
 
 

Università degli Studi di Ferrara
 

 

DOTTORATO DI RICERCA IN  

BIOLOGIA EVOLUZIONISTICA E AMBIENTALE  

 

CICLO XXV 

 

COORDINATORE Prof. Guido Barbujani 

 
 

Biotechnological potential of microalgae: 

morpho-physiological and biochemical studies 

  

Settore Scientifico Disciplinare BIO/01 

 

 

 

  Dottoranda                                                                       Tutor 

    Dott.ssa Martina Giovanardi                                      Prof.ssa Simonetta Pancaldi 

 

 

 

Anni 2010/2012 

  



 
 

Table of contents 

 

1. General introduction                                                                     1  

1.1. Diversity of microalgal groups 1 

1.2. The relevance of microalgal biotechnology 5 

1.3. Microalgae as a promising source of biofuel 9 

1.4. The difficult binomial biomass production-lipid accumulation and possible  

    strategies to overcome it 14 

1.5. Technologies for microalgal biomass production 18 

1.6. The photosynthetic apparatus in green algae and higher plants 20 

1.7. Non-photochemical quenching induction and role of the xanthopyll cycle on  

   the formation of qE 25 

1.8. Methods involved in studies of the photosynthetic membranes 26 

Tables and Figures 33  

Aim of the work 39 

Part I: Effects of mixotrophy on cell growth, lipid accumulation and photosynthetic  

performance of the green microalga Neochloris oleoabundans: biotechnological 

implications                                                 41 

1. Introduction    42 

2. Mixotrophic growth of N. oleoabundans with glucose as organic carbon source 46 

2.1. Materials and Methods 46 

2.2. Results and Discussion 48 

3. Mixotrophic growth of N. oleoabundans in a carbon-rich waste product 

and lipid synthesis induction during nutrient starvation 55 

3.1. Materials and Methods 55 

3.2. Results and Discussion 59 

4. Conclusion 72 

Tables and Figures 75 

 



 
 

Part II: Effects of glucose on the organisation of the photosynthetic apparatus  

in the microalga Neochloris oleoabundans                                   94 

1. Introduction 95 

2. Materials and Methods 98 

3. Results  102 

4. Discussion  108 

5. Conclusion  114 

Tables and Figures  115 

 

Part III: Effects of the expression of two phytoene synthase exogenous genes on 

 carotenoid accumulation and photosynthetic performances in the green  

microalga Chlamydomonas reinhardtii  122 

1. Introduction  123 

2. Materials and Methods  125 

3. Results  131 

4. Discussion  138 

5. Conclusion  144 

Tables and Figures  145 

Concluding Remarks  155 

References  156

  

 

 

 

 
 

 

 



 
 

Abbreviations 

 
A  antheraxanthin 
ACCase acetyl-CoA carboxylase 
ATPase ATP synthase 
AWP  apple waste product 
BM  brackish medium 
BN  Blue Native 
Chl  chlorophyll 
Car  carotenoids 
CTAB  cetyltrimethyl ammonium bromide 
Cyt  Cytochrome  
DCMU  3-(3,4-dichlorophenyl)-1,1-dimethylurea 
div  division 
DNS  3,5-dinitrosalicylic acid assay  
EDTA  Ethylenediaminetetraacetic acid 
ES  Erddekokt Salze medium 
FM  maximum PSII fluorescence in the dark adapted state 
Fm  recovered maximum PSII fluorescence in the dark adapted state in a sample 

previously exposed to high light 
FmM  maximum PSII fluorescence in the dark adapted state (in experiments where 

light-induced PSII photoinhibition is also assessed) 
Ft  steady-state fluorescence 
FV  variable fluorescence 
F0  minimal fluorescence 
GGPP  geranylgeranyl pyrophosphate 
Glu  glucose 
HL  high light 
HPLC  high performance liquid chromatography 
kD  constitutive NPQ constant 
kf  fluorescence constant 
kp  photochemical rate constant 
kNPQ  regulated NPQ constant 
LHC  light-harvesting complexes 
LL  low light 
NADP+  nicotinamide adenine dinucleotide phosphate (oxidised)  
NADPH nicotinamide adenine dinucleotide phosphate (reduced) 
NDH  NAD(P)H dehydrogenase 
NPQ  non-photochemical quenching 
NTPs  ribo-nucleotides  
OD  optical density 
PAGE  polyacrylamide gel electrophoresis 
PAM  pulse amplitude modulation 
PAR  photosynthetically active radiation 
PCR  polymerase chain reaction 
Pheo  pheophytin 



 
 

PQ  plastoquinone 
prt  protein 
PSI  photosystem I 
PSII  photosystem II 
PSY  phytoene synhtase 
PUFA  polyunsaturated fatty acids 
PVDF  polyvinylidene fluoride 
QA  primary quinone acceptor 
QB  secondary quinone acceptor 
qE  energy depending quenching  
qI  photoinhibitory quencing 
qT  state-transition quenching 
RC  reaction center 
RNAi  RNA interference 
ROS  reactive oxygen species 
RT  room temperature 
RT-PCR  reverse transcription -  polymerase reaction chain 
RuBisCO ribulose-1,5-biphosphate carboxylase/oxygenase 
SDS  sodium dodecyl sulphate 
TAG  triacylglycerol 
TAP  Tris – acetate – phosphate medium 
TEM  transmission electron microscope 
V  violaxanthin 
wt  wild type 
Y(NF)  quantum yield of thermal dissipation associated with inactivated PSII 
Y(NO)  combined yield of fluorescence and constitutive thermal dissipation 
Y(npq)  yield of non-photochemical quenching 
Y(PSII)  yield of PSII photochemistry 
Z  zeaxanthin 
2D  second dimension 
 

 



1 
 

1. General introduction 

During these last few decades the search of new sources of agricultural products that 

do not affect the Earth’s declining agricultural and energy resources is becoming more and 

more necessary. In fact, several problems which are all associated with the constant growth 

of the world population have to be solved, such as the limits of Earth’s arable lands, the 

continuing need for more agricultural products appointed to human food, animal feed, raw 

materials for industries (Dӧӧs et al., 2002; Spolaore et al., 2006; Shneider et al., 2011), 

together with the necessity of finding new renewable sources to compete with the 

increasing cost and depletion of fossil fuels (Smith et al., 2010). With this in mind, microalgae 

have gained considerable importance for their possible use in a wide range of applications, 

that vary from simple biomass production to valuable products with commercial and 

ecological implications (Pulz and Gross, 2004). 

 

1.1. Diversity of microalgal groups 

Microalgae are photosynthetic microorganisms, with the ability, then, to use solar 

energy for the synthesis of organic compounds that can be used for food, animal feed, as 

high-value compounds and potential biofuels (Chisti, 2007). These organisms can be found in 

all existing Earth ecosystems, both aquatic and terrestrial, and include a big variety of 

species living in a wide range of environmental conditions, such as fresh, brackish or marine 

waters, high temperatures, even up to 45°C, and acid or alkaline conditions (Aaronson and 

Dubinsky, 1982; Hu et al., 2008; Mata et al., 2010). Moreover, they usually have the 

potential to adapt to diverse habitats, as well as the ability to efficiently modify their 

metabolism in response to changes in environmental conditions (Gushina and Harwood, 

2006; Leonardi et al., 2011). 

Taxonomically, microalgae have been classified on the basis of the following main 

criteria: i) photosynthetic pigments, ii) storage reserves and iii) nature of cell covering (van 

den Hoek, 1995; Tommaselli, 2004). Moreover, further cytological and morphological 

characters have been taken into consideration, such as the occurrence of flagellate cells and 

the structure of flagella, the modality of nuclear and cell division, the presence of an 
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envelope of endoplasmic reticulum around the chloroplast and the possible connection 

between the endoplasmic reticulum and the nuclear membrane (Tommaselli, 2004). In 1989 

Lee was one of the first scientists that classified these photosynthetic organisms in different 

groups on the basis of the evolution of the plastid, which sometimes can be surrounded by 

additional membranes originating from the endoplasmic reticulum (Tommaselli, 2004). In 

particular: 

 Glaucophyta, Rhodophyta and Chlorophyta have the plastid surrounded by only two 

membranes; 

 Dinophyta and Euglenophyta have the plastid surrounded by one additional membrane; 

 Heterokontophyta have the plastid surrounded by two additional membranes. 

The Division Chlorophyta represents one of the greatest group of algae, whose 

members are widespread in all aquatic environments, with a big morphological variability, 

ranging from microscopic (with or without flagella) to macroscopic organisms (Tripodi, 2006; 

Tommaselli, 2004). These microalgae have in common several characteristics other than the 

chloroplast enclosed by a double membrane: 

 chlorophylls (Chl) a and b as photosynthetic pigments, together with α- and β-carotene, 

xantophylls and other carotenoids (Car) as accessory pigments (Tripodi, 2006; Leonardi et 

al., 2011). The photosynthetic pigment profile is very similar to that of higher plants 

(Deveraux et al., 1990). In fact, green algae and higher plants belong to the same group of 

Viridiplantae; 

 starch (α-1,4-linked polyglucane, with α-1,6 ramifications) as storage product, exclusively 

synthesized and accumulated inside the chloroplast. When a pyrenoid is present, starch is 

found around this structure, which is frequently crossed by one or more thylakoids. 

Starch granules can also be present embedded in the stroma (Dodge, 1973); 

 cellulose as the main component of the cell wall (Tommaselli, 2004). 

The group includes coccoid, unicellular or colonial flagellates, multicellular or 

multinucleate filaments. Furthermore, a very wide variety in the chloroplast morphology is 

observed among the different algae, thus the plastid is considered an important taxonomic 

character (Tripodi, 2006). The Chlorophyta are also commonly named “green algae” because 

of the characteristic bright-green colour that is conferred to the cells by the pigment profile 
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(Leonardi et al., 2011). However, exceptions can be found in this group. In fact, some 

microalgae accumulate Car under certain conditions (usually stress conditions) of growth 

and, for this reason, they acquire a deep red to purple colouring (Tommaselli, 2004). An 

example is given by Haematococcus pluvalis (Fig. 1 a), whose cells are converted to cysts and 

astaxanthin, which confers an orange-red colour, is accumulated inside the protoplast when 

the growth conditions become unfavourable (Tommaselli, 2004; Damiani et al., 2010). The 

Division comprises 4 different Classes. Among them, the Chlorophyceae Class is considered 

the largest taxonomic group in which the microalgae exploited for commercial application 

can be found. Chlamydomonas sp. (Fig. 1 b), for example, is often used in laboratories for 

molecular biology studies and is considered a model organism (Harris et al., 2001; Leonardi 

et al., 2011), whereas Dunaliella sp. (Fig. 1 c), Haematococcus sp. and Chlorella sp. (Fig. 1 d) 

are considered natural sources of industrially useful products (Spolaore et al., 2006). 

The Rhodophyta Division includes around 4000 species, mainly inhabiting marine 

waters (Tripodi, 2006). This group of organisms is mainly represented by macroalgae, while 

the unicellular forms are less common (Tommaselli, 2004). The Rhodophyceae are also called 

“red algae” because of the characteristic colour of the tallus, which is given by accessory 

pigments, the phycobiliproteins (phycoerythrin and phycocyanin), associated with the Chl a 

(and sometimes the Chl d), as well as the presence of α- and β-carotene and xantophylls 

(Tripodi, 2006). Floridean starch (β-1,4-linked glucan) is accumulated in the cytoplasm as a 

storage product. The cell wall is composed by a microfibrillar layer of cellulose or xilan, but 

the main components are amorphous polysaccharides (mucilage), usually agar or 

carrageenans. The morphology of the plastid is very variable in this group of organisms, 

however single thylakoids (never differentiated in grana and intergrana; Pancaldi et al., 

2011), phycobilisomes and pyrenoids are always present inside the organule (Tommaselli, 

2004). Red algae represent the majority of the seaweeds. Commercial exploitation of this 

group of organisms involves the extraction and employment of the mucilage from the cell 

wall (Tommaselli, 2004). 

The Dynophyta Division embraces unicellular biflagellate planktonic algae living in 

fresh and marine waters. These organisms have the chromosomes always condensed inside 

the nucleus, starch accumulated outside the chloroplast, Chls a and c2 and Car, including 

peridinin, as pigments (Tripodi, 2006; Tommaselli, 2004; Pancaldi et al., 2011). A great 
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variety in morphology and size is present in these group of organisms. They commonly have 

a cell covering structure (theca) that differentiates them from other algal groups (Tripodi, 

2006). Cells can be indeed either armored or unarmored. Armored species have thecae 

formed by cellulose plates, which are key features used for their identification, surrounding 

the cell wall (Tommaselli, 2004). The theca can be smooth and simple or laced with spines, 

pores and/or grooves and can be highly ornamented (Tripodi, 2006). Dynophalgellates are 

known to produce highly toxic large blooms, and for this reason have attracted a lot of 

negative attention from the general public (Tripodi, 2006). Moreover, Dynophlagellates are 

considered an important source of ω-3-unsaturated fatty acid, such as eicosapentaenoic and 

docosaesaenoic acids (Tommaselli, 2004). 

The Heterokontophyta Division includes nine classes of organisms (van den Hoek 

1995), which differ in pigment composition, cell wall nature and structure of the flagella. 

When present, they always have unequal lengths (Tripodi, 2006). The Heterokontophyta 

represent a very important group of photosynthetic organisms, as they form most of the 

marine phytoplankton (Tripodi, 2006). The storage product is chrysolaminarin (β-1,3-linked 

glucan), but also lipids can be highly accumulated inside the cytoplasm. The chloroplast 

contains Chls a and c and Car such as β-carotene and xantophylls, which confer the 

characteristic “gold-green” colour to the cells (Tripodi, 2006). The Eustigmatophyceae and 

the Bacillariophyceae classes include species which are used for commercial applications 

(Leonardi et al., 2011). The Eustigmatophyceae Class embraces unicellular, very small, 

coccoid organisms that are often mistaken for green-microalgae because of the similarity in 

morphology, reproduction, cell colour and chloroplast structure. These organisms contain 

only Chl a inside the chloroplast, whereas violaxanthin is the major light-harvesting 

accessory pigment. Moreover, the structure of the glucidic storage product is unknown 

(Leonardi et al, 2011). One of the most important microalgae belonging to this Class is 

Nannochloropsis sp., well known for its ability to accumulate polyunsaturated fatty acids, 

mainly eicosapentaenoic acid, used for biofuel production (Boussiba et al., 1987; Rodolfi et 

al., 2009; Simionato et al., 2011). The Bacillariophyceae Class includes diatoms, a very 

conspicuous number of golden-brown unicellular microorganism (Tommaselli, 2004) with an 

immense variety of shapes (Leonardi et al., 2011). They have indeed a siliceous cell wall, the 

frustule, showing different structures and ornamentations, which are used as key features 
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for diatom classification. These organisms have often been exploited for commercial 

applications. In fact, deposits of fossil diatoms are involved in filtration and absorption 

processes, whereas the employment of these microalgae in aquaculture is pursued because 

of their ability of accumulating polyunsaturated fatty acids inside living cells (Pohl, 1982; 

Tommaselli, 2004).  

 

1.2. The relevance of microalgal biotechnology 

The biotechnology of microalgae can be considered the youngest branch of algal 

biotechnology and has gained significant importance in recent decades for the possibility of 

employing these organisms for different commercial applications (Pulz and Gross, 2004; 

Harun et al., 2010). The great taxonomic diversity, the usually fast and easy growth, the 

rapid adaptation of some microalgae which live in extreme conditions to different 

environments, and so the possibility to control the production of some bioactive molecules 

by the manipulation of the cultivation systems make these organisms a very interesting 

natural source of new compounds with biological activity that could be used as functional 

ingredients (Plaza et al., 2008). Moreover, recent developments in microalgal genetic 

engineering has opened up the possibility to use these organisms as “green cell- factories”, 

for the overproduction of traditional algal compounds or the production of new molecules of 

interest (León-Bañares et al., 2004). Nowadays there are numerous commercial applications 

of microalgae. They are indeed used to enhance the nutritional value of food and animal 

feed, they can be incorporated into cosmetics, they are cultivated for the extraction of 

highly-valuable molecules such as carotenoids, polyunsaturated fatty acids with more than 

18 carbons (PUFA; Gill et al., 1997; Certik et al., 1999) and other lipids, which can be 

converted into biofuels (Spolaore et al., 2006; Harun et al., 2010). Moreover, they are 

sometimes involved in bioremediation processes (Baumgarten et al., 1999; Torres et al., 

2008; Bathnagar et al., 2009; Levine et al., 2011). However, among all the products of 

microalgal biotechnology the biomass itself represents the most important one in terms of 

production amount and economic value (Pulz and Gross, 2004). 
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1.2.1. Algal biomass for human nutrition 

The chemical composition of microalgae (and algae in general) gives basic 

information on the nutritive potential of the algal biomass (Becker, 1988). Microalgae are 

indeed able to compete with other human food sources such as yeast, meat, milk, rice or 

soybean (Spolaore et al., 2006) as they are rich in proteins, lipids, carbohydrates, vitamins, 

pigments and enzymes (Harun et al., 2010). Microalgae for human nutrition are usually 

available under different forms, such as tablets, capsules and liquids (Pulz and Gross, 2004; 

Spolaore et al., 2006). The green algae Chlorella and Dunaliella and the cyanobacterium 

Spirulina (Arthrospira) represent the few strains that are currently used for human nutrition 

(Spolaore et al., 2006; Brennan and Owende, 2010; Harun et al, 2010). Chlorella is known to 

have health-promoting effects thanks to the accumulation inside cells of β-1,3-glucan, which 

is an active immunostimulator, a free-radical scavenger and a reducer of blood lipids 

(Spolaore et al., 2006). On the other hand, Dunaliella salina is exploited for its ability to 

accumulate large amounts of β-carotene and is used in powder as an ingredient of dietary 

supplements and functional food (Spolaore et al., 2006). 

1.2.2. Algal biomass for animal nutrition 

It has been shown that low amounts of microalgal biomass, in particular derived from 

the organisms belonging to the genera Chlorella, Scenedesmus and Spirulina, can positively 

affect the physiology of animals, improving immune responses, fertility, weight control, 

health skin and coat lustrousness. For this reason, microalgae are usually added as a valuable 

feed supplement in animal nutrition (Pulz and Gross, 2004; Spolaore et al., 2006; Brennan 

and Owende, 2010). For example, it has already been reported their exploitation in poultry 

feed to replace conventional protein sources, because microalgae usually contain up to 5-

10% of proteins (Harun et al., 2010). Microalgae are also at the basis of the fish natural food 

chain and, for this reason, are widely used in aquaculture as a food source for larvae of many 

species of molluscs, crustaceans and fishes, as well as they are employed for zooplankton 

production (Pulz and Gross, 2004). Among the several species that are commonly used for 

these purposes, the green algae Haematococcus pluvialis and Dunaliella salina are famous 

for enhancing the colour of mussels and salmonids (Spolaore et al., 2006). 
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1.2.3.  Microalgae as a source of valuable substances 

Microalgae can be cultivated for their capability of accumulating high amounts of 

pure molecules, which can be differently produced depending on the taxonomic position 

and the physiology of each strain (Pulz and Gross, 2004; Spolaore et al., 2006). Among these 

molecules, PUFA play an important role as they are known to reduce the risk of cardio-

vascular diseases (Ruxton et al., 2004). Microalgae are the first producers of PUFA, in fact 

animals and higher plants are unable to synthetize these molecules. Despite fishes are 

considered an important source of PUFA, they also obtain them from the phytoplankton 

(Spolaore et al., 2006). Microalgal PUFA are already used as additives in infant milk formula. 

Moreover, chickens are fed with microalgae to produce ω-3- enriched eggs. Currently, 

docosahexaenoic acid (DHA) is the only algal PUFA that is commercially available, because 

algal extracts are not yet competitive sources of eicosapentaenoic, ϒ-linoleic and arachidonic 

acids against other primary sources (Brennan and Owende, 2010). Among polysaccharides, 

agar agar, alginates and carrageenans are the main available products extracted in particular 

from Rhodophyta and are used in different fields of industry, as well as in cosmetics, because 

of their rheological gelling or thickening properties (Pulz and Gross, 2004). Moreover, 

polysaccharides from microalgae also have a pharmaceutical importance for their immune 

response enhancing activity (Namikoshy, 1996). As microalgae are photosynthetic 

organisms, they are also very rich in pigments. Chlorophyll is indeed one of the most 

valuable compounds which are extracted from these organisms, and it is usually employed 

as a natural food colouring agent and for pharmaceutical purposes, because of its 

antioxidant and antimutagenic properties (Harun et al., 2010; Hosikian et al., 2010). It is 

known that most algae cultured under optimum conditions contain about 4% dry weight of 

Chl (Harun et al., 2010). Car are also normally extracted from microalgae and used for a wide 

range of applications (Brennan and Owende, 2010). β-carotene, astaxanthin, but also lutein, 

zeaxanthin, lycopene and bixin (Spolaore et al., 2006) are not only used as a natural food 

colorant, as additive for animal feed and as a source of pro-vitamin A, but also find 

application in cosmetics (Del Campo et al., 2000; Spolaore et al., 2006). Moreover, Car are 

used in pharmaceutical for their intrinsic anti-inflammatory properties and therapeutic 

chemopreventive anticancer effects, linked to their capability of acting as quencher against 

reactive oxygen species (Guerin et al., 2003; Spolaore et al., 2006). The commercial 
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production of carotenoids from microalgae competes with the synthetic production. 

However, although the synthetic forms are less expensive, Car production from microalgae 

has the advantage of supplying natural isomers in the natural ratio (Spolaore et al., 2006). 

Among green algae, D. salina is the most suitable source of β-carotene, which is 

accumulated inside cells at concentrations up to 14% dry weight (Borowitzka and 

Borowitzka, 1988; Brennan and Owende 2010, Leonardi et al., 2011). H. pluvialis is instead 

the main source of astaxanthin, which is accumulated at concentrations around 1-8% dry 

weight (Boussiba and Vonshak, 1991; Guerin et al., 2003; Damiani et al., 2010). 

1.2.4. Bioremediation with microalgae 

For the obtainment of the microalgal biomass and the optimisation of productivity, 

several cultivation factors must be taken into account, such as available nutrients, pH, light, 

cultural cell density, temperature and contamination by other microorganisms. Among 

nutrients, nitrogen and phosphorous are essential (Markou and Georgakakis, 2011). 

Nitrogen content varies from 1 to 10% in the microalgal biomass and depends upon the 

amount, the availability and the type of nitrogen source (NO3
-, NO2

- or NH4
+; Grobbelaar, 

2004; Markou and Georgakakis, 2011). It has been estimated that the large-scale production 

of microalgal biomass requires 8-16 tons N/ha as fertilizer. These quantities not only highly 

affect the costs of the biomass production, but also raise questions about their 

environmental impact (Levine et al, 2011; Markou and Georgakakis, 2011). Conversely, 

phosphorous often represents an important growth limiting factor (Grobbelaar, 2004; 

Markou and Georgakakis, 2011) and has to be supplied in excess because of its scarce 

bioavailability (Chisti, 2007). However, nutrients for algal production can be supplied from 

municipal, industrial or agricultural waste and wastewater (Martínez et al., 2000; Levine et 

al., 2011). The intensification of the agro-industry (Markou and Georgakakis, 2011) and of 

the industrialisation (Martínez et al., 2000), indeed, has resulted in an excess of waste and 

wastewater rich in organic and inorganic pollutants, generating problems such as 

eutrophication, surface and ground water pollution, putridity and odours, gas emissions, as 

well as their land disposal (Markou and Georgakakis, 2011). Aerobic and anaerobic digestion 

is often used for the removal of the organic pollutants, however these treatments have a 

minimal effect on the management of the inorganic pollutants, mainly nitrogen and 

phosphorous, whose bio-availability is instead increased by these processes (Levine et al., 
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2011; Markou and Georgakakis, 2011). As microalgae are able to grow autotrophically at low 

C/N ratios (Baumgarten et al., 1999), they can be easily cultivated in diluted waste and 

wastewater, in order to allow growth and simultaneously remove the pollutants in a 

bioremediation process (Baumgarten et al., 1999; Martínez et al., 2000; Mata et al., 2010; 

Levine et al., 2011; Markou and Georgakakis, 2011). Among agro-industrial wastes, the most 

studied are pig and cattle wastes (Markou and Georgakakis, 2011). However, other animal 

manures such as poultry (Cheung and Wong, 1981; Iyovo et al., 2010) and dairy manure 

(Wang et al., 2010; Levine et al, 2011) have already been tested for the cultivation of green 

algae, showing a significant reduction in the nitrogen and phosphate content.  

