, in which OPG 

administration prevented calcification induced by warfarin (a vitamin K antagonist) or high 

vitamin D doses (Van Campenhout and Golledge, 2009; Venuraju et al., 2010; Collin-

Osdoby, 2004). Furthermore, Morony et al. (2008), demonstrated that subcutaneous injection 

of pharmacological concentrations of human recombinant OPG (OPG-Fc) decreased the 

degree of atherosclerotic calcified lesions in atherogenic diet-fed ldlr knockout mice, without 

affecting the total burden of atherosclerotic lesions. To determine whether OPG plays a role 

in the calcification and chondrocyte metaplasia that has been reported in advanced 

atherosclerotic lesions in mice, Bennet et al. (2006) generated mice deficient in both OPG and 

apoE gene. They observed that the loss of OPG in this animal model led to larger 

atherosclerotic lesions in the innominate arteries of 40 and 60 weeks of age mice, coupled 

with more rapid and extensive calcification of both the media and the intima. 

Although most animal studies supported a protective role for OPG in cardiovascular system, 

many clinical investigations revealed a positive association between high serum OPG levels 

and cardiovascular outcome. The first paper to report a relation between plasma OPG and 

vascular disease was published in 2001 (Browner et al.). An association was discovered 

between high plasma OPG levels and increased cardiovascular mortality in a cohort of elderly 

women primarily gathered to study osteoporosis risk factors. Subsequently, the connection 

between plasma OPG and cardiovascular disease was confirmed in populations of men with 

coronary artery disease (Schoppet et al., 2003), patients with myocardial infarction and heart 

insufficiency (Ueland et al., 2004), and in seemingly healthy individuals (Kiechl et al., 2004) 

where a high level of serum OPG was an independent risk factor for incident CVD and 

vascular mortality, but not for mortality due to non-vascular causes. Moreover, plasma OPG 

has also been found to be associated with intima-media thickness of the carotid artery as 

determined by ultrasound (Erdogan et al., 2004). Remarkably, two OPG genetic 

polymorphisms have been associated with an increase risk of coronary artery disease in 
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Caucasian men, and serum OPG levels correlated with one of these polymorphisms (Soufi et 

al., 2004). Thus, these studies strongly indicate that serum OPG levels frequently rise in 

clinical conditions that favor vascular dysfunction or atherosclerosis. Morena et al. (2006) 

demonstrated in hemodialysis patients as elevated plasma OPG predicted all-cause and CV 

mortality when adjusted for age, gender, dialysis vintage, diabetes, hypertension, and 

smoking. More recently OPG was described as an independent predictor factor both for early 

vascular adverse changes in osteoporotic postmenopausal women (Shargorodsky et al., 2009) 

and for cardiovascular mortality in patients with stable coronary artery disease (Jono et al., 

2010). Mesquita et al. (2009)  showed that OPG predicted mortality in chronic kidney disease 

patients and could be a valuable biomarker in early detection of coronary artery calcification 

in these patients.  

Moreover, many different  in vitro studies have clearly demonstrated that inflammatory 

cytokines promote the expression and release of OPG by endothelial cells (Secchiero et al., a 

2006; Ben-Tal Cohen et al., 2007; Collin-Osdoby et al., 2001) and by vascular smooth muscle 

cells (Zhang et al., 2002; Moran et al., 2005). Because of the enormous surface area of the 

endothelium throughout the body as well as the relatively substantial levels of constitutive 

and regulated OPG produced by endothelial cells and vascular smooth muscle cells, vascular 

cells play a fundamental role in the contribution in circulating OPG in human serum. On the 

other side, if we consider that recent studies have shown that recombinant full-length OPG is 

able to promote leukocytes adhesion to endothelial cells (Zauli et al., 2007; Mangan et al., 

2007), OPG seems to have an active role in disease progression more than serving as a 

compensatory/protective response to minimize disease progression. Anyway, considerable 

controversy still exist regarding the role of OPG/RANKL/RANK/TRAIL pathways in 

cardiovascular setting. 

 

1.5 OPG and diabetes  

Plasma osteoprotegerin concentration correlates to both diabetes and cardiovascular disease in 

cross-sectional studies. This was first shown by Browner et al. (2001), who reported that 

although no associations were seen between the bone parameters and plasma osteoprotegerin 

levels, individual with diabetes as well as persons with cardiovascular disease had increased 

values. In another investigation on 522 men that described a positive relationship between 

coronary arteriosclerosis (determined by CAG) and plasma OPG, diabetic patients were also 

observed to have elevated OPG plasma levels and the increase was more than could be 

expected when the degree of coronary sclerosis was considered (Schoppet et al., 2003). Since 
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then, these findings have been confirmed in both type 1 (Xiang et al., 2007; Galluzzi et al., 

2005) and type 2 diabetes (Knudsen et al., 2003; Xiang et al., 2006) and it has been found that 

the increased OPG production characterizes an early event in the natural history of diabetes 

mellitus (Secchiero et al., a 2006). 

 In more recent studies performed in diabetic subjects a strong association between plasma 

levels of OPG and micro- and macroangiopathy was observed (Avignon et al., 2005; 

Grauslund et al., 2010; Knudsen et al., 2003; Xiang et al., 2009). 

Osteoprotegerin has also been found to be accumulated in aorta from patients with type 1 and 

type 2 diabetes (Olesen et al., 2005).  This accumulation is seen in the tunica media from 

areas of the tissue with and without atherosclerotic plaque. The accumulation of 

osteoprotegerin throughout the deeper layers of the vessels wall may reflect generalized 

changes in the arterial system in diabetes, as part of diffuse arterial changes such as alterations 

in glycoproteins (Takemoto et al., 2000), collagens (Rasmussen and Ledet, 1993) and 

glycosaminoglycans (Heickendorff et al., 1994). In addition, osteoprotegerin may be related 

to the development of medial calcification, which is frequently present in patients with 

diabetes (Niskanen et al., 1994; Lehto et al., 1996). Two recent experimental studies have 

confirmed the finding of increased levels of OPG in animals with experimental diabetes 

(Heinonen et al., 2007; Vaccarezza et al., 2007). 

The mechanisms behind the increased circulating OPG levels in diabetes are unknown. 

Diabetic vasculopathy has an underlying low-grade inflammatory component, manifesting 

itself in the up-regulation of genes responsive to inflammatory processes (Secchiero et al., 

2005; Joussen et al., 2002; Bulotta et al., 2001; Fujiwara et al., 2004; Sjöholm and Nyström, 

2005).  In this respect, it should be emphasized that OPG is an NF-kB-inducible gene (Collin-

Osdoby et al., 2001), whose release in endothelial cell culture is significantly increased by 

inflammatory cytokines.  

Considering the elevated levels of OPG detected also in patients affected by type 1 diabetes, 

hyperinsulinemia and insulin resistance are unlikely to play a key role in OPG induction. 

Accordingly Jørgensen et al. (2009) have recently demonstrated as acute hyperinsulinemia 

decreases plasma OPG in type 2 diabetes and obesity. In line with the hypothesis that insulin 

is not involved in the induction of OPG expression and secretion, Secchiero et al. (a 2006) 

have also demonstrated that OPG release is significantly up-regulated in the sera of diabetic 

apoE-knockout mice early after the induction of diabetes mellitus by streptozotocin (STZ) 

treatment. Of note, OPG serum levels in diabetic apoE-knockout mice positively correlated 

with the glycemic levels whereas they were inversely correlated to the levels of free RANKL. 
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Elevated levels of OPG were also observed in C57Bl littermates concomitantly with the 

induction of diabetes mellitus, suggesting that hypercholesterolemia, characterizing apoE-

knockout mice, did not play a major role in the upregulation of serum OPG associated to 

diabetes mellitus.  

Despite the in vivo data obtained in the mouse models of STZ-induced diabetes, in which it 

has been demonstrated the existence of a positive correlation between OPG and glycemic 

serum levels, high glucose levels per se were insufficient to modulate OPG release in 

endothelial cells, PBMCs, and macrophages. On the other hand, the proinflammatory 

cytokine TNF-, which is known to be elevated in the sera of patients with diabetes mellitus 

(Joussen et al., 2002; Bulotta et al., 2001; Fujiwara et al., 2004), dose dependently up-

regulated OPG secretion by endothelial cells. Importantly, the concentrations of TNF- (10 

pg/ml) required to induce a significant (approximately two-fold) increase in OPG, a situation 

mimicking the OPG rise observed in the serum of diabetic patients, were in the range of 

plasma concentrations reported in diabetic patients (Joussen et al. 2002; Bulotta et al., 2001; 

Fujiwara et al., 2004). These in vitro findings, coupled to the data obtained in the diabetic 

mouse models, clearly suggest that the inflammation-driven hyperglycemia, rather than the 

high glucose levels per se, is involved in the increase of OPG observed in both diabetic 

patients and diabetic mice. It is possible that the imbalance of OPG versus RANKL serum 

levels in both diabetic patients and diabetic apoE-knockout mice might contribute to 

endothelial cell dysfunction by blocking RANKL signaling, which is able to activate 

protective intracellular pathways in endothelial cells, such as the eNOS pathway. In this 

respect, it should be emphasized that diabetic vascular dysfunction is a major clinical problem 

that predisposes patients to a variety of cardiovascular diseases. In fact, diabetic patients 

frequently suffer from macroscopic and microscopic vasculopathy and accelerated 

atherosclerosis. The early impairment of nitric oxide release is a key feature of endothelial 

dysfunction, which invariably precedes permanent vascular alterations (Landmesser et al., 

2004).  

At present it is unclear whether OPG plays a pathogenetic or compensatory role in the 

vascular dysfunction and atherosclerosis associated to diabetes. Moreover the 

physiopathological role of elevated levels of OPG in pancreatic islet function is not known. 

 

1.6 Atherosclerosis and animal models 

Atherosclerosis is a high-cost disease and its complications still represent the first cause of 

death in most industrialized countries. Efficacious prevention includes treatment of the most 
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important cardiovascular risk factors, such as cigarette smoking, hypertension, 

hypercholesterolemia, diabetes and obesity. However, the absence of such ‘traditional’ risk 

factors does not completely protect from the disease and new ‘emerging factors’ have been 

identified, including markers of inflammation (Corrado et al., 2010; Libby, 2002). Although 

the clinical manifestations of cardiovascular disease, such as myocardial infarction, stroke, 

and peripheral vascular disease, appear from middle age, the process of atherosclerosis can 

begin early in childhood as an accumulation of fatty streaks-lipid engorged macrophages 

(foam cells) and T lymphocytes in the intima of the arteries. Fatty streaks may or may not 

progress, and may regress (Hong, 2010). 

Under normal conditions, the endothelial cells of the arterial wall resist adhesion and 

aggregation of leukocytes and promote fibrinolysis. When activated by stimuli, like 

hypertension, an unhealthy diet, insulin resistance or inflammation, the endothelial cells 

express a series of adhesion molecules that selectively recruit various classes of leukocytes. 

Once the monocytes adhere to the activated endothelium, proinflammatory proteins provide a 

chemotactic stimulus that induces them to enter the intima. Within the intima, the monocytes 

mature into macrophages and start to express scavenger receptors, that allow them to engulf 

modified lipoprotein particles (especially highly oxidized LDL). Subsequently, the cytoplasm 

becomes engorged with lipid particles, giving the macrophages the typical microscopic frothy 

appearance of the foam cells found in atherosclerotic lesions (Libby et al., 2010). 

The transition from the relatively simple fatty streak to the more complex lesion is 

characterized by the immigration of smooth muscle cells from the medial layer of the artery 

wall trough the internal elastic lamina into the intimal, or subendothelial, space. Intimal 

smooth muscle cells may proliferate and take up modified lipoproteins, contributing to foam 

cells formation, and synthesize extracellular matrix proteins that lead to the development of 

the fibrous cap. This phase of lesion development is influenced by interactions between 

monocytes/macrophages and T cells that result in a broad range of cellular and humoral 

responses and the acquisition of many features of a chronic inflammatory state. 

Although advanced atherosclerotic lesions can lead to ischemic symptoms as a result of 

progressive narrowing of the vessel lumen, acute cardiovascular events that result in 

myocardial infarction and stroke are generally thought to result from plaque rupture and 

thrombosis. Plaque ruptures generally occur at the shoulder regions of the plaque and are 

more likely to occur in lesions with thin fibrous caps, a relatively high concentration of lipid-

filled macrophages within the shoulder region, and a large necrotic core (Glass and Witztum, 

2001; Lusis, 2000) (Figure 7). 
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Numerous animal species, especially transgenic mouse models, have been used to study the 

pathogenesis and the potential treatment of atherosclerotic lesions (Woollard and Geissmann, 

2010). Until 1992, the majority of atherosclerotic research focused on mechanisms in rabbits, 

with a lesser number of studies in pigs and nonhuman primates. Despite the fact that rabbits 

do not develop spontaneous atherosclerosis, they have been useful for their high 

responsiveness to cholesterol manipulation and the capacity of developing lesions in a fairly 

short time.  

 

 

Figure 7. Atherosclerosis progression. 

 

 

Unfortunately, rabbit lesions are much more fatty and macrophage-rich than those in humans 

and plasma cholesterol are extraordinary high. Pigs and monkeys are better suited to model 

human atherosclerotic lesions, but, obviously, they present many problems related to costs 

and maintaining/handling of the colonies. In recent years, there has been an explosion in the 

number of in vivo studies that is largely attributable to the use of small mouse models to study 

atherogenic mechanisms (Jawień et al., 2004). Among available models, the apolipoprotein E-

deficient (ApoE-knockout) mice is particularly popular, because of its propensity to 

spontaneously develop a full range of  atherosclerotic lesions from fatty streaks to fibrous 

plaques, that are distributed throughout the arterial tree (Figure 8) and that present many 

features characteristic in appearance and distribution of those observed in human lesions 

(Nakashima et al., 1994). 
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ApoE, a glycoprotein synthesized mainly in the liver and brain in both human and mice, is a 

constituent of all lipoproteins except low- density lipoproteins (LDL). It functions as a ligand 

for receptors that clear chilomicrons and very low-density lipoprotein (VLDL) remnants. 