 

1.3. Microalgae as a promising source of biofuel 

The global energy demand is dramatically increasing every day since the beginning of 

the industrial revolution, in the late 18th century (Mussgnug et al., 2010). Nowadays, the 

search for new carbon-neutral energy resources has become necessary, because of the 

constant increase in oil prices, the fossil fuels depleting supplies and, most important above 

all, the strong global concern about climate change (Chisti, 2007; Smith et al., 2010; 

Stephens et al., 2010). In recent years, several environment-friendly renewable sources have 

been investigated as an alternative to fossil fuels (Mussgnug, 2010). Among them, 

photovoltaic, wind and wave power, geothermal and solar thermal have been designed for 

the production of electricity (Stephens et al., 2010), whereas feedstock from photosynthetic 

plants have been used for the production of potential renewable and carbon neutral fuels 

(biofuel) (Chisti, 2007; Smith et al., 2010; Brennan and Owende, 2010; Mata et al., 2010; 

Scott et al., 2010; Stephens et al., 2010). Up to now, the most common biofuels are bio-

ethanol, obtained from corn starch, sugar cane or sugar beet, and biodiesel from oil crops 

(Smith et al., 2010; Mata et al., 2010). However, it has been estimated that unsustainably 

large cultivation areas would be required in order to satisfy the global energy demand 

(Chisti, 2007; Scott et al., 2010; Stephens et al., 2010). Moreover, the use of plant biomass 

for energy would enter in competition with food and feed production, which also requires 

more and more land for the cultivation of food crops, because of the constantly increasing 

world population (Mussgnug et al., 2010; Stephens et al., 2010). During these last recent 
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years, however, many research reports and articles have started to focus on microalgae as a 

potential feedstock for biofuel production (Chisti, 2007; Li et al., 2008a, 2008b; Hu et al., 

2008; Schenk, 2008; Smith et al., 2010; Brennan and Owende, 2010; Mata et al., 2010; 

Mussgnug et al., 2010; Stephens et al., 2010). There are several advantages in using 

microalgae for the production of biofuel instead of higher plants: 

 microalgae have a higher photosynthetic efficiency with respect to higher plants, 

converting to biomass more than 10% of the solar energy, instead of 0.5% converted by 

crops (Smith et al., 2010); 

 from a practical point of view, microalgae are easy to cultivate and grow very fast (1-3 

doublings per day) (Hu et al., 2008; Scott et al., 2010), using limited land resources and 

avoiding the competition with food crops (Li et al., 2008a; Smith et al., 2010); 

 microalgae grow almost everywhere, as only sunlight and some nutrients are required 

(Mata et al., 2010). Some of them tolerate marginal lands such as deserts and arid lands, 

not suitable for conventional agriculture (Hu et al., 2008); 

 less water is needed to cultivate microalgae as compared to the amount required for oil 

crops (Li et al., 2008a); 

 nutrients such as nitrogen and phosphorus can be recycled from a variety of wastewater 

sources, coupling biomass and biofuel production to the additional benefit of 

bioremediation (Hu et al., 2008; Li et al., 2008a); 

 CO2 from flue gases emitted from power plants and other resources can be used by 

microalgae to enhance grow and obtain biomass, contributing to reduce emission of this 

greenhouse gas (Hu et al., 2008; Stephens et al., 2010); 

 if grown inside photobioreactors, biomass can be produced throughout the year, reaching 

a theoretical annual productivity ten times higher than that of terrestrial plants (Hu et al., 

2008). 

Microalgae can be used as feedstock for the production of several biofuels, such as 

biodiesel, methane, ethanol and hydrogen, based on the algal strains (Mussgnug et al., 2010; 

Scott et al., 2010) and hence on their efficiency in the production of starch, sugars and oils 

(Stephens et al., 2010). 

 



11 
 

1.3.1. Thermochemical and biochemical conversion of the algal biomass 

Basically, the microalgal biomass can be converted into energy via thermochemical or 

biochemical technologies (Brennan and Owende, 2010). Thermochemical conversion 

includes different processes such as gasification (Hirano et al., 1998), thermochemical 

liquefaction (Dote et al., 1994) and pyrolysis (Miao and Wu, 2004; Miao et al., 2004), 

involved in the obtainment of bio-oil burning biomass at different medium-high 

temperatures and under different pressure conditions, depending on the technology used 

(Brennan and Owende, 2010). Biomass can also be directly burned in a combustion process 

in presence of air at high temperatures, converting the stored chemical energy in the 

biomass into gases (Brennan and Owende, 2010; Scott et al., 2010). On the other hand, 

biochemical conversion includes processes such as the biomass fermentation, in order to 

obtain bioethanol, biomethane and bio-hydrogen (Chisti, 2007; Li et al., 2008a; Harun et al., 

2010). Bioethanol is obtained by fermentation of the sugars and proteins contained in the 

biomass. Even if literature on algae fermentation is very rare, the production of bioethanol 

from microalgae leads to several advantages, such as the very scarce energy consumption 

and the simple technology. Besides, the CO2 produced as by-product can be recycled as 

carbon source for microalgae during the cultivation process (Harun et al., 2010). Biomethane 

is produced as a by-product of the anaerobic fermentation of the microalgal biomass to 

obtain biogas (Harun et al., 2010; Mussgnug et al., 2010). Research in this field using 

microalgae as feedstock is very limited (Mussgnug et al., 2010), however conversion 

efficiency is estimated to be high because of the low content of cellulose and the absence of 

lignin inside the biomass (Harun et al., 2010). Unfortunately, higher costs compared with 

grass and wood, usually employed for the purpose, have been reported, so commercial 

application have not been implemented yet (Harun et al., 2010). The hydrogen production in 

green algae has been discovered in 1940s (Gaffron and Rubin, 1942) and concerns the 

conversion of hydrogen ions into molecular H2 by hydrogenase enzymes activated under 

anaerobic conditions (Ghirardi et al., 2000; Brennan and Owende, 2010). Among microalgae, 

Chlamydomonas reinhardtii is one of the most studied for this ability (Kruse et al., 2005; 

Melis et al., 2000; Mussgnug et al., 2010). 
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1.3.2. Biodiesel from microalgae 

Biodiesel is currently produced by oil crops. However, in order to limit the 

competition with food crops and so reduce the land surface required for their cultivation, 

new substrates such as frying and waste cooking oils, tallow, lard and animal oils have 

recently been taken into consideration for the purpose (Chisti, 2007; Mandal and Mallick, 

2009). Nevertheless, the combined production of biofuels from traditional oil crops and 

these new sources of biodiesel is still not sufficient for the satisfaction of the global energy 

demand for transportation fuels (Chisti, 2007; Smith et al., 2010). It is known for many years 

that some microalgae are able to produce biomass yield containing high percentages of oils 

(Aaronson et al., 1980). These oils are mainly accumulated inside cells in the form of 

triacylglycerols (TAGs), which can be extracted and used for the production of biodiesel via 

simple transesterification processes (Smith et al., 2010). As shown in Tab. 1, the oil content 

is very similar in microalgae and oil crops (Mata et al., 2010). However, the fast and easy 

growth throughout the year and the high photosynthetic efficiencies allow microalgae to 

reach higher biomass productivities, resulting in higher lipids yields per land surface unit 

(Chisti, 2007; Mata et al., 2010). In this way, microalgae seem to be the only source of 

biodiesel that could compete with the fossil fuel in the really next future (Chisti, 2007; Smith 

et al., 2010; Mata et al., 2010; Demirbas and Demirbas, 2011). In Tab. 2 microalgae known to 

accumulate lipids inside cells and the relative percentages of oil on dry weight are reported. 

Oil levels between 20 and 50% are quite common, although some microalgae, such as 

Botryococcus braunii, are able to accumulate lipids up to 75% (Chisti, 2007), even if biomass 

yields are consequently lowered  (Hu et al., 2008). However, when many microalgae are 

grown under stress conditions, the lipid production is triggered (Hu et al., 2008). Nitrate 

depletion is the most commonly reported nutritional-limiting factor known to promote lipid 

accumulation (Tornabene et al., 1983; Li et al., 2008b; Hu et al., 2008; Pruvost et al., 2009; 

Leonardi et al., 2011; Pruvost et al., 2011). In fact, when nitrogen is limiting, protein 

synthesis is inhibited and the excess of carbon and energy produced during photosynthesis is 

channelled into storage lipids, mainly in the form of TAGs (Scott et al., 2010; Leonardi et al., 

2011). Green microalgae are considered the most suitable organisms for the accumulation of 

lipids (Hu et al., 2008; Demirbas and Demirbas, 2011). This is mainly because they are able to 

colonize several natural habitats from freshwater to seawater, and moreover because they 
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can be easily isolated and cultivated under laboratory conditions (Hu et al., 2008). Chlorella 

is considered one of the best candidates for the lipid accumulation, and many studies have 

been performed with this microalga (Miao and Wu, 2006; Xu et al., 2006; Li et al., 2007; 

Heredia-Arroyo et al., 2010; Gao et al., 2010). However, many other species are also efficient 

and productive, and several parameters, such as the ability to grow under specific 

combination of nutrients or specific environmental conditions have to be taken into 

consideration during strain selection (Mata et al., 2010). Recently, special attention has been 

focused on the Chlorophyta Neochloris oleoabundans and Scenedesmus acutus (Leonardi et 

al., 2011). In particular, N. oleoabundans is well-known for its ability to accumulate up to 

50% of lipids, which are TAGs by the 80%, when the microalga is grown under nitrogen 

starvation (Tornabene et al., 1983; Li et al., 2008b; Leonardi et al., 2011; Baldisserotto et al., 

2012; Giovanardi et al., 2013; Popovich et al., 2012). 

About the quality of microalgal biodiesel, little information is available in the 

literature (Francisco et al., 2010). Several parameters have to be considered and, for its 

acceptability, the microalgal biodiesel have to comply with International Biodiesel Standard 

for Vehicles (EN14214) in Europe (Chisti, 2007; Leonardi, 2011) and with ASTM Biodiesel 

Standard D6751 in the United States (Knothe, 2006). In general, the fatty acids mainly 

findable in the majority of the land plants are palmitic, stearic, oleic, linoleic and linolenic 

(Miao and Wu, 2006; Knothe, 2008; Leonardi et al., 2011). These fatty acids are well 

represented in some microalgae recently examined (Leonardi et al., 2011). However, 

microalgae are also richer than higher plants in PUFA, which are considered more 

susceptible to oxidation during storage, and so are not suitable for the acceptability of 

microalgal biodiesel (Chisti, 2007). This problem could be overcome by partial catalytic 

hydrogenation of the microalgal oil (Jang et al., 2005; Dijkstra, 2006; Chisti, 2007). Currently, 

some promising microalgal species have been identified (Leonardi et al., 2011). Among 

them, oils from S. obliquus meet all the required specifications, whereas N. oleoabundans, D. 

tertiolecta and C. vulgaris are suitable candidates if oils are used in mixtures with other oils 

(Leonardi et al., 2011). 

The production of biodiesel from microalgae is not economically feasible yet and 

considerable investment in technological development and technical expertise is still needed 

for it to become a reality (Francisco et al., 2010; Mata et al., 2010; Wijffels and Barbosa, 
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2010). Among challenges which need to be pursued, the most important are obtaining high 

biomass yields, high lipid contents and adequate fatty acid profiles (Leonardi et al., 2011). In 

order to reach these targets, a multidisciplinary approach is required, such as the integration 

of the engineering with discoveries in algal biology (Scott et al., 2010; Wijffels and Barbosa, 

2010). The biorefinery concept is also very important in order to reduce the costs of making 

microalgal biodiesel (Chisti, 2007). In this way, algal biomass could be used after the lipid 

extraction for animal feed or fermented in order to obtain bio-methane by anaerobic 

digestion. Moreover, CO2 from flue gas emissions could be sequestered by cells and nutrient-

rich wastewaters could supply all the nutrient required for growth, allowing to reach high 

biomass yields, matching bioremediation processes and reducing the overall costs (Mata et 

al., 2010; Scott et al., 2010). 

 

1.4. The difficult binomial biomass production-lipid accumulation and possible 

strategies to overcome it 

At present, the two main areas in which there is a considerable activity in order to 

optimise the feasibility of the microalgal biodiesel consist in: i) optimising algal growth 

systems and ii) maximising the rate of TAGs production (Scott et al., 2010). About the first 

issue, several factors need to be monitored during algal growth. Among these, the most 

important concern abiotic elements such as light, temperature, nutrient concentration, O2 

and CO2 availability, pH and salinity and operational elements, such as shear produced by 

mixing, dilution rate and harvesting frequency (Mata et al., 2010). Conversely, in order to 

reach high lipid contents, stress conditions, in particular nutrient depletion, are needed 

(Tornabene et al., 1983, Li et al., 2008a; Li et al., 2008b; Hu et al., 2008; Scott et al., 2010). 

Obviously, biomass productivity and lipid accumulation are often  inversely correlated, as 

the storage of TAGs inside cells occurs at the expenses of energy used for growth (Wijffels 

and Barbosa, 2010). Recently, several studies have suggested growth conditions that can be 

used for the industrial scale-up of lipid production from algae (Scott et al., 2010). For 

instance, Rodolfi et al. (2009) described a two-stage process in which cells were firstly grown 

under nutrient-sufficient conditions to allow biomass accumulation, which was subsequently 

transferred under nutrient depletion in order to induce the lipid synthesis. However, 
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heterotrophic and mixotrophic growth have also been described as useful tools for obtaining 

biomass yields rich in lipids (Chisti, 2007; Scott et al., 2010; Brennan and Owende, 2010; 

Giovanardi et al., 2013), whereas further researches in genetic and metabolic engineering 

could offer the possibility to improve strains (Wijffels and Barbosa, 2010) and overproduce 

algal oils (Hu et al., 2008).  

1.4.1. Heterotrophic and mixotrophic growth for improving biomass yields 

Most of the microalgal cells can be cultured under autotrophic, heterotrophic and 

mixotrophic conditions (Heredia-Arroyo et al., 2010). Autotrophy is the normal condition of 

growth, where light is used as energy source in order to fix CO2 in organic macromolecules. 

Conversely, heterotrophic cells utilise only organic compounds as carbon and energy source 

in darkness (Mata et al., 2010; Chen et al., 2011). As has been observed in several studies, 

biomass accumulation can be highly improved in this way (Chen, 1996; Chen and Wen, 2003; 

Xu et al., 2006; Chen et al., 2011). Moreover, several studies have shown that high lipid 

contents were also achieved in some microalgae (Wu et al., 1994; Xu et al., 2006; Heredia-

Arroyo et al., 2010; Chen et al., 2011). This effect is mainly due to the alteration of the N:C 

ratio when the organic carbon source is added to the medium, thus the same effect as if 

algae were grown under nitrogen depletion (Scott et al., 2010). The heterotrophic cultivation 

avoids problems concerning the light limitation when algae are grown in large-scale 

cultivation processes (Chen et al., 2011). Furthermore, the harvesting costs are highly 

reduced in heterotrophic growth systems because of the high biomass densities achieved 

(Brenan and Owende, 2010). However, some limitations occur when algae are grown 

heterotrophically. First of all, not all microalgae are able to grow in the absence of light 

(Chen and Wen, 2003). Moreover, some high-valuable molecules like pigments are not 

synthesized in heterotrophic cultures, thus a different type of cultivation needs to be applied 

for these purposes (Lee et al., 2001). Finally, contaminations occur more easily compared to 

autotrophic cultures (Scott et al., 2010; Chen et al.,2011). Mixotrophy is termed the 

condition in which light and organic compounds are simultaneously supplied for growth 

(Lee, 2001; Xu et al., 2006; Heredia-Arroyo et al., 2010). In this way, photosynthesis and 

assimilation of the organic carbon proceed concomitantly during the day, whereas during 

the night less biomass is lost because cells continue to grow using the organic compounds 

(Lee, 2001; Scott et al., 2010; Stephens et al., 2010). In previous studies, an increase in the 



16 
 

biomass yield has often been observed not only with respect to autotrophic cultures, but 

also compared with heterotrophic cultures (Ogawa and Aiba, 1981; Martinez and Orus, 

1991, Kobayashi et al., 1992; Marquez et al., 1995; Shi and Chen, 1999; Lee, 2001; Yang et 

al., 2000; Brennan and Owende, 2010). Microalgae can assimilate a variety of organic carbon 

sources (Chen et al., 2011). Among others, glucose is the preferred, but also acetate, 

fructose, glycerol and sucrose can be used for growing algae in mixotrophy (Heredia-Arroyo 

et al., 2010; Chen et al., 2011). However, finding cheaper organic carbon sources is becoming 

very important in the perspective of limiting costs and allowing feasibility of microalgal 

exploitation on the large scale (Heredia-Arroyo et al., 2010; Chen et al., 2011). For this 

reason, several studies are recently focusing on using cheaper organic carbon sources, often 

coming from high-organic carbon waste products, such as crude glycerol (Liang et al., 2009), 

corn powder hydrolysed (Xu et al., 2006); molasses (Andrade and Costa, 2007), or organic 

effluents derived from agri-food industries (Brennan and Owende, 2010; Heredia-Arroyo et 

al., 2010; Giovanardi et al., 2013). Currently, little information on mixotrophic cultivation of 

microalgae for the production of lipids is available (Chen et al., 2011). Furthermore, the 

physiological effects of organic carbon nutrition on photosynthetic activity and on the 

interaction between autotrophic and heterotrophic metabolism are still partly unknown 

(Kang et al., 2004; Giovanardi et al., 2013). Then, further studies are needed in order to 

better understand what is the role of carbon metabolism in energy conversion and improve 

the performance of microalgal cultures (Yang et al., 2000; Giovanardi et al., 2013).  

1.4.2. Metabolic engineering of microalgal physiology 

Genetic modification of microalgae has received little attention during the past years, 

however now it represents a developing area, which can improve biomass productivity and 

expand the number of microalgal products (León-Bañares et al., 2004; Chisti, 2007; Eriksen, 

2008). During the last decade, then, significant advances have been achieved (Radakovits et 

al., 2010). Molecular engineering can be considered a useful tool that can potentially be 

targeted to different metabolic pathways of microalgae, in particular in order to (Chisti, 

2007): 
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 increase photosynthetic efficiency for the increment of the biomass yields; 

 enhance algae growth rate; 

 increase oil content inside cells; 

 improve tolerance to environmental variables that can stress or inhibit microalgal growth, 

such as temperature, pH, salt and other factors (Radakovits et al., 2010); 

 alleviate the light saturation phenomenon, reduce photoinhibition and reduce the 

susceptibility to photooxidation when cells are exposed to high light intensities. 

One of the most studied systems for improving the photosynthetic efficiency and/or 

decreasing the effects of photoinhibition is the reduction of the photosynthetic antenna size 

(Eriksen, 2008; Radakovits et al., 2010). This approach has two main positive effects: i) 

reduced antenna size results in lower absorption coefficients per unit of biomass, so that 

light can penetrate deeply in high-density cultures; ii) as smaller light harvesting complexes 

(LHC) absorb less light, increased light intensities are needed to saturate each reaction 

centre, and fewer photons are dissipated as heat and fluorescence (Eriksen, 2008). In this 

way, cells are also less subjected to photoihnibition (Radakovits et al., 2010). Earlier research 

by Mussgnug et al. (2007) showed increased biomass productivities under high light when 

both LHCI and LHCII were knocked down in Chlamydomonas reinhardtii by RNAi-based 

strategy. However, results were referred to laboratory conditions, so it remains to be 

ascertained how these mutants could perform in large-scale culture conditions (Radakovits 

et al., 2010).  

Metabolic engineering is also being studied for the possibility of modifying the lipid 

metabolism, in order to enhance the feasibility of algal biodiesel production (Scott et al., 

2010). Even if microalgal lipid metabolism has not been studied as much as in terrestrial 

plants, many genes are homologous, then it can be supposed that at least some of the 

transgenic strategies used for higher plants could be applied to microalgae as well 

(Radakovits et al., 2010). In higher plants, several studies have been focused on the 

overexpression of key enzymes involved in TAGs production, as well as on complementary 

strategies that reduce lipid catabolism (Scott et al., 2010). In 1995 Dunahay and 

collaborators overexpressed the native acetyl-CoA carboxylase (ACCase) in the diatom 

Cyclotella cryptica. Despite the activity of the key enzyme was increased by 2-3 folds, no 

increased lipid production was observed (Eriksen, 2008; Scott et al., 2010), indicating the 
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complexity in the regulation of this enzyme (Scott et al., 2010). An alternative approach for 

obtaining increased lipid yields could represent the deletion of metabolic pathways that are 

involved in the accumulation of high-energy storage compounds, such as starch, in order to 

let precursor metabolites free and allow their consequent channelling in the desired lipid 

biosynthetic pathways (Radakovits et al., 2010; Scott et al., 2010). Wang et al. (2009), for 

instance, have observed an increase in TAGs lipid bodies when two C. reinhardtii starch-less 

mutants were grown under N depletion. Moreover, a starch-less mutant of Chlorella 

pyrenoidosa has also been investigated for its capability of accumulating high amount of 

PUFA (Ramazanov and Ramazanov, 2006). Genetic engineering of microalgae can be applied 

not only for the overproduction of lipids for biofuel purposes, but also for the enhancement 

of the productivity of traditional algal compounds or for the production of new bioactive 

compounds for industrial and pharmaceutical applications, such as recombinant vaccines, 

mammalian antibodies and high-valuable compounds such as carotenoids (León-Bañares et 

al., 2004). 

At present, full or near-full genome sequences are available for a very small number 

of microalgae, and only about 10 different algal species can be transformed (Wijffels and 

Barbosa, 2010). However, C. reinhardtii is the most important species for which most 

metabolic enginnering tools have been developed (Radakovits et al., 2010; Wijffels and 

Barbosa, 2010). It can be expected that many other genomes from other important algal 

strains will be sequenced in the near future, because of the current high interest in the field 

and of the availability of fast and reliable technologies for genome sequencing (Wijffels and 

Barbosa, 2010). 

 

1.5. Technologies for microalgal biomass production 

Despite the several advantages concerning the use of microalgae instead of higher 

plants for the production of molecules and biofuel, the cultivation of microalgal biomass is 

generally more expensive than the cultivation of crops (Chisti, 2007). In fact, several factors 

can be limiting and need to be constantly controlled, such as temperature, salinity, mixing, 

light cycle and intensity, pH, gas exchange, cell fragility, cell density and growth inhibition 
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(Shenk et al., 2008; Mata et al., 2010). At present, open pond and closed photobioreactor 

technologies have already achieved economic viability (Shenk et al., 2008).  

The open pond system has been used since the 1950s and represents the less 

expensive way to culture microalgae for large scale biomass production (Brennan and 

Owende, 2010). The most commonly used open pond system is the raceway pond (Fig. 2) 

(Chisti, 2007; Shenk et al., 2008; Brennan and Owende, 2010). This is usually made of a 

closed loops, oval shape recirculation channel, 0.15-0.5 m deep, in order to allow light 

penetration through the water. A paddlewheel is usually placed in order to promote mixing 

and circulation of both microalgal biomass and nutrients, which are usually introduced in 

front of it, whereas microalgal biomass is harvested after the whole cycle, behind the 

paddlewheel (Chisti, 2007; Shenk et al., 2008; Brennan and Owende, 2010). CO2 is instead 

provided by the atmosphere. Despite the low costs, several disadvantages affect this system. 

Biomass productivity is indeed lower compared with closed photobioreactors. This can be 

attributed to several determining factors, such as evaporative water loss, temperature 

fluctuation within a diurnal cycle and seasonally, CO2 deficiency, inefficient mixing and light 

limitations (Brennan and Owende, 2010). However, the main problem concerns the 

possibility of contaminations by other undesired algal species and protozoa. Then, 

sustainable cultivation of a single species in open pond is possible only if extremophiles 

microalgae are used, such as D. salina, an halotolerant Chlorophyta, or Spirulina sp., which is 

able to grow in alkaline environments (Shenk et al., 2008).  

Closed photobioreactor technology allows to overcome some of the major problems 

associated with the open pond system (Brennan and Owende, 2010). Tubular, flat plate and 

column bioreactors (Fig. 3) are typical examples of closed bioreactors (Chisti, 2007; Shenk et 

al., 2008; Brennan and Owende, 2010). Among them, column photobioreactors are the less 

expensive, offer the most efficiency mixing, the highest volumetric mass transfer rates and 

the best controllable growth conditions. In this type of closed bioreactor, the columns are 

placed vertically, aerated from the flow, usually by gas bubbling, and illuminated through 

transparent walls by external or internal lights (Erikssen, 2008). However, costs are 

extremely high compared to the open pond systems. Indeed, in order to avoid the 

overheating that can occur mainly in summertime, evaporative water cooling systems are 

necessary. Moreover, artificial illumination is also needed in order to avoid light limitation. 
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These factors obviously affect the economy of the system (Chisti, 2007; Brennan and 

Owende, 2010). However, higher costs are compensated by higher productivities, with a 

consequent decrease in harvesting costs, as lower volume of cultural broth has to be 

processed to obtain the same quantity of biomass (Chisti, 2007). 

 

1.6. The photosynthetic apparatus in green algae and higher plants 

Photosynthetic organisms are obviously influenced by the availability of light for their 

growth and production performance. When grown in large-scale processes, the quantity of 

light absorbed from microalgae depends on several factors, such as the position of the cells 

inside the photobioreactor, the culture density and the cell pigmentation. Different models, 

all based on the relationship between growth and amount of received light, have been 

empirically established in order to predict a culture performance. However, most of them do 

not consider the basic principles of photosynthetic biochemistry, and completely ignore 

important phenomena that can occur in cells, such as photoinhibition and photoacclimation 

(Camacho Rubio et al., 2003). Then, a better understanding of the photosynthetic process in 

microalgae and application of this knowledge in the empirical modelling are required in 

order to fit all the evaluations. 

In plants and green algae, the photosynthetic process occurs inside chloroplast (Fig. 

4). This organelle is surrounded by a double membrane mainly composed by phospholipids. 

Furthermore, a third specialized internal membrane is organised in flattened membranous 

sacs, creating the thylakoid system. Thylakoids can be usually found stacked, forming the so-

called “grana regions”, whereas consecutive grana are linked by non-stacked thylakoids, the 

“stroma lamellae”. Thylakoids physically separate two different compartments inside 

chloroplast, the thylakoid lumen, i.e. the space inside thylakoids, and the stroma, the fluid 

compartment that surrounds the thylakoids (Taiz and Zeiger, 2002; Nelson and Ben-Sherm, 

2004).  

The overall reaction catalysed during the photosynthetic process is described as 

follows:  

6 CO2 + 6 H2O + light energy  C6H12O6 + 6 O2 



21 
 

O2, ATP and NADPH are produced as a consequence of the photolysis of water. The so-called 

light-dependent reactions catalyse the process, which takes place on thylakoids membrane. 

The high-energy compounds produced are then used during the carbon fixation reactions, or 

Calvin cycle, which occur in the stroma of the chloroplast and where CO2 is reduced to sugars 

(Taiz and Zeiger, 2002). 

1.6.1. The role of pigments in photosynthetic membranes 

Pigments are used by photosynthetic organisms to harvest light energy, which is then 

converted to chemical energy and stored to organic macromolecules. On the whole, 

photosynthetic pigments represent almost the 50% of the total lipids inside thylakoids, 

whereas the remaining part is represented by galactolipids, small quantities of phospholipids 

and few sterols (Taiz and Zeiger, 2002). Among photosynthetic pigments, which are 

associated with proteins to give pigment-protein complexes, Chls are the most important as 

they are specifically involved in light-energy harvesting. These molecules derive from the δ-

aminolevulinic acid and are composed by a tetrapyrrolic ring, with one atom of Mg bound in 

the centre. Moreover, a long hydrophobic chain composed by phytol allows the molecule 

fixation inside the thylakoid membrane bilayer. In green algae and higher plants Chla and 

Chlb (Fig. 5) are present. These two molecules differ from each other only for the group 

bound at carbon atom 3: in the former it is a methyl group, while the latter has a formil 

group. Chla is the main chlorophyll of green algae and higher plants. It is contained in all 

reaction centres, but it is also found in light-harvesting complexes. Conversely, Chlb is an 

accessory pigment and it is part of the antenna system.  

Car are instead C40 tetraterpenes biosynthesized by the central isoprenoid pathway 

(Fig. 6). They are organised in long polyene chains which present up to 15 carbons 

conjugated with double bonds. This feature is responsible for their characteristic absorption 

spectra and their specific photochemical properties (Naik et al., 2003). Car can be 

distinguished in carotenes, which are hydrocarbons containing only carbon and hydrogen, 

and xanthophylls, their oxygenated derivatives. The main carotene in photosynthetic 

membranes is β-carotene, which is mainly found inside the reaction centres, whereas lutein, 

violaxanthin, zeaxanthin and neoxantin are the main xanthophylls, localized in the antenna 

systems. Car are accessory pigments, which absorb light and transfer the excitation energy 
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to Chl. Furthermore, they play an important role for the photoprotection of the 

photosynthetic membrane, scavenging reactive species of oxygen and limiting the damage 

caused by photo-oxidation (McCarthy et al., 2004; Szabó et al., 2005). 

Plants are able to use only a small fraction of the solar emission spectrum for 

photosynthesis. This is comprised in the visible region, between 400 and 700 nm, and is 

called photosynthetically active radiation (PAR). Pigments are indeed able to adsorb only 

specific wavelengths: 

 Chla presents the most intense absorption peak at 440 nm, whereas a second peak is 

found at 660 nm; 

 Chlb has a similar absorption spectra, with the first absorption peak at 470 nm and the 

second at 645 nm; 

 Car have characteristic absorption spectra depending on the considered molecule, 

however all the absorption peaks overlap in the blue region, and so their main absorption 

can be generalised to be at 470 nm. 

Pigments are found in an excited state after they have absorbed a photon. This state 

in unstable, so the energy is promptly transferred to another molecule in the following ways: 

i) electron transfer to an acceptor molecule; ii) electron transfer to another pigment by 

Fӧrster resonance energy transfer process. Chl excitation energy can also be dissipated by i) 

fluorescence release or ii) energy release as heat (Ruban et al., 2012). Chla is the first 

electron acceptor in all oxygenic photosynthetic organisms, whereas Chlb and Car harvest 

and transfer light energy to Chla by resonance. Conversely, energy released by heat or 

fluorescence is considered a side dissipative effect during the photosynthetic process. 

1.6.2. The “light-driven” reaction of photosynhtesis 

The light reactions are catalysed by four main protein complexes, two photosystems 

(PSI and PSII), one cytochrome (Cyt) b6f, and an ATP synthase (ATPase), which are all 

embedded in the thylakoid membrane and oriented as shown in Fig. 7, so that the water 

oxidation occurs at the lumen side, whereas the NADPH and ATP produced are released in 

the stroma (Taiz and Zeiger, 2002). Biochemical composition of these multisubunit protein 
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complexes has been better elucidated after the invention of the SDS-PAGE technology 

(Nelson and Ben-Shem, 2004): 

 the PSII reaction center (RCII) is composed of two homologous proteins of nearly 40 kDa, 

D1 and D2. These proteins bind two weakly coupled Chls known as P680, which function as 

the primary electron donor, one molecule of pheophytin, the Cyt b559, required for the 

correct assembly of the complex, and the plastoquinones (Taiz and Zeiger, 2002). Flanking 

the reaction center there are two intrinsic light-harvesting proteins, CP43 and CP47, 

which bind 14 and 16 molecules of Chla respectively. However, most of the Chls which 

are associated with PSII are located in the peripheral light-harvesting complex II (LHCII). 

This complex is composed by trimers of Lhcb proteins, which bind around 12-14 Chla and 

b and up to 4 Car each (Nelson and Ben-Shem, 2004). PSII is considered a water-

plastoquinone oxidoreductase complex, because its activity is to initiate the 

photosynthetic electron transfer chain by using light as a driving force and water as the 

electron source (Daniellson et al., 2006);  

 the Cyt b6f is considered a plastoquinone-plastocyanin oxidoreductase, as its main 

function is to mediate electron transfer from reduced plastoquinone of PSII to 

plastocyanin, a small soluble, copper-containing protein of PSI, generating a 

transmembrane electrochemical proton gradient for ATP synthesis. Cyt b6f functions as a 

dimer, and each monomer is composed by 8 subunits: Cyt f, Cyt b6, the Rieske iron-sulfur 

protein and subunit IV are large subunits, whereas 4 small hydrophobic subunits (PetG, 

PetL-PetM) are also present (Nelson and Ben-Shem, 2004); 

 the PSI RC is composed by 12-14 subunits known as PsaA-PsaL, PsaN and PsaO. The 

heterodimer PsaA-PsaB forms the heart of PSI and binds a Chl dimer known as P700, the 

primary electron donor, and 5 electron acceptors, A0 (Chl a), A1 (phylloquinone) and 3 

Fe4-S4 iron sulphur centres. The other Psa subunits are involved in binding and 

coordinating other elements of the reaction centre, such as two further Fe4-S4 iron 

sulphur clusters (PsaC), ferredoxin (PsaC-PsaE) and plastocyanin (PsaF), as well as the LHCI 

complex (PsaK, PsaG, PsaJ and PsaF) and the LHCII during state transition (PsaH and PsaL). 

Furthermore, they contribute to the maintenance of PSI integrity (Nelson and Ben-Shem, 

2004). LHCI is the extrinsic peripheral light-harvesting complex and is composed by 4 

light-harvesting Chl-containing proteins, Lhca1-Lhca4 (Nelson and Ben-Shem, 2004). 
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Different from LHCII, which contains almost 40-50% of the total pigments in thylakoids, 

LHCI binds a small part of total pigments, nearly 5-10% (Taiz and Zeiger, 2002); 

 ATP synthase (ATPase) is a highly-conserved subunit complex which catalyses ATP 

synthesis using a transmembrane proton gradient generated by the photosynthetic 

electron-transport chain. This enzyme is composed by several different subunits, located 

in stromal and transmembrane regions, called CF1 and CF0 respectively. In particular, the 

whole complex functions as a molecular motor in which there are stationary subunits (I, 

II, IV, δ, α and β and III) and rotary subunits (ϒ and ε) (Nelson and Ben-Shem, 2004). 

During the light-reactions of photosynthesis the electron transfer can be represented 

in a “Z-scheme” (Fig. 8). At the beginning of the scheme, LHCII complex delivers the light 

energy that has been absorbed to the RC of PSII (RCII). This excitation energy is funnelled 

through the antenna pigments, which are organized inside the complex in a descending 

energy gradient: Car  Chlb  Chla  P680 of PSII. The consequence of the excitation of P680 

to P680* is the transfer of an electron to Pheophytin a, the primary electron acceptor in RCII:  

P680* + Pheo  P680
+ + Pheo- 

The re-reduction of P680
+ is due to an electron donor, a tyrosine residue of D1 called Yz, which 

in turn is reduced by an electron from the water oxidation system: 2H2O O2 + 4H+ + 4e-. 

From Pheo- , the electron is funnelled to the plastoquinone acceptors QA and QB. After the 

re-reduction of QB with a second electron, 2 protons are retrieved from the stroma side, 

forming a completely reduced quinone QBH2, which is released into the lipid bilayer of 

thylakoids and replaced by an oxidized quinone from the membrane quinone pool. Electrons 

are in this way transported through the Cytb6f complex to the soluble electron carrier 

plastocyanin, also located at the lumen side of the thylakoid membrane, and finally 

plastocyanin provides electrons to the PSI. Solar energy that has been channelled by LHCI 

allows the excitation of P700 to P700*. The primary acceptor in PSI is A0. From A0
-, electrons 

are transferred through a series of carriers to the ferredoxin on the stroma side of the 

thylakoid membrane and then are used for the reduction of NADP+ to NADPH. The 

electrochemical proton gradient formed by the photolysis of water and by the 

plastoquinones which have released protons from the stroma into the lumen side is used for 

the synthesis of ATP by the ATPase complex (Nelson and Ben-Shem, 2004).  
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1.7. Non-photochemical quenching induction and role of the xanthopyll cycle on 

the formation of qE 

Microalgae have evolved the capacity to absorb more PAR light than that needed for 

their photosynthetic requirements, and so the excess of energy has to be dissipated as heat 

or fluorescence emission (Müller et al, 2001; Scott et al., 2010). However, under high-light 

intensities, the photosynthetic RCII becomes progressively saturated (closed), and the 

energy transfer from the antenna complexes is inhibited because of the lack of electron 

acceptors, which are all found in the reduced form (Frenkel et al., 2007; Ruban et al., 2012). 

In this way, potentially harmful excitation energy remains in the photosynthetic membrane 

and promotes the formation of reactive oxygen species (ROS), causing photooxidative 

damages to the photosynthetic apparatus, i.e. photoinhibition (Frenkel et al., 2007; 

Allahverdiyeva and Aro, 2012). In order to avoid photoinhibition, higher plants and green 

algae have tried to reduce the excess of absorbed energy by means of several mechanisms 

(Müller et al, 2001; Ruban et al., 2012). Among the short-term regulatory processes which 

have evolved for the purpose (Ruban et al., 2012), non-photochemical quenching (NPQ) 

mechanisms, which allow to dissipate energy as heat, have been developed (Müller et al, 

2001; Ruban et al., 2012). Three kinetics components contribute to NPQ: i) a rapidly, 

reversible, ΔpH dependent component, qE; ii) a state-transition related component, qT; and 

iii) a slowly reversible, photoinhibition related component, qI (Szabó et al., 2005; 

Allahverdiyeva and Aro, 2012). qE  represents the major component of NPQ. Several studies 

have demonstrated a correlation between the development of qE and the accumulation of 

PsbS, a specific subunits of PSII (Kullheim et al., 2002; Horton et al., 2008). However, the 

functional role of this subunit and the mechanism involved in the development of qE are still 

unclear (Allahverdiyeva and Aro, 2012). Another key component responsible for the 

formation of qE is the interconversion of specific xanthophyll pigments mostly bound to LHC, 

i.e. the xanthophyll cycle (Fig. 9) (Allahverdiyeva and Aro, 2012; Ruban et al., 2012). This 

cycle is also activated by the decrease in lumen pH due to the excess of light and consists of 

the conversion from violaxanthin (two epoxide groups) to zeaxanthin (no epoxide groups), 

which is directly involved in quenching of Chl excitation (Allahverdiyeva and Aro, 2012; 

Ruban et al., 2012). The accumulation of zeaxanthin is directly correlated with qE in several 

plants and under several conditions (Demmig-Adams, 1990; Müller et al, 2001; Ruban et al., 
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2012; Allavehrdiyeva and Aro, 2012). Havaux and Kloppstech (2001) showed, in the 

Arabidopsis thaliana npq1 mutant, which lacked functional violaxanthin de-epoxidase and so 

the possibility to convert violaxanthin to zeaxanthin, a reduced qE under high-light 

intensities. The strategy adopted by this mutant in order to avoid photoinhibition was to 

reduce the antenna size to minimize the amount of light that could excite PSII. On the other 

hand, Rees and colleagues (1992) showed in isolated thylakoids, in which zeaxanthin was 

accumulated, higher levels of qE, but only at lumen pH values higher than in vivo conditions. 

However, additional xanthophylls can be involved in qE formation. Indeed, in the 

Chlorophyta Mantoniella squamata, which presents an incomplete xanthophyll cycle and 

accumulates antheraxanthin, high levels of qE are anyway inducible. The role of 

antheraxanthin has been considered for the explanation of zeaxanthin-indipendent qE 

processes also in other studies (Gilmore and Yamamoto, 1993). Therefore, in a given 

organism, the calculation of the level of de-epoxidation, as the amount of antheraxanthin 

and zeaxanthin over the total amount of xanthophylls has become a common practice 

(Müller et al, 2001). Finally, although zeaxanthin is implicated in the formation of qE, it 

cannot be considered essential. Indeed, in mutants that accumulate constitutively 

zeaxanthin, qE was strictly dependent on the lumen pH (Niyogi et al., 1999), confirming an 

important role of this factor in the regulation of the xanthophyll cycle (Müller et al., 2001).  

 

1.8. Methods involved in studies of the photosynthetic membranes 

In photosynthetic organisms, the correct Chl-protein assembly is necessary in order 

to have high photosynthetic efficiency. In green microalgae, whose cell volume is usually 

mainly occupied by the chloroplast, this parameter could be considered an indicator of their 

wellness conditions, and so an important factor to be taken into account in order to promote 

the best conditions for obtaining high biomass yields (Simionato et al., 2011; White et al., 

2011). Moreover, analyses of the organisation of these complexes and of the interactions 

between them can be useful to understand their relationships with other metabolic 

pathways (White et al., 2001). Currently, biophysical and biochemical analyses are used for 

the purpose. Among the former, the use of Chla fluorescence measurements for the 

evaluation of the photosynthetic performance in higher plants and green algae is commonly 
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practised (Baker, 2008). In this thesis, pulse modulation and spectrofluorimetric techniques 

are considered. Among biochemical techniques, Blue Native polyacrylamide gel 

electrophoresis (BN-PAGE) has been recently employed to obtain information on the 

biogenesis and assembly phases of photosynthetic protein complexes in thylakoids and on 

their native interaction (Eubel et al., 2005; Rokka et al., 2005). 

1.8.1. Pulse amplitude modulation (PAM) fluorimetry  

PAM fluorimetry is an important fast and non-invasive technique adopted for the 

measurement of the photosynthetic performance of higher plants and microalgae (White et 

al., 2011) and concerns the study of the PSII photochemical efficiency based on the amount 

of light emitted as fluorescence following excitation (Lichtenthaler, 2005; Baker, 2008). Two 

cases are considered for the study of PSII with PAM fluorimetry: i) dark-adapted samples and 

ii) light-adapted samples. Dark-adapted samples are incubated in darkness before analysis. 

In these conditions, QA is completely oxidised and PSII is non-saturated, i.e. in the so-called 

“open” state. If a weak red (650 nm) measuring light is applied, the minimal fluorescence 

value F0 is detected. If samples are then exposed to a short pulse of saturating light (typically 

less than one second at several thousand μmol photons m-2 s-1), QA is completely reduced 

and PSII enters the “closed” state. Under these conditions, the maximum fluorescence value 

FM is measured (Baker, 2008). The difference between FM and F0 is defined the “variable 

fluorescence”, FV, whereas the ratio FV/FM is defined the maximum quantum yield of PSII in 

the dark-adapted state. In non-stressed plants, FV/FM  values are generally around 0.8, i.e. 

the 80% of the absorbed light is used during the photochemical reaction by PSII, whereas the 

remaining is involved in dissipative processes, fluorescence included (Hendrickson, 2004). 

Conversely, in non-stressed microalgae the ratio is lower than in higher plants, as was 

observed by Kromkamp and Peene (1999), around 0.6-0.7 in phytoplankton. Moreover, 

almost constant FV/FM values have been found in non-stressed cultures (White et al., 2011). 

However, when photosynthetic organisms are exposed to biotic and abiotic stresses, a 

decrease in the ratio is observed (Baker et al., 2008). For example, White and colleagues 

(2011) have observed a strong FV/FM decrease when Chlorella sp. was grown under nitrogen 

starvation in order to promote lipid accumulation. 
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Light-adapted samples are instead treated with actinic light. In these conditions, 

basal fluorescence level increases to F’, which rises to the maximal fluorescence level FM’ 

when a saturating light pulse is given. These parameters allow to measure PSII efficiency 

under different conditions of light, i.e. the PSII actual quantum yield, Y(PSII) (Genty et al., 

1989; Baker, 2008). 

According to Hendrickson (2004), the distribution of the energy absorbed by PSII can 

be described with different kinetic constants which are in competition with each other: 

 photochemical rate constant, kp, i.e. the photochemical activity of PSII; 

 regulated NPQ constant, kNPQ, i.e. the energy dissipation as heat which is dependent on 

regulated non-photochemical processes; 

 constitutive NPQ constant, kD, i.e. the constitutive thermal energy dissipation which does 

not depend on regulated non-photochemical processes; 

 fluorescence constant, kf, i.e. the energy dissipation as fluorescence.  

In order to quantify the importance of each parameter, fluorescence values obtained with 

PAM fluorimetry can be used in an energy partitioning analysis. With energy partitioning, 

three different quantum yields are obtained and summed up to unit (Hendrickson, 2004): 

Y(PSII) + Y(NO) + Y(npq) = 1 

The energy fraction which is used in photochemical processes is described as quantum yield 

of PSII and is represented by the following equation: 

YPSII = 𝑘𝑝
𝑘𝑝+𝑘𝑁𝑃𝑄+𝑘𝐷+K𝑓

 

The sum of the light fraction which is loss by constitutive thermal dissipation or as 

fluorescence Y(NO) is described by the following equation: 

Y(NO) = 𝑘𝑓+𝑘𝐷
𝑘𝑝+𝑘𝑁𝑃𝑄+𝑘𝐷+𝐾𝑓
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Finally, non-photochemical yield Y(npq) is described as: 

 

Y(npq) = 𝑘𝑁𝑃𝑄
𝑘𝑝+𝑘𝑁𝑃𝑄+𝑘𝐷+𝑘𝑓

 

 

1.8.2. 77K and RT microspectrofluorimetry 

The organisation of the Chl-protein complexes in vivo is usually studied in 

photosynthetic organisms by low temperature fluorescence emission spectra (77K) (Ferroni 

et al., 2011) and room temperature (RT, i.e. 295K) microspectrofluorimetry (Pancaldi et al., 

2002; Ferroni et al., 2011). At 77K, the spectra show a prominent band between 710 and 740 

nm, depending on the species analysed. This emission is assigned to PSI and its antenna 

LHCI. Moreover, PSII originates two characteristic emissions, usually resolved as two 

independent peaks, at 685 and 695 nm, which have been assigned to CP43 and CP47 

respectively (van Dorssen et al., 1987; Alfonso et al., 1994; Groot et al., 1999; Ferroni et al., 

2011). Finally, a shoulder at 680 nm can also be observed. This emission has been attributed 

to the “free” LHCII, i.e. LHCII complexes not stably associated with PSII to form LHCII-PSII 

complexes (Hemelrjik et al., 1992; Šiffel and Braunová, 1999; van der Weij-de Wit et al., 

2007). In photosynthetic organisms, the adjustment of PSI:PSII stoichiometry represents one 

of the responses which have been adopted for the maintenance of the maximal levels of 

energy conversion or for avoiding oxidative damages (Satoh et al., 2002). 77K represents a 

useful technique for the investigation of energy input processes, calculating the PSI/PSII ratio 

(F714/F685 ratio), which is directly correlated with PSI:PSII stoichiometry (Satoh et al., 2002). 

Several studies performed on cyanobacteria and green microalgae have indeed 

demonstrated that light quality and intensity, temperature, salt stress and combinations of 

these factors affect photosynthetic characteristics such as the PSI/PSII reaction centre ratio, 

electron transport capacity of the two photosystems, cyclic electron transport activity and 

77K fluorescence emission spectrum (Schubert and Hagemann, 1990; Murakami and Fujita, 

1993; Maxwell et al., 1994; Hibino et al., 1996; Murakami et al., 1997; Miskiewicz et al., 

2000; Satoh et al., 2002).  
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When spectra are recordered at RT, a different shape than that of spectra at 77K is 

observed. At RT, indeed, the 90% of the fluorescence emitted originates from PSII (Krause 

and Weiss, 1991; Pancaldi et al., 2002). Moreover, at RT many Chls belonging to different 

complexes emit at overlapping wavelengths (Ferroni et al., 2011). This results in a single 

maximum peak at around 684 nm, attributed mainly to PSII, which emits in the spectral 

region of 675-695 nm. Moreover, PSI-LHCI and vibrational satellites of PSII originate a very 

broad shoulder in the region between 710-740 nm (Ferroni et al., 2011). RT emission spectra 

were only occasionally used in photosynthesis researches because of the partial overlapping 

contribution of Chls from different complexes (Franck et al., 2005; Ferroni et al., 2009; 

Lambrev et al., 2010). However, if the registered spectra are resolved in their analytical 

components, RT bands can be attributed to specific complexes, as it has been demonstrated 

in several works (Pancaldi et al., 2002; Baldisserotto et al., 2004; Ferroni et al., 2007; Ferroni 

et al., 2009; Ferroni et al, 2011; Baldisserotto et al., 2012; Giovanardi et al., 2013). In our 

laboratories RT spectra recorded from single-living cells samples have been elaborated in 

order to obtain derivative spectra and single emission components (Pancaldi et al., 2002). 

This allowed to resolve the PSII emission region in three different components at 

approximately 679, 685 and 695 nm (Pancaldi et al., 2002; Baldisserotto et al., 2004; Ferroni 

et al., 2007; Ferroni et al., 2009), slightly blue-shifted at 678, 683 and 694 nm in the green 

microalga N. oleoabundans (Baldisserotto et al., 2012; Giovanardi et al., 2013). According 

with the most recent data of RT fluorescence emission in green algae (Ferroni et al., 2011), 

the attributions were to free LHCII, main PSII core band and LHCII-PSII functional assemblies 

respectively. Moreover, further minor components were resolved at 670 nm, assigned to 

free Chl, and 700 nm, assigned to LHCI-PSI and uncoupled LHCII aggregates (Ferroni et al., 

2011).  

1.8.3. BN PAGE as a tool in analyses of photosynthetic protein interaction and 

assembly 

The cellular processes require the action of several enzymes, which often contain 

multiple subunits and are associated with each other in larger protein complexes. The need 

for the formation of these complexes for their activity is often unclear, so the knowledge of 

the composition and structure of these protein complexes results in a much deeper 

understanding of the metabolic pathway and cellular processes (Eubel et al., 2005). About 
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the photosynthetic apparatus, it is clear that multi-subunit complexes are necessary in order 

to accomplish all the reactions which occur inside the chloroplast (Kügler et al., 1997). The 

structure of these complexes has been determined with high resolution (Zouni et al., 2001; 

Ben-Shem et al., 2003; Kurisu et al., 2003). However, the composition of protein complexes 

is different among the thylakoid regions considered (Järvi et al., 2011). For instance, it has 

been shown that the high molecular-mass supercomplexes, composed of PSII dimers and 

LHCII, represent the most active form of PSII and are mainly located in the granal thylakoid 

membrane (Danielsson et al., 2006). Conversely, low-molecular PSII monomers have been 

found in the unstacked region of the thylakoid membrane, where the PSII repair cycle takes 

place, suggesting that these sub-complexes represent the intermediates of the repair cycle 

and/or the biogenesis of PSII (Baena-Gonzalez and Aro, 2002; Aro et al., 2005). Moreover, 

two high-molecular mass PSI megacomplexes, PSI-LHCII and PSI-NDH [NAD(P)H 

dehydrogenase] have been identified in the stroma thylakoid membrane. These 

megacomplexes have been shown to be involved in the state transition and NDH-dependent 

cyclic electron transfer respectively (Peng et al., 2008; Sirpio et al., 2009). This information 

has been acquired thanks to the development of techniques which allow reliable separation 

of the protein complexes. Among them, BN-PAGE has been mostly used. This technique has 

been developed for the first time by Schägger and Vonjagow (1991) for the investigation of 

the individual components of the respiratory chain in mitochondria. If native gel 

electrophoresis allows to separate proteins on the basis of their internal charge, 

hydrophobic proteins, such as the one involved in the respiratory chain or embedded in 

thylakoids, need an external charge added prior electrophoresis. In BN-PAGE electrophoresis 

charge is introduced to proteins by incubation with the dye Coomassie blue instead of the 

highly denaturating detergent sodium dodecyl sulphate (SDS), commonly used in SDS gel 

electrophoresis, which allows the proteins separation according to their size (Kügler et al., 

1997; Eubel et al., 2005). The resolution capacity of BN-PAGE is very high and allows the 

separation of PSII and PSI, Cyt b6f complex, ATPase and LHC complexes within a single gel. 

The technique represents a very reliable method for the molecular mass determination of 

proteins or protein complexes (Kügler et al., 1997).  

BN-PAGE electrophoresis is often coupled with an SDS-gel system for a two-

dimensional separation in the so-called 2D BN-SDS PAGE (Eubel et al., 2005). This technique 
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requires the incubation of native gel strips obtained from BN-PAGE with urea, β-

mercaptoethanol and SDS for denaturation. After that, strips are placed horizontally on an 

SDS-gel system for the separation of the individual subunits which compose the protein 

complexes (Eubel et al., 2005; Järvi et al., 2011). After that, SDS-gel can be stained for the 

visualisation of the proteins, or blotted onto nitrocellulose or PVDF membranes for the 

detection of a specific protein subunit. Alternatively, individual subunits can be cleaved from 

the gel and used for their identification by mass spectrometry (Eubel et al., 2005). 
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Tables and figures 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: microalgae belonging to the Chlorophyceae Class. a)  cysts of Haematococcus pluvialis in which 
Car are accumulated, b) Chlamydomonas reinhardtii, c) Dunaliella tertiolecta, d) Chlorella 
sorokiniana. Bars: 10 μm. 
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Tab 1: comparison  between some oleaginous crops and microalgae as biodiesel feedstock in terms 
of oil accumulation, oil productivity and land surface required. Adapted from Mata et al. (2010). 
 