ApoE is also synthesized by monocytes and macrophages in vessel, and is thought to have 

local effects on cholesterol homeostasis and on inflammatory reactions in atherosclerotic 

vessel. It may also function in dietary absorption and biliary excretion of cholesterol.  

 

 

 

Figure 8. Line graphs showing the arteries from apoE-knockout mice. Left, Arteries that were observed 

under the dissecting microscope and dissected for further microscopic analysis. Right, Sites of predilection for 

lesions development are indicated in black: (1) aortic root, at the base  of the valves; (2) lesser curvature of the 

aortic arch; (3) principal branches of the aortic arch; (4) carotid artery; (5) principal branches of the abdominal 

aorta; (6) aortic bifurcation; (7) iliac artery; and (8) pulmonary arteries (Nakashima et al., 1994). 

 

The apoE-knockout mouse was created practically simultaneously in two separate 

laboratories, through gene inactivation by targeting. On a standard chow diet (0.02% 

cholesterol), the mice demonstrate a total cholesterol level >500mg/dl (5 times normal), 

mostly in the VLDL and chylomicron remnant fractions. These levels are unaffected by the 

age or sex of the animals. A Western- type diet (0.15% by weight cholesterol) quadruple these 

fractions. Interestingly, mice homozygous or heterozygous for the disrupted ApoE gene 

appear healthy and no difference in their body weights compared to normal mice is observed 

(Jawień et al., 2004; Meir and Leitersdorf, 2004). 

Unlike normal mice, which don’t develop atherosclerotic lesions (except for some strains on 

high fat/high cholesterol diets) (Vischer, 1999), a chronological analysis of atherosclerosis in 
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the apoE-knockout mouse has shown that the sequential events involved in lesion formation 

are strikingly similar to those in well-established larger animal models of atherosclerosis and 

in humans. Lesions in the apoE-knockout mice, as in humans, tend to develop at vascular 

branch points and progress from foam cell stage to the fibroproliferative stage with well-

defined fibrous caps and necrotic lipid cores, although plaque rupture has not been observed 

in this or in any other mouse models. Progression of lesions appears to occur at a faster rate 

than in humans atherosclerosis, but the rapidity of the progression can be advantageous in 

many experimental situations. In particular, fatty streaks are first observed in the proximal 

aortas of a chow-fed, 3 months old mouse. On this diet, as early as 10 weeks of age, foam 

cells lesions are observed by light microscopy. Intermediate lesions containing foam cells and 

smooth muscle cells emerge around 15 weeks, and fibrous plaques appear at 20 weeks of age 

(Jawień et al., 2004; Meir and Leitersdorf, 2004). 

These spontaneous lesions  progress and cause severe occlusion of the coronary artery ostium 

by 8 months (Zhang et al., 1992). A western diet accelerates all the process (Figure 9). 

 

 

Figure 9. Diagram showing how lesion formation in chow-fed mice is delayed in comparison with mice fed 

the Western-type diet (Jawień et al., 2004). 

 

Of note, the genetic background has a major effect on atherosclerosis susceptibility in strains 

of apoE-knockout mice. For example, lesions from 16-week chow diet C57BL/6 apoE-

knockout are relatively larger than from FVB apoE-knockout mice and, in contrast to FVB 

mice, there is evidence of early development of fibrous caps (Jawień et al., 2004). 
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The development of murine models of atherosclerosis has revolutionized the approach to 

evaluating potential roles of specific proteins in lesion development. The crossing of these 

animals with mice that have been engineered to over-express or lack genes of interest, 

generating double knockout mice (e.g. iNOS
-/-

 apoE
-/-

; CCR2
-/-

 apoE
-/-

), has led to a growing 

list of proteins that accelerate or retard the rate at which lesions develop, and/or alter lesion 

composition (Glass and Witztum, 2001).  

 

1.7 Renin-angiotensin system and diabetes development 

1.7.1 Systemic versus local pancreatic RAS 

The renin-angiotensin system (RAS) plays a key role in the regulation of fluid, electrolyte 

balance and arterial pressure (Reid et al., 1978). In the classical RAS, the glycoprotein 

Angiotensinogen is secreted into the circulation by the liver, where it is cleaved by renin, an 

aspartyl protease produced by the juxtaglomerular cells of the renal afferent arterioles, to 

release the decapeptide Angiotensin I. This decapeptide is further hydrolized by angiotensin 

converting enzyme (ACE), a metalloprotease produced by and anchored to the surface of 

endothelial cells, into the eight-amino acid peptide Angiotensin II (Ang II), which is able to 

bind to high affinity AT1 and AT2 cell-surface receptors (Lavoie and Sigmund;  2003). Ang 

II can also be formed via non-ACE and non-renin enzymes, including chymase, cathepsin G, 

cathepsin A, chymostatin-sensitive AII-generated enzyme (CAGE), tissue plasminogen 

activator (t-PA), and tonin (Urata et al., 1995; Urata et al., 1996). On the other side, ACE also 

breaks down bradykinin, a potent vasodilator and natriuretic hormone. 

It has gradually become evident that in addition to the circulating RAS there is a local tissue 

RAS in most organs and tissues (Johnston  et al., 1992; Paul et al., 2006). This makes RAS 

not only an endocrine, but also a paracrine and an intracrine system. Moreover the important 

discoveries of the renin/pro-renin receptor (Nguyen et al., 2002), the ACE2 enzyme 

(Donoghue et al., 2000; Tipnis et al., 2000), Angiotensin 1-7 as a biologic active metabolite of 

RAS (Santos and Ferreira, 2007), the Ang  IV receptor as an insulin regulated aminopeptidase 

(IRAP) (Albiston et al., 2001), and the Mas as a receptor for Angiotensin 1-7 (Santos et al., 

2003), have contributed to extend our view of the RAS from classical linear cascade to a more 

complex cascade with multiple mediators, receptors and functional enzymes (Figure 10). 
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Figure 10. Enzymatic cascade of the renin-angiotensin system: classic and alternative pathways. 

 

 

There is growing evidence supporting the existence of all the components of a functioning 

intrinsic RAS in the endocrine pancreas. (Pro)- renin is expressed in the islets of Langerhans, 

chiefly in the connective tissue surrounding the blood vessels and in reticular fibers within the 

islets (Leung and Chappell, 2003). 

Both ACE and ACE2 mRNA has been found within islet with the former predominating in 

the microvasculature and the latter identifying within the centre of the islets (Tikellis et al., 

2004). 

Although initial studies, limited by low sensitivity of mRNA assays, found Angiotensinogen 

undetectable in normal rat pancreas (Campbell and Habener, 1986), more recent studies 

confirm that Angiotensinogen is expressed in glucagon-secreting -cells located at the 

periphery of the islets of  Langerhans (Regoli et al., 2003). 

AT1 receptors have been detected in cells at the centre of the islet with its expression co-

localized with that of insulin secreting beta cells. In contrast AT2 receptor has been localized 

to the outer region of islets and co-localizes with somatostatin-secreting cells (Tahmasebi et 

al., 1999). 

Ang II is immunohistochemically localized predominantly in the endothelial cells of 

pancreatic blood vessels and the epithelial cells of pancreatic duct (Leung et al., 1998). 

Moreover, more recent studies have demonstrated that local genesis of Ang II occurs within 

pancreatic islets (Lau et al., 2004). 
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1.7.2 Physiological role of the RAS in the endocrine pancreas 

There is converging evidence suggesting that in the endocrine pancreas, islet RAS has a  role 

in regulating pancreatic islet secretion. In fact, Ang II has been shown to induce a dose-

dependent reduction in both whole pancreatic and islet blood flow in the endocrine pancreas 

(Carlsson et al., 1998), and this effect, reversed by RAS antagonists, has suggested  that 

locally released Ang II may consequently affect insulin release from pancreatic islets 

(Carlsson et al., 1998). 

However, the precise mechanism by which Ang II is involved in islet dysfunction has yet to 

be elucidated. The regulation of insulin secretion by beta cells is different according to acute 

or chronic exposure of the pancreas to Ang II. Acute studies have demonstrated that Ang II 

inhibits insulin release in a dose-dependent manner from isolated mouse islets in response to a 

high glucose concentration (Lau et al., 2004). Similar results have been found in humans, 

where intravenous infusion of Ang II in pressor doses suppressed both basal and glucose-

stimulated insulin secretion and increased insulin sensitivity in healthy volunteers (Townsend 

and DiPette, 1993).  In chronic studies in mice, infusion of Ang II for 4 weeks cleared a 

glucose bolus faster than in mice treated with saline despite similar basal serum 

concentrations (Gletsu et al., 2005). Moreover, the increase in serum insulin was greater in 

Ang II treated mice, suggesting that Ang II-induced hyperinsulinemia may play a role in the 

development of insulin resistance in patients with hypertension (Gletsu et al., 2005). 

Angiotensin II acting through AT2 receptor may stimulate somatostatin in a dose-dependent 

manner (Wong et al., 2004). 

Taked together, these data suggest that both the local and systemic RAS have a functional role 

in regulating pancreatic islet insulin and somatostatin secretion although the relevance of 

these actions for normal activity in the healthy state remains to be established. 

 

1.7.3 RAS and beta cell dysfunction 

At a local level, the activity of the RAS in the endocrine pancreas is significantly upregulated 

in response to chronic hyperglycemia (Tikellis et al., 2004). Moreover it is now apparent that 

blockade of the RAS has important and direct effects in the prevention of islet cell 

dysfunction associated with type 2 diabetes (Tikellis et al., 2006; Lastra and Manrique, 2007). 

Beta cell damage in type 2 diabetes is likely due to a combination of genetic and acquired 

factors, still to be fully clarifed (Kahn et al., 2006). Among acquired factors, glucose toxicity, 

free fatty acids, amylin, islet fibrosis and oxidative stress may contribute to beta cell 
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dysfunction. RAS may potentiate the action of each of these pathways thus contributing to 

beta cell dysfunction. 

Glucotoxicity: It is well established that chronic hyperglycemia leads to beta cell dysfunction 

and impaired-induced insulin gene expression and secretion (Poitout and Robertson, 2002). 

Moreover it has also been reported that hyperglycemia yields an increased apoptosis in 

cultured human pancreatic islets (Federici et al., 2001). Mechanisms implicated in 

glucotoxicity include: enhanced activity of protein kinase C (Oliveira et al., 2003), 

overactivation of the hexosamine pathway (Andreozzi et al., 2004) and generation of 

advanced glycation end products (AGEs) which in turn are associated with the reduced 

transcription of genes involved in insulin production (Tajiri et al., 1997). Notably, all these 

pathways lead to augmented production of reactive oxygen species (ROS) and the secondary 

oxidative stress could explain most of the observed beta cells defects (Robertson, 2004). 

Chronic hyperglycaemia per se can activate RAS in the endocrine pancreas (Lupi et al., 

2006), and, under high glucose concentrations, ACE inhibition exerted beneficial effects on 

beta cells regarding insulin production and oxidative stress (Lupi et al., 2006). The RAS also 

significantly interacts with the generation and accumulation of AGEs in diabetes. It has been 

recently shown that blockade of the RAS attenuates the formation and tissue accumulation of 

AGEs in experimental diabetes (Forbes et al., 2002; Davis et al., 2004). 

Lipotoxicity: Chronically elevated levels of fatty acid (FA) in plasma and in pancreatic islets 

have a negative impact on beta cell function resulting in decrease of glucose-stimulated 

insulin secretion (Jacqueminet  et al., 2000). Importantly in vitro and in vivo studies have 

provided evidence that lipotoxicity only occurs in the presence of concomitantly elevated 

glucose levels (Harmon et al., 2001). Among the possibly mechanisms involved, inhibition of 

insulin gene expression, increased beta cell apoptosis and increased ceramide production are 

likely to play the major roles (Poitout and Robertson, 2008; Lupi et al., 2002). Notably, 

different FA have different effects on beta cells, with palmitate showing much more marked 

deleterious action than oleate (Poitout and Robertson, 2008; Marchetti et al., 2008). An 

increase of  trigycerides accumulation in islets (Lee et al., 1994; Dubois et al., 2004) as well 

as an alteration in cholesterol metabolism may also play a relevant role in beta cell 

dysfunction. Experimental studies suggest that low density lipoprotein (LDL) and very low 

density lipoprotein (VLDL) exert proapoptotic actions on beta cells, an action that appears to 

be prevented by high density lipoprotein (HDL) (Roehrich et al., 2003). 
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Activation of the local RAS may interfere with some of the mechanisms of lipotoxicity. 

Independent from its hypotensive actions, the AT1 receptor blocker, olmesartan, is  able to 

reduce the overproduction of trigycerides in fructose-fed (Okada et al., 2004) and Zucker fatty 

rats (Ran et al., 2004). 

Ang II also inhibits proliferation of adipocytes (Janke et al., 2002) whereas blockade of the 

AT1 receptor stimulates adipogenesis (Schling and Löffler, 2001). 

Fibrosis: The maintenance of the specialized architecture of the pancreatic islets is relevant 

for normal function (Charollais et al., 2000). Type 2 diabetes is associated with fibrosis within 

the islet interstitium causing disruption of islet architecture and loss of cell-to cell 

comunication (Tikellis et al., 2004). The RAS has been linked to increased fibrosis in a 

variety of tissues including the heart (Seccia et al., 2003), kidney (Satoh et al., 2001) and liver 

(Yoshiji et al., 2001). Locally increased production of Ang II results in AT1 mediated up 

regulation of the fibrogenic cytokines and growth factors including TGF and CTGF (Sun et 

al., 2000). In experimental diabetes blockade of the RAS is  associated with attenuation of 

islet fibrosis and reduction of beta cell apoptosis (Tikellis et al., 2004). 

Amyloid:  Islet amyloid polipeptide (IAPP) or amylin is consistently found within the 

pancreatic islet in >90% of the type 2 diabetic patients and may contribute to beta cell 

dysfunction and death (Höppener et al., 2000). Amyloid-induced cytotoxicity appears to be 

mediated, at least in part, by increased oxidative stress in addition to increased apoptosis 

(Lastra and Manrique, 2007). IAPP gene is expressed almost exclusively in beta cells and the 

protein is co-secreted with insulin (Marchetti et al., 2008). 

Recently it has been shown that it is the process of amyloid fibril formation or the formation 

of toxic IAPP oligomers, rather than the deposit of mature fibrils, to be cytotoxic (Meier et al., 

2006). 

The interaction between amylin and RAS has long been established. Amylin has been shown 

to increase plasma  renin and aldosterone concentrations (Cooper et al., 1995), and, recently, 

it has been reported that treatment with either ACE inhibitors or AT1 receptor blockers is 

associated with a reduction in pancreatic amylin content (Satoh et al., 2001). 

Oxidative stress: The beta cells are quite vulnerable to oxidative stress because of their low 

endogenous antioxidant activity (Hayden and Sowers, 2007). In experimental models of type 

2 diabetes, increased level of oxidative stress are observed in the pancreas (Bindokas et al., 

2003). Recent studies demonstrated that beta cells express p22 phox and gp91phox, the 
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membranous components of NADPH oxidase (Oliveira et al., 2003) and in beta cells glucose 

promotes the production of ROS at least in part by protein kinase C-dependent activation of 

NADPH oxidase (Oliveira et al., 2003). Ligand engagement of RAGE by ACE also results in 

the production of cellular ROS by activation of NADPH oxidase (Thallas-Bonke et al., 2008). 

It has been shown that the induction of oxidative stress results in decreased insulin expression 

and increased rate of apoptosis of beta cells both in vivo and in vitro with reduced expression 

and reduced nuclear translocation of PDX-1 (Kawamori et al., 2003). 

Ang II increases NADPH oxidase activity in islets via AT1 receptors (Griendling et al., 

1994). It has been shown that ACE inhibitors and AT1 receptor blockers inhibit NADPH 

oxidase in both in vitro (Griendling et al., 1994; Cai et al., 2002) and ex vivo (Onozato et al., 

2002; Shao et al., 2006) studies. 

Furthermore blockade of the RAS with perindopril or irbesartan significantly decreases 

oxidative stress within the endocrine pancreas as measured by percentage of nitrotyrosine in 

ZDP rats (Tikellis et al., 2004). 

 

1.7.4 RAS inhibition and prevention of type 2  diabetes 

A large body of evidence suggests that RAS blockade with either an ACE inhibitor or an AT1 

receptor blocker may protect against the development of type 2 diabetes in patients with or 

without hypertension and at high risk for developing diabetes. 

The first study was the Captopril Prevention Project (CAPPP), which evaluated the effects of 

captopril in comparison with conventional antihypertensive therapy (beta blockers or thiazide 

diuretic) in nearly 11000 hypertensive patients. Among the study participants, the incidence 

of new onset diabetes was reduced by 11% in the captopril treated group compared with 

conventional treatment after a mean follow up period of 6,1 years (Hansson et al., 1999). 

However there has been some debate over whether this finding might be attributable to 

adverse metabolic effects of the non-ACE inhibitor medications. 

A post hoc analysis of the Heart Outcomes Prevention Evaluation (HOPE) trial showed a 

reduced incidence of new-onset diabetes in patients treated with ramipril also as compared 

with placebo, thus suggesting a true antidiabetic effect of ACE inhibitors (Yusuf et al., 2000). 

In this context, relevant are the results of the Antihypertensive and Lipid-lowering Treatment 

to prevent Heart Attack Trial (ALLHAT) study which demonstrated that new onset diabetes 

was lowest in the lisinopril group when compared not only with the thiazide diuretic 

chlortalidone, but also with amlodipine, a metabolically neutral calcium channel blocker 

(ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group , 
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2002). Similar results have been reported in other 3 trials with ACE inhibitors. Like the ACE 

inhibitors, also AT1 receptor blockers are known to exert positive metabolic effects. As with 

ACE inhibitors, initial evidence of the effects of AT1 receptor blockers on new-onset of 

diabetes come from studies like Losartan Intervention For Endpoint reduction (LIFE) trial 

(Lindholm et al., 2002) and the Antihypertensive treatment and Lipid Profile In a North- 

Sweden Evaluation (ALPINE) trial (Lindholm et al., 2003) in which they were compared with 

conventional therapies. Nevertheless the favorable effect of AT1 receptor blockers on new 

onset diabetes was observed also when they were compared with placebo (Yusuf et al., 2005) 

or calcium channel blockers (Julius et al., 2004). Recently a meta-analysis of 13 major trials 

was performed in an attempt to evaluate the effect of inhibiting the RAS system on the 

incidence of diabetes mellitus. The meta-analysis found an overall decrease in the incidence 

of  diabetes mellitus from 9% to 7,1% when ACE inhibitors or AT1 receptor blockers were 

used (Andraws and Brown, 2007).  

Several mechanisms have been suggested to explain the reduction in diabetes with RAS 

inhibition: enhanced insulin sensitivity, prevention of potassium depletion, effects on adipose 

tissue and protective effects on pancreatic structure and function. These mechanisms are not 

mutually exclusive and it is possible that several may combine to provide beneficial effects on 

metabolic function. 
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RATIONALE AND OBJECTIVES 

 

In the general population, OPG is an independent risk factor for the progression of 

atherosclerosis and onset of cardiovascular disease (Kiechl et al., 2004; Ueland et al., 2005). 

Moreover, in patients with coronary artery disease OPG is associated with the severity of 

coronary atherosclerosis and mortality (Jono et al., 2002; Lieb et al., 2010; Schoppet et al., 

2003; Ueland et al., 2004). Interestingly, different groups of investigators have reported that 

serum OPG levels are significantly increased in both type 1 and type 2 diabetic patients 

(Browner et al., 2001; Galluzzi et al., 2005; Knudsen et al., 2003; Rasmussen et al., 2006; 

Secchiero et al., a 2006) and in more recent studies performed in diabetic subjects a strong 

association between plasma levels of OPG and micro- and macroangiopathy was observed 

(Avignon et al., 2005; Grauslund et al., 2010; Knudsen et al., 2003; Xiang et al., 2009). A 

possible pathogenetic link between elevated levels of OPG and inflammation has been 

suggested by recent in vitro studies by our group (Zauli et al., 2007) and that of  Mangan et al. 

(2007) demonstrating that exposure to recombinant OPG promotes leukocyte adhesion to 

endothelial cells. These findings are particularly noteworthy since atherosclerosis, which 

constitutes the single most important contributor to the growing burden of cardiovascular 

disease, is regarded as a form of chronic low-grade inflammatory process, which can 

ultimately lead to the development of complex lesions, or plaques, that protrude into the 

arterial lumen (Libby, 2002). Moreover, it has been recently demonstrated that OPG might be 

involved in the pathogenesis of pulmonary hypertension by promoting the growth of human 

vascular smooth muscle cells (VSMC), obtained from pulmonary artery (Lawrie et al., 2008). 

OPG is produced by a wide range of tissues, but it is noteworthy that different studies in vitro 

have demonstrated that OPG can be up-regulated in both endothelial cells (Secchiero et al., a 

2006; Ben-Tal Cohen et al., 2007) and vascular smooth muscle cells (Zhang et al., 2002). 

On these bases, my studies aimed to: 

1. investigate whether OPG is involved in pathogenetic aspects of atherosclerosis, by 

coupling in vitro studies, performed by using murine primary VSMC, with in vivo 

studies, conducted in the apoE-knockout mice, that represent an optimal model for 

studies on the pathogenesis/treatment of atherosclerosis, in particular after induction 

of diabetes mellitus; 
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2. investigate whether OPG is involved in pancreatic beta cell dysfunction, using an in 

vivo model represented by C57Bl/6J mice, that do not spontaneously develop 

atherosclerotic lesions with a normal chow diet. Moreover, taking in consideration 

some evidences for an interplay between OPG and the RAS pathways in human 

aortas, where OPG has been shown to modulate angiotensin II type 1 receptor gene 

expression (Moran et al., 2009) and, in turn, angiotensin II promotes OPG production 

(Zhang et al., 2002), investigate whether the long term co-treatment with the ACE 

inhibitor ramipril could eventually hinder the effect of exogenous OPG on beta cells 

remodelling and function. 
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MATERIALS AND METHODS 

STUDY 1. A-B 

3.1 Animals and experimental protocol 

Animal care and treatments were conducted in conformity with institutional guidelines in 

compliance with national and international laws and policies (EEC Council Directive 86/609, 

OJL 358, December 12th 1987). 80 apoE-knockout (apoE
-/-

)  male mice were further 

randomized into 4 groups (n=20) and followed for 3 months. One group of non diabetic 

animals received every 3 weeks an intraperitoneal (i.p.) injection of vehicle (HEPES-buffered 

saline) and served as a control; another group of non-diabetic animals received every 3 weeks 

an i.p. injection of human recombinant OPG (OPG) (R&D Systems) (1µg/mouse in a total of 

200μl HEPES-buffered saline). The other two groups, rendered diabetic by 5 daily i.p. 

injections of streptozotocin (STZ) (55mg/Kg body weight), received injections of OPG or an 

equivalent volume of vehicle. After 3 months, the animals were anesthetized by an i.p. 

injection of pentobarbital sodium (60 mg/Kg body weight) and sacrificed for blood tests and 

histological examination. In half of the animals in each group, aortas were collected and 

placed in 10% neutral buffered formalin for subsequent immunohistochemical analysis.  In 

the other half, aortas were snap frozen in liquid nitrogen and stored at –80
o
C for subsequent 

RNA extraction. In each group of animals, serum glucose, glycosylated hemoglobin (HbA1c), 

systolic blood pressure, triglycerides, total and HDL cholesterol were determined according to 

standard procedure (Candido et al.; 2004, Secchiero et al., b 2006).  
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3.2 Evaluation of atherosclerotic plaques  

To evaluate the atherosclerotic lesions, two complementary approaches were used: en face 

whole and histological section analyses. The en face approach was used to obtain information 

about distribution and extent of atherosclerosis in the aorta, whereas microscopic histological 

analysis was used to evaluate the lesion composition and complexity. In brief the entire aorta, 

stained with Sudan IV-Herxheimer’s solution (Sigma),  was opened longitudinally and lesion 

area measurements were performed by calculating the proportion of aortic intimal surface 

area occupied by the red stain in the arch, descending thoracic and abdominal aorta, with the 

use of a video-based image analysis program (MCID; Imaging
 
Research). All aortic segments 

were next paraffin-embedded, and 4-m thick cross-sectional serial sections were obtained. 

Hematoxylin-eosin staining of the aorta was used for featuring plaque morphology. 

 

3.3 Masson’s trichrome staining 

Cross-sectional paraffin aortic serial sections four micron thick were prepared and stained 

with Masson’s trichrome to evaluate the presence of collagen. Collagen was quantified by 

calculation of the proportion of area occupied by the Masson’s trichrome staining within the 

aortic media or within the plaque by use of an image analysis system (Image Pro Plus
®

 6.3 

Software, Media- Cybernetics) associated with a videocamera and a computer (Candido et al.; 

2004). 

 

3.4 Immunohistochemistry  

For immunohistochemical analysis, four micron paraffin serial sections of aorta were de-

waxed and hydrated, and the endogenous peroxidase was neutralized  with 3% (v/v) hydrogen 

peroxide in phosphate-buffered saline (PBS, pH 7.4) for 20 minutes. Subsequently, aortic 

sections were incubated with the following primary antibodies: α-smooth muscle actin (α-

SMA, smooth muscle cell marker) and proliferating cell nuclear antigen PCNA (both from 

DAKO; diluted 1:50). Biotinilated immunoglobulins (Vector Laboratories; diluted 1:200) 

were then applied as a secondary antibody, followed by horseradish peroxidase-conjugated 

streptavidin (DAKO; diluted 1:625). Macrophage detection was performed by using the 

primary antibody for F4/80 (Serotec; diluted 1:200), followed by secondary anti-rat 

immunoglobulins (Vector Laboratories; diluted 1:200) and the CSA mouse amplification kit 

(DAKO), following manufacturer’s instructions. Syndecan-1 detection was performed using 

monoclonal rat anti-mouse CD138 (BD Pharmingen; diluted 1:500), followed by secondary 

biotinylated rabbit anti-rat antibody (Vector Laboratories; diluted 1:200) and the ABC kit 
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(Vector Laboratories), following the manufacturer’s instructions. OPG localization was 

performed by using biotinylated primary antibody for OPG (R&D Systems; diluted 1:10)  and 

the CSA mouse amplification kit. 

3,3’-diaminobenzidine tetrahydrochloride (Sigma Chemical) was used as a chromogen, with 

subsequent nuclear counterstaining with hematoxylin. All the sections were then examined by 

light microscopy and digitized using an high-resolution camera. Atherosclerotic lesions were 

manually traced on the computer, taking care to exclude normal-appearing media and to 

include only the intimal/subintimal atherosclerotic lesion. Quantifications of collagen staining 

and of the specific immunostainings within the plaques or in the aortic media were assessed 

using Image Pro Plus
®
 6.3 analysis system.  

 

3.5 Real-time quantitative PCR  

Total RNA was isolated from cultured vascular smooth muscle cells (VSMC)  and tissue 

samples by the TRIZOL method (Invitrogen, Milan, Italy) . A reverse transcriptase reaction 

was performed on three micrograms of  RNA using random hexamers, dNTPs and M-MLV 

reverse transcriptase (Invitrogen). Angiopoietin 2, vascular cell adhesion molecule-1 

(VCAM-1), osteoprotegerin (OPG), alpha-smooth muscle actin (αSMA), fibronectin (Fibr), 

vimentin (Vim),  connective tissue growth factor (CTGF), collagen I (col I), collagen III (col 

III), collagen IV (col IV), nuclear factor kB (NF-kB), and transforming growth factor-beta  

(TGFβ) gene expressions were analyzed by real-time quantitative RT-PCR using the TaqMan 

system based on real-time detection of accumulated fluorescence (ABI Prism 7900HT, 

Applied Biosystems). To control for variation in the amount of cDNA available for PCR in 

the different samples, gene expression of the target sequence was normalised in relation to the 

expression of an endogenous control, 18S ribosomal RNA (rRNA) (18S rRNA TaqMan 

Control Reagent kit; Applied Biosystems). Specific primers and Taqman probes (Table 1) 

were constructed with the help of Primer Express (PE Applied Biosystems). Results were 

expressed relative to control which was arbitrarily assigned a value of 1. Values are shown as 

means  SEM unless otherwise specified. 