 

 

 

Tab 2: oil content in some promising microalgae. Adapted from Chisti (2007). 
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Fig. 2: raceway pond for the production of microalgal biomass. From Chisti (2007). 

 

 

Fig. 3: column bioreactor installed in the Laboratory of Plant Cytophysiology of the University of 
Ferrara by M2M Engineering Sas. 
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Fig. 4: the structure of the chloroplast. From Encyclopedia Britannica (www.britannica.com). 

 

 

 

 

 

Fig. 5: structure of Chl a and b. Modified from Heimdal et al. (2007).  
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Fig. 6: the Car biosynthetic pathway. From Naik et al. (2003). 

 

 

 

 

Fig. 7: detailed view of light reaction of photosynthesis. 
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Fig. 8: rappresentation of the «Z-scheme» of electron transfer during light-reactions in 
photosynthesis. From Allen and Martin (2007). 

 

 

 

 

Fig. 9: the xanthophylls cycle. VDE: violaxanthin de-epoxidase; ZE: zeaxanthin epooxidase.  
From Szabó et al. (2005). 
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Aim of the work 

This Thesis has been developed thank to a grant by the Italian Ministry for University 

and Research (MIUR) entitled “Energy saving and distributed microgeneration” and concerns 

a morpho-physiological and biochemical study of microalgae known to be used for 

biotechnological applications. The aim of the work is also to improve basic knowledge of 

microalgal physiology, whose current limitation is considered one of the main factors that 

interfere with the development of processes from the laboratory to the large scale.  

This Thesis has been divided in three main sections.  

The first is a morpho-physiological study about the effects of mixotrophic growth in 

the green microalga Neochloris oleoabundans on cell growth, photosynthetic efficiency and 

lipid accumulation. This section has been developed in two main subjects: 

1) effects on cell growth, lipid accumulation and photosynthetic efficiency of 

mixotrophic cultivation of N. oleoabundans in presence of different glucose 

concentrations;  

2) mixotrophic cultivation of N. oleoabundans in presence of a by-product from an 

agri-food industry and lipid synthesis induction under nutrient starvation. 

In the second section, biochemical and biophysical analyses of the photosynthetic 

apparatus of N. oleoabundans grown in presence of different glucose concentrations were 

performed to provide new information on photosynthetic metabolism and its interaction 

with the organic carbon source assimilation. This work was supported by a scholarship 

granted by the University Institute of High Studies (IUSS)-1931 of Ferrara for PhD students 

mobility, and experiments were performed at the laboratories of Prof. Eva-Mari Aro (Dept. 

of Molecular and Food Biology, University of Turku, Finland). 

The third section has been part of a Ministerial project PRIN 2007 supported by the 

Italian Ministry for University and Research (MIUR) entitled “Protein turn-over and 

accumulation in plants”, performed in collaboration with the University of Pavia and the 

University of Padua (Italy). In this study, the nuclear transformation of Chlamydomonas 

reinhardtii with two exogenous genes encoding for the phytoene synthase of Arabidopsis 

thaliana (AtPSY) and Oryza sativa (OsPSY1) was performed. The effects on the Car 
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accumulation, Car profiles and photosynthetic performance were studied in transformed 

cells. This work allowed to gain important knowledge on the genetic engineering of 

microalgal cells and the methods used might as well be applied to the fatty acid metabolic 

pathway for the increase in lipid accumulation in a very next future. 
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Part I 

Effects of mixotrophy on cell growth, lipid accumulation and 

photosynthetic performance of the green microalga Neochloris 

oleoabundans: biotechnological implications 
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1. Introduction 

During these last decades the search for new carbon-neutral energy resources has 

become essential, considering the constant increase in oil prices, the starting depletion of 

fossil fuels supplies and the strong global concern about climate change (Chisti, 2007; Smith 

et al., 2010; Stephens et al., 2010). In this scenario, microalgae have started to receive 

increasing attention for their possible exploitation in the green energy field, in particular for 

their capability to accumulate lipids suitable for biodiesel production (Chisti, 2007; Li et al., 

2008; Hu et al., 2008; Schenk, 2008; Smith et al., 2010; Brennan and Owende, 2010; Mata et 

al., 2010; Mussgnug et al., 2010; Stephens et al., 2010). Microalgae are photosynthetic 

microorganisms able to convert solar energy into chemical energy with higher 

photosynthetic efficiencies compared to higher plants, because of their simple unicellular 

structure (Harun et al., 2010). Moreover, they have the ability to easily modify their 

metabolism in response to changes in environmental conditions (Leonardi et al., 2011). For 

example, lipid accumulation is induced as an energy storage mechanism when cells are 

cultivated under stress conditions, such as high-light intensities or nutrient depletion (Hu et 

al, 2008, Smith et al., 2010; Mata et al., 2010; Li et al., 2011; Popovich et al., 2012). 

Unfortunately, these conditions of growth usually do not allow to achieve high biomass 

densities (Li et al., 2008a; Pruvost et al., 2009; Heredia-Arroyo et al., 2010). Biomass 

productivity and lipid accumulation are often inversely correlated, as the storage of TAGs 

inside cells occurs at the expense of energy used for growth (Wijffels and Barbosa, 2010). For 

this reason, the production of biodiesel from microalgae is not economically feasible yet and 

considerable investment in technological development and technical expertise is still needed 

for it to become a reality (Francisco et al., 2010; Mata et al., 2010; Wijffels and Barbosa, 

2010). Recently, several studies have suggested growth conditions that can be used for the 

industrial scale-up of lipid production from algae (Scott et al., 2010). Among them, 

mixotrophic and heterotrophic growth have recently been considered alternative methods 

for achieving higher biomass densities with respect to autotrophic cultures (Lee, 2001; Xu et 

al., 2006; Heredia-Arroyo et al., 2010; Scott et al., 2010; Stephens et al., 2010; Giovanardi et 

al., 2013). Mixotrophy is termed the condition in which organic carbon is supplied in the 

culture medium together with light, so microalgae can benefit from coupling photosynthetic 

activity with the organic carbon assimilation for growth (Lee, 2001; Xu et al., 2006; Heredia-
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Arroyo et al., 2010; Scott et al., 2010; Stephens et al., 2010; Giovanardi et al., 2013). Previous 

studies, performed on several mixotrophic microalgal species, have shown a strong increase 

in biomass yields, not only with respect to autotrophic cultures, but also compared to 

heterotrophic cultures, which consume only organic carbon for growth (Ogawa and Aiba, 

1981; Martinez and Orus, 1991, Kobayashi et al., 1992; Marquez et al., 1995; Shi and Chen, 

1999; Lee, 2001; Yang et al., 2000; Brennan and Owende, 2010).  

Among the oil-rich microalgae well-known as biofuel producing species, the 

Chlorophyta Neochloris oleoabundans has gained considerable attention since the 1980s, 

when the first studies showed its capability to accumulate 35-54% of lipids, which were TAGs 

for up to 80%, when the microalga was cultivated under nitrogen starvation (Tornabene et 

al., 1983). Many studies have been subsequently performed in order to find out the best 

conditions for increasing both biomass and lipid productivity, growing the nitrogen-starved 

microalga in different conditions, i.e. varying the temperature of growth, providing CO2 

insufflation or cultivating the microalga in seawater media (Pruvost et al., 2009; Gouveia et 

al., 2009; Popovich et al., 2012). The effects of different nitrogen sources supplied to the 

growth media at different concentrations have also been studied with respect to growth and 

lipid accumulation (Li et al., 2008b). However, high lipid-enriched biomass productivities 

were never obtained with N. oleoabundans, and several Authors suggested a two-stage 

cultivation process: during the first one, cell could be grown in nitrogen-sufficient media, to 

allow biomass production. In a second step, biomass could be harvested and then 

transferred under nitrogen depletion, to induce lipid accumulation (Gouveia et al., 2009; 

Davis et al., 2012; Giovanardi et al., 2013; Popovich et al., 2012).  

 In our recent work, N. oleoabundans has been discovered to be a mixotrophic 

microalga (Giovanardi et al., 2013). The capability of N. oleoabundans to grow in presence of 

a carbon-rich waste product (Apple Waste Product – AWP) derived from an agri-food 

industry has been investigated, and the results clearly showed an increased biomass yield 

when the microalga was grown mixotrophically. This was the first work showing the 

capability of the microalga to use an organic carbon source for growth, as beforehand only 

the cultivation in presence of wastewaters or anaerobic digestate was tested (Levine et al., 

2011; Wang and Lan, 2011; Yang et al., 2011). However, despite the advantage of coupling 

biomass production with low-cost organic carbon consumption, lipid accumulation was 
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enhanced only when nitrate was not provided in the culture media (Giovanardi et al., 2013). 

Furthermore, it was also shown that, among the different sugars present in the mentioned 

organic carbon source, glucose mainly contributed to growth (Giovanardi et al., 2013). 

Glucose has been considered the preferred carbon source also in other experiments 

concerning the mixotrophic cultivation of Chlorella sp. (Shi and Chen, 1999; Yang et al., 2001; 

Xu et al., 2006; Liang et al., 2009; Heredia-Arroyo et al., 2010; Heredia-Arroyo et al., 2011; 

Wan et al., 2011). Interestingly, when lipid accumulation was investigated, higher yields 

were always achieved when glucose was added to the growth media (Xu et al., 2006; Liang 

et al., 2009; Heredia-Arroyo et al., 2010; Heredia-Arroyo et al., 2011; Yang et al., 2011; Wan 

et al., 2011).  

N. oleoabundans is usually described as a freshwater organism, and thus it is often 

cultivated in Bristol GR+ or similar freshwater media (Bold, 1949; Lopes da Silva et al., 2009). 

However, this organism has been originally isolated from the arid soils in Saudi Arabia, and is 

considered a halotolerant microalga (Chatanachat and Bold, 1962). Experimental studies 

have shown the capability of N. oleabundans to grow from brackish to seawater media 

(Band et al., 1992; Arredondo-Vega et al., 1995; Baldisserotto et al., 2012; Popovich et al., 

2012). Salinity also affected the biochemical composition, the cell size and the cell 

morphology of the microalga (Band et al., 1992; Arredondo-Vega et al., 1995; Baldisserotto 

et al., 2012). In a recent work, the growth of N. oleoabundans in freshwater and brackish 

medium (0.6 vs 17 ‰ of salinity) has been compared, showing increased cell volume and 

similar photosynthetic efficiency in the latter samples, and confirming the ability of the 

microalga to adapt to brackish environments (Baldisserotto et al., 2012). The results 

obtained are very important. Indeed,  under the increased scarcity of freshwater for human 

consumption, the cultivation of halotolerant species in marine and brackish waters for 

biodiesel production can be considered an interesting alternative (Popovich et al., 2012). 

With these purposes, N. oleoabundans has recently been cultivated in seawater medium, to 

determine whether the microalga continued to be a good candidate for green-energy 

feedstock. The results confirmed its capability to accumulate lipids suitable for biodiesel 

production, but only when cells were grown under nitrogen depletion conditions (Popovich 

et al., 2012). 
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The recent works described above showed that mixotrophic cutivation of N. 

oleoabundans leads to enhanced biomass production, whereas, when cells are grown in 

brackish medium, increased cells volumes are observed. Then, combining the two conditions 

of growth might lead to further improved biomass yields with respect to freshwater 

autotrophic samples. In this first part of this Thesis, the microalga N. oleoabundans was 

cultivated in brackish medium (17‰ salinity), in autotrophic and mixotrophic conditions, in 

order to compare growth, morphological and physiological aspects, with special attention on 

the photosynthetic apparatus. In the first section, the cultivation of N. oleoabundans was 

tested in the presence of different glucose concentrations, focusing on parameters that are 

relevant to biotechnological applications. Growth was estimated in parallel to glucose 

consumption, whereas lipid accumulation was investigated by staining cells with the specific 

fluorocrome Nile Red. Pulse amplitude modulated (PAM) fluorimetry was employed in order 

to monitor the photosynthetic activity during growth and lipid accumulation. White et al. 

(2011), in fact, have recently suggested that PAM fluorimetry can be a useful tool for the 

parallel evaluation of photosynthesis, nutritional status of the cells and neutral lipid 

accumulation inside cells. In the second section, the growth ability of N. oleoabundans in a 

brackish medium with addition of Apple Waste Product (AWP) diluted 1/20 was tested. A 

two-phases experiment was set up: in the first phase, to obtain basic information on the 

biology of the microalga grown in mixotrophy, cell growth, lipid accumulation, cell 

morphology, pigment content and photosynthetic efficiency were monitored during 28 days 

of growth. Then, in the second phase of the experiment, cells, grown either autotrophically 

or mixotrophically for 7 days, were transferred to brackish water, under nutrient depletion, 

to evaluate and to compare the algal ability to accumulate lipids and to obtain new 

information about growth and morpho-physiological aspects of autotrophic and mixotrophic 

N. oleoabundans cells under starvation. Results were compared with previous works in 

which the microalga was grown in freshwater medium with AWP (Giovanardi et al., 2013) or 

in autotrophic brackish medium (Baldisserotto et al., 2012).   
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2. Mixotrophic growth of N. oleoabundans with glucose as organic carbon 

source 

 

2.1 Materials and methods 

2.1.1. Algal strain and culture condition 

The microalga N. oleoabundans UTEX 1185 (syn. Ettlia oleoabundans) (Chlorophyta, 

Neochloridaceae, Sphaeropleales) was obtained from the Culture collection of the University 

of Texas (UTEX, USA; www.utex.org). Cells were grown and maintained in axenic liquid BM 

medium (Baldisserotto et al., 2012) in a growth chamber (24 ± 1 °C temperature, 80 

µmolphotons m-2 s-1 PAR and 16:8 h of light-dark photoperiod), without shacking and external 

CO2 supply. For experiments, cells were inoculated at a density between 0.5 and 0.7 x 106 

cells mL-1 in BM medium containing 0 (control), 2.5 or 5 g L-1 of glucose and grown in 500 mL 

Erlenmeyer flasks (300 mL of total volume) in the same growth chamber described above, 

with continuous shacking at 80 rpm. For analyses, aliquots of samples were collected at 0, 2, 

3, 4, 7, 9, and 11 days of growth. Experiments were performed at least in triplicate.  

2.1.2. Growth evaluation 

Growth was estimated counting the cells with a Thoma’s haemocytometer under the 

light microscope (Zeiss, model Axiophot). Specific growth rates during the exponential 

phases were calculated according to Giovanardi et al. (2013). 

2.1.3. Glucose consumption evaluation 

The glucose intake from cells was measured with the 3,5 dinitrosalicylic acid (DNS) 

assay for total reducing sugars, according to Miller (1959). Aliquots of 1 mL of samples were 

centrifuged at 10000 g for 5 min, then 0.3 mL of the supernatant were used in a reaction 

with 1 mL of DNS. When necessary, dilutions with distilled water were made before 

reaction. Samples were kept at 95˚C for 5 min, after that the optical density (OD) was 

analysed with a Pharmacia Biotech Ultrospec®2000 UV/vis spectrophotometer (1 nm 

bandwidth; Amersham Biosciences, Piscataway, NJ, USA) at 540 nm. The OD values were 

referred to a calibration curve in order to obtain the glucose concentration (mgEqGlumL-1).  
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2.1.4. Light and fluorescence optical microscopy and Nile Red stained cell 

observations 

Microscopic observations were taken from small aliquots of samples using a Zeiss 

model Axiophot microscope with conventional or fluorescent attachments. The light source 

for Chl fluorescence observation was a HBO 100 W pressure mercury vapour lamp (filter set, 

BP436/10, LP470). The intracellular presence of lipids was evaluated by staining cells with 

the fluorochrome Nile Red (9-diethylamina-5Hbenzo[α]phenoxazine-5-one, 0.5% dissolved in 

acetone) (Sigma-Aldrich, Gallarate, Milano, Italy), as described in Giovanardi et al. (2013). 

After staining, observations were made with the same microscope described above, exiting 

cells at 485 nm (filter set BP485, LP520). Pictures of cells were taken with a Canon 

Powershot S40 digital camera (4 megapixels), mounted on the ocular lens through a Leica DC 

150 system (Leica camera AG, Solms, Germany). 

2.1.5. Pigment extraction and analyses 

Pigment extraction was performed according to Giovanardi et al. (2013). Aliquots of 

cells were collected by centrifugation at 600 g and then pigments were extracted at 80˚C 

for 15 min with 2 mL of 100% methanol. After clarification by centrifugation, the extracts 

were measured with the same spectrophotometer described above at 666 (Chla), 653 

(Chlb) and 470 (Car) nm. Quantification was performed according to Wellburn (1994). 

2.1.6. PAM fluorimetry  

The maximum quantum yield of PSII was determined using an ADC OS1-FL 

fluorometer (ADC Bioscientific Ltd, Hoddesdon, Hertfordshire, UK). Aliquots of samples 

were collected by centrifugation at 10000 g for 3 min. The pellets were then deposited 

onto pieces of wet filter paper (Schleicher & Schuell) (Ferroni et al., 2011). After incubation 

in the dark for 15 min, initial fluorescence (F0) and maximum fluorescence (FM) values were 

measured flashing the samples with a saturating light impulse. These values were used for 

the calculation of the maximum quantum yield of PSII: Y(PSII) = FV/FM, where variable 

fluorescence is FV = (FM-F0) (Baker et al., 2008; Lichtenthaler et al., 2005). 
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2.1.7. Data treatment 

Data were processed with Microcal Origin 6.0 software (OriginLab, Northampton, 

MA, USA). In each case means ± standard deviations for n number of samples are given. 

Statistical analyses for comparison of the different data were carried out using Student’s t-

test with a significance level of 0.05.  

 

2.2.  Results and Discussion 

 

2.2.1. Effect of different glucose concentrations on N. oleoabundans growth  
 

As is shown in Fig. 1, the growth of N. oleoabundans was highly promoted when 2.5 

and 5 gL-1 of glucose were supplied to BM medium, confirming the capability of this 

microalga to grow mixotrophically. Cell densities and growth rates of autotrophic and 

mixotrophic samples are reported in Fig. 2. During the first 3 days all samples grew with no 

differences, irrespective of the presence of glucose, reaching cell densities of about 5 x 106 

cell mL-1 (Fig. 2 a). However, during the following days the growth rate of control samples 

started to progressively decrease and cells reached the stationary phase after 9 days of 

growth, with a cell density of about 14 x 106 cell mL-1. Conversely, cells grown with 2.5 and 5 

gL-1 of glucose continued to grow faster after day 3, reaching at day 7 cell densities of about 

79 and 63 x 106 cell mL-1, respectively. After the 7th day, however, both mixotrophic samples 

entered the stationary phase, and cell density values started to decrease (Fig. 2 a). Growth 

rates at the intervals of 0-3 and 3-7 days are shown in Fig. 2 b. During the time interval of 0-3 

days, similar growth rates, ranging between 0.9 and 1.1 div day-1, were observed in all 

samples. During the following interval, growth rates in control cells strongly decreased, 

confirming the gradual entrance in stationary phase. Conversely, values only slightly 

decreased in mixotrophic samples, confirming the continuous growth until the 7th day. In 

cultures grown with 2.5 and 5 gL-1 of glucose, the cell densities at the end of the exponential 

phase were measured to be 3.2 and 2.7 times higher than in the control, respectively (p < 

0.01 in both cases). Such values are very high as compared to previous works testing 

different cultivation protocols (Yang et al., 2011; Giovanardi et al., 2013; Baldisserotto et al., 
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2012; Popovich et al., 2012), and suggest that the mixotrophic growth with glucose is an 

alternative way for obtaining high-density cultures of this microalga. Interestingly, initial 

glucose concentration higher than 2.5 gL-1 did not yield higher cell density values. This was 

also previously observed in preliminary experiments in which the increase in glucose 

concentration beyond 5 gL-1 did not lead to improved cell densities (data not shown). Similar 

data were obtained in other studies in which Chlorella sp. was cultivated supplying different 

glucose concentrations to the growth media (Ip et al., 2004; Xiong et al., 2008; Heredia-

Arroyo et al., 2010; Wan et al., 2011). This effect was attributed to substrate inhibition (Ip et 

al., 2004; Xiong et al., 2008; Heredia-Arroyo et al., 2010). Moreover, it has been reported 

that different mixotrophic microalgal species showed different optimal glucose 

concentrations for growth promotion (Wan et al., 2011). As shown in Fig. 3, in which cell 

growth of mixotrophic samples and parallel glucose consumption are reported, the optimal 

glucose concentration for N. oleoabundans appeared to be 2.5 gL-1. In that case, indeed, 

glucose was completely utilized. Conversely, besides growth was not further promoted in 

the 5 gL-1-supplied medium, an excess of substrate (17%) was also observed at the end of 

the experiment (Fig. 3). Interestingly, cells started to consume glucose only after 3 days of 

growth, i.e. when growth was promoted with respect to control. This aspect could be linked 

to the necessity of cells to adapt to the new glucose-supplied media during the first days of 

growth. Moreover, in both cases, glucose continued to be assimilated when cells entered the 

stationary phase of growth. In this way, despite the nutrient limitation conditions prevented 

the cell growth, the remaining sugar could have been used for providing energy to be 

addressed towards other metabolic pathways (Wan et al., 2011).  

 

2.2.2. Optical microscopy and Nile red staining observation 

The cell morphology of N. oleoabundans grown with 0, 2.5 and 5 gL-1 of glucose was 

periodically followed after 3 (exponential phase), 7 (late exponential phase) and 9 

(stationary phase) days of growth. After 3 days, control cells were spherical and contained a 

large red-fluorescent cup-shaped chloroplast which occupied most of the cell volume 

(Baldisserotto et al., 2012; Giovanardi et al., 2013) (Fig. 4 a, b). Differences between 

autotrophic and mixotrophic cells already occurred at this time of growth, irrespective of the 

glucose concentration used. In cells supplied with 2.5 and 5 gL-1 of glucose, indeed, 
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vegetative cells showed slightly bigger dimensions. Moreover, the presence of big sporocysts 

containing several cells with small dimensions was observed in both mixotrophic samples 

(Fig. 4 c, d). These sporocysts were previously detected in N. oleoabundans grown 

mixotrophically (Giovanardi et al., 2013) or in presence of different anaerobic digestates 

added to the medium of growth (Yang et al., 2011). The increase in cell density from the 4th 

day of growth in mixotrophic samples could be linked to the release of cells from sporocysts. 

After 7 days of cultivation, more evident differences between control and treated cells 

occurred. About the former, morphology did not change significantly, except for the 

increased vacuolisation inside cells (Fig. 4 e), linked to the cell aging (Baldisserotto et al., 

2012). Conversely, in mixotrophic samples the chloroplast lost its characteristic cup-shape 

and translucent globules started to accumulate inside the cytoplasm (Fig. 4 f, g). After 9 days 

of growth, mixotrophic N. oleoabundans cells appeared suffering (Fig. 5 a, b). Most of the 

cells were slightly flattened, losing their perfect spherical shape, and the translucent 

globules increased their volume inside cells. Moreover, cells appeared bleached. In order to 

check if such translucent globules were linked to lipid accumulation, cells were stained with 

the lipid-specific fluorochrome Nile Red. In fact, this assay is considered a quick method for 

checking the presence of lipid globules via microscopic observations of stained-cells (White 

et al., 2011; Popovich et al., 2012; Giovanardi et al., 2013). As expected, the presence of 

large lipid droplets was confirmed in mixotrophic cells after 9 days of growth, with no 

differences between the two glucose concentrations (Fig. 5 c, d). Scott and co-workers 

(2010) reported that growing microalgae under mixotrophic conditions produces an altered 

N:C ratio towards the carbon source, giving the same effects of nitrogen depletion 

conditions. In this way, lipid accumulation is induced during the stationary phase, when the 

nitrogen source has been consumed. On the other hand, the lipid metabolic pathway 

requires energy for lipid synthesis (Wan et al., 2011). As observed in section 2.2.1., glucose 

was consumed even when cells entered the stationary phase, providing the additional 

energy and material.  

2.2.3. Effect of glucose on photosynthetic pigment content 

The effects of the carbon source supplement on pigment content were monitored 

throughout cell growth and are shown in Fig. 6. During the first 3 days of growth, no 

differences in pigment content occurred between autotrophic and mixotrophic cultures. 
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About Chl content, Chla (Fig. 6 a) and Chlb (Fig. 6 b) concomitantly decreased in all the 

samples, resulting in an overall reduction of more than 70% with respect to time 0 (Fig. 6 c). 

Differences were observed during the following days of cultivation. In particular, in control 

samples the trend of total Chl content pointed to a slight increase from day 4 to day 9 of 

cultivation, and a very strong increase at day 11, when Chl content reached the values 

recorded at the beginning of the experiment. Chl (and Car) plays, in fact, important roles in 

light-harvesting complexes and, in high-densities microalgal cultures, an increase in LHC 

antenna system is needed in order to maximise the light capture efficiency (Shenk et al., 

2008). Then, the higher Chl amount at day 0 (inoculum) in all the samples has been 

attributed to the initial pigment content in the high-density starter cultures that were used 

for the inocula. Similarly, the higher content in total Chl at the end of the experiment in 

autotrophic cultures could be linked to the increase in cell densities. In diluted cultures, light 

penetration is usually higher than in dense cultures (Shenk et al., 2008), then a decrease in 

Chl content after day 0 could be linked to the effect of dilution. A different trend of Chl 

content was observed in mixotrophic samples after the 3rd day of growth (Fig. 6 a-c). Despite 

growth was highly promoted by glucose consumption from day 3 onwards, Chla, Chlb, and, 

thus, total Chl  content remained at very low values up to the end of the experiment, with 

only a slight increase in cells grown with 2.5 gL-1 of glucose at day 11. At the end of the 

experiment, in fact, values were 57% and 74% lower with respect to control for cells grown 

in 2.5 and 5 gL-1 of glucose respectively (p < 0.05 in both cases). In effect, in mixotrophic 

microalgae the pigment content varies depending on the considered species and carbon 

source supplied to the medium of growth (Liu et al., 2009). Little information on the effects 

of glucose on pigment content is available, but several studies have shown a decrease in Chl 

content with respect to autotrophic cultures when the organic carbon source, glucose 

included, was added to the medium (Yamane et al., 2001; Ip et al., 2004; Liu et al., 2009a). 