 

3.6 Cell cultures 

Isolated primary rat aortic VSMC were purified and used between passages 3 and 6 (Pandolfi 

et al., 2003). Aortic mouse VSMC were kindly provided by Doctor Agrotis (Baker Institute, 

Melbourne, Australia) and generated as previously described by his group (Agrotis et al., 

2004). 
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Subcultured mouse VSMC were maintained in high glucose (25mM) DMEM containing 

10%FBS at 37°C, 5% CO2. Experimental treatments were in serum reduced conditions (2% 

FBS) with recombinant human TGFβ1 (1-10ng/ml)  or recombinant human OPG (1-40ng/ml) 

(both  from R&D Systems) for 48h. To examine the effect of the block of the TGFβ- type 1 

receptor, the inhibitor SB431542 (R&D Systems) was added 1 hour before the addition of 

TGFβ or OPG. The experiments were designed so that the cells, seeded in 6-well plates, 

reached 90-95% confluence the day of the harvesting. At the end of the incubation time, the 

media was collected, centrifuged to discard dead cells, and stored aliquoted at -80°C for the 

subsequent soluble murine OPG quantification. The cells monolayer was then washed two 

times with ice-cold PBS, and RNA was extracted for gene expression evaluation. 

For cell cycle analysis, rat primary VSMC were seeded at subconfluence, made quiescent by 

using serum-reduced (0.1% FBS) medium and either left untreated or exposed to OPG (10-

100pg/ml) for 36 hours before incubation with 5-bromodeoxyuridine (BrdU; Sigma 

Chemical) at 37°C for 1 hour. Anti-BrdU antibody was bound to BrdU incorporated into 

neosynthesized DNA, and the complex was detected by fluorescein isothiocyanate-conjugated 

secondary antibody. Cells were stained with propidium iodide (PI) and analyzed by flow 

cytometry. The percentage of cells in the S phase of the cell cycle was calculated from the 

flow cytograms and expressed as the percentage of the total population. As positive control, 

cells were treated with insulin. To avoid nonspecific fluorescence from dead cells, live cells 

were gated tightly using forward and side scatter, according to standard method (Borgatti et 

al., 1997). 

 

3.7 Immunofluorescence 

VSMC were grown on coverslips, washed twice with PBS, fixed in ice cold acetone for 10 

minutes, permeabilized using 0.1% Triton X- 100, and incubated in a blocking buffer (10% 

normal rabbit serum in PBS) for 30 minutes. Primary antibody against αSMA (DAKO) was 

incubated with cells overnight, followed by a rabbit anti mouse 488. Coverslips were  

mounted using Prolong Gold antifade reagent with DAPI (Invitrogen) and cells viewed using 

an Olympus BX61 Fluorescence microscope. 

 

3.8 Osteoprotegerin ELISA 

Mouse  OPG was measured in diluted growth media by using a sandwich-type enzyme-linked 

immunosorbent assay (DuoSet ELISA Development System, R&D Systems) . Microtitre 

wells were coated with 4.0µg/ml of a rat anti-mouse OPG capture antibody, and detection was 
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done with 200ng/ml of a biotinylated goat anti- mouse OPG antibody. Streptavidin 

conjugated to horseradish-peroxidase was used for detection of bound biotynilated 

immunoglobulin, and tetramethylbenzidine was added as substrate. The optical density was 

read at 450nm on a microplate reader and compared to a seven point standard curve made 

with recombinant mouse OPG. All standards and samples were loaded in duplicate. 

 

3.9 Statistical analysis 

The mean, median, minimum, and maximum values were calculated for each group of data. 

Box plots were used to show the median, minimum and maximum values and 25th to 75th 

percentiles. Data were analyzed by ANOVA and with the Mann-Whitney rank-sum test. 

Comparison of group means was performed by Bonferroni method. Correlation coefficients 

were calculated by the Spearman’s method. Statistical significance was defined as p<0.05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

Table 1. TaqMan Primers and Probe Sequences used for real-time RT-PCR in mouse VSMC 

and aortas extracts 

Name Sequence 

Angiopoietin 2 probe FAM-5’- CAGCCAACCAGGAAG -MGB 

Angiopoietin 2 primer F 5’- GTCCAACTACAGGATTCACCTTACAG -3’ 

Angiopoietin 2 primer R 5’- TTGTCCGAATCCTTTGTGCTAA -3’ 

Osteoprotegerin probe FAM-5’- CGAACCTCACCACAGAG -3’-MGB 

Osteoprotegerin primer F 5’- GCGTGCAGCGGCATCT -3’ 

Osteoprotegerin primer R 5’- TCAATCTCTTCTGGGCTGATCTT -3’ 

CTGF probe FAM-5’-ACTGCCTGGTCCAGAC-MGB 

CTGF primer F 5’-GCTGCCTACCGACTGGAAGA-3’ 

CTGF primer R 5’-CTTAGAACAGGCGCTCCACTCT-3’ 

VCAM-1 probe FAM-5’-CGGCATCCTGCAGCTGTGCCT-3’-TAMRA 

VCAM-1 primer F 5’-AAGTCTGTGGATGGCTCGTACA-3’ 

VCAM-1 primer R 5’-TCAGTCTTAGATTCACACTCGTATATGC-3’ 

αSMA probe FAM-5’- TGCCAGATCTTTTCC -3’-MGB 

αSMA primer F 5’- GACGCTGAAGTATCCGATAGAACA -3’ 

αSMA primer R 5’- GGCCACACGAAGCTCGTTAT -3’ 

Fibronectin probe FAM-5’- CCCCGTCAGGCTTA -3’-MGB 

Fibronectin primer F 5’- ACATGGCTTTAGGCGGACAA -3’ 

Fibronectin primer R 5’- ACATTCGGCAGGTATGGTCTTG -3’ 

Vimentin probe FAM-5’- CCGCACCAACGAGA -3’-MGB 

Vimentin primer F 5’- CGCCATCAACACTGAGTTCAA -3’ 

Vimentin primer R 5’- TGGCAAAGCGGTCATTCA -3’ 

collagen I probe FAM-5’- ATCGACCCTAACCAAG -3’-MGB 

collagen I primer F 5’- GACTGGAAGAGCGGAGAGTACTG -3’ 

collagen I primer R 5’- CCTTGATGGCGTCCAGGTT -3’ 

collagen III probe FAM-5’- AATATCAAACACGCAAGGC -3’-MGB 

collagen III primer F 5’- GGGAATGGAGCAAGACAGTCTT -3’ 

collagen III primer R 5’- TGCGATATCTATGATGGGTAGTCTCA -3’ 

collagen IV probe FAM-5’- CAGTGCCCTAACGGT -3’-MGB 

collagen IV primer F 5’- GGCGGTACACAGTCAGACCAT -3’ 

collagen IV primer R 5’- GGAATAGCCGATCCACAGTGA -3’ 



33 
 

NF-kB probe FAM-5’- AGCTCAAGATCTGCCG -3’-MGB 

NF-kB primer F 5’- TCTCACATCCGATTTTTGATAACC -3’ 

NF-kB primer R 5’- CGAGGCAGCTCCCAGAGTT -3’ 

TGF probe FAM-5’-AAAGCCCTGTATTCCGT-MGB 

TGF primer F 5’-GCAGTGGCTGAACCAAGGA-3’ 

TGF primer R 5’-GCAGTGAGCGCTGAATCGA-3’ 

 

FAM=6-carboxyfluorescein, TAMRA (quencher)=6-carboxy-tetramethylrhodamine, MGB=minor groove binder 
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STUDY 2 

 

4.1 Animals and experimental protocol 

Animal care and treatments were conducted in conformity with institutional guidelines in 

compliance with national and international laws and policies for the care and use of laboratory 

animals. 40 male mice C57B1/6J, aged 10 weeks, were randomized into 4 groups and studied 

for 12 weeks. Group 1 received every 3 weeks an i.p. injection of  vehicle and served as a 

control. Group 2 received every 3 weeks an i.p. injection of human recombinant OPG (R&D 

Systems), (1g/mouse in a total of 200 l HEPES-buffered saline). Group 3 received the ACE 

inhibitor ramipril (Sigma Aldrich) at the dose of 10 mg/Kg/die in drinking water in co-

treatment with i.p. injections of vehicle. Group 4 received ramipril in co-treatment with i.p. 

injections of OPG. The animals were maintained on regular mouse chow. Ramipril was added 

to the drinking water, stored at 4°C and replaced twice a week. Previous studies had 

demonstrated that ramipril remains stable in water for more than four days at room 

temperature and that the dosage used in mice is well below the toxic range and equivalent to 

the maximum therapeutic dose of 10 mg per day in humans (Gross et al., 2003). Adjustment 

of drug concentration according to the fluid intake ensured that the daily dose was applied 

during the whole experiment. In addition, our group has previously shown the effectiveness of 

an oral chronic delivery of ACE inhibitor (Candido et al., 2002). 
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4.2 Measurement of physiological and biochemical parameters 

At 4-week intervals, the following parameters were measured in all groups: body weight; 

systolic blood pressure measured by tail-cuff plethysmography in conscious, prewarmed 

mice; fasting glucose levels using a glucose oxidase method (Menarini); and fasting insulin 

serum levels. After 3 months, animals were anesthetized by an i.p. injection of pentobarbital 

sodium (60 mg/Kg body weight). Blood was collected from the left ventricle and centrifuged 

and serum was stored at -20° C for subsequent analysis. The mouse pancreas was rapidly 

dissected out and bisected longitudinally, with one half snap frozen in liquid nitrogen and 

stored at -80° C for subsequent quantitative RT-PCR measurements, and the other half fixed 

in 4% paraformaldehyde and embedded in paraffin for immunohistochemical studies.  

 

4.3 Oral glucose tolerance test 

An oral glucose tolerance test was performed at the end of the experimental study. For this 

purpose, conscious mice, overnight fasted, received an oral glucose bolus (1g/Kg body 

weight) by gavage and blood was collected from the tail vein at 0, 30, 90 and 120 minutes 

(Chu et al., 2006). Serum insulin levels were determined by using the Mouse Insulin 

ultrasensitive ELISA kit (DRG International). 

 

4.4 Picrosirius red staining 

Interstitial fibrosis was determined after picrosirius red staining. Four-micron paraffin 

sections were prepared from 4% paraformaldeyde-fixed, paraffin-embedded mice pancreas. 

Sections were stained with 0.1% Sirius red (Direct red 80; Fluka Chemika) in satured picric 

acid for 90 minutes and mounted; subsequently all the sections were examined by bright-field 

and polarization microscopy (Olympus BX50WI) and then digitized with a high resolution 

camera (Q-Imaging Fast 1394). Collagen deposition appears red in sections analyzed in 

bright-field microscopy, whereas exhibits strong birefringence in polarized light microscopy. 

The quantification of fibrosis was performed calculating the proportional area of each islet or 

of islet boundaries occupied by the positive red staining, using an image analysis system 

(Image Pro-Plus 6.3 Software).  

 

4.5 Immunohistochemistry 

The expression of the beta cell marker insulin, ACE and AT1 receptor were examined by 

immunohistochemistry on four-micron paraffin pancreas sections. The primary antibodies 

used were a polyclonal guinea pig anti-swine insulin antibody (DAKO; diluted 1:100), a 
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monoclonal mouse anti-human ACE antibody (Chemicon, diluted 1:100), and a polyclonal 

rabbit anti-human AT1 receptor antibody (Santa Cruz Biotechnology; diluted 1:200). After 

neutralization of endogenous peroxidase, the sections were incubated with the primary 

antibodies for 1 hour at room temperature for ACE and AT1 receptor or overnight at 4°C for 

insulin. After washing, biotinylated secondary antibodies (all from Vector Laboratories) were 

applied for 60 minutes for ACE and AT1 receptor or 30 minutes for insulin. Specific 

immunohistochemical staining was detected using the standard avidin-biotin complex (Vector 

Laboratories) method. After an extensive washing, the final detection step was carried out 

using 3,3’-diaminobenzidine tetrahydrochloride as the chromogen.   

Detection of cells of the monocytic/macrophagic lineage was performed by using the primary 

antibody for F4/80 (AbD Serotec; diluted 1:200), followed by secondary anti-rat 

immunoglobulins (Vector Laboratories; diluted 1:200) and the CSA mouse amplification kit, 

following manufacturer’s instructions. 

After counterstaining with hematoxylin, all the sections were examined by light microscopy 

(Olympus BX50WI) and digitized with a high resolution camera (Q-Imaging Fast 1394). 

Semiquantitative assessment of islet proteins was performed by determining the percentage 

proportion of area or number of cells per islet section occupied by the brown (DAB) staining 

within each islet (20X objective) using an image analysis system (Image Pro Plus 6.0 

Software). A total of 40-50 islets per mouse pancreas (n=10 mice/group) were analyzed. 

Pancreatic beta cell mass was estimated by multiplying the mean density of staining for 

insulin in the islet sections by the mean islet area per area of pancreas. This was expressed in 

arbitrary units adjusted for the pancreatic wet weight for individual animals (Tikellis et al., 

2004). 