Despite the different trend in autotrophic and mixotrophic samples, the variation of Chla 

content was linear with that of Chlb, resulting in constant Chla/Chlb ratio in all samples. 

However, the ratio tended to be higher in mixotrophic cells, especially in those grown with 5 

gL-1 of glucose (Fig. 6 d). Car content was shown to be less influenced by the addition of an 

organic carbon source (Liu et al., 2009a). In the marine diatom Phaeodactylum tricornutum, 

little variations in Car content were observed under glucose supplement, but resulting in 

lower Chl/Car ratios due to the concomitantly decrease in Chla content (Liu et al., 2009a). 
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Conversely, in the green microalga Haematococcus pluvialis grown mixotrophically, Car 

concentration strongly increased, reaching higher values with respect to the autotrophic 

controls (Orosa et al., 2001). In N. oleoabundans, variations in Car concentrations during the 

microalgal growth followed the same trend of Chl content until day 7, irrespective of the 

presence of glucose (Fig. 6 e). However, different from what observed for Chl, Car content 

subsequently increased not only in controls (2.4 times more from day 7 to day 11), but also 

in treated samples (2.3 and 1.9 more from day 7 to day 11 in 2.5 and 5 gL-1 glucose-grown 

cells, respectively), although concentrations as high as those measured for controls were 

never reached. Considering the effect of glucose intake on microalgal growth and the 

consequently altered N:C ratio in mixotrophic cells (which simulates the same conditions of 

nitrogen starvation when microalgae reached the stationary phase) (Scott et al., 2010), in 

these samples Car might be probably synthesized in response to stress conditions (Berges et 

al., 1996; Orosa et al., 2001). Increased Car content from day 7 onwards resulted in different 

Chl/Car ratios, which remained stable for autotrophic cultures, whereas decreased in cells 

grown with 2.5 (-35%, p < 0.01 at 9 days of growth and -23%, p < 0.05 at 11 days of growth 

with respect to control) and 5 gL-1 of glucose (-36%, p < 0.01 at 9  days of growth and -48%, p 

< 0.05 at 11 days of growth with respect to control), due to the concomitant stabilisation of 

Chl content at low levels (Fig. 6 f).  

2.2.4. Maximum PSII quantum yield determination in autotrophic and mixotrophic 

samples 

Chl a fluorescence measurements can be considered a very important tool to study 

photosynthetic performance and stress conditions in microalgae (Baker, 2008). Among these 

techniques, PAM fluorimetry is fast and non-invasive and gives important information on the 

photochemical activity of photosystem II (PSII), which reflects the functionality of the 

photosynthetic apparatus and so the physiological state of the organisms (Maxwell and 

Johnson, 2000; Baker et al., 2008; White et al., 2011). The maximum PSII quantum efficiency 

measured as FV/FM ratio has recently been used for the estimation of the effects of nutrient 

limitation on photosynthetic apparatus of microalgal cells (White et al., 2011). Despite FV/FM 

values in non-stressed higher plants are usually around 0.8 (Baker, 2008), in microalgae 

values between 0.6 and 0.7 are usually measured (Krompkamp and Peene, 1999; White et 

al., 2011). The same values were observed when N. oleoabundans was grown in freshwater 
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and brackish medium (Baldisserotto et al., 2012). In agreement with such literature data, 

FV/FM ratios obtained in this work showed a nearly constant values around 0.6-0.7 in control 

cells throughout the experiment (Fig. 7). Conversely, a completely different trend was 

observed when glucose was added to the medium. Indeed, cells grown with 2.5 and 5 gL-1 of 

glucose showed a progressively significant increase in the FV/FM ratios, which reached the 

maximum value at 4 days, when approached 0.8 in both cases (p < 0.01 with respect to 

controls). This unusual, very high value, similar to those normally registered in higher plants, 

indicated a strong photosynthetic performance in mixotrophic samples. There is very little 

information available about the photosynthetic activity of N. oleoabundans under 

mixotrophic growth (Giovanardi et al., 2013). In other mixotrophic microalgae the organic 

carbon metabolism has different influences on photosynthesis (Liu et al., 2009a). In many 

studies, glucose has been shown to play inhibitory effects, reducing the apparent affinity for 

CO2 during CO2 fixation (Lalucat et al., 1984; Martinez and Orus, 1991) or limiting the 

synthesis of the RubisCO enzyme of the Calvin cycle (Oesterhelt et al., 2007). Reduced 

photochemical efficiency of PSII has also been observed, indicating that organic carbon 

depressed the photosynthetic efficiency (Oesterhelt et al., 2007; Liu et al., 2009a). 

Conversely, in N. oleoabundans the glucose supplement seemed to promote photosynthesis. 

During mixotrophy, photosynthesis and oxidative phosphorylation of the organic substrate 

simultaneously occur in order to provide energy for growth (Vonshak et al., 2000). Despite 

several works have supported the theory that, in some mixotrophic microalgae, autotrophic 

and heterotrophic metabolisms proceed independently (Marquez et al., 1993; Liu et al., 

2009a), it has been proved instead that these processes can also be correlated with each 

other (Vonshak et al., 2000). In particular, in the cyanobacterium Spirulina platensis grown 

mixotrophically in the presence of glucose, maximum efficiency of PSII photochemistry, 

higher respiration and capacities of recovery after high-light exposures were observed with 

respect to autotrophic controls, indicating a higher metabolic activity (Vonshak et al., 2000). 

Then, glucose might have promoted in the same way photosynthetic efficiency also in N. 

oleoabundans. Results were completely different when N. oleoabundans cells entered the 

stationary phase. In fact, at the end of the experimental time, FV/FM ratios in 2.5 and 5 gL-1 of 

glucose-grown cells were dramatically decreased to 0.62 and 0.59 respectively, 15% and 20% 

less than the value recorded for autotrophic samples (p < 0.01 in both cases). FV/FM decrease 

has been linked in several cases with the exposure to stress conditions, such as salinity and 
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irradiance (Shreiber et al., 2002; Baker, 2008). In a recent study, the application of PAM 

fluorimetry to monitor the effects of nutrient depletion on lipid accumulation showed a 

strong decrease in FV/FM ratio and an overall reduction of the physiological functions in N-

starved Chlorella sp. cells containing high amount of lipids (White et al., 2011). Also in this 

study, the decline in the ratio was observed as soon as cells entered the stationary phase 

and lipid accumulation was induced, confirming a reverse correlation between high 

photosynthetic efficiencies and lipid synthesis, which occurred in response to the 

physiological stress caused by nutrient depletion. 
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3. Mixotrophic growth of N. oleoabundans in a carbon-rich waste product 
and lipid synthesis induction during nutrient starvation 
 

3.1. Materials and methods  

3.1.1. Culture conditions and experimental design 

Neochloris oleoabundans UTEX 1185 axenic cultures, grown and maintained in BM 

brackish medium (ca. 17‰ of total salinity; for composition see Baldisserotto et al., 2012) 

were used in this study. Algal cultures were cultivated without shaking in a growth chamber 

(24 ± 1°C; 120 μmolphotons m-2 s-1 PAR; 16-8 h light-darkness photoperiod). Experimental 

design involved 2 steps. For step 1, aliquots of cells in the stationary phase of growth (10-12 

x 106 cells mL-1) were inoculated into Erlenmeyer flasks (500 ml capacity) containing BM 

medium added with an apple waste product (AWP) at the final dilution of 1:20. The AWP 

concentration was determined by extending to the present experiments the information 

already available for this alga cultivated in the low salinity ES medium enriched with the 

same AWP substrate (Giovanardi et al., 2013). The AWP was obtained from a semi-solid 

waste derived from the processing of apples in a vinegar production plant from Trentino Alto 

Adige region (Italy). The crude, semi-solid waste material was then transferred to the 

laboratory for further processing (sedimentation, to separate the liquid phase from the solid 

one, followed by harvesting, filtration, clarification, pH adjustment and sterilization of the 

liquid phase), according to the protocol reported in Giovanardi and coworkers (2013). The 

resulting AWP substrate contained about 3% of total sugars, thus working as a mixotrophic 

substate (for AWP composition, see Tab. 1; Giovanardi et al., 2013). Autotrophic cultures in 

BM medium were kept in parallel as controls. The culture volume was 300 mL, and the initial 

cell density was between 0.4 and 0.7 x 106 cells mL-1. Experiments were performed in 

triplicate and their duration was 28 days. Samples were harvested weekly for analyses, 

except for growth kinetics measurements, which were performed also at the 3rd day of 

experiment. For step 2, cells were previously cultivated for 7 days in BM medium 

(autotrophic) and in BM medium added with AWP (mixotrophic) as just described. After 7 

days, cells from both autotrophic and mixotrophic media were harvested axenically by 

centrifugation (500 g, 10 min) and resuspended in brackish tap water (tap water added with 

14.5 gL-1 of NaCl, 0.29 gL-1 of KCl, 0.48 gL-1 of CaSO4 × 2 H2O, 1.27 gL-1 of MgSO4 × 7 H2O to 
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reach the total salinity of 17‰). Aliquots of samples were harvested for analyses after 1, 3, 

7, 10, 14 and 21 days of starvation. Tap water employed for experiments was obtained from 

the aqueduct serving the city of Ferrara and managed by the local agency for water, energy 

and environment (HERA - Holding Energia Risorse Ambiente; www.gruppohera.it); its 

composition, publicly available at the HERA website, is reported in Tab. 2. Experiments were 

performed in triplicate. Algae from both experimental steps were used for all analyses 

reported below. 

3.1.2. Growth measurements 

For step 1, growth kinetics evaluations were carried out on cell samples collected at 

time 0 (inoculum), and then after 3, 7, 14, 21 and 28 days. For step 2, growth measurements 

were performed at time 0 (inoculum in autotrophic and mixotrophic media), after 7 d of 

cultivation in both media, and then at time 0 (just after the algae were resuspended in the 

nutrient deprived medium), 3, 7, 10, 14 and 21 days of starvation. Growth was estimated 

measuring the optical density (OD) at 750 nm with a Pharmacia Biotech Ultrospec®2000 UV–

vis spectrophotometer (1 nm bandwidth; Amersham Biosciences, Piscataway, NJ, USA). The 

values were referred to a calibration curve with known cell number, evaluated with a 

Thoma’s counting camera, versus optical density. On the basis of cell density at different 

times of cultivation, the growth rate of samples was calculated by using the equation 

reported in Giovanardi and coworkers (2013). 

3.1.3. Quantification of reducing sugars in culture media  

For step 1, aliquots of culture media were separated from algae by centrifugation at 

10000 g for 5 min. Media from autotrophic and mixotrophic cultures were analysed weekly 

using the DNS (3,5 dinitrosalicylic acid) assay for quantification of reducing sugars as 

reported in Miller (1959), with minor modifications. 0.3 mL of the supernatant were used in 

a reaction with 1 mL of DNS. When necessary, dilutions with distilled water were made 

before reaction. Samples were kept at 95˚C for 5 min, after that the OD was analysed at 

540 nm with the same spectrophotometer described above. The OD values were referred 

to a calibration curve in order to obtain the concentration of reducing sugars (mgEqGlumL-1).  
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3.1.4. Light and fluorescence microscopy 

Cell samples were observed using a Zeiss model Axiophot microscope equipped with 

conventional or fluorescent attachments. The light source for fluorescence examinations 

was a HBO 100W pressure mercury vapour lamp. Chloroplasts were visualized by Chl 

autofluorescence with excitation at 436 nm (filter set, BP436/10, LP470). Images were 

obtained with a Canon Powershot S40 digital camera (4 megapixels) mounted on the ocular 

lens through a Leica DC150 system (Leica AG, Solms, Germany). For lipid identification inside 

cells, the fluorochrome Nile Red (9-diethylamina-5Hbenzo[α]phenoxazine-5-one, 0.5% 

dissolved in acetone; Sigma-Aldrich, Gallarate, Milano, Italy) was employed according to 

Giovanardi et al. (2013). After incubation at 37°C in darkness for 15 min, cells were observed 

with the same microscope described above at the excitation of 485 nm (filter set, BP485, 

LP520) to highlight the presence of intracellular neutral lipids as gold-yellowish spots. 

Pictures were taken with the camera described above.  

3.1.5. Transmission electron microscopy (TEM) 

Cells were harvested weekly by centrifugation (500 g, 10 min), fixed with 

glutaraldehyde and postfixed with OsO4 following the method reported in Giovanardi and 

coworkers (2013). Dehydration, embedding and staining were performed as described in 

previous works (Pancaldi et al., 2002; Baldisserotto et al., 2012). Sections were observed 

with a Hitachi H800 electron microscope (Electron Microscopy Centre, University of Ferrara). 

3.1.6. Photosynthetic pigment analysis 

Algal cells suspensions were collected by centrifugation and extracted with absolute 

methanol for 10 min at 80°C (Baldisserotto et al., 2012; Giovanardi et al., 2013). Absorption 

of extracts was measured at 666 nm (Chl a), 653 nm (Chl b) and 470 nm (Car) with a 

Pharmacia Ultrospec 2000 UV-Vis spectrophotometer (1 nm bandwidth) (Amersham 

Biosciences, Piscataway, New Jersey, USA). Manipulations of pigment extracts were 

performed under dim green light to avoid photo-degradation. Pigment concentrations were 

evaluated according to Wellburn (1994).  
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3.1.7. Fluorescence measurements 

 Modulated Chl fluorescence 

Chl fluorescence analyses were performed with a pulse amplitude modulated 

fluorimeter (ADC-OS1-FL, ADC Bioscientific Ltd., Herts, UK). In detail, the PSII maximum 

quantum yield (Fv/FM) was measured after 20 min of dark adaptation of cell samples; the 

effective PSII quantum yield Y(PSII) = (FM
’-FS)/FM

’, according to Genty et al. (1989), the 

quantum yield of regulated energy dissipation Y(NPQ) = (FS/FM’)-(FS/FM) and the combined 

yield of fluorescence and constitutive thermal dissipation Y(NO) = (FS/FM) were measured 

after 5 min of exposure to high intensity light (1100 µmolphotons m-2 s-1) (Hendrickson et al., 

2004). Samples were prepared as reported in Ferroni et al. (2011).  

 RT microspectrofluorimetric analyses 

In order to study the assembly state of the light harvesting complex (LHCII) with 

photosystem II (PSII) in autotrophic and mixotrophic cells, room temperature (RT) 

fluorescence emission spectra were recorded using a microspectrofluorimeter (RCS, Firenze, 

Italy), associated with a Zeiss model Axiophot epifluorescence photomicroscope (Pancaldi et 

al., 2002). Samples were prepared as described by Ferroni et al. (2011). Groups of living cells 

(x40 magnification) were excited at 436 nm. Excitation wavelength was provided by a 

BP436/10 filter (Zeiss), using a 1.6 mm diaphragm. Autolab software (RCS) was employed to 

set the recording range (620-780 nm), optimize the photomultiplier response and visualize 

the emission spectra (Ferroni et al., 2009). For each sample, at least 5 spectra were 

recorded. Microcal Origin 6.0 software (OriginLab, Northampton, MA, USA) was used for 

elaboration of spectra, which were corrected as described by Ferroni and co-workers (2011). 

Fluorescence yield of emission bands, whose attribution is shown in Tab. 3, was evaluated as 

the area subtended under the corresponding Gaussian curves. Moreover, calculation of 

difference in relative emission between autotrophic and mixotrophic cells was performed 

during the experimental time.  
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3.1.8. Statistical analyses 

Data were processed with Microcal Origin 6.0 software (OriginLab, Northampton, 

MA, USA). In each case means ± standard deviations for n number of samples are given. 

Statistical analyses for comparison of the different data were carried out using Student’s t-

test with a significance level of 0.05.  

 

3.2. Results and Discussion 

3.2.1. Phase 1: effects of AWP on cell growth, pigment content, photosynthetic 

efficiency and lipid accumulation  

Growth kinetics  

Growth kinetics of N. oleoabundans cultures in the mixotrophic AWP-added medium 

was very different to those recorded for cells in BM medium and confirmed the previous 

results concerning the capability of the microalga to grow mixotrophically (Giovanardi et al., 

2013), as is shown in Fig. 8. Growth kinetics of autotrophic control cells was in line with 

previous experiments in which N. oleoabundans was grown in BM medium (Baldisserotto et 

al., 2012). Indeed, autotrophic samples showed a continuous slight increase in cell densities, 

without entering the stationary phase and reaching at 28 days of growth values of about 3.5 

x 106 cells mL-1 (Fig. 9). Conversely, cell densities of AWP-treated samples were already 

doubled with respect to those of controls at the 3rd day of cultivation, but reached a very 

significant peak at the 7th day, with cell densities of 9.44 x 106 cells mL-1 vs 1.36 x 106 cells 

mL-1 of control samples, i.e. about 7-fold higher than in autotrophic cultures, and growth 

rates of about 0.62 and 0.15 div d-1 for AWP-treated samples and controls, respectively. 

Subsequently, from day 7 up to the end of experiment, mixotrophic cultures entered the 

stationary phase, and growth rates underwent a strong rundown if compared to growth 

recorded during the previous time interval and to that of controls (about 0.03 and 0.06 div 

day-1 for AWP-treated and controls, respectively). At the end of the experiment, cell 

densities in mixotrophic samples were about 14 x 106 cell mL-1, 4 times higher than 

autotrophic samples, but similar to those reported in N. oleoabundans in freshwater ES 
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medium added with AWP (Giovanardi et al., 2013). Baldisserotto and co-workers (2012) 

compared the microalgal growth in freshwater and brackish media, and the latter samples 

showed lower cell densities with respect to ES-grown cells, but increased cell volumes. 

However, the cell-enlargement effect in brackish medium disappears when the cells are 

routinely grown in BM. Therefore, it can be easily concluded that the cultivation in brackish 

medium did not lead to higher cell densities, but only AWP is responsible for the increased 

growth. In fact, AWP always yields higher cell densities with respect to autotrophic cultures, 

irrespective of salinity, and also with respect to previous works in which N. oleoabundans 

was cultivated in presence of wastewater effluents (Levine et al. 2011; Yang et al. 2011; 

Wang and Lan 2011), confirming that AWP might be considered a good alternative substrate 

to highly-expensive glucose. On the other hand, if cell densities obtained in this experiment 

are compared with N. oleoabundans grown in presence of pure glucose, such high values 

were never reached (see section 2), confirming that glucose remained the preferred carbon 

source. In that case, agitation might also have contributed to improve the growth rates, as 

already demonstrated in previous experiments with the dynoflagellate Crypthecodinium 

cohnii (De Swaff et al., 1999). 

Glucose consumption kinetics in mixotrophic microalgae 

As already shown by Giovanardi et al. (2013), AWP composition resulted in 2.95% of 

total sugar compounds, whereas the total amount of organic carbon was calculated to be 

around 3.35%. Therefore, the concentration of the total organic carbon added to BM 

medium at the 1:20 dilution was around 1.68 gL-1. However, only 0.93 gL-1 of organic carbon 

resulted to be reducing sugar available to the assimilation by the microalga. As is shown in 

Fig. 10, the concentration of reducing sugars in AWP-media underwent an overall 70% 

decrease during the 28 day-long experiment, indicating that AWP supplement exceeded the 

concentration required for total consumption by the microalga. Values, in fact, decreased 

from 0.93 to 0.31 gEqGluL-1 at the end of the experiment. Interestingly, the consumption of 

sugars in the culture media by N. oleoabundans cells was about 37 mgL-1 day-1 during the 

first 7 d of cultivation, then it decreased to about 17 mgL-1 day-1 during the following 21 day-

long experimental interval, suggesting a higher rate of assimilation when cells were in 

exponential phase of growth. Moreover, despite cells entered the stationary phase after 7 

days of growth, glucose consumption continued up to the end of the experiment. This 
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indicates that microalgae might benefit from the exogenous carbon source not only for 

growth, but also for the functioning of other metabolic pathways during the stationary 

phase (Wan et al., 2011). 

Effects of AWP on cell morphology and lipid accumulation  

Cell morphology of autotrophic and mixotrophic N. oleoabundans was monitored 

throughout the experiment by light and fluorescence microscopy and by submicroscopical 

observations at TEM. Moreover, the presence of lipid globules was checked by staining the 

cells with the lipid-specific fluorochrome Nile Red. Observations of autotrophic control cells 

at the light microscope (Fig. 11 a, b, d, e) showed the typical cell morphology of N. 

oleoabundans grown in BM medium, but cell dimensions remained similar throughout the 

experiment (Baldisserotto et al., 2012). In fact, independent of the growth period, cells were 

almost spherical, with a cell diameter of about 3-3.5 μm. Only one cup-shaped chloroplast, 

containing a large pyrenoid, was present inside cells (Fig. 11 a, b). Only cells from 21-28 days-

old autotrophic cultures sometimes showed signs of cytoplasmic vacuolisation (Fig. 11 d-f), 

which is probably linked to cell ageing of the cultures (Baldisserotto et al., 2012). 

Submicrosopical observations showed the presence of the nucleus inside cells, containing a 

nucleolus. Moreover, inside chloroplast the pyrenoid was surrounded by starch and crossed 

by one or two thylakoids, which were never appressed to form grana and intergrana inside 

chloroplast (Fig. 11 c, f). Finally, inside the plastid, small stromatic starch grains were 

sometimes observed (Fig. 11 f), which might be involved in osmoregulation processes (Band 

et al., 1992). When control cells were stained with Nile Red, lipid droplets were never 

detected (data not shown). On the other hand, microalgae grown mixotrophically with AWP 

showed some peculiar features (Fig. 12). In fact, while cell shape and dimension were similar 

to those of control samples, differences were observed at the chloroplast and cytoplasm 

levels. At 7 days of growth, several sporocyst were detected, confirming that cells were in 

active division (Fig. 12 a). In a recent work, the cultivation of N. oleoabundans in presence of 

anaerobic digestates of manures stimulated the periodic formation of sporocysts, which 

subsequently released cells, resulting in oscillations of the cell densities (Yang et al., 2011). 

Same effects were observed when N. oleoabundans was grown in freshwater medium added 

with AWP (Giovanardi et al., 2013) or in presence of glucose (see section 2). Therefore, the 

formation of these sporocysts might be linked to an effect of the addition to the medium of 
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the carbon-rich product. Moreover, the release and maturation of cells from sporocysts 

could be linked to the increase in cell density until the 7th day of  growth in mixotrophic 

samples. Indeed, cells with very small dimensions, just released from sporocysts, were also 

observed at the 7th day of growth, indicating that the microalga was in active division, as also 

observed by the increase in the cell density. From Nile Red staining of cells at 7 days of 

growth, no lipid globules were detected in the cytoplasm (Fig. 12 b). At the same time of 

growth, submicroscopical observations showed a chloroplast with its characteristic cup-

shape and the presence of a large pyrenoid, surrounded by starch and crossed in the middle 

by one or two thylakoids. One nucleus, with a nucleolus inside, and one or more 

mitochondria were also observed (Fig. 12 c). Interestingly, the chloroplast was also 

characterised by large and numerous stromatic starch grains, which subsequently decreased 

becoming similar to those of controls (Fig. 12 c). It is known that many microalgae, in 

particular green algae, growing under optimal conditions, usually maintain high 

photosynthetic efficiencies to sustain growth and reproduction. The excess reducing power 

is then conserved in the form of starch as the primary carbon storage (Li et al., 2011). In 

1980, Akazawa and Okamoto demonstrated that in Chlorella pyrenoidosa the exogenous 

organic carbon was partially accumulated as starch without the prior conversion to 

glyceraldehyde-3 phosphate, whereas the remaining sugar was oxidized through the 

glycolytic pathways (Akazawa and Okamoto, 1980). The same effect might have been 

induced by AWP during mixotrophic growth of N. oleoabundans. During the first 7 days, 

when the organic carbon source was assimilated with maximum rate, sugars might be stored 

in starch granules inside the stroma of the chloroplast, as also previously observed by 

Giovanardi et al. (2013). In mixotrophic microalgae, the N:C ratio is shifted towards the 

carbon (Scott et al., 2010). In this way, effects similar to those caused by nitrogen starvation 

conditions occur, and lipid globules are accumulated when cells enter the stationary phase 

(Scott et al., 2010). Starch and lipid metabolisms share common precursors in their 

metabolic pathways (Li et al., 2011). In Pseudochlorococcum sp., starch and lipid synthesis 

were demonstrated to be inter-convertible (Li et al., 2011). Indeed, cells accumulated starch 

granules during N-repletion cultivation, but, as soon as conditions turned to N-depletion, the 

organism shifted the fixed carbon towards the fatty acid synthesis, and the conversion of 

starch to neutral lipids occurred. Thus, in N. oleoabundans, the degradation of starch 

granules after 7 days, when cells entered the stationary phase, might explain a similar 
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behaviour. Indeed, as also observed in previous works (Giovanardi et al., 2013), cells started 

to be gradually vacuolated during growth (Fig. 12 d) and assumed a pale-green colour (Fig. 

12 g). Nile Red staining showed accumulation of lipid droplets inside cells, observed as gold-

yellowish spots, whose volume increased from the 21st day onwards (Fig. 12 e, h). The 

detection of lipid globules was possible also by submicroscopical observations (Fig. 12 f, i), 

where lipids were shown as pale grey (electron-negative) globules in the cytoplasm. Finally, 

in these cells the ultrastructure of the chloroplast gradually degenerated and at 28 days of 

growth this organelle was no more detectable (Fig. 12 i). 

 Effect of mixotrophy on photosynthetic pigments 

Time course variations of pigment content, Chla/Chlb and Chl/Car ratios are shown in 

Fig. 13. Interestingly, relevant differences occurred between autotrophic and mixotrophic 

samples. Indeed, a strong increase in Chla (Fig. 13 a), Chlb (Fig. 13 b), and thus in total Chl 

(Fig. 13 c), occurred when AWP was added to the medium of growth, reaching at the end of 

the experiment values of about 81% (p < 0.05), 37% and 67% (p < 0.05) higher than in 

controls respectively. Conversely, in autotrophic cultures no evident variation was observed 

for Chla content, whereas an increasing trend was found for Chlb content, which was about 

45% at day 28 with respect to day 0. The pigment content trend found in mixotrophic cells 

seems unique to the mode of cultivation with AWP in brackish medium. Indeed, in cells 

grown in freshwater medium with AWP an increase in Chl content was observed only at 21 

days of growth (Giovanardi et al., 2013), whereas when cells were cultivated with different 

glucose concentrations values lower than those measured for autotrophic samples were 

shown (see section 2), as expected in microalgae grown mixotrophically (Yamane et al., 

2001; Ip et al., 2004; Liu et al., 2009a). Very little is known about the effects of the organic 

carbon source on photosynthetic pigment content (Ip et al., 2004). However, it has been 

reported than autotrophic microalgae in high-density cultures usually increase their antenna 

system, in order to maximise light harvesting (Shenk et al., 2008). In this case, it might be 

supposed that AWP does not affect directly the pigment composition and the increase in Chl 

content is mainly linked to the increase in cell density. However, this aspect is still 

controversial, because cells continued to accumulate Chl even when entered the stationary 

phase and lipid accumulation was induced. The variations in Chla and Chlb between 

mixotrophic and autotrophic samples resulted in different Chla/Chlb ratio (Fig. 13 d). In 
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mixotrophic samples, indeed, the ratio remained almost stable, due to the concomitant 

increase in both Chls. Conversely, Chla/Chlb ratio gradually decreased in autotrophic 

samples, due to the increase in only Chlb during the experiment, reaching at the end of the 

experiment values 25% lower than in cells grown with BM+AWP. A different trend was 

observed for Car content (Fig. 13 e), which showed a decrease in both samples at 7 days of 

growth, after that a gradual increase in both cells grown in BM and in BM+AWP was 

observed. Such an increase was marked in mixotrophic samples, which showed at the end of 

the experiment 67% higher values than those measured at day 0, vs the 47% higher values 

measured for controls. Anyway, mixotrophic samples always showed higher Car content 

with respect to controls, even if differences were less marked compared to Chl content. In a 

previous work, an increase in Car concentration was observed proportionally with the 

increasing concentration of the carbon source inside the medium when the microalga 

Phaeodactylum tricornutum was cultivated in mixotrophic conditions (García et al., 2006). 

The increase in Car content might also be properly linked to the maintenance of the Chl:Car 

stoichiometry during the increase in both Chl content. Indeed, different proportion of Chl 

and Car, reflected in the trend of Chl/Car ratio (Fig. 13 f), seemed almost stable in all the 

samples, except for the value recorded in cells grown in AWP after 7 days. Chl/Car ratio 

remained always higher for mixotrophic cells (75% higher at 7 days, p < 0.01, and 40% folds 

higher at 14 days, p < 0.05, with respect to controls), due to the increase in Chl content 

compared to autotrophic cultures.  

Measurements of photosynthetic parameters in autotrophic and mixotrophic cells 

The effects of AWP on photosynthetic efficiency were evaluated by PAM fluorimetry. 

In particular, maximum quantum yield of PSII, as Fv/FM ratio, was obtained from samples 

pre-incubated in darkness for 20 min, while actual yield of PSII, Y(PSII), yield of regulated 

thermal dissipation, Y(NPQ) and, finally, yield of energy lost by passive dissipation, Y(NO), 

were obtained in dark-adapted samples exposed to 1100 μmolphotons m-2s-1 for 5 min, (Fig. 

14). 

Time course of PSII maximum quantum yield measured as FV/FM ratio in both 

autotrophic and mixotrophic samples is reported in Fig. 14 a. At time 0 (inoculum), the ratio 

was stable around 0.6, as observed in previous works (Baldisserotto et al., 2012; Giovanardi 
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et al., 2013). Interestingly, a different trend was observed in cells grown in BM+AWP with 

respect to controls. In these latter, indeed, the ratio remained almost stable throughout the 

experiment, with a decrease only at 28 days. Conversely, mixotrophic samples showed a 

very higher FV/FM ratio at 7 days with respect to BM-grown cells, reaching values of 0.772 vs 

0.694 (p < 0.01). These higher values were previously shown in N. oleoabundans when the 

microalga was grown in the presence of glucose (see section 2), suggesting that this 

behaviour is typical for the mixotrophic cultivation of this microalga, irrespective of the 

organic carbon source supplied. However, higher FV/FM ratios were never observed in 

previous works in which several microalgal species were grown mixotrophically (Liu et al., 

2009a). The FV/FM ratio in cells grown with AWP, however, decreased to values similar to 

those of controls after 7 days of growth, when cells entered the stationary phase, as already 

observed in previous works (White et al., 2011) and when N. oleoabundans was grown in the 

presence of glucose (see section 2). FV/FM is a very useful parameter which can be used to 

estimate the maximum quantum yield of photochemistry in PSII. However, the ratio does 

not provide a rigorous quantitative value, as this simple model requires several assumption, 

which are not necessarily correct for all the situations (Baker, 2008). Therefore, to obtain 

further information about the functionality of the photosynthetic apparatus during 

mixotrophy, measurements of the Chl fluorescence were performed after exposure to 1100 

μmolphotons m-2s-1 for 5 min. The energy absorbed by PSII can be divided in three fractions, 

corresponding to competing processes: energy used for photochemistry, Y(PSII); energy 

dissipated as heat by light-dependent dissipation mechanisms, Y(NPQ); energy constitutively 

dissipated as heat or fluorescence emission by non-functional PSII, Y(NO) (Genty et al., 1989; 

Hendrickson et al., 2004; Losciale et al., 2011). Y(PSII) is a useful parameter to evaluate the 

proportion of potentially active PSII after high-light exposure and can give a measure of the 

rate of linear electron transport and, thus, an indication of overall photosynthesis (Maxwell 

and Johnson, 2000). Interestingly, time course of Y(PSII) after 5 min of illumination with 

saturating-light was similar to that registered for FV/FM ratio in both samples (Fig. 14 b). 

Indeed, control cells maintained an almost stable trend, with a slight increase in the value at 

14 days and a subsequent decrease after 21 days of growth. Conversely, cells grown with 

AWP showed higher Y(PSII) at 7 days of growth with respect to autotrophic cultures, 

confirming that AWP induced an enhancement of the photosynthetic activity during the 

exponential phase. Previous works have shown that, under laboratory conditions, Y(PSII) is 
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directly related to the efficiency of carbon fixation (Maxwell and Johnson, 2000). Here, the 

role of the enhancement of the photosynthetic efficiency remains unknown, it is indeed very 

unusual in mixotrophic microalgae (Lalucat et al., 1984; Martinez and Orus, 1991; Oesterhelt 

et al., 2007; Liu et al., 2009a). However, as soon as cells entered the stationary phase, such 

values progressively decreased down to levels lower than in controls at 21 and 28 days. 

Conversely, Y(NO) after 5 min of high-light exposure was always slightly higher in 

mixotrophic samples with respect to control cells (Fig. 14 c), although differences were 

significant only at 21 days of growth (+35%, p < 0.05), suggesting a lower capability to 

protect themselves against damage by excess illumination with respect to autotrophic 

cultures (Klughammer and Schreiber, 2008). To asses if NPQ response was modified in 

different cultures, Y(NPQ) was measured for each sample after 5 min of actinic high-light 

exposure (Fig. 14 d). Y(NPQ) is the fraction of energy dissipated as heat by the regulated 

photo-protective NPQ mechanisms. Interestingly, a decreasing trend was observed in both 

cultures after 14 days, however in mixotrophic samples the capability to induce NPQ was 

always lower with respect to controls throughout the experiment (p < 0.01 at 7 and 21 days 

of growth). Under F0 and FM conditions, i.e. when the first saturating pulse is applied after a 

period of dark incubation, the stress-induced damage of the photosynthetic apparatus is 

usually reflected in an increase of Y(NO) and a decrease in Y(PSII) (Klughammer and 

Schreiber, 2008). However, during high-light exposure, as long as NPQ mechanisms are not 

affected, high Y(NPQ) are usually observed to compensate a decrease in Y(PSII) (Klughammer 

and Schreiber, 2008). In this work, it seems rather that in mixotrophic cultures the decrease 

in Y(PSII) was not compensated by Y(NPQ), but instead accompanied by an increase in Y(NO). 

Y(NPQ) was already less inducible at 7 days of growth in cells grown with AWP, probably 

because they presented higher photosynthetic efficiencies with respect to autotrophic 

cultures, thus they has a minor need for excess energy dissipation. However, subsequently 

the increasing trend of Y(NO) and the decreasing trend of Y(NPQ) in mixotrophic cells 

entering the stationary phase might reflect a suboptimal capacity of photo-protective 

reactions and an incapability to regulate photochemistry at maximal values (Klughammer 

and Schreiber, 2008). These results might also be linked with the progressive lipid 

accumulation inside cells. Indeed, in a recent work, it has been shown that, when lipid 

accumulation is induced, microalgae are more susceptible to photodamage if exposed to 

high-light (Simionato et al., 2011).  
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In order to get more precise information on the origin of fluorescence and estimate if 

the differences observed by PAM measurements were linked to different assembly state of 

PSII pigment-protein complexes, RT fluorescence emission spectra analyses were obtained 

for both cells grown in BM and BM+AWP. Fourth-order derivatives were calculated to find 

the components to be used for the deconvolution by Gaussian fitting procedure (Ferroni et 

al., 2011). Gaussian deconvolution of spectra showed three emission peaks assigned to PSII 

(Tab. 3). Free LHCII emitted at 680 nm, PSII core emitted at 686 nm, while emission at 694 

nm was attributed to LHCII-PSII functional assemblies. Moreover, emission at 702 nm was 

attributed to the contribution of LHCII aggregates and LHCI-PSI complexes, while emissions 

at 660 and 670.5 nm were assigned to uncoupled Chl (Ferroni et al., 2011). In order to get 

information on the emission intensities in autotrophic and mixotrophic cells, differences of 

fluorescence emission spectra were calculated after 7 (Fig. 15 a), 14 (Fig. 15 b), 21 (Fig. 15 c) 

and 28 (Fig. 15 d) days of growth. Difference spectra showed only minor variations between 

control and cells grown with AWP. In particular, at 7 days of growth mixotrophic samples 

gained emission between 687 and 698 nm, indicating an improved assembly of LHCII-PSII. 

Same effects were observed when N. oleoabundans was grown in freshwater medium with 

AWP (Giovanardi et al., 2013), and were linked to the active synthesis of complexes during 

cell growth (Ferroni et al., 2004; Giovanardi et al., 2013). Furthermore, a slightly increasing 

emission at 673 nm, corresponding to emission of free Chl, was observed with respect to 

control cells at 21 days of growth, and might be linked with the active synthesis of Chl which 

occurred in mixotrophic samples. However, these differences were not significant, 

suggesting that mixotrophy did not strongly affect the assembly of PSII pigment-protein 

complexes. 
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3.2.2. Phase 2: effects of nitrogen starvation on cell growth, pigment content, 

photosynthetic efficiency and lipid accumulation in N. oleoabundans previously grown 

autotrophically or in presence of AWP 

Growth kinetics of cells transferred to a brackish tap water from autotrophic or 

mixotrophic media 

During phase 1, mixotrophic cells reached their maximum cell density and entered 

the end of the exponential phase after 7 days of growth. For this reason, a second phase of 

the experiment was set up: after cultivation for 7 days in autotrophic or AWP-added 

medium, the cells were harvested and resuspended in brackish tap water (starvation 

medium). During the first week, cell growth was comparable to that observed during phase 1 

both for cells grown with or without AWP. As soon as both samples were transferred to 

brackish tap water, they immediately entered the stationary phase (Fig. 16). Indeed, growth 

rates were measured to be around 0.03 and 0.01 div day-1
 for cells grown previously in BM 

and BM+AWP medium, respectively. The same results were obtained by Popovich and 

collaborators (2012). Nitrogen is indeed one of the most important inorganic limiting 

nutrients required for growth of microalgal cells (Brennan and Owende, 2010) and its 

deficiency has a great influence on many aspects of their physiology (Merzlyak et al., 2007). 

Effect of starvation on cell morphology and lipid synthesis induction of N. 

oleoabundans cells 

Cell morphology of samples previously grown in BM and BM+AWP and subsequently 

transferred to brackish tap water changed dramatically in both samples with respect to cells 

observed during phase 1. However, no differences between the two samples occurred, and 

morphology was similar throughout the experiment, with no changes due to the ageing of 

cultures. Light microscopy observations showed the presence of several cells with larger 

dimensions, never detected during phase 1 in BM or BM+AWP medium (Fig. 17 a, b). In most 

of these cells, the characteristic cup-shape of the chloroplast was lost. However, the main 

characteristic of these cells was the presence of several translucent globules inside the 

cytoplasm, which were confirmed to be lipid droplets by Nile Red staining (Fig. 17 c, d). 

These globules were clearly detected as yellowish spots and in the cell occupied a larger 

volume with respect to those observed in mixotrophic samples during phase 1 (Fig. 12 h). 
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The lipid droplets were also identified by TEM observations, either as numerous small 

droplets inside the cytoplasm (Fig. 17 e), or sometimes as converging droplets into few 

globules with bigger dimensions (Fig. 17 f). Lipid accumulation inside cells under starvation is 

consistent with previous works in which N. oleoabundans was grown either in N-depleted 

fresh- or marine waters (Tornabene et al., 1983; Li et al., 2008b; Gouveia et al., 2009; 

Pruvost et al.,2009; Popovich et al., 2012). This is considered the most important carbon and 

energy storage mechanism which some microalgae use to save the excess of reducing power 

formed by the concomitant photoassimilation of carbon and inhibition of photosynthetic 

efficiencies (Li et al., 2011). Interestingly, TEM observations also showed the presence of 

modified, thickened cell wall (Fig. 17 e, f), a response that has been frequently observed in 

many microalgae in response to different stresses (Van Donk et al., 1997; Agrawal and Singh, 

2001; Ferroni et al., 2007; Baldisserotto et al., 2012). In many microalgae, cell wall thickening 

appears when cells are grown in nutrient-deficient media. This behaviour has been 

attributed to the preparation for encystment or to a strategy for limiting the cell growth (van 

Donk et al., 1997).  

 Quantification of photosynthetic pigment during growth in brackish tap water  

Time-course variation of pigment content was analysed only in the period between  

0-14 days after the cells were transferred to brackish tap medium. After 14 days, indeed, the 

extraction procedures applied during phase 1 became completely inefficient, probably due 

to the thickening of the cell wall described in previous section, which conferred more 

resistance to the cell walls. As is shown in Fig. 18, a strong decrease in Chl content occurred 

in both samples throughout the experiment, irrespective of their previous growth in BM or 

BM+AWP. Chla content dramatically decreased until reaching at 14 days values of about 65-

70% lower with respect to time 0. However, as is shown in Fig. 18 a, the strongest decrease 

occurred during the first 3 days, when values were 50% lower in both samples with respect 

to time 0. The same trend was observed for Chlb content (Fig. 18 b) in both samples during 

the first 3 days (-50% compared to day 0). However, the pigment concentration remained 

stable in control cells during the rest of the experiment, whereas, in cells previously grown 

with AWP, a further decrease was observed, and at 14 days Chlb was measured to be 72% 

lower than at the beginning of phase 2. The decreasing trend of Chla and Chlb in both 

samples resulted in an overall decay in the total Chl content (Fig. 18 c), which was halved 
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during the first 3 days of starvation, and then continued to decrease until reaching values 

between 62% lower in control cells and 70% lower in cells previously grown in AWP with 

respect to time 0. The same decrease in Chl trend was observed in N. oleoabundans grown in 

N-starved freshwater (Giovanardi et al., 2013). On the whole, nitrogen is essential for the 

synthesis of protein and Chl, thus, when cells are grown in N-depleted media, loss of these 

molecules and a consequent decrease in the photosynthetic functions are usually observed 

(Berges et al., 1996; Young and Beardall, 2003; Giovanardi et al., 2013). Because of the 

simultaneous decrease in both Chla and Chlb content, Chla/Chlb ratio remained stable in 

both samples throughout the time (Fig. 18 d). However, the values in samples previously 

grown mixotrophically was slightly higher with respect to that of control cells, probably due 

to slightly higher levels of Chla. Differences were significant only at 14 days (p < 0.01), 

probably linked to the stronger decrease in Chlb content with respect to controls during 

starvation. On the other hand, Car content was less affected by starvation with respect to 

Chl in both the samples (Fig. 18 e). In cells previously grown autotrophically, a decrease of 

about 45% occurred during the first 3 days, after that the values remained stable at 0.08 

nmol 10-6 cell. Conversely, in cells previously grown with AWP, the Car content was lower 

than that measured in controls at time 0 and, even if small fluctuations occurred throughout 

the experiment, values did not show significant variations from day 0 to day 14. Chl is more 

sensitive to N-deficiency with respect to Car (Young and Beardall, 2003). In previous works, 

the persistence of higher relative proportions of Car has been related to the reorganisation 

of the photosynthetic apparatus, in order to maximise light harvesting during N-deficiency 

(Herzig and Falkowski, 1989; Sosik and Michell, 1991). However, as probably in the case of 

our starved N. oleoabundans, the higher relative proportion of Car with respect to the Chl 

concentration has also been linked with an enhanced photoprotection in N-starved cells, 

which usually showed a smaller or completely degenerated chloroplast and a minor 

photosynthetic efficiency in comparison with cells grown in N-repleted media (Merzlyac et 

al., 2007). The concomitant decrease in Chl content resulted in strongly decreasing Chl/Car 

ratio in both samples (Fig. 18 f), which varied from 32% to 58% lower values at 14 days of 

growth with respect to time 0 for controls and cells previously grown in AWP, respectively, 

as also observed in N. oleoabundans grown in N-starved freshwater (Giovanardi et al., 2013) 

and in other microalgae grown under nutrient depletion (Berges et al., 1996; Young and 

Beardall, 2003; Merzlyac, 2007).  
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FV/FM ratio in starved N. oleoabundans cells previously grown autotrophically and 

mixotrophically 

Time course of FV/FM ratio of cells previously grown in BM and BM+AWP and then 

transferred to brackish tap water is shown in Fig. 19. As was observed during phase 1 of 

experiment, after 7 days of growth cells in BM+AWP showed 13% (p < 0.05) higher values 

with respect to cells grown in BM. PSII is mainly affected to nitrogen starvation, probably 

because the rapid turnover of D1 and D2 proteins of RCII is limited by the decline in protein 

synthesis (Berges et al., 1996). Conversely, the reaction center of PSI (RCI) has been shown 

to be more stable during these stress conditions (Plumbey et al., 1989). In previous works in 

which several microalgae were grown under N-depletion, a decrease in maximum quantum 

efficiency of PSII was always observed (Geider et al., 1993, 1998; Berges et al., 1996; Young 

and Beardall, 2003; White et al., 2011). Interestingly, in this study, when cells were 

transferred to nitrogen starvation, the trend of FV/FM ratio was very different between the 

two types of samples. Indeed, in control cells the value dramatically decreased  by 43% 

within the first 3 days of starvation, after that it became stable around 0.4 up to the end of 

experiment. Conversely, cells previously grown in BM+AWP maintained higher values with 

respect to control cells and, after a slight decrease by 14% during the first day of starvation, 

values remained stable around 0.6 throughout the experiment, i.e. 75% higher than the 

corresponding values measured for cells previously grown autotrophically (p < 0.01 after the 

first day of starvation, p < 0.05 for the other experimental times). These results might 

indicate that when samples are previously grown in AWP, which induces growth promotion, 

photosynthetic pigment accumulation and enhanced photosynthetic efficiency, the 

capability to maintain higher maximal quantum yields of PSII with respect to controls is 

ensured also when the samples are transferred under N-starvation. The reason of this 

physiological behaviour is still unknown.  
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4. Conclusion 

During these last recent years, the studies concerning the cultivation of N. 

oleoabundans for biofuel purposes have become more and more numerous, in relation to 

the capability of this microalga to accumulate lipids when grown under nutrient starvation. 

In this work, the mixotrophic cultivation of N. oleabundans in a brackish medium added with 

different organic carbon sources has been tested, with the aim of studying the effects on cell 

density, cell morphology, photosynthetic efficiency and lipid accumulation inside cells. With 

this purpose, the experiments were organized in two different sections.  

In a first experiment, cells were grown adding to the medium different glucose 

concentrations. Glucose, indeed, is considered one of the preferred carbon sources which 

are assimilated by heterotrophic and mixotrophic microalgae (Heredia-Arroyo et al., 2010), 

and in a previous work in which N. oleoabundans was grown in presence of AWP, it was 

found to give the major contribution to growth (Giovanardi et al., 2013). Results showed 

that growth of N. oleoabundans was highly enhanced by the addition of glucose in the 

culture medium, reaching cell densities never observed before (Yang et al., 2011; 

Baldisserotto et al., 2012; Popovich et al., 2012; Giovanardi et al., 2013). Agitation of the 

flasks might also have contributed to increase the cell concentration. Among the different 

glucose amounts used in the experiments, the concentration of 2.5 gL-1 was the optimal, 

whereas higher concentrations did not lead to higher cell densities. This is very important, 

because a glucose supplement at low concentration may be an effective way to improve the 

economic feasibility of mixotrophic microalgal cultures. After 3 days of growth, biomass was 

highly promoted by the glucose supplement in mixotrophic cultures, which also showed 

higher photosynthetic efficiency. However, after 7 days the cells entered the stationary 

phase and decreased their photosynthetic efficiency in response to stress conditions, 

together with strong promotion of lipid accumulation. This study confirmed that glucose can 

be considered a very suitable substrate for the obtainment of high-lipid enriched N. 

oleoabundans.  

Despite glucose allowed to obtain very high cell densities, it is considered a very-

expensive substrate. For this reason, the capability of mixotrophic microalgae to grow in the 

presence of organic carbon waste sources, which can be recycled with zero or negative 
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costs, is often investigated, in order to lower the costs of the process during scaling-up and 

provide the additional benefit of bioremediation (Heredia-Arroyo et al., 2010). Then, in a 

second experiment, N. oleoabundans was grown in the presence of AWP, a carbon-enriched 

by-product derived from the agri-food industry, which was already shown to promote cell 

growth (Giovanardi et al., 2013). AWP was added to a brackish medium (Baldisserotto et al., 

2012), in order to test if the effects of enhanced growth and increasing cell volumes could be 

usefully combined. However, the characteristics observed in N. oleoabundans cells grown in 

brackish medium during the experiment performed by Baldisserotto et al. (2012) were not 

so emphasized in this experiment, probably because of the acclimation of the cells to the 

brackish medium during long-lasting cultivation in BM medium. However, the same cell 

densities observed when cells were grown in freshwater medium + AWP were reached in 

mixotrophic samples, suggesting that salinity did not interfere with cell growth. The ability to 

grow in media with different salinity allows the microalga to be acclimatable to different 

environments (Baldisserotto et al., 2012). This is very important in this scenario in which 

freshwater supply is limiting (Popovich et al., 2012). Moreover, it is known that the 

cultivation in brackish or marine media allows to prevent or minimize contaminations by 

other microorganisms (Das et al., 2011), which is also very important in the perspective of a 

scale up to the industrial process. Therefore, the results confirmed that N. oleoabundans can 

be cultivated in brackish media without affecting any characteristic which makes it a very 

suitable candidate for biofuel purposes. In a first phase of the experiment, higher cell 

densities, higher photosynthetic pigment synthesis and higher photosynthetic performance 

were observed during the exponential phase of mixotrophic samples. The enhanced 

photosynthetic efficiency when cells are grown mixotrophically is a very unusual 

characteristic of N. oleoabundans, and further experiments would be required in order to 

better understand how mixotrophy modulates pigment-protein complexes in the thylakoid 

membranes of the chloroplast. Differences with respect to autotrophic samples occurred 

also at the morphological level, with starch accumulation inside the plastid, which was 

subsequently degraded when cells entered the exponential phase. Interestingly, after 21 

days of growth, cells started to accumulate lipid globules, which increased over time, 

occupying the majority of the cell volume at the end of the 28-days experiments. During the 

second phase of the experiment, as soon as cells were transferred under nutrient depletion, 

block of cell growth, decrease in pigment content and alteration of the cell morphology were 
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observed in response of the stress. However, the concomitant accumulation of lipid 

globules, which occupied the majority of the cell volume, occurred.  