 

4.6 In situ detection of apoptosis 

The localization of beta cell apoptosis was identified using dual immunofluorescence for 

Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End Labeling (TUNEL) and 

insulin staining. After digestion with Proteinase K (20 g/ml; Sigma Chemical), four micron 

paraffin sections were labeled with polyclonal guinea pig anti swine insulin (DAKO; diluted 

1:100), followed by a Texas Red dye-conjugated secondary antibody (Vector Laboratories; 

diluted 1:100). Slides were subsequently labeled for TUNEL-positive cells and visualized 

using fluorescein dye according to the manufacturer’s instructions (Roche Diagnostic). 

TUNEL-positive beta cells were identified by the presence of green nuclei and red cytoplasm. 
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4.7 Real-Time quantitative PCR 

Total RNA was isolated from snap-frozen pancreatic tissue after homogenisation in Trizol 

(Invitrogen), and processed as reported in paragraph 3.5 of the Material and Methods section. 

Briefly, angiotensin converting enzyme (ACE), angiotensin II type 1 (AT1) receptor, 

monocyte chemotactic protein (MCP-1), vascular adhesion molecule type 1 (VCAM-1), 

transforming growth factor- (TGF) and connective tissue growth factor (CTGF) gene 

expressions were analyzed by real-time quantitative RT-PCR using the TaqMan system (ABI 

Prism 7900HT). To control for variation in the amount of cDNA available for PCR in the 

different samples, gene expression of the target sequence was normalized in relation to the 

expression of an endogenous control, 18S ribosomal RNA. Specific primers and Taqman 

probes for ACE, AT1 receptor, MCP-1, VCAM-1, TGF and CTGF (Table 2) were 

constructed with the help of Primer Express (PE Applied Biosystem). Each sample was tested 

in triplicate. Results were expressed relative to control pancreas values, which were arbitrarily 

assigned a value of 1. 

 

4.8 Statistical analysis 

Analysis of variance (ANOVA), calculated using Statview 512 software for Apple Macintosh 

computer (Brainpower), was used to determine the presence of significant difference between 

groups. Comparisons of group means were performed by Fisher’s least significant difference 

(LSD) method unless otherwise specified. Results are expressed as mean  SEM. A p value of 

less than 0.05 was considered statistically significant. 
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Table 2. TaqMan Primers and Probe Sequences used for real-time RT-PCR in pancreas 

extracts 

Name Sequence 

ACE probe FAM-5’-CAACAAGACTGCCACCTGCTGGTCC-3’-TAMRA 

ACE primer F 5’-CAGAATCTACTCCACTGGCAAGGT-3’ 

ACE primer R 5’-TCGTGAGGAAGCCAGGATGT-3’ 

AT1 receptor probe FAM-5’-TACCAGTGGCCCTTCGGCAATCA-3’-TAMRA 

AT1 receptor primer F 5’-GGGCAGTTTATACCGCTATGGA-3’ 

AT1 receptor primer R 5’-TGGCCGAAGCGATCTTACAT-3’ 

CTGF probe FAM-5’-ACTGCCTGGTCCAGAC-MGB 

CTGF primer F 5’-GCTGCCTACCGACTGGAAGA-3’ 

CTGF primer R 5’-CTTAGAACAGGCGCTCCACTCT-3’ 

VCAM-1 probe FAM-5’-CGGCATCCTGCAGCTGTGCCT-3’-TAMRA 

VCAM-1 primer F 5’-AAGTCTGTGGATGGCTCGTACA-3’ 

VCAM-1 primer R 5’-TCAGTCTTAGATTCACACTCGTATATGC-3’ 

MCP-1 probe FAM-5’-TCCCTGTCATGCTTCTGGGCCTGT-3’-TAMRA 

MCP-1 primer F 5’-CTTCCTCCACCACCATGCA-3’ 

MCP-1 primer R 5’-CCAGCCGGCAACTGTGA-3’ 

TGF probe FAM-5’-AAAGCCCTGTATTCCGT-MGB 

TGF primer F 5’-GCAGTGGCTGAACCAAGGA-3’ 

TGF primer R 5’-GCAGTGAGCGCTGAATCGA-3’ 

 

FAM=6-carboxyfluorescein, TAMRA (quencher)=6-carboxy-tetramethylrhodamine, MGB=minor groove binder 
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RESULTS 

 

STUDY  1.A 

 

5.1 Increase of atherosclerotic plaque development in diabetic apoE
-/- 

mice after in vivo 

administration of full-length recombinant human OPG 

Since  it has been previously demonstrated that the serum levels of OPG are elevated in 

diabetic and nondiabetic patients affected by cardiovascular disease (Jono et al., 2002; 

Schoppet et al., 2003; Kiechl et al., 2004; Moran et al., 2005; Secchiero et al., a 2006;  Shin et 

al., 2006; Abedin et al., 2007), in the first group of experiments we investigated the possible 

role of OPG in vivo in the pathogenesis of atherosclerosis. For this purpose we utilized the 

apoE
-/-

 mouse model, that spontaneously develop atherosclerotic lesions, which are increased 

after induction of diabetes and resemble in appearance and distribution those observed in 

humans (Calkin and Allen, 2006). Therefore, 3 weeks after STZ or vehicle (buffer citrate 

alone) multiple injections, the animals were randomized to be i.p. injected either with 

recombinant human OPG or with control vehicle (HEPES buffered saline). It should be 

noticed that repeated i.p. injections of human recombinant OPG (every 3 weeks for 3 months) 

were well tolerated by the apoE
-/-

 mice. After 3 months, diabetic and control animals were 

analyzed for various parameters, as reported in Table 1, and then sacrificed to perform 

pathological examination. Diabetic animals gained less weight than did control mice. Blood 

glucose, HbA1c, total cholesterol, triglycerides and HDL cholesterol were increased in 

diabetic apoE
-/- 

mice compared with nondiabetic control mice. All of these parameters were 

not significantly different in diabetic animals injected or not with human recombinant OPG. 

The OPG injections in apoE
-/- 

mice did not alter significantly the general parameters, however 

a slight increase in serum glucose levels was seen in respect to control animals. Systolic blood 

pressure levels did not differ significantly among all the groups studied. Moreover, no gross 

abnormalities at necroscopic examination were observed in OPG-treated animals with respect 

to vehicle-treated apoE
-/- 

mice.  

En face dissection of aorta segments revealed that diabetes was associated with a significant 

increase in percentage of plaque area in the entire aorta (means  SEM: 1.64  0.15 vs 0.51  

0.05, in diabetic vs control apoE
-/- 

mice respectively; p<0.0001) as well as in each segment 

(means  SEM in arch: 3.87  0.51 vs 1.24  0.34, p<0.001; means  SEM in thoracic aorta: 

1.0  0.14 vs 0.13  0.04, p<001; means  SEM in abdominal aorta: 1.1  0.22 vs 0.19  0.13, 

p<0.05). 

Moreover, in non-diabetic control mice most plaques were fatty streaks, whereas in the aorta 
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of diabetic mice there were predominantly advanced lesions, characterized by an 

asymmetrically thickened intima and an increase in the collagen content within the plaque, 

clearly detected by Masson’s trichrome staining (Figure 1). 

While non-diabetic apoE
-/- 

mice injected with OPG did not show a significant change in the 

plaque area extent (means  SEM: 0.74  0.23), interestingly, OPG treatment in diabetic apoE
-

/- 
mice induced a significantly (means  SEM: 2.25  0.24, p<0.05) increase in the total plaque 

area with respect to diabetic mice injected with vehicle alone (Figure 2). Such increase could 

not be ascribed to an aspecific, allergic or toxic effect consequent to the injection of a human 

protein in the apoE
-/-

 animals since the administration of recombinant human TRAIL 

promoted the opposite effect, decreasing the total plaque area extent (Secchiero et al., b 

2006). 

 

Parameters 
C 

(n = 20) 

OPG 

(n = 20) 

D 

(n = 20) 

D + OPG 

(n = 20) 

Body weight (g) 34  4 36  3 25  2
*
 24  3

*
 

Serum glucose (mg/dl) 157  38 187  73 549  42
*
 532  39

*
 

HbA1c (%) 3.9  0.9 4.0  0.7 14.0  1.2
*
 13.3  1.3

*
 

SBP (mmHg) 86  10 86  9 87  9 94  8 

Total cholesterol (mg/dl) 448  100 538  155 915  105
*
 949  119

*
 

Triglycerides (mg/dl) 111  33 120  42 208  44
*
 200  16

*
 

HDL cholesterol (mg/dl) 66  14 68  14  116  27
*
 91  12

*
 

 

Table 1. Characteristics of the mice at the end of the study. Data are expressed as mean  SD and statistically 

(ANOVA) compared. SBP, systolic blood pressure; C, control mice; OPG, mice injected with recombinant 
human OPG; D, diabetic mice injected with vehicle; D + OPG, diabetic mice injected with OPG. *p<0.01 vs C 

group 

 

Figure 1. Increase in atherosclerotic 

lesions in the aorta of apoE
-/- 

mice 

following induction of diabetes. 

Representative images of aorta of control 

and diabetic apoE-/- mice stained with 

hematoxylin and eosin (upper panel) and 

with Masson’s trichrome for collagen 

detection (lower panel, light blue staining). 
Original magnification X20. 
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Figure 2. Increase in the total extent of atherosclerotic plaques in diabetic mice following the OPG 

injections. a. Representative images of en face dissection of aortic arch, thoracic and abdominal aorta, stained 

with Sudan IV, showing atherosclerotic lesions (red, with arrows) in diabetic apoE-/- mice treated with either 

vehicle (n=10) or recombinant human OPG (n=10). Atherosclerotic involvement for each mouse was 

quantitatively determined in en face sections by measuring the proportion of aortic intimal surface area stained 

red (Sudan IV-positive) in each of the 3 aortic segments. Horizontal bars are medians of the percentage of plaque 

area in the total aortas, upper and lower edges of the boxes are 75th and 25th percentiles and vertical lines are 10th 
and 90th percentiles. b. Representative hematoxylin-eosin-stained histological cross-sections are shown. Original 

magnification X20. 

 

 

5.2 Recombinant human OPG injected in vivo in apoE
-/- 

diabetic mice induces changes  in 

the histological composition of the atherosclerotic plaques 

Subsequently, we investigated whether, besides increasing the extension of atherosclerotic 

lesions in diabetic mice, OPG treatment also affected the histological characteristics of the 

plaques. For this purpose,  cross-sectional serial paraffin sections of the aortic atherosclerotic 

lesions of apoE
-/- 

diabetic mice were quantitatively analyzed  for the presence of collagen and 

the cell composition of the plaques (Figure 3,4). Of note, no significant differences in the 
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percentage of infiltrating macrophages or in the collagen content were observed between 

OPG- and vehicle-injected mice (Figure  3a,b).  

 

Figure 3. OPG treatment did not affect the macrophage infiltration or interstitial collagen content in the 

atherosclerotic plaques of apoE
-/- 

diabetic mice. Serial sections from aortas of apoE-/- diabetic mice injected 

intraperitoneally with either vehicle (n=10) or recombinant OPG (n=10) were analyzed to quantitatively evaluate 

the presence/percentage of macrophages (using F4/80 marker), as well as the interstitial collagen content 

(trichrome staining) in the aortic intima. Staining results, representatively shown in a (original magnification 

X20), were quantitatively determined in each mouse with the Image Pro Plus® 6.3 analysis program and 

expressed as the percentage of stained area. In b, horizontal bars are medians, upper and lower edges of  the 
boxes are 75th and 25th percentiles and vertical lines extending from the boxes are 10th and 90th percentiles.  

 

 

In the same way, the expression of Syndecan-1, which has been proposed to act as a ligand 

for OPG in multiple myeloma (Standal et al., 2002), was not modified in the aortas of OPG-
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injected mice compared to vehicle treated animals (means  SEM (%): 6.6  1.8 vs 5.8  2.1, 

in OPG treated diabetic mice vs diabetic apoE
-/- 

mice respectively). 

Interestingly, on the other hand, the percentage of VSMC (αSMA-positive cells) was 

significantly (p<0.05) increased in the aortic lesions of OPG-injected apoE
-/- 

diabetic animals 

with respect to diabetic animals injected with vehicle alone (Figure 4a,b).  

 

Figure 4. OPG treatment increased the content of VSMC and their proliferative activity in the 

atherosclerotic plaques of apoE
-/- 

diabetic mice. Serial paraffin sections from aortas of apoE-/- diabetic mice 

injected intraperitoneally with either vehicle (n=10) or recombinant OPG (n=10) were analyzed to quantitatively 

evaluate the percentage of VSMC (using αSMA marker) and the content of PCNA-positive cells in the aortic 

intima. Staining results, representatively shown in a (original magnification X20), were quantitatively 

determined in each mouse with the Image Pro Plus® 6.3 analysis program and expressed as the percentage of 

stained area or of positive cells. In b, horizontal bars are medians, upper and lower edges of the boxes are 75th 

and 25th percentiles and vertical lines are 10th and 90th percentiles.  
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In order to evaluate whether the increased content of VSMC observed in the plaques of OPG-

injected animals was accompanied by an increase in cell proliferation, we analyzed the 

percentage of PCNA-positive cells, which accurately reflects the degree of cell proliferation, 

within the plaques. As shown in Figure 4a and b, OPG administration promoted a significant 

(p<0.01) increase in PCNA-positive cells. Interestingly, the percentage of PCNA-positive 

cells evaluated in all animals showed a significant  positive correlation with the percentage of 

the αSMA-positive area evaluated in the plaques of each mouse (R=0.76, p<0.05), suggesting 

that VSMC were the major cell type involved in cell proliferation within the plaques.  

 

5.3 Increase of the mRNA expression of angiopoietin 2 in the aorta of apoE
-/- 

diabetic 

animals after in vivo administration of recombinant human OPG 

Taking into account that a recent in vitro study demonstrated that angiopoietin 2 plays a key 

role in promoting inflammation of the vessel wall (Fiedler et al., 2006), we next investigated 

whether the in vivo injection of human full-length OPG was able to modulate angiopoietin 2 

expression in the aortic wall of apoE
-/- 

diabetic mice. The constitutive steady-state mRNA 

levels of angiopoietin  2 were quantitatively evaluated by real time RT-PCR in RNA extracted 

from aortic samples of OPG- and vehicle-treated diabetic mice (Figure 5). The mRNA levels 

of angiopoietin 2 were significantly (p<0.05) higher in the aortas of OPG-treated diabetic 

animals than in the aortas obtained from vehicle-treated diabetic animals (Figure 5). On the 

other hand, the inflammatory cell adhesion molecule VCAM-1 (Wara  et al., 2008) did not 

show significant modifications in OPG-treated versus vehicle-treated diabetic mice (Figure 

5).  