On the whole, to study the most suitable condition, which might allow to obtain high 

N. oleoabundans biomass enriched in lipids, promoting at the same time the economic 

feasibility and allowing to scale up the process from the laboratory to the industrial scale, 

three different strategies should be considered: 

1. the cultivation of N. oleoabundans in presence of glucose as organic 

carbon source, reaching very high biomass densities enriched in lipids in a single, 

short-time step; 

2. the long-term, single step cultivation of N. oleoabundans in presence 

of AWP as organic carbon source, reaching higher biomass of cells enriched in lipids 

with respect to autotrophic samples. This strategy might be coupled with the 

necessity of agri-food industries to dispose their waste products still enriched in 

nutrients with zero or negative costs; 

3. the short-term, two step cultivation of N. oleoabundans, at first in 

presence of AWP as organic carbon source, in order to obtain high cell densities 

during the first days of growth. Cells might be then transferred in N-limited 

conditions, such as simple tap or marine water, to induce lipid accumulation in a few 

days. This strategy would require a double amount of water with respect to the 

single-step strategies described above. However, the problem might be partially 

solved by recycling the water used in the first phase of cultivation. 
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Tables and Figures 

 

 

 

 

Fig. 1: autotrophic and mixotrophic N. oleoabundans cultures after 7 days of growth (0, 2.5 and 5 gL-1 
of glucose added from left to right). 
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Fig. 2: a) growth kinetics of N. oleoabundans in media containing 0 (filled circles), 2.5 (empty circles) 
and 5 (empty triangles) gL-1 of glucose. b) growth rates calculated during the exponential phase after 
0-3 and 4-7 days in cells grown with 0 (black), 2.5 (dark grey) and 5 (light grey) gL-1 of glucose. For 
each sample, values are means ± s.d. (n > 3). 
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Fig.3: growth kinetics of N.oleoabundans in presence of 2.5 (filled circles) and 5 (filled triangles) gL-1 
of glucose and corresponding glucose consumption (empty circles and empty triangles respectively). 
For each sample, values are means ± s.d. (n > 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        

                                        

                                        

                                        

                                        

                                        

0 2 4 6 8 10 12
0.125

0.25

0.5

1

2

4

8

16

32

64

128
                                        

                                        

                                        

                                        

                                        

                                        

Glucose (m
g m

L
-1)Ce

ll 
de

ns
ity

 (1
06 ce

ll 
m

L-1
)

Time (days)

0

2

4

6



78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: cell morphology of N. oleoabundans. a) control cells at 3 days of growth and b) corresponding 
fluorescence of the chloroplast.Bars: 3 μm. c) cells grown in 2.5 gL-1 and d) in 5 gL-1 of glucose at 3 
days of growth showing sporocysts (arrows) in the cell population. Bars: 6 μm. e) control cells after 7 
days of growth. Bar: 6 μm. f) cells grown in 2.5 gL-1 and g) 5 gL-1 of glucose after 7 days of growth. The 
presence of translucent globules is indicated with arrows. Bars: 4 μm. 
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Fig. 5: light and epifluorescence photomicrographs of N. oleoabundans cells after 9 days of growth. a) 
Cells grown in 2.5 gL-1  and b) 5 gL-1 of glucose and their corresponding Nile Red-staining observation 
(c, d). Bars: 2 μm. 
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Fig. 6: time-course variations of Chla content (a), Chlb content (b), total Chl content (c), Chla/Chlb 
ratio (d), Car content (e) and Chl/Car ratio (f) of N. oleoabundans grown in presence of 0 (filled 
circles), 2.5 (empty circles) and 5 (empty triangles) gL-1 of glucose. For each sample, values are means 
± s.d. (n > 3).  
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Fig. 7: time course of PSII maximum quantum yield FV/FM in N. oleoabundans grown with 0 (filled 
circles), 2.5 (empty circles) and 5 (empty triangles) gL-1 of initial glucose. For each sample, values are 
means ± s.d. (n > 3). 
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Tab.1: chemical composition of AWP. From Giovanardi et al. (2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 2: chemical composition of the tap water used for the preparation of nutrient deprived media. 

Values were available in HERA website (www.gruppohera.it) and are referred to a monthly average 

registered at the time when experiments were executed. 

 

Parameters Units Average values 

pH pH 7.6 

Hardness mmolCaCO3 L-1 190 

Cl - mgL-1 24 

F- mgL-1 <0.01 

NH4
+ mgL-1 < 0.02 

NO3
- mgL-1 8.0 

NO2
- mgL-1 < 0.02 

CO3
2- and HCO3

- mgL-1 245 

Na+ mgL-1 14 

K+ mgL-1 2.7 
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Fig. 8: N. oleoabundans cells grown in BM medium (pale green cultures) and in BM + AWP (dark 
green cultures) after 7 (a) and 28 (b) days of growth.  

 

 

 

Fig. 9: growth kinetics of N. oleoabundans in BM medium (filled circles) and BM+AWP medium 
(empty circles). Values  are means ± s.d. (n = 3). 
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Fig. 10: growth kinetics of N.oleoabundans in BM+AWP medium (triangles) and corresponding 
glucose consumption (circles). For each sample, values are means ± sd (n > 3). 
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Fig. 11: cell morphology of N. oleoabundans grown in BM medium after 7 (a-c) and 28 (d-f) days. a, b, 
d, e) light and fluorescence microscopy images. Bars: 3.5 μm. c, f) submicroscopical views. Bars: 1 
μm. p: pyrenoid, c: chloroplast, n: nucleus, nu: nucleolus, v: vacuolisations, asterisks: starch 
granulations inside the chloroplast. 
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Fig. 12: cell morphology of N. oleoabundans grown in BM+AWP medium. a-c) aspects of cells at 7 
days of growth. a) observations under the light microscope. Bar: 3 μm, arrow: sporocyst. b) 
epifluorescence micrograph of Nile Red-stained cells. Bar: 3.5 μm. c) transmission electron 
micrograph. Bar: 1.5 μm. Arrows: mitochondria, n: nucleus and nu: nucleolus, c: chloroplast,  p: 
pyrenoid, asterisks: starch granules. d-f) cells at 21 days of growth. d) light microscopy observations. 
Bar: 3 μm. e) Nile Red-stained cells. Bar: 3 μm, arrows: lipid globules inside cells. f) submicroscopical 
observations. Bar: 1.5 μm. Arrows: lipid globules, c: chloroplast, p: pyrenoid. g-i) cells at 28 days of 
growth. g) light microscopy. Bar: 3 μm. h) Nile Red-stained cells. Bar: 3 μm, arrows: lipid globules 
detected inside cells. i) submicroscopical observations. Bar: 1.5 μm, arrows: lipid globules.   
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Fig. 13: time-course of Chla (a), Chlb(b), total Chl (c), Chla/Chlb ratio (d), Car (e) and Chl/Car ratio in 
N. oleoabundans cells grown in BM (filled circles) and BM+AWP medium (empty circles). For each 
samples, values are means ± s.d. (n = 3). 
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Fig. 14: time-course of FV/FM ratio (a), actual yield of PSII [Y(PSII)] (b), yield of constitutive thermal 
dissipation and fluorescence emission [Y(NO)] (c) and yield of non-photochemical quenching 
[Y(NPQ)] (d) in N. oleoabundans cells grown in BM (filled circles) and BM+AWP medium (empty 
circles). Values are means ± s.d. of 3 replicates. 
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λ (nm) Attribution 
660-670.5 uncoupled Chl 
680 free LHCII 
686 PSII core 
694 LHCII-PSII functional assemblies 
702 LHCII aggregate  

 

Tab. 3: attribution of fluorescence emission bands by PSII in N. oleoabundans  cells, according to     
Ferroni et al. (2011).  

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

Fig. 15: differences between normalized fluorescence emission spectra recorded from N. 
oleoabundans cells grown in BM+AWP and BM medium after 7 (a), 14 (b), 21 (c) and 28 (d) days of 
growth.  
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Fig. 16: growth kinetics of N. oleoabundans cells transferred in brackish tap water after 7 days of 
growth in BM (filled circles) or BM+AWP medium (empty circles). Dashed vertical line indicates the 
moment when cells were transferred to brackish tap water. Values are means ± s.d. of at least 3 
replicates. 
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Fig. 17: representative images of N. oleoabundans grown in brackish tap water for 21 days. a) cell 
morphology of samples previously grown autotrophically or b) mixotrophically. Bars: 3 μm. c) 
epifluorescence micrographs of Nile Red-stained cells previously grown autotrophically or d) 
mixotrophically. Bars: 3 μm. e) transmission electron micrographs of cells previously grown 
autotrophically or d) mixotrophically. Arrows indicate some of the lipid globules that are present 
inside cells. Black arrowhead: thickening of the cell wall. Bars: 1.5 μm.  
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Fig. 18: time-course of Chla (a), Chlb (b), total Chl (c), Chla/Chlb ratio (d), Car (e) and Chl/Car ratio (f) 
in N. oleoabunans maintained in brackish tap water after 7 days of cultivation in BM (filled circles) or 
BM+AWP medium (empty circles). Values are means ± s.d. of 3 replicates. 
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Fig. 19: FV/FM ratio in N. oleoabundans grown autotrophically (filled circles) or mixotrophically (empty 
circles) during the first 7 days of growth and subsequently transferred to brackish tap water. Values 
are means ± s.d. (n = 3). 
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Part II 

Effects of glucose on the organisation of the photosynthetic 
apparatus in the microalga N. oleoabundans 
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1. Introduction 

Photosynthesis is one of the most ancient biochemical processes which supports 

almost all life on Earth. This process involves several light-dependent reactions, which start 

with the absorption of light energy for the synthesis of NADPH and ATP as intermediate 

energy compounds (Geider and MacIntyre, 2002). The obtained reducing power is then used 

during the Calvin cycle for CO2 fixation in sugars (Falkowski and Raven, 1997). On the whole, 

the important features of the light reactions of photosynthesis are: i) the collection of 

photons by light-harvesting antennae; ii) the migration of excitation energy from absorbed 

photons to the reaction centers; iii) the electron transfer from H2O to NADP+ and iv) the 

generation of ATP by a trans-thylakoid pH gradient driving force, which is formed as a 

consequence of the electron transfer (Geider and MacIntyre, 2002).  Energy transduction in 

photosynthesis is mediated by four multi-subunit membrane-protein complexes, which are 

embedded in the thylakoid membranes of the chloroplast (Dekker and Boekema, 2005). PSII, 

a water-plastoquinone oxidoreductase complex, starts the photosynthetic electron transfer 

chain from water to plastoquinone using light as a driving force (Chow et al., 1990; 

Minagawa et al., 2004; Daniellson et al., 2006). The electrons from plastohydroquinone 

reach PSI via the Cyt b6f complex and plastocyanin. PSI is involved in a light-dependent 

electron transport to ferredoxin and to NADP+ (Chow et al., 1990). Finally, ATP synthase 

(ATPase) is a highly-conserved complex which catalyses ATP synthesis using the trans-

membrane proton gradient generated by the photosynthetic electron-transport chain 

(Nelson and Ben-Shem, 2004). Moreover, PSII and PSI are flanked by light-harvesting 

pigment-protein complexes (LHC), which deliver the light energy that has been absorbed to 

the RC of the two photosystems (Minagawa et al., 2009).  

The photosynthetic process cannot be understood without a detailed knowledge of 

the structure of its single components (Dekker and Boekema, 2005). The application of 

biophysical, biochemical and physiological techniques has provided a good understanding of 

the multi-subunit complexes, as well as of the events which drive the electron transfer 

processes with water oxidation (Barber, 2002; Nelson and Yocum, 2006). In particular, all the 

protein complexes are composed by several protein subunits coordinating a large number of 

cofactors (Minagawa et al., 2004, 2009).  Moreover, these complexes show the tendency to 
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form higher-order associations, the so-called supercomplexes (Dekker and Boekema, 2005). 

The dynamic organisation of the pigment-protein complexes in the thylakoid membrane and 

their flexibility may play important roles in maintaining an optimal photosynthetic efficiency 

in several conditions (Anderson et al., 1995). Indeed, the photosynthetic process can be 

affected by a variety of environmental stresses, such as different light regimes (Chow et al., 

1990), but also temperature and nutrient limiting conditions (Anderson et al., 1995). For 

example, in aquatic environments the CO2 availability may become limiting, and 

photosynthetic organisms need to evolve adaptative mechanisms in order to maintain the 

light-harvesting and the carbon fixation capacities (Badger and Spalding, 2000). One of the 

strategies is to assimilate an external organic carbon source, shifting the metabolism from 

autotrophic to mixotrophic (Heifetz et al., 2000).  

During these recent years, mixotrophic microalgae have been largely investigated for 

their capability to highly increase their biomass content, benefiting from the exogenous 

organic carbon source assimilation together with light harvesting and CO2 fixation for growth 

(Marquez et al. 1993; Lee, 2001; Xu et al., 2006; Scott et al., 2010; Stephens et al., 2010). 

This approach, indeed, can be considered an important strategy for the industrial scale-up of 

lipid production from microalgae (Scott et al., 2010). However, the optimization of the 

process is still far from being commercially available. At present, this is due not only to 

technical limitations, but also, and maybe more relevantly, to an incomplete knowledge 

about the effects of organic carbon nutrition on the photosynthetic activity in mixotrophic 

cells (Rubio et al., 2002; Scott et al., 2010; Wijffels and Barbosa, 2010). Thus, further studies 

need to be performed, in order to improve basic knowledge of the microalgal physiology, 

leading to advantageous growth conditions and so to increased biomass densities (Wijffels 

and Barbosa, 2010). Several works support the theory that, in some mixotrophic microalgae, 

autotrophic and heterotrophic metabolisms proceed independently (Marquez et al., 1993; 

Liu et al., 2009a). Conversely, in other studies they have been shown to be linked to each 

other (Vonshak et al., 2000). In many studies glucose caused inhibitory effects, reducing the 

apparent affinity for CO2 during CO2 fixation (Lalucat et al., 1984; Martinez and Orus, 1991) 

or limiting the synthesis of the RuBisCO of the Calvin cycle (Oesterhelt et al., 2007). Reduced 

photochemical efficiency of PSII has also been observed, indicating that organic carbon 

depresses the photosynthetic efficiency (Valverde et al., 2005; Oesterhelt et al., 2007; Liu et 
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al., 2009a). About the interaction of organic carbon assimilation and photosynthetic activity 

in N. oleoabundans, very little or no information is available. However, in previous works 

described in this Thesis (see Part I), mixotrophy promoted the activity of the photosynthetic 

apparatus, with very high PSII maximum quantum efficiency,  never observed in other 

mixotrophic microalgal species (Yamane et al., 2001; Ip et al., 2004; Liu et al., 2009a). 

However, the maximum quantum yield of PSII, usually measured as FV/FM ratio, should not 

be considered a rigorous quantitative value, because, as a simple model, it admits a number 

of assumptions which might not be correct in all situations (Baker et al., 2008). In this work, 

the effects of different glucose concentrations supplied in the culture media were assessed 

in order to provide new information on the photosynthetic metabolism and its interaction 

with the organic carbon source assimilation in N. oleoabundans. Several approaches have 

been used to this purpose. Immunodetection with antibodies against different subunits of 

thylakoid multi-protein complexes was employed to identify differences in their abundance 

between autotrophic and mixotrophic samples, whereas Blue-Native polyacrylamide gel 

electrophoresis (BN-PAGE) has been employed to obtain information on native interactions 

of photosynthetic protein complexes in thylakoids (Hippler et al., 2001; Eubel et al., 2005; 

Rokka et al., 2005). In parallel, Chl fluorescence measurements were performed in vivo on 

freshly-collected samples to identify differences in the modulation of the photosynthetic 

electron transport and in PSI/PSII stoichiometry in autotrophic and mixotrophic cells. 
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2. Materials and methods 

2.1. Algal strain and culture condition 

The microalga N. oleoabundans UTEX 1185 (syn. Ettlia oleoabundans) was obtained 

from the Culture collection of the University of Texas (UTEX, USA; www.utex.org). Cells were 

grown and maintained in axenic liquid BM medium (Baldisserotto et al., 2012) in a growth 

chamber (24 ± 1 °C temperature, 80 µmolphotons m-2 s-1 PAR and 16:8 h of light-darkness 

photoperiod), without shacking and external CO2 supply. For experiments, cells were 

inoculated at a density between 0.5 and 0.7 x 106 cells mL-1 in BM medium containing 0 

(control), 2.5 or 5 g L-1 of glucose and grown in 500 mL Erlenmeyer flasks (300 mL of total 

volume) in the same growth chamber described above, with continuous shacking at 80 rpm. 

For each glucose concentration, at least 3 replicates were set up. Growth was estimated 

measuring the optical density at 750 nm with a Pharmacia Biotech Ultrospec®2000 UV–vis 

spectrophotometer (1 nm bandwidth; Amersham Biosciences, Piscataway, NJ, USA), 

sampling periodically 1 mL of culture. The values were referred to a calibration curve with 

known cell number, evaluated with a Thoma’s  haemocytometer, versus optical density. 

2.2. Thylakoid isolation from microalgal cells 

Thylakoid membranes were isolated according to Pantaleoni et al. (2009), with 

modifications. For extraction, 300 mL of culture in late-exponential phase of growth were 

harvested by centrifugation at 600 g for 10 min. Pellets were transferred to an ice-cold 

mortar containing sand quartz. The extraction was performed grinding cells with liquid N2, 

then the lisate was resuspended in the grinding buffer (330 mM sorbitol, 50 mM Tricine-

NaOH pH 7.5, 2 mM Na2EDTA pH 8.0, 1 mM MgCl2, 5 mM ascorbate, 0.05% bovine serum 

albumin, 10 mM NaF) and transferred to 15 mL tubes. Samples were centrifuged at 300 g for 

5 min at 4°C and then at 700 g for 5 min at 4°C, in order to remove sand quartz and cell 

debries. Pellets were discarded and the thylakoids present in the supernatant were collected 

by centrifugation at 7000 g for 10 min at 4°C. The supernatant was discarded and thylakoids 

were resuspended in 1 mL of shock buffer (5 mM sorbitol, 50 mM Tricine-NaOH pH 7.5, 2 

mM Na2EDTA, 5 mM MgCl2, 10 mM NaF) and centrifuged at 7000 g for 10 min at 4°C. After 

that, the supernatant was removed and around 100 µL of storage buffer (100 mM sorbitol, 
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50 mM Tricine-NaOH pH 7.5, 2 mM Na2EDTA pH 8.0, 5 mM MgCl2, 10 mM NaF) were added 

to the pellet. The samples were rapidly frozen in liquid nitrogen and stored at -80°C until 

further analyses. Manipulation of samples was always performed on ice and in very dim safe 

light. Quantification of Chl and proteins in thylakoid samples was performed according to 

Porra (1989) and Lowry (1951), respectively. 

2.3. SDS-PAGE and immunoblotting 

Thylakoid proteins were separated by SDS-PAGE according to Laemmli (1970) on a 

15% acrylamide resolving gel containing 6 M urea. After electrophoresis, proteins were 

visualised by Coomassie staining overnight (0.1% Coomassie Brilliant Blue R250, 7% acetic 

acid, 40% MeOH in distilled water), followed by destaining (7.5% acetic acid, 25% MeOH) for 

5 h, or blotted onto a PVDF membrane (Millipore, Watford, Hertforshire, U.K.). Western 

blotting with enhanced chemiluminescence detection was performed with standard 

techniques using protein-specific antibodies against D1-DE loop of D1 protein, PsaB subunit 

of PSI, ATP-β subunit of ATPase, and antibodies raised against the entire LHCII complexes. 

For immunodetection of D1-DE loop and PsaB, 0.5 μg of Chl were loaded in each lane, 

whereas, for detection of ATP-β, samples were also loaded on a protein basis (40 μg in each 

lane). Finally, for LHCII detection, 0.25 μg of Chl were loaded in each lane. Protein amount 

was quantified with Image J software.  

2.4. BN-PAGE and second dimension (2D) electrophoresis 

BN-PAGE was performed according to Rokka et al. (2005) with small modifications. 

Thylakoids containing 5 μg Chl were resuspended  in medium A (25mM BisTris-HCl, pH 7.0, 

20% w/v glycerol and 0.25 mg mL-1 Pefabloc) to a final concentration of 1 μg μL-1 Chl. After 

that, an equal volume of 2% (w/v) dodecyl β-D-maltoside (Sigma), freshly prepared in 

medium A, was added. Thylakoids were then solubilised on ice for 15 min and centrifuged at 

18000 g at 4°C for 15 min. The supernatant was supplemented with 1/10 volume of SB 

buffer (100 mM BisTris-HCl, pH 7.0, 0.5 M ε-amino-n-caproic acid, 30% w/v sucrose and 50 

mg mL-1 Serva Blue G) and loaded on gel with 5-12.5% gradient of acrylamide in the 

separation gel. Electrophoresis was performed with a Hoefer Mighty Small system 

(Amersham Biosciences) at 0°C for 3.5 h by gradually increasing the voltage from 75 to 200 

V. For comparison, thylakoids from A. thaliana were included in the analyses. Quantification 
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of band volume was performed with Image J software. After BN-PAGE, the lanes were cut 

out and incubated in 10%-sodium dodecyl sulphate (SDS) Laemmli buffer containing 5% (v/v) 

β-mercaptoethanol for 1.5 h, followed by separation of the protein subunits of the 

complexes with SDS-PAGE (12% polyacrylamide) and 6M urea. After electrophoresis, 

proteins were visualised by silver staining.  

2.5. Fluorescence measurements 

For in vivo biophysical analyses, samples were collected from the different cultures of 

N. oleoabundans grown with 0, 2.5 and 5 gL-1 of glucose. In particular, mixotrophic samples 

were compared with control samples either at the same cultivation time (after 7 days of 

growth), or at the same phase of growth, i.e. in late exponential phase, when control 

samples reached the same cell density observed in mixotrophic cultures after 7 days.  

Flash-induced Chl fluorescence relaxation kinetics 

The single flash-induced increase in Chla fluorescence yield and its subsequent 

relaxation in darkness (FF-relaxation) were measured with a double-modulation fluorimeter 

(Photon System Instruments, Brno, Czech Republic). For analyses, 1 mL of samples 

containing 8 μg mL-1 Chl was incubated in darkness for 10 min and then QA
- reoxidation 

kinetics was recorded after a single-saturating flash (10 μs), provided by red LED, in the 150 

μs - 100 s time range. Analyses  were carried out either in the presence or absence of DCMU 

5 μM (Allahverdiyeva et al., 2007). For each sample, measurements from at least 3 biological 

replicates were obtained. For easier comparison, the fluorescence relaxation curves were 

averaged and normalised to the same amplitude. Elaboration of data was carried out with 

Origin 6.0 software (OriginLab, Northampton, MA, USA). Since the fluorescence yield is not 

linearly correlated with the amount of QA
-, the relative QA

- concentration was estimated 

according to the model of Joliot using 0.5 for the value of the energy-transfer parameter 

between PSII units (Joliot and Joliot, 1964). Multicomponent deconvolution of the relaxation 

curves was performed by using a fitting function with two exponential and one hyperbolic 

components:  

𝐹(𝑡)  −  𝐹𝑜 =  𝐴1 𝑒−𝑡/𝑇1  +  𝐴2 𝑒−𝑡/𝑇2  + 
𝐴3

1 + 𝑡/𝑇3
 



101 
 

 

where F(t) is the variable fluorescence yield, Fo is the basic fluorescence level before 

the flash, A1-A3 are the amplitudes, T1-T3 are the time constants from which the half-

lifetimes can be calculated via t1/2 = ln 2T for the exponential components, and t1/2 is the T 

for the hyperbolic component (Vass et al., 1999). For comparison between samples, 

statistical analyses were carried out with Student’s t-test, with a significance level of 0.05.  

Slow kinetics of PSII fluorescence 

Experiments were carried out from liquid cultures containing 15 μg mL-1 pre-

incubated in darkness for 10 min. Samples were subsequently exposed to actinic light. The 

following program was triggered: 90 µmolphotons m-2s-1, 11 min; dark, 11 min; 1000 µmolphotons 

m-2s-1, 15 min; dark, 5 min. Light saturating pulses were given every 40 s. Time course of Chl 

fluorescence parameters FM’, i.e. the maximum fluorescence in the light-adapted state 

measured applying the pulse, and Ft, i.e. the steady state fluorescence yield, were 

determined with a DUAL-PAM-100 (Waltz, Germany). Fluorescence curves were recorded 

from at least 3 replicates for each sample. Elaboration of data was carried out with Origin 6.0 

software (OriginLab, Northampton, MA, USA). 

77K fluorescence emission spectrum 

Fluorescence emission spectra measured in vivo from samples containing 8 μg mL-1 

Chl were recorded at 77 K with a diode array spectrophotometer (S2000; Ocean Optics, 

Dunedin, FL, USA) equipped with a reflectance probe as described in Keranen et al. (1999). 

Fluorescence excitation was obtained with light below 500 nm, defined using LS500S and 

LS700S filters (Corion, Holliston, MA, USA) placed in front of a slide projector, and the 

emission was recorded between 600 and 800 nm. Experiments were carried out on at least 3 

replicates for each sample, and the emission spectra obtained for each replica were 

averaged. Elaboration of the spectra was performed with Microsoft ExcelTM. 

 

 

 



102 
 

3. Results  

3.1. Characterisation of Chl-protein complexes in thylakoids membranes of 
autotrophic and mixotrophic N. oleoabundans 

Chl and protein quantification in thylakoid membranes  

Quantification of Chl and protein amounts in thylakoids of N. oleoabundans grown in 

the presence of 0, 2.5 and 5 gL-1 are reported in Tab. 1. Total Chl quantified in thylakoids was 

compared with the corresponding protein amount to obtain Chl/protein ratios (Chl/prt). The 

values obtained were different between control and mixotrophic samples. Interestingly, in 

the cultures grown in 2.5 and 5 gL-1 of glucose, indeed, Chl/prt was halved with respect to 

autotrophic samples. About the Chl a/b molar ratio, instead, it was observed that the values 

were higher in mixotrophic than in autotrophic samples.  