 

5.4 Induction of primary rodent VSMC proliferation by recombinant human OPG 

In the light of the in vivo results, in which the plaques in OPG-treated diabetic mice showed a 

significant increase in the number of VSMC, we have investigated  in vitro whether the 

exposure to recombinant full-length human OPG had any effect on cell cycle progression of 

murine VSMC, analyzed by BrdU incorporation assay (Figure 6). As shown in Figure 6, full-

length recombinant human OPG at concentrations similar to those found in human serum 

significantly (p<0.05) promoted the proliferation of VSMC (Secchiero et al., a 2006).  
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Figure 5. Effect of full-length OPG treatment on angiopoietin 2 and VCAM-1 mRNA levels in aortas from 

diabetic apoE
-/- 

mice. mRNA levels of angiopoietin 2 and VCAM-1 in RNA extracted from aortic samples of 
OPG- and vehicle-treated apoE-/- diabetic mice were quantitatively analyzed by real-time RT-PCR. After 

normalization to the level of 18S, gene specific RNA levels in control aortas (from vehicle-treated mice) were 

set as 1. Bars indicate mean  SEM.  

 

 

 

Figure 6. Recombinant human OPG promoted the proliferation of primary aortic VSMC. Aortic murine 

VSMC were seeded at subconfluence, serum-starved and either left untreated or exposed to the indicated 
concentrations of OPG for 36 hours. After BrdU/PI staining, percentage of cells in S phase of the cell cycle, 

which have incorporated BrdU, was calculated from the flow cytograms and expressed as the percentage of the 

total population. As positive control, cells were treated with Insulin and are shown for comparison. Values are 

expressed as means  SD of results from four independent experiments. *p<0.05 compared to untreated cells. 
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STUDY 1.B 

 

5.5 The in vivo injection of recombinant human OPG modulates the histological 

composition of aortic media in apoE
-/- 

mice  

Taking in consideration our results on the effect of OPG treatment  in inducing an increase in 

the extension of atherosclerotic lesions and in promoting VSMC proliferation both in vitro 

and in vivo in diabetic animals, and considering that  an increase in OPG levels characterizes 

the early onset of diabetes (Secchiero et al., a 2006),  in the second part of our study, we 

focalized our attention on the effect of OPG treatment in the aortic media of apoE
-/- 

mice 

without diabetes in respect to control and diabetic mice. 

As expected, aortas of diabetic mice injected with vehicle showed an increase in TGFβ and 

fibronectin gene expression (by 7.5- and 11-fold, respectively; p<0.05), as well as an increase 

in both osteoprotegerin mRNA expression (by 4-fold; p<0.05) and protein content  compared 

to nondiabetic control mice (Figure 7a,b). Furthermore, interstitial collagen content was 

markedly increased in the aortic media of diabetic mice with respect to control animals 

(p<0.0001) (Figure 8). 

 

 

Figure 7. Changes in molecular and cellular parameters in OPG-treated and diabetic mice aortas. (a) 
Gene expression analysis was assessed by quantitative RT-PCR on whole aorta of control, apoE-/- mice injected 

intraperitoneally with human recombinant OPG (OPG) and diabetic apoE-/- mice. Significant increases were 

observed for osteoprotegerin, TGFβ and fibronectin in diabetic mice compared to controls (*p < 0.05). OPG 

treatment promoted an increase in osteoprotegerin mRNA levels, whereas induced no significant modifications 

on TGFβ  and fibronectin mRNA levels. (b) Immunohistochemical analysis demonstrated increased staining for 

osteoprotegerin  in the aortic media of diabetic apoE-/- mice compared to controls (microscope magnification  

X20). Positive staining is shown as brown in aortic medial layer. Sections are counterstained with hematoxylin.  
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The injections with recombinant human OPG promoted a significant increase in 

osteoprotegerin gene expression, whereas TGFβ and fibronectin did not show significant 

modifications in OPG-treated versus control mice (Figure 7a). Interestingly, the percentage of 

collagen content was significantly (p<0.05) increased in the aortic media of OPG-injected 

apoE
-/- 

animals compared to untreated animals (Figure 8).  

 

Figure 8. Recombinant human OPG increased the interstitial collagen content in the aortic media of apoE
-

/-
 mice. Representative histological sections (original magnification X20) of aortas from control, apoE-/- mice 

injected intraperitoneally with human recombinant OPG (OPG) and diabetic apoE-/- mice. Serial sections were 

analyzed to quantitatively evaluate the interstitial collagen content (trichrome staining) in the aortic media and 

the results were expressed as the percentage of stained area. *p<0.05 or **p<0.0001 vs control group). All bars 

represent mean  SEM. 

 

5.6 TGFβ stimulates OPG production in mouse primary VSMC 

TGFβ is expressed by cells in the vessel wall and is capable of modulating vascular 

development and remodeling by altering cell differentiation, proliferation, migration and 

extracellular matrix production (Bobik, 2006). To assess the effect of TGFβ on VSMC, cells 

were treated with 10ng/ml of TGFβ for 48h in high glucose media and in serum reduced 

condition (2%). Cells incubated with TGFβ exhibited an elongated and broadened 

morphology, associated with an increased staining for αSMA (Figure 9a). Significant 
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increases were observed in the mRNA levels of αSMA, fibronectin (Fibr), vimentin (Vim), 

CTGF, collagen I (col I), collagen III (col III) and collagen IV (col IV) (Figure 9b). 

 

Figure 9. TGFβ induced changes in VSMC morphology, protein and gene expression. (a) Mouse aortic 

vascular smooth muscle cells (DMEM, 25mM glucose, 2% serum) were treated with TGFβ (10 ng/ml, 2 days). 

Changes in morphology are evident by light microscopy (original magnification X10) with cells adopting a more 

elongated appearance following TGFβ treatment. Immunostaining of VSMC revealed increased αSMA (green 

fluorescence) after TGFβ treatment (original magnification X20). Nuclei were stained with DAPI (blue 

fluorescence). (b) Gene expression analysis was assessed by quantitative RT-PCR and significant changes in 

response to TGFβ are indicated (*p<0.05 or **p<0.0001 vs control group). Bars indicate mean  SEM. 

 

To determine whether OPG expression is regulated by TGFβ in VSMC, cells were stimulated 

with increasing concentrations of  TGFβ (1-10ng/ml) for 48h. The treatment increased the 

OPG mRNA expression in a dose-dependent manner, whereas OPG protein expression 

reached a plateau since from the lowest concentration used (Figure 10a). To further confirm 

that the OPG release was mediated specifically by TGFβ, VSMC were pre-incubated with 

SB431542, the selective TGFβ-type 1 receptor inhibitor, at the concentration of  2µM for 1 

hour and then treated with TGFβ 1ng/ml for 48h. SB431542 completely blocked the OPG 

expression both at mRNA and protein level (Figure 10b). 

 

5.7 Recombinant full-length OPG increases the mRNA expression of NF-kB, TGFβ and 

pro-fibrotic markers in mouse primary VSMC 

According to the fact that OPG levels were increased in the aortic media of diabetic mice, the 

effect of increasing concentrations of OPG on VSMC was investigated in vitro. Treatment 

with 1-40ng/ml of OPG for 48h increased the mRNA expression of fibronectin, collagen I, 

collagen III and collagen IV in a dose dependent manner, which peaks at 10ng/ml. 
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Interestingly, with the same pattern, an increased level of TGFβ and NF-kB was also observed 

(Figure 11). 

 

 

 

Figure 10. TGFβ induced OPG mRNA and protein expression in VSMC. (a) Gene expression analysis by 

quantitative real-time PCR revealed a dose dependent induction of OPG mRNA expression in VSMC by TGFβ 
over 48h. Gene expression is expressed relative to not-treated group, which was arbitrarily designated as 1 

(*p<0.05 compared to control group) (left panel). Evaluations of OPG production in VSMC supernates 

following TGFβ (1-10ng/ml) treatment over 48h, determined by an ELISA kit (**p<0.0001 compared to control 

group) (right panel). (b) VSMC were treated with TGFβ (1ng/ml) for 48h after pre-incubation with SB431542 

(2µM) inhibitor for 1h. SB431542 completely blocked the OPG expression at mRNA and protein level. *p<0.05 

or **p<0.0001 vs control group. Bars represent mean  SEM. 
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Figure 11. Dose response effect of OPG treatment on VSMC gene expression. VSMC (DMEM, 25mM 

glucose, 2% serum) were treated with increasing concentrations of OPG (1-40ng/ml) for 48h. The expression of 

several genes was assessed by quantitative real-time PCR  and the significant changes caused by OPG treatment 

are indicated (*p<0.05 or †p<0.0001 vs control group). Bars indicate mean  SEM. 
 

5.8 Recombinant full-length OPG increases both OPG protein and mRNA expression in 

mouse primary VSMC 

In the light of the in vivo results, in which OPG-treated apoE
-/- 

mice showed an increase in 

OPG mRNA expression in the whole aorta, we have investigated in vitro whether the 

exposure to recombinant full-length human OPG had any effect on OPG release from aortic 

VSMC. As shown in Figure 12, the 48 hours treatment with full-length OPG promoted an 

increase in the OPG expression  both at mRNA and protein level in murine aortic VSMC. 

 

Figure 12. Full-length recombinant human OPG induced OPG mRNA and protein expression in murine 
VSMC. Gene expression analysis by quantitative real-time PCR revealed a dose dependent induction of OPG 

mRNA expression in VSMC by full-length human OPG over 48h. Gene expression is expressed relative to not-

treated group, which was arbitrarily designated as 1 (*p<0.05 compared to control group) (left panel). 

Evaluations of OPG production in VSMC supernates following full-length human OPG (1-40ng/ml) treatment 

over 48h, determined by an ELISA kit (**p<0.0001 compared to control group) (right panel).  
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STUDY 2 

 

6.1 In vivo injection of low concentrations of full-length recombinant human OPG induces 

a glycemic increase and an insulin levels reduction in C57Bl/6J mice  

Although serum osteoprotegerin is significantly increased in diabetic subjects (Browner et al., 

2001; Galluzzi et al., 2005; Knudsen et al., 2003; Rasmussen et al., 2006; Secchiero et al., a 

2006), its potential role in beta cell dysfunction has not been investigated. For this purpose 40 

male mice C57Bl/6J, aged 10 weeks, were further randomized to be i.p. injected either with 

recombinant human OPG or with control vehicle. In addition, in order to explore the possible 

interplay of OPG with the renin-angiotensin system (RAS), 20 mice received the ACE 

inhibitor ramipril  in co-treatment with i.p. injections of OPG or vehicle alone. It should be 

noticed that repeated i.p. injections of human recombinant OPG (every 3 weeks for 3 months) 

were well tolerated by the C57Bl/6J  mice. After 3 months, animals were analyzed for various 

parameters, as reported in Table 2, and then sacrificed to perform pathological examination. 

No difference between body weight and baseline systolic blood pressure was determined in 

animals prior to randomization. The body weight and systolic blood pressure were not 

significantly different in animals injected or not with human recombinant OPG. Treatment 

with  ramipril did not influence body weight, but, however, induced a significant reduction in 

systolic blood pressure.  Moreover no gross abnormalities at necroscopic examination were 

observed in OPG-treated animals with respect to vehicle- or ramipril-treated C57B1/6J mice.  

 

Parameters CONT 

(n=10) 

OPG 

(n=10) 

CONT-R 

(n=10) 

OPG-R 

(n=10) 

Body weight (g) 29.5  1.5 31.2  1.3 30.1  1.6 28.5  2.0 

SBP (mmHg) 95  2 98   3 80  2
*
 83  2

*
 

AUC (µg/L/min) 150  20 90  15
**

 145  18 143  17 

Table 2. Characteristics of the mice at the end of the study. SBP, systolic blood pressure; AUC, area under 

insulin curve; CONT, control mice; OPG, mice injected with recombinant human OPG; CONT-R, mice injected 

with vehicle and treated with ramipril; OPG-R, mice injected with OPG and treated with ramipril. *p<0.05 vs 

CONT and OPG groups; **p<0.01 vs other groups. Data are expressed as mean  SEM. 

 

Fasting blood glucose levels were measured every 4 weeks for 3 months using a glucose 

oxidase method. Mice injected with recombinant human OPG had significantly higher blood 

glucose levels after 2 and 3 months of treatment compared to control mice (p<0.05). 

Treatment with ramipril completely prevented the glycemic increase induced by OPG 
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administration (p<0.05) (Figure 13a). Consistently with the situation of fasting 

hyperglycemia, OPG-treated mice exhibited a reduction in serum insulin with respect to the 

control animals, that was statistically significant after 3 months of treatment (p<0.05). In the 

same way, co-treatment with the ACE inhibitor significantly improved insulin secretion in 

OPG injected mice (p<0.05) (Figure 13b). 

 

 

 

Figure 13. Effect of in vivo injections of recombinant OPG on fasting blood glucose and insulin serum 
levels. Kinetics of blood glucose levels, measured using a glucose oxidase method (a) and insulin serum levels, 

determined by an ELISA kit (b). Results are reported as mean  SEM. *p<0.05 vs other groups. 

 

Similarly the area under the insulin curve (AUC), evaluated between 0 and 120 minutes after 

the glucose challenge, was significantly reduced in OPG-treated mice compared to control 

animals (p<0.01). The co-treatment with ramipril induced a statistically significant improve in 
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the AUC of the OPG injected mice (p<0.01). Treatment with ramipril alone didn’t alter the 

AUC with respect to untreated mice (Table 2). 

 

6.2 In vivo injection  of  recombinant human OPG promotes a reduction in insulin staining 

density and in beta cell mass in C57Bl/6J mice  

Immunohistochemical staining for the beta cell marker insulin was strong and intense in 

control mice islets. In contrast, mice injected with recombinant human OPG presented islets 

that showed an attenuated and variable pattern of staining suggestive of progressive beta cell 

loss (Figure 14). Consistent with these evidences, the mean percentage of proportional area 

staining positively for insulin in the OPG treated mice was significantly reduced with respect 

to control mice (means  SEM (%): CONT 47.1  1.3; OPG 39.6  1.4; p<0.0001). Treatment 

with ramipril significantly increased the staining density for insulin (mean  SEM (%): OPG-

R 50.7  1.5; vs OPG p<0.0001). No difference in insulin pattern was observed in mice 

treated with ramipril alone compared to control mice islets (mean  SEM (%): CONT-R 49.6 

 1.3). 

Pancreatic beta cell mass was estimated by multiplying the mean islet density of staining for 

insulin by the mean islet area per area of pancreas. This was expressed in arbitrary units 

adjusted for the pancreatic wet weight for individual animals. OPG treated mice had a marked 

reduction in beta cell mass with respect to the mice injected with vehicle (means  SEM: 

CONT 14.8  1.6; OPG 9.56  0.9; p<0.05). Blockade of the RAS further increased total 

pancreas insulin content (mean  SEM: OPG-R 14.2  1.6 vs OPG p<0.05). Treatment with 

ramipril alone had no effect on the total beta cell mass (mean  SEM: CONT-R 13.9  1.5). 

 

6.3 In vivo administration of recombinant human OPG induces alterations in the 

histological composition of the pancreatic islets  in C57Bl/6J mice 

Islets in OPG treated animals were significantly enlarged with disarray of islet architecture, 

and irregular islet boundaries. Treatment with ramipril largely attenuated these changes 

(Figure 14). The in vivo administration of human OPG increased significantly Picrosirius 

staining both within and at the boundary of the islets (p<0.05) and this increase was 

completely prevented by ramipril treatment. Ramipril alone didn’t alter the total collagen 

content of the islets compared to the control animals (Table 3). 
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Figure 14. Effect of human recombinant OPG injections on pancreas islet morphology. Representative 

histological sections of pancreas (microscope magnification X20); specimens from control (CONT), OPG 

injected (OPG) and OPG injected treated with ramipril (OPG-R) mice. Dense immunostaining for insulin (upper 

panel) in CONT islets (A) and diffuse staining in OPG islets (B). Increased staining density after blockade of the 

RAS with ramipril (C). Staining for picrosirius red (middle panel) and for F4/80 (lower panel, brown staining) in 

islets from CONT (D, G), OPG (E, H) and OPG-R (F, I) mice. 

 

                                                             Picrosirius                                                         F4/80 

 Intra-islet Peri-islet Intra-islet Peri-islet 

CONT 3.7  0.3 12.4  0.9 0.019  0.005 0.163  0.036 

OPG 6.3  0.7
*
 16.6  1.2

*
 0.098  0.01

*
 0.406  0.079

*
 

CONT-R 3.0  0.4 11.3  0.3 0.013  0.009 0.197  0.086 

OPG-R 3.9  0.1 13.5  0.8 0.017  0.007 0.132  0.038 

 

Table 3. Intra- and peri-islet fibrosis and macrophages infiltration. Data for picrosirius are expressed as 

proportional area (%) of each islet (intra-) or of islet boundaries (peri-) occupied by positive red staining, shown 

as mean  SEM. Data for F4/80 are expressed as average of the number of cells staining positive (brown 

staining) in insular- or peri-insular level  SEM. *p<0.05 vs all groups. 
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In order to evaluate whether the reduction in beta cell mass observed in OPG-treated animals 

might involve the induction of apoptosis by OPG, a double immunofluorescence staining 

performed by combining  TUNEL plus a specific beta cell marker (insulin)  was applied to 

identify apoptotic cells within islet boundaries in C57Bl/6J mice treated or not with OPG. As 

shown in Figure 15, intraislet cell death was significantly greater in OPG injected mice (7-

fold) compared with infrequent apoptotic cells seen in control islets (p<0.01). Blockade of the 

RAS with ramipril reduced TUNEL staining within islet cells to control levels. 

 

 

Figure 15. Effect of in vivo injections of recombinant full-length OPG on beta cell apoptosis. Representative 

image of a pancreatic insula from OPG treated mice, double-stained for TUNEL (green) plus insulin antibody, 

followed by a Texas Red-dye conjugated secondary antibody (red) to visualize the beta cells. Beta cell apoptosis 

is expressed as the average number of TUNEL positive cells per insula in control (CONT), OPG injected (OPG), 
control treated with ramipril (CONT-R) and OPG injected treated with ramipril (OPG-R) C57B1/6J mice. Bars 

indicate mean  SEM (n=6 animals per group). *p<0.01 vs other groups. 

  

 

To investigate whether OPG treatment affected the degree of infiltration of cells of the 

monocytic/macrophagic lineage, serial sections of paraffin-embedded pancreas were stained 

for F4/80 antigen (Figure 14). Peri-insular and intra-insular infiltrations were significantly 

(p<0.05) increased in OPG-injected mice (2- and 3.7 fold, respectively) when compared with 

control animals injected with vehicle. Co-treatment with lifelong ramipril significantly 

reduced the expression of F4/80 protein in islets (Table 3). 
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6.4 Treatment with recombinant human OPG increases pancreatic mRNA expression of 

MCP-1, VCAM-1, TGF and CTGF in C57Bl/6J mice 

To quantify mRNA levels of the inflammatory and pro-fibrotic cytokines, reverse 

transcription polymerase chain reaction was performed in whole pancreas extracts. The 

injections with recombinant human OPG promoted a significant increase in MCP-1, VCAM-

1, TGF and CTGF gene expression (Figure 16). These increases were completely prevented 

by the treatment with the ACE inhibitor ramipril (Figure 16). 

 

 

Figure 16. Effect of full-length OPG treatment on MCP-1, VCAM-1, TGF and CTGF RNA levels in 
pancreas. Gene expression analysis was assessed by quantitative RT-PCR on whole pancreas extracts of control 

(CONT), OPG injected (OPG), control treated with ramipril (CONT-R) and OPG injected treated with ramipril 

(OPG-R) C57B1/6J mice. Gene expression is expressed relative to the CONT group, which was arbitrarily 

designated as 1. In panel a, mRNA expression of monocyte chemotactic protein-1 (MCP-1) (*p<0.05 vs other 

groups), and vascular adhesion molecule-1 (VCAM-1) (*p<0.05 vs other groups). In panel b, mRNA expression 

of transforming growth factor- (TGF) (*p<0.05 vs other groups), and connective tissue growth factor (CTGF) 

(*p<0.05 vs CONT and OPG groups; †p<0.0001 vs CONT-R group). Bars indicate mean  SEM (n=6 animals 
per group). 

 

6.5 In vivo injection of  human recombinant OPG induces an activation of the local 

pancreatic RAS in C57Bl/6J mice 

OPG-treated mice showed an activation of the local RAS as assessed by a significant increase 

in ACE and AT1 receptor gene expression (by 8.7- and 2.2 fold, respectively) in the pancreas 

when compared with control animals (Table 4). Densitometric analysis of pancreatic ACE 

and AT1 receptor demonstrated the same pattern as seen with respect to ACE and AT1 gene 

expression. Ramipril treatment prevented the up-regulation of ACE and AT1 receptor 

compared to treated OPG animals with mRNA and proteins levels similar to that observed in 

control animals (Table 4). 
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 ACE AT1 receptor 

Immunohistochemistry   

CONT 8.0  1.7 2.7  1.0 

OPG 16.1  3.2
*
 5.5  0.6

*
 

CONT-R 6.3  2.2 2.9  0.8 

OPG-R 8.7  1.1 3.1  0.5 

Real-time RT-PCR   

CONT 1.0  0.6 1.0  0.2 

OPG 8.7  2.8† 2.2  0.4
*
 

CONT-R 0.6  0.1 1.0  0.2 

OPG-R 0.7  0.3 1.1  0.3 

 

Table 4. Expression of components of the RAS as quantified by immunohistochemistry and real-time RT-

PCR. 

Data are proportional area (%) of each islet occupied by positive staining for specific islet proteins, shown as 

mean  SEM (for immunohistochemistry); and data are results from gene expression study presented as a ratio 

compared with CONT, shown as mean  SEM (for real-time RT-PCR). *p<0.05 vs other groups; †p<0.0001 vs 
other groups. 
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DISCUSSION 

 

Many different studies have shown that increased amounts of serum OPG correlate with 

increased cardiovascular risk in both diabetic and non-diabetic patients (Jono et al., 2002; 

Schoppet et al., 2003; Kiechl et al., 2004; Moran et al., 2005; Secchiero et al., a 2006;  Shin et 

al., 2006; Abedin et al., 2007). Possible interpretations of this positive relationship include 

OPG playing an active role in disease progression or OPG serving as a compensatory 

response to reduce disease progression, or OPG representing a noncompensatory (neutral) 

response to disease. The interpretation that OPG serum elevation represents a compensatory 

mechanism mainly relies on studies conducted on OPG knockout mice showing a protective 

role of OPG against vascular calcifications (Bucay et al., 1998; Price et al., a 2001; Bennet et 

al., 2006). However, in each of these models the prevention of vascular calcification by OPG 

was associated with strong suppression of bone turnover. Furthermore, both recombinant 

OPG (Price et al., a 2001)  and bisphosphonate (Price et al., b 2001) treatments of rats 

suppressed vascular calcification in a warfarin model of vascular calcification, in association 

with suppression of bone turnover. Taken these data together, seems that the ability of OPG to 

inhibit vascular calcification is an indirect effect of its anti-osteoclastic activity. In contrast, in 

vitro studies have clearly shown that the expression and release of OPG by vascular cells is 

markedly induced in response to inflammatory cytokines, such as TNF-α  and platelet-derived 

growth factor (PDGF) (Olesen et al., 2005; Zhang et al., 2002), and that OPG promotes 

leukocytes adhesion to endothelial cells (Zauli et al., 2007; Mangan et al., 2007), suggesting 

an active role of OPG in disease progression. On these bases, the aims of our studies were 

elucidate the potential roles of OPG in the pathogenesis of atherosclerosis and in pancreatic 

beta cell dysfunction. To investigate whether OPG is involved in pathogenetic aspects of 

atherosclerosis, apoE
-/-

 mice, with or without diabetes, were injected every 3 weeks with 

recombinant full-length OPG and studied for 3 months. Subsequently, the animals were 

analyzed for the total plaque area and for the plaque cellular content, as well as for the media 

histology. Moreover, in parallel to in vivo studies, the effect of increasing concentrations of 

OPG were analyzed in vitro, using murine primary VSMC [see 7.1-section]. 

On the other side, to investigate whether OPG is involved in pathogenetic aspects of diabetes 

mellitus, C57Bl/6J mice, that do not spontaneously develop atherosclerotic lesions with a 

normal chow diet, were injected every 3 weeks with recombinant full length OPG and, after 3 

months, sacrificed to perform the analysis of the pancreatic beta cells structure and function. 
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In addition, starting from some evidences for an interplay between OPG and the RAS 

pathways in human aortas, the long term co-treatment with the ACE inhibitor ramipril was 

investigated  in order to evaluate if it could hinder the effect of exogenous OPG on beta cells 

remodelling and function [see 7.2-section]. 

 

7.1 OPG and diabetes associated atherosclerosis 

The first part of our study showed that repeated injections of relatively low concentrations of 

human OPG resulted in a significant increase in the total aortic plaque area in apoE
-/- 

diabetic 

mice, a well characterized animal model of diabetes-accelerated atherosclerosis,  which have 

been shown to develop aortic lesions characteristic in appearance and distribution to those 

observed in humans (Nakashima et al., 1994; Wu and Huan, 2007). Taking into account that a 

series of in vitro and in vivo experiments, conducted previously by our group, have  

demonstrated that soluble recombinant TRAIL shows anti-inflammatory (Secchiero et al., 

2003; Zauli et al., 2003; Secchiero et al., 2005) and anti-atherosclerotic (Secchiero et al., b 

2006) activity, a mechanism by which OPG might accelerate the development of 

atherosclerotic lesions is through the inhibition of soluble circulating TRAIL. Moreover, the 

demonstration that OPG significantly increases the mRNA expression of angiopoietin 2 at the 

aortic level is in line with a recent in vitro study (Mangan et al., 2007). Since angiopoietin 2 

has been shown to play a key role in the early steps of atherosclerosis (Fiedler et al., 2006), 

the ability of OPG to increase the expression of angiopoietin 2 might represent an important 

additional pathogenetic mechanism to explain the ability of OPG to promote atherosclerosis. 

On the other side, we also noticed a slight trend for an increase in systolic blood pressure in 

the OPG-treated diabetic mice, which might account for the changes observed in 

atherosclerotic plaques. 

It is also noteworthy that the aortic plaques in OPG-treated diabetic apoE
-/- 

mice presented a 

significant increase in the percentage of VSMC. Furthermore, in line with the in vivo results, 

in vitro data demonstrated that recombinant full-length OPG promoted also the proliferation 

of  primary rodent cultured VSMC. In this context, is important to underline that the full-

length recombinant OPG, that we used for our experiments, possess an heparin binding 

domain, that  is essential to mediate important pro-inflammatory effects of OPG (Vitovski et 

al., 2007; Zauli et al., 2007; Mangan et al., 2007), in an independent manner to its role of 

decoy receptor for TRAIL and RANKL. According to this,  we should consider that the 
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VSMC migration and proliferation, could be mediated by the interactions between the heparin 

binding domain of OPG and cell surface proteoglycans (Rauch et al., 2005). 

Besides contributing to vessel wall inflammation and lipoprotein retention, VSMC play a 

foundamental role in the formation of the fibrous cap that provides stability to the plaques, 

preserving them from rupture, and therefore the benefit/risk of therapeutic inhibition of 

VSMC proliferation in atherosclerosis is unclear (Libby, 2002). In this context, the effect of 

OPG on plaque formation seems to be twofold: on one side, it increases the extent of the total 

plaque area, but on the other side it may contribute to plaque stabilization by promoting the 

proliferation of VSMC.  

Subsequently, in the second part of our study, we analyzed whether in vivo administration of 

human recombinant OPG could induce some modifications in VSMC of the aortic media too, 

in the absence of a diabetes associated atherosclerosis. Basically, the strategy adopted of 

delivering human OPG intraperitoneally was chosen  in order to try to mimic the effect of a 

small elevation of OPG serum levels, by allowing a prolonged release of the molecule into the 

general circulation.  

The possible existence of a link between the high levels of OPG and TGFβ observed in 

diabetes was suggested by our preliminary results, showing that  OPG and TGFβ  were 

augmented in aortas of diabetic animals. 

Interestingly, apoE
-/- 

mice injected with OPG presented a trend for an increase in TGFβ, 

fibronectin and OPG gene expression and, more importantly,  a significant increase in the 

interstitial medial aortic collagen content, resembling an intermediate situation between 

diabetic and control animals injected with vehicle. 

TGFβ is generally accepted to be the main pro-fibrotic factor in diabetic complications, and 

several evidences support its important role in development of glomerulosclerosis and 

interstitial fibrosis (Ban and Twigg, 2008), and in regulating cardiac extracellular matrix 

deposition (ECM) (Westermann et al., 2007). Several different investigations supported the 

hypothesis that  an increased expression of TGFβ, which is the main responsible for ECM 

accumulation, is involved in many cardiovascular complications by participating in the 

fibrotic process (Yokoyama and Deckert, 1996; Piao and Tokunaga, 2006; Pham et al., 2010; 

Ruiz-Ortega et al., 2007). 

On the other side, many studies demonstrated that OPG secretion is regulated in smooth 

muscle cells by different stimuli, such as insulin (Olesen et al, 2005), angiotensin II (Moran et 

al., 2009) or proinflammatory cytokines, like tumor necrosis α (Moran et al., 2005). Clearly, 

many other factors could also play a role in high serum OPG levels that characterized both 
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type 1 and type 2 diabetes (Secchiero et al., a 2006; Galluzzi et al., 2005; Rasmussen et al., 

2006; Browner  et al., 2001; Knudsen et al., 2003; Avignon et al., 2005; Anand et al., 2006).  

To further explore this potential link between TGFβ and OPG, we carried out a series of in 

vitro experiments using mouse primary aortic VSMC. Interestingly, VSMC treated with 

TGFβ, as well as having an elongated and broadened morphology and an increased expression 

of ECM components and profibrotic markers, showed an increased expression of OPG both at 

protein and mRNA level since from the lowest concentration used. This finding suggests that 

TGFβ could actively participate in the increased amounts of OPG seen in the aortic vessel of 

the diabetic animals. 

Subsequently, in order to analyze the possible phisiopathological role of high concentrations 

of OPG observed in diabetes, we investigated the effect of this molecule in the same in vitro 

model, represented by the mouse primary aortic VSMC. OF note, VSMC treated with OPG 

presented an increased expression of fibronectin and profibrotic markers that resembled what 

TGFβ, in the same experimental conditions, did. Furthermore, in this system, a significant 

increase in TGFβ expression, as well as an auto-induction of OPG release were also observed, 

suggesting that probably a vicious cycle exists between TGFβ and OPG.  

As a major transcription factor in inflammatory responses, nuclear factor kB is involved in the 

regulation of inflammatory and immune genes, apoptosis, and cell proliferation. Taking in 

consideration that inflammatory events characterize all stages of the atherosclerotic process , 

NF-kB has been considered a crucial element in the initiation of atherogenesis (Monaco and 

Paleolog, 2004; de Winther et al., 2005) . According to this, it is noteworthy that the NF-kB 

increase, induced by OPG treatment, supports the potential proinflammatory role of OPG, 

which is consistent to what we and other groups have previously shown (Zauli et al., 2007; 

Mangan et al., 2007).  

In summary, taking in consideration that collagen synthesis occurs very early in lesion 

development (Rekhter, 1999) and an increase in OPG levels characterizes the early onset of 

diabetes (Secchiero et al., a 2006), our data, from in vitro and in vivo models, suggest  that 

OPG is involved in diabetes-induced vascular ECM accumulation, probably via TGFβ 

induction,  and that the up-regulation of TGFβ actively participates in the increased amount of 

OPG seen in diabetes, suggesting a positive feedback regulatory mechanism. 

 In conclusion, overall these data together, suggest  that high OPG levels could definitely play 

an important role in the development and progression of diabetic atherosclerosis. 
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7.2 OPG and pancreatic beta cells dysfunction 

Results obtained from in vivo studies performed in C57Bl/6J mice have demonstrated that the 

systemic administration of recombinant human OPG promotes significant histopathological 

changes in pancreatic islets including selective loss of beta cells by apoptosis, increased 

infiltration of monocytes/macrophages, increased expression of inflammatory molecules and 

fibrosis. In addition, exogenous administration of OPG also induced a significant increase of 

gene and protein expression of  ACE and AT1 receptor and we have also observed the 

attenuation of these changes after chronic blockade of the RAS, in keeping with previous 

strong evidence that most of the components of functioning RAS are present locally in the 

endocrine pancreas and that islet RAS has a role in regulating pancreatic islet function (Leung 

and Carlsson, 2001; Tikellis et al., 2006). These findings are particularly relevant since it has 

been shown that angiotensin II plays an important role in regulating insulin islet secretion 

(Carlsson et al., 1998; Lau et al., 2004) and the process that leads to beta cell loss and 

dysfunction in type 1 and type 2 diabetes are significantly influenced by local activation of 

the RAS (Tikellis et al., 2006). 

The molecular mechanism by which OPG controls ACE and AT1 gene expression is not 

known. The expression of ACE and AT1 receptor have been shown to be associated with 

activation of the mitogen-activated protein kinase (MAPK) and nuclear factor-kB 

transduction pathways (Cowling et al., 2002; Koka et al., 2008; Martin et al., 2007). In this 

respect, it should be emphasized that OPG is able to stimulate MAPK signaling (Theoleyre et 

al., a 2004). Taking these data together with the present study it prompts us to hypothesize 

that OPG might control transcription mechanism governing ACE and AT1 gene expression. 

In this context, it should also be taken into account that pancreatic inflammation may also 

result in the upregulation of local RAS as demonstrated in animal models of pancreatitis 

(Kuno et al., 2003). In our experimental setting, an islet accumulation of cells of the 

monocytic/macrophagic lineage was noted after OPG administration, and this was associated 

with an increased expression of MCP-1, a proinflammatory chemoattractant whose expression 

correlates with the progression of insulitis and beta cell destruction in different murine models  

(Chen et al., 2001; Ehses et al., 2009). In addition, the endothelial adhesion molecule VCAM-

1, which is important for the adhesion of macrophages to the vascular wall, as demonstrated 

in experimental diabetes (Candido et al., 2004), was also significantly increased in OPG-

treated animals. Previous studies have demonstrated that the pro-inflammatory effect of OPG 

is mediated by a direct interactivity with cell surface heparan solfate (Mosheimer et al., 2005) 
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or alternatively by preventing the antiinflammatory activity of TRAIL (Zauli et al., 2009). In 

this respect, it is particularly noteworthy that the TRAIL death pathway is present in islet beta 

cells (Ou et al., 2002) and we have recently demonstrated that recombinant TRAIL 

ameliorates the severity of streptozotocin-induced type 1 diabetes (Zauli et al., 2010). 

Therefore, a possible mechanism by which OPG might contribute to beta cell dysfunction is 

by inhibiting the antiinflammatory activity of circulating TRAIL. Notwithstanding these 

multiple potential pathways mediating the inflammatory response to OPG, all the 

inflammatory effects observed in our study after administration of OPG may be explained by 

the local RAS upregulation and its downstream sequelae. In accordance with this hypothesis, 

ACE inhibitor treatment prevented all the OPG-induced inflammatory changes.  

In native tissues, the interaction between pancreatic beta cells and elements of their local 

micro-environment including extracellular matrix is essential to activate intracellular 

signaling pathways that regulate cell proliferation, survival and function. Loss of cell-to-cell 

communications associated with increased intraislet fibrosis may reduce the secretory 

efficiency of the islet and promote islet cell apoptosis (Tikellis et al., 2004). We report here 

that chronic OPG treatment increases peri- and intrainsula fibrosis and promotes the 

expression of TGF mRNA and its downstream effector CTGF in the pancreas. Both TGF 

and CTGF have been associated with fibrosis in diabetic nephropathy (Murphy et al., 1999) 

and pancreatitis (di Mola et al., 1999; Kuno et al., 2003). Also the RAS has been linked to 

increased fibrosis in a variety of tissues including the heart (Seccia et al., 2003), kidney 

(Satoh et al., 2001) and liver (Yoshiji et al., 2001). In fact, locally produced angiotensin II is 

thought to upregulate, via AT1 receptor, the expression of fibrogenic cytokines and growth 

factors including TGF and CTGF (Ruperez et al., 2003). Moreover, the use of an ACE 

inhibitor or AT1 receptor antagonist have been shown to result in reduced fibrosis from 

inhibtion of TGF and CTGF in animal models of diabetes mellitus (Tikellis et al., 2004) and 

pancreatitis (Kuno et al., 2003). It is conceivable that the reduction in islet fibrosis observed 

in this study after treatment with ramipril may be mediated through a similar pathway. 

Pancreatic beta cell death by apoptosis is believed to be the primary mechanism for the 

reduction of beta cell mass and volume in both type 1 and type 2 diabetes (Thomas et al., 

2009). Apoptosis in beta cell is a highly complex process and angiotensin II has been shown 

to play a relevant role in the control of beta cell life and death (Yuan et al., 2010). In the 

present study the OPG induction of islet apoptosis is closely related to upregulation of 

pancreatic RAS and these changes were prevented after treatment with ramipril. The 
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maintenance of beta cell area/density is important for maintaining a correct insulin secretion. 

Consistently with a protective role of ramipril the levels of insulinemia were significantly 

higher in mice treated with OPG + ramipril, and OPG + ramipril treated animals showed 

reduced level of hyperglycemia throughout the whole period of the study with respect to 

OPG-injected animals. Moreover ramipril co-treatment significantly ameliorated insulin 

response after the glucose challenge, suggesting an improvement in beta cell function. 

Because disruption of contacts between beta cells and beta cell loss reduces the secretory 

efficiency of islets, the results illustrated in our study suggest a potential mechanism to 

explain why pathologically elevated serum OPG levels, frequently occurring in both type 1 

and type 2 diabetes (Browner et al., 2001; Galluzzi et al., 2005; Knudsen et al., 2003; 

Rasmussen et al., 2006; Secchiero et al., a 2006), are linked to the development and/or 

maitenance of diabetes mellitus.  

In conclusion the present study indicates in the overactivity of the local RAS one of the 

possible mechanisms responsible for the OPG-induced islet beta cell dysfunction, suggesting 

that elevated level of OPG  may have an active role in pancreatic islet pathophysiology. 

7.3 Perspective 

In vitro and in vivo data indicate that OPG might have an important role in promoting pro-

atherogenic and  pro-fibrotic effects in vascular physiopathology, as well as in inducing 

pancreatic beta cell dysfunction. Furthermore, full-length OPG seems to have a clear 

inflammatory activity, that is in line with many recent in vitro studies reported by our and 

other groups (Zauli et al., 2007; Mangan et al., 2007). 

Considerable controversy still exists regarding the role of OPG/RANKL/RANK/TRAIL in 

cardiovascular disease and there is as yet no hypothesis unifying the apparent dichotomy in 

the nature of this system noted in animal and human studies (Venuraju et al., 2010). As 

already reported, serum OPG levels are elevated in both type 1 and type 2 diabetic patients 

and progressively increase with the duration of diabetes. Unfortunately at the moment there 

are no clear evidences of a relationship between an increase in OPG serum levels and any 

prediabetic condition. Consequently, OPG serum levels that could be potentially responsible 

for beta cell dysfunction are already unknown, also considering that once diabetes has been 

established, serum OPG levels are influenced by several factors such as arterial accumulation 

of the molecule and increased production from vascular smooth muscle cells induced by 

many different cytokines like TNF- and TGFβ. Although it cannot be ruled out that high 

plasma OPG levels are an epiphenomenon of inflammatory processes harbored in vascular 
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lesions, our data suggest rather that elevated level of OPG in diabetes may have an active role 

in the development and progression of atherosclerosis as well as in pancreatic islet 

pathophysiology. Moreover our results indicate in the overactivity of the local RAS one of the 

possible mechanisms responsible for the OPG-induced islet beta cell dysfunction, and this 

may explain why the use of an ACE inhibitor, currently and safely used in clinical setting,  

may be suitable to target OPG pancreatic effect. 

Of note, the triad RANKL/RANK/OPG plays a central role in coupling bone formation and 

resorption during normal bone turnover and in a wide spectrum of diseases characterized by 

disturbed bone remodeling, increased bone resorption and bone destruction (osteoporosis, 

Paget’s disease of bone, rheumatoid arthritis, metastatic bone disease). While little doubts 

exist on the ability of pharmacological concentrations of recombinant chimeric OPG-Fc, in 

which the signal peptide, the heparin-binding domain and the death domain homologous 

regions are removed, to efficiently counteract bone turnover associated to different 

pathological conditions (Zauli et al., 2009), the overall effects of full-length OPG are much 

less clear. Anyhow, an important implication of our data is that denosumab, a fully human 

monoclonal antibody which blocks osteoclastogenesis by inhibiting RANKL (Kearns et al., 

2008; Geusens, 2009), might be preferable to recombinant OPG for the treatment of 

pathologies associated with high bone turnover, such as osteoporosis. 
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