When SDS-gels were visualized by Coomassie staining, analyses showed differences 

in the thylakoid protein pattern between autototrophic and mixotrophic samples (Fig. 1). In 

particular, when lanes were loaded on an equal Chl basis, both samples from mixotrophic 

cells showed an important enrichment of the entire protein pattern, irrespective of the 

amount of glucose added to the medium of growth (Fig. 1 a). Conversely, when samples 

were loaded on a protein basis, less intense bands just below 25 kDa, which correspond to 

LHCII proteins (Bennet, 1991), were observed in mixotrophic samples. Therefore, in the 

thylakoids of mixotrophic cells the lower Chl/prt ratio corresponded to a decrease in LHCII, 

which hosts most of the Chl. On the other hand, in mixotrophic samples a protein below 17 

kDa seemed to be more abundant than in autotrophic samples (Fig. 1 b). Some of the key 

proteins which belong to major thylakoid complexes were detected and quantified by 

immunoblot analyses (Fig. 2). Interestingly, differences in the protein amounts occurred 

between autotrophic and mixotrophic samples. Indeed, on a protein basis, lower amounts of 

ATP-β were detected in samples grown with 2.5 (-19%) and 5 (-23%) gL-1 of glucose with 

respect to control cells. For analysis of subunits belonging to Chl-protein complexes, the gels 

were instead run on a Chl basis. Decreasing amounts of PsaB were also measured with the 

increase in glucose concentrations. Indeed, about 59 and 40% of the PsaB control level were 

detected in 2.5 and 5 gL-1 of glucose-grown cells, respectively. Relative LHCII protein amount 

also decreased when glucose concentration increased in the medium of growth. Indeed, in 
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cells grown with 2.5 gL-1 and of 5 gL-1 of glucose the amounts were about 10 and 13% lower 

than in controls, respectively. Conversely, D1 protein was detected in higher amounts in 2.5 

(+47%) and 5 (+29%) gL-1 of glucose with respect to autotrophic samples, but no direct 

correlation with the glucose amount added to the media of growth was observed.  

Organisation and assembly of thylakoid complexes  

In order to obtain the separation of the thylakoid membrane complexes from 

autotrophic and mixotrophic N. oleoabundans, a BN-PAGE system was optimised. In a first 

analysis, the pattern of protein complexes in autotrophic N. oleoabundans was compared to 

that of the model organism A. thaliana (Fig. 3 a). Since in the BN-PAGE the apparent 

molecular mass of the protein complexes from N. oleoabundans corresponded to the 

predicted molecular masses known for A. thaliana, each complex was recognised based on 

the same molecular mass. Despite this, evident differences in the pattern of complexes 

occurred between the two samples. Autotrophic N. oleoabundans lacked PSII-LHCII 

supercomplexes and also LHCII assemblies with respect to A. thaliana. Moreover, in the 

microalgal samples the PSI-LHC complexes (including PSI core, LHCI and LHCII) and PSII 

dimers were resolved as separate bands. Finally, PSI-LHC, PSII dimers and PSII monomers 

had higher molecular weight, while LHCII trimers and monomers were lighter as compared 

to A. thaliana.  

After this first analysis, membrane protein complexes from autotrophic and 

mixotrophic N. oleoabundans were separated by BN-PAGE with the same procedure (Fig. 3 

b). A different pattern of protein complexes was resolved in BN gels of thylakoids from 

different samples. In particular, although the two mixotrophic samples did not yield exactly 

the same profile, in general it was found that: i) all complexes in mixotrophic samples had 

slightly higher molecular weight compared to controls; ii) the mixotrophic samples had 

visibly lower amount of PSII dimer (about -25%) and more PSII monomer (about +25% in 

both cases) with respect to control. Moreover, in thylakoids from cells grown with 5 gL-1 of 

glucose,  less PSI-LHC supercomplexes and LHCII monomers were also shown with respect to 

mixotrophic samples grown with 2.5 gL-1 of glucose. In order to support the identification of 

the PSII and LHCII protein complexes and to resolve their composition, each stripe from the 

BN-PAGE was further analysed by SDS-PAGE in the 2D, enabling the separation of different 
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protein complexes into constituting subunits (Fig. 4). In each 2D image in Fig. 4, the first 

conspicuous band from the left, corresponding to PSI-LHC complexes, contained Psa A/B 

subunits of PSI and some LHCI proteins. Confirming the Western Blot analyses which showed 

decreased levels of PSI in mixotrophic samples, PsaA and B appeared less abundant in 

thylakoids from 2.5 and 5 gL-1 of glucose-grown cells (Fig. 4 a, b). Moreover, PSI-LHCII 

complexes were also observed in all the samples, but amounts appeared lower in 

mixotrophic with respect to autotrophic cells. Interestingly, only in 2.5 gL-1 of glucose-grown 

samples some PSII subunits were bound to PSI (Fig. 4 a). This was not observed in control 

and in sample grown with 5 gL-1 of glucose. The second band, corresponding to the PSII 

dimers, contained the Chl-binding proteins CP47 and CP43, as well as D1 and D2 subunits of 

PSII core, in the dimeric form. When thylakoids from 2.5 (Fig. 4 a) and especially 5 (Fig. 4 b) 

gL-1 of glucose-grown samples were compared with controls, it was clearly evident that all 

the subunits belonging to PSII dimer were less abundant. Conversely, when the 2D 

resolution of the 4th band, corresponding to PSII monomers and containing the same PSII 

subunits as in dimers, were compared between samples, it was clearly visible that all the 

subunits were more abundant in both mixotrophic samples with respect to thylakoids from 

control cells. Cyt b6f was co-migrating with the PSII monomers, but no obvious difference 

was observed in its subunits between samples. Finally, the resolution of bands 

corresponding to LHCII trimers and monomers did not show any relevant difference 

between autotrophic and mixotrophic cells as well. 

 

3.2. Fluorimetric analyses on in vivo autotrophic and mixotrophic N. oleoabundans 

Effects of different glucose concentrations on reoxidation kinetics of QA 

The effects of mixotrophy on the activity of both quinone components of the 

quinone-iron acceptor complex, QA and QB, can be studied by measuring flash-induced 

changes in the yield of Chl fluorescence (Vass et al., 2002). The reduction of QA upon flash 

excitation results in a prompt increase of Chl fluorescence yield, which is followed by a dark 

decay in the range of 100 μs – 10 s time range due to the reoxidation of QA by various 

pathways (Vass et al., 2002). The fluorescence relaxation is dominated by a fast component 

(few-hundred μs), arising from QA
- to QB electron transfer in RCII, which had an oxidised or 
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semi-reduced plastoquinone (PQ) molecule in the QB pocket at the time of flashing. The 

middle phase (few ms), arises from QA
- reoxidation in centers which had an empty QB site in 

darkness and had to bind PQ from the pool. Finally, the slow phase of flash-induced 

fluorescence relaxation curve (few s) shows the recombination of the S2 state of the water 

oxidising complex with QB
- via the QA

- QB ↔QAQB
- equilibrium (Vass et al., 1999; Vass et al., 

2002; Allahverdiyeva et al., 2005).  

When mixotrophic samples were compared with autotrophic cultures at 7 days of 

growth, analyses of the kinetics of the flash-induced fluorescence relaxation showed that the 

fast phase of decay was slightly accelerated in samples grown with 2.5 (-3%) and 5 (-10%) gL-

1 of glucose with respect to control (ca. 570 μs of time constant) (Tab. 2; Fig. 5 a). 

Conversely, the relative amplitude of the fast relaxation phase slightly increased with the 

increase in glucose concentration (+7% and +14% in 2.5 and 5 gL-1 of glucose-grown cells, 

respectively, as compared to control; Tab. 2). However, these results were not significant. 

When middle phases of decay were compared, the time of decay was highly accelerated in 5 

gL-1 of glucose-grown cells (-47%, p < 0.01), whereas no differences in relative amplitudes or 

time of decay were observed between 2.5 gL-1 of glucose-grown cells and control (Tab. 2; Fig. 

5 a). These results indicated a tendency to modify the QA-to-QB electron transfer in 

mixotrophic cells and to fasten PQ binding to the QB pocket, especially in cells grown in 5 gL-1 

of glucose. The slow phase of fluorescence relaxation, originating from S2(QAQB)- 

recombination, showed an increase in relative amplitude in both mixotrophic cells (around 

+12,5%, p < 0.01) and a minor time constant in 5gL-1 of glucose-grown cells (-41% with 

respect to control cells, p < 0.01) (Tab. 2; Fig. 5 a).  

When mixotrophic samples were instead compared with autotrophic controls at the 

same phase of growth (Fig. 5 b), the time of decay of the fast phase was further accelerated 

both in 2.5 (+26%) and especially in 5 (+31%, p < 0.01) gL-1 of glucose-grown cells with 

respect to control samples (Tab. 2). Moreover, relative amplitude dramatically increased, i.e. 

was doubled, in cells grown with the highest concentration of glucose (p < 0.01). In these 

samples, time of decay of the middle phase was also significantly different compared to 

controls (+69%, p < 0.01) (Tab. 2). 
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In the presence of DCMU, which blocks the reoxidation of QA
- by forward electron 

transfer, the fluorescence relaxation indicates the status of the PSII donor side due to 

recombination of QA
- with donor side components. In a functional PSII complex, the 

recombination partner of QA
- is the S2 state of the water oxidising complex. Interestingly, 

analysis of these decay curves showed that in the mixotrophic samples a fast-decaying 

component dominated the decay, confirming the results previously described in the absence 

DCMU. When mixotrophic samples were compared with controls at 7 days of growth (Fig. 5 

c), this fast phase was clearly evident especially in 5 gL-1 of glucose-grown cells, whereas 

when control cells in late exponential phase were used for comparison (Fig. 5 d), the fast-

decay was more evident in both mixotrophic samples.  

 Slow kinetics of Chla fluorescence  

In order to clarify the effects of glucose on the dynamics of photosynthetic electron 

transfer reactions, PAM fluorescence trace in freshly-collected samples of autotrophic and 

mixotrophic cultures was monitored, measuring the time-course of Chl fluorescence 

parameters FM’, i.e. the maximum fluorescence in the light-adapted state, measured 

applying a saturation pulse, and Ft, i.e. the steady state fluorescence yield in the light-

adapted state. Samples were pre-incubated in darkness for 10 min before analysis and then 

the initial FM and F0 values were determined by applying a saturation pulse. In Fig. 6 typical 

Chla fluorescence kinetics were represented for control (Fig. 6 a), 2.5 (Fig. 6 b) and 5 (Fig. 6 

c) gL-1 of glucose-grown cells. Interestingly, no differences occurred between autotrophic 

samples obtained from cultures with different age from the inoculum and different stage of 

growth. On the whole, differences between control and mixotrophic samples instead 

occurred. In particular: 

 no differences in the minimal level of fluorescence F0 were observed before 

turning on the actinic light, indicating that same amount of PSII in the “open 

state” was present; 

 during the sequence 90 µmolphotons m-2s-1 - darkness of the triggered program, in 

control cells fluorescence FM’ increased to values higher than the initial FM. 

Conversely, FM’ decreased during the subsequent dark period (Fig. 6 a). On the 

other hand, in mixotrophic samples the FM’ increase effect in the light was not 
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always observed and, when it occurred, the fluorescence increase was not as 

marked as in controls. Moreover, during the subsequent dark period, after a 

temporary decrease in FM, the value increased to the initial FM value, as expected 

(Fig. 6 b, c); 

 when cells were exposed to 1000 µmolphotons m-2s-1, an initial rise in the basal 

fluorescence Ft was observed in controls, followed by a strong decrease. 

Conversely, these two phases were less marked in mixotrophic samples and a less 

evident “hump” was observed with respect to controls at the beginning of the 

high-light exposure period. Moreover, basal fluorescence Ft remained higher 

during high-light exposure, suggesting that mixotrophic samples were more 

sensitive to light than autotrophic samples. The effect was proportional to the 

increase in glucose concentration; 

 when cells were subsequently exposed to darkness, maximum fluorescence 

gradually increased with no differences between samples. However, as soon as 

the actinic light was turned off, in controls an evident decrease in the basal 

fluorescence value was observed even with the weak measurement light, 

followed by a rise. In mixotrophic samples, instead, this decrease-rise sequence 

was less evident. 

 77K fluorescence emission ratio and PSI/PSII stoichiometry in autotrophic and 

mixotrophic samples  

77K spectra were recorded from aliquots of samples containing 8 µgmL-1 Chl, frozen 

and maintained in liquid N2 before analyses. In Fig. 7 a, mixotrophic samples were compared 

to controls at 7 days of growth. No differences were observed, indeed spectra almost 

overlapped.  In particular, the peak at around 684 nm was attributed to PSII, while the peak 

at 714 nm was attributed to PSI-LHCI (Ferroni et al., 2011). Moreover, a broad shoulder 

between 692 and 703 nm was observed. Emission around 700 nm can be attributed to LHCII 

aggregates (Horton et al., 1991). When mixotrophic samples were compared to controls at 

the same stage of growth (Fig. 7 b), spectra were instead very different. In fact, peaks were 

slightly shifted in control, at 683 nm for PSII and 713 nm for PSI-LHCI. Moreover, the 

shoulder at 692-703 nm was not observed between PSII and PSI emission regions. It is 

possible that this emission was not evident because of the higher emission from PSI-LHCI in 
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control samples. More information was obtained calculating the PSI/PSII emission ratio. As 

expected, no differences were observed between control and mixotrophic samples when 

comparison was carried out on cells sampled at the same time from the inocula. Conversely, 

when samples were compared at the same phase of growth, the ratio measured for controls 

was interestingly higher with respect to that measured for 2.5 (-8%, p < 0.05) and 5 (-10%) 

gL-1 of glucose grown-cells. This confirmed the decrease in the PSI amount over PSII in 

mixotrophic vs autotrophic cells when cultures were in almost stationary phase of growth 

(Fig. 8).  

 

4. Discussion  

The green microalga N. oleoabundans is considered a very promising organism to be 

exploited in the green-energy field because of its capability to accumulate lipids when grown 

under nutrient starvation (Tornabene et al., 1983; Li et al., 2008b; Pruvost et al., 2009; 

Popovich et al., 2012; Giovanardi et al., 2013). Unfortunately, very low biomass densities are 

reached in these conditions of growth. In the work previously discussed in this Thesis - part I, 

the mixotrophic growth of N. oleoabundans in presence of different glucose concentrations 

allowed to obtain not only very high biomass densities at the end of the exponential phase, 

but also lipid accumulation when cells entered the stationary phase of growth. Moreover, in 

those experiments, higher PSII maximum quantum yield, which is considered a very reliable 

indicator for overall photosynthetic efficiency (Baker et al., 2008), was always observed in 

mixotrophic cells with respect to autotrophic samples. Very little is known about the effects 

of the organic carbon source on the activity of the photosynthetic apparatus in mixotrophic 

microalgae; however, several studies indicated a down-regulation of the photosynthetic 

apparatus, either in terms of  PSII activity (Valverde et al., 2005; Liu et al., 2009a), or with 

respect to the light-indipendent reactions, linked to a minor synthesis of RuBisCO enzyme, or 

to a reduced affinity for CO2 (Oesterhelt et al., 2007). In this work, a comparison of thylakoid-

protein assembly in autotrophic and mixotrophic samples of N. oleoabundans grown in 

presence of 2.5 and 5 gL-1 of glucose was performed, with particular emphasis on the  

organisation of PSII and PSI and focussing also on the interaction which occurs between the 

two photosystems.  
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For biochemical analyses, thylakoids from autotrophic and mixotrophic samples were 

isolated from cells at the late-exponential phase of growth, i.e. when samples had the same 

cell density. Chl/prt ratio already showed differences between thylakoids from autotrophic 

and mixotrophic cultures. Indeed, thylakoids from mixotrophic cells showed a halved ratio 

with respect to controls. These different values might be probably related to a lower content 

of Chl-protein complexes in thylakoids. Indeed, in previous experiment (see part I), a strong 

decrease in the Chl content was observed in mixotrophic samples with respect to controls. 

Now it emerges that such decrease can be the effect of both a net loss of thylakoids per cell 

and changed abundance of Chl-protein complexes in the photosynthetic membranes. These 

results are also confirmed by Coomassie-staining of SDS-PAGE gels, which showed, in lanes 

loaded on the basis of the same protein amount, a decreased amount of LHCII proteins. 

Moreover, Chla/Chlb ratio was also higher. As Chlb is mostly located in LHCII complexes 

(Anderson et al., 1995), this result further supports a reduced content of LHCII complexes. In 

fact, on a Chl basis, immunodetection of LHCII proteins showed a reduced amount with 

respect to autotrophic cultures, as also observed in previous work concerning other 

mixotrophic microalgae (Kobáks et al., 2000). However, mixotrophic samples were mainly 

characterised by a strong increase in D1 protein subunit of PSII and a dramatic decrease in 

PsaB subunit of PSI, also verified in the bidimensional protein profiles obtained by BN/SDS-

PAGE. These results are contrary to what previously observed in the few works in which the 

effects of an organic carbon source on the light energy distribution between the two 

photosystems were studied (Kováks et al., 2000;  Valverde et al., 2005; Oesterhelt et al., 

2007). Indeed, irrespective of the organic carbon source supplied in the medium and of the 

microalgal species analysed, the Authors always observed reduced amounts of D1 protein 

and increasing levels of RCI proteins (Kováks et al., 2000;  Valverde et al., 2005; Oesterhelt et 

al., 2007). On the other hand, in this study analyses of the supramolecular organisation of 

PSII complexes by BN-PAGE and its corresponding silver-stained SDS-PAGE second dimension 

revealed that in mixotrophic samples PSII was mostly in the monomeric form. For many 

years, there has been a long-standing discussion about the assembly of PSII components into 

functional multimeric protein complexes in green algae and higher plants (Minagawa et al., 

2004; Dekker and Boekema, 2005). Currently, it is widely accepted that functional PSII is 

normally organised as a dimer and concentrated in the stacked, appressed regions of grana, 

whereas PSI monomers are usually found in the unstacked thylakoid membranes (Kruse et 
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al., 2000; Minagawa et al., 2004; Dekker and Boekema, 2005; Daniellson et al., 2006). This 

distribution has been linked to the dissociation of PSII dimers into monomers to facilitate the 

PSII repair cycle, which occurs in the stroma-exposed membranes (Dekker and Boekema, 

2005). However, in some cases PSII monomers have been shown to be fully active and also 

located both in grana cores and margins (Dekker and Boekema, 2005; Daniellson et al., 2006; 

Takahashi et al., 2009).  

As concerns LHCII complexes, they were found to mostly as free trimers in N. 

oleoabudans, irrespective of the mode of cultivation  (Kügler et al., 1997; Minagawa et al., 

2004; Dekker and Boekema, 2005). Immunoblot detection showed decreased amounts of 

LHCII in thylakoids from 2.5 and 5 gL-1 of glucose-grown cells, however this did not cause 

major differences in the pigment-protein complexes assembly in comparison to autotrophic 

samples, although silver staining of 2D-BN/SDS-PAGE gels cannot be used to obtain accurate 

quantitative information (Daniellson et al., 2006). Finally, in mixotrophic samples less LHCII-

PSI complexes were found with respect to autotrophic cells. LHCII is the major antenna of 

PSII, but can serve either PSII or PSI via state transition, which allows the balance of the light-

harvesting capacity of the two photosystems to optimize the efficiency of the photosynthetic 

process  (Allen et al., 1981; Allen and Forsberg, 2001; Iwai et al., 2008; Tikkanen et al., 2008). 

When the plastoquinone pool is reduced (Allen et al., 1981), a protein kinase is activated 

through the Cyt b6f complex (Verner et al., 1997), and phosphorylation of LHCII apoproteins 

occurs, inducing a strong affinity between LHCII and PSI, so that LHCII works as a peripheral 

antenna for PSI (State 2) (Allen and Forsberg, 2001; Iwai et al., 2008; Tikkanen et al., 2008). 

Conversely, oxidation of the plastoquinone pool induces the opposite effect and recovers 

state 1 (Bennett, 1980). Then, the decreased amount of the state transition-specific LHCII-PSI 

complexes in mixotrophic samples might be related to a less effective capability to induce 

state transitions with respect to autotrophic samples. One of the reasons might be the 

presence of differences in the redox state of the plastoquinone pool in mixotrophic samples 

(Kováks et al., 2000).  

Chl a fluorescence induction techniques are the most frequently used measurements 

for the investigation of light energy distribution and state transition (Kováks et al., 2000). For 

biophysical analyses, mixotrophic samples were compared with autotrophic cultures 

analysed either at the same day of growth (7 days) or with the same cell density, i.e. when 
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controls approached the stationary phase. The effects of mixotrophy on the activity of the 

forward electron transfer form QA
- to QB were studied by flash-induced fluorescence kinetics 

mediated by a single-saturating flash pulse (Vass et al., 2002; Allahverdiyeva et al., 2005, 

2007). Differences were present comparing mixotrophic cells with both autotrophic samples 

mentioned above, although the effects were more marked if mixotrophic cells were 

compared to controls with the same cell density. Moreover, differences were emphasised 

with the highest glucose concentration. In thylakoids from mixotrophic cells, the relaxation 

of flash-induced fluorescence was characterised by minor time constants and increased 

relative amplitudes during fast and middle phases of fluorescence decay with respect to 

autotrophic cells. Interestingly, these results suggest a faster electron transfer from QA
- to QB 

during the fast phase of decay, with a following faster rebinding of PQ to the QB  pocket and, 

then, an overall faster electron transfer in PSII of mixotrophic cells, in particular when 

glucose concentration is the highest. Moreover, DCMU was effective in blocking the QA
- to 

QB electron transfer both in autotrophic and mixotrophic cells, hence modifications in the 

binding site of QB can be excluded in all samples (Allahverdiyeva et al., 2005). However, also 

the recombination of QA
- with S2 states of the water oxidising complex was faster. It 

appears, then, that the redox proprieties of QA might be changed in mixotrophic samples 

with respect to autotrophic cells (Allahverdiyeva and Aro, personal communication), and 

might also be linked with the presence of a higher proportion of PSII (non-functional?) 

monomers. In fact, a minor proportion of functional PSII capable of reducing the primary 

acceptor QA  might cause in turn the presence of an overall less reduced PQ pool. The high 

fraction of oxidized PQ would be more easily available for the reoxidation of QA
- after flash 

induction. Decreased antenna size has also been shown to decrease the rate of QA reduction 

(Takahashi et al., 2009). Another explanation could concern a promoted oxidation of PQ 

because of modified photosynthetic electron flow in mixotrophic microalgae, although the 

only report on the subject actually suggests a down-regulated electron transport (Valverde 

et al., 1995). However, these hypotheses remain conjectural, because no information about 

such changes in mixotrophic microalgae is available in literature. Further analyses to 

determine the possible occurrence of increased energy dissipation due to a higher 

proportion of non-functional PSII in mixotrophic samples, would be required, as well as to 

understand the role of state transitions and electron flow. However, previous results 
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obtained in N. oleoabundans grown mixotrophically in the presence of AWP (see part I), 

seem to support these hypotheses.  

Before measurements of Chla fluorescence induction by PAM fluorimetry, cells are 

dark-adapted in order to fully oxidize QA and measure the minimal fluorescence level F0. 

After that, the first light-saturating pulse is applied, QA becomes completely reduced and the 

maximum fluorescence level FM is reached (Krause and Weiss, 1984; Baker, 2008). However, 

in some algae, some accumulation of reduced QA can occur during the dark adaptation as 

well, owning to non-photochemical reduction of plastoquinone by chlororespiration (Baker 

et al., 2008). QA reduction promotes association of LHCII complexes to PSI mediating 

transition to state 2 (Krause and Weiss, 1984; Finazzi et al., 1999). A similar behaviour is 

observed in autotrophic N. oleoabundans cells, which indeed showed increasing FM’ values 

under normal growth light conditions, linked to the transition from state 2 to state 1 of LHCII 

complexes during the linear electron flow (Finazzi et al., 1999; Kováks et al., 2000). 

Conversely, this behaviour was not observed in mixotrophic cells, and FM’ only rarely 

exceeded FM values. The absence of PQ reduction in dark-incubated mixotrophic cells might 

be linked, again, to differences in state transitions, which might not be as effective as in 

controls. Furthermore, in the light of these results, it is grounded to suppose that in previous 

experiments (part I) the mixotrophic samples showed higher FV/FM ratio actually because the 

FM levels of autotrophic samples were underestimated. Therefore, the samples grown in the 

presence of glucose do not hold improved photosynthetic efficiency, but rather experience 

important effects on state transition of LHCII and redox properties of quinones.  Moreover, 

when exposed to high-light conditions, mixotrophic cells showed increased basal 

fluorescence emission Ft, linked to major susceptibility to photodamage (Baker, 2008). 

Finally, 77K emission spectra showed decreased emission of PSI over PSII in mixotrophic 

samples with respect to controls, but only when autotrophic cells in the same late-

exponential phase were used for comparison. This resulted in lower PSI/PSII fluorescence 

ratio, in accordance with immunodetection of D1 and PsaB protein subunits. A similar 

change in PSI/PSII ratio was found in other mixotrophic microalgae and was put in relation 

with a down-regulation of photosynthesis (Valverde et al., 1995; Oesterhelt et al., 2007). 

In summary, based on the study of organisation and assembly of thylakoid-protein 

complexes, the effects of glucose on the photosynthetic membrane of N. oleoabundans 
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resulted in decreased amounts of LHCII and, above all, PSI protein subunits. The slight 

reduction in ATP-β subunit of ATPase might be linked to some interaction with glucose 

metabolism and ATP production (Kováks et al., 2000). Conversely, increased PSII amounts 

were found, but mainly present in the monomeric form, which have been frequently 

considered non-functional, although contrasting opinions can be found in literature 

(Tikkanen et al., 2008; Takahashi et al., 2009). The 77K spectra also supported a different 

PSI/PSII stoichiometry, but only if autotrophic cells at the late-exponential growth phase 

were considered as control. Based on fluorescence relaxation and slow fluorescence 

induction kinetics, it can be proposed that QA presents different redox properties with 

respect to autotrophic cultures, maybe linked to decreased reduction rates, resulting in a 

more rapid linear electron flow in mixotrophic cultures. However, the decrease in reduction 

rate might also be caused by a major proportion of non-functional PSII, i.e. unable to 

efficiently reduce QA. Finally, less effective state transition capability was suggested in 

mixotrophic samples with respect to control cells, for some reasons which still appear 

unclear. This may derive from a reducedcapability of chlororespiration in darkness. 

Collectively, it can be hypothesised an increased susceptibility to photodamage when 

mixotrophic cells are exposed to high-light conditions. Thus, it can be concluded that 

mixotrophic cells does not show enhanced photosynthetic activities with respect to control 

cells, but the higher FV/FM values would actually be linked to different redox properties of 

quinones and less capability to promote state transitions. However, at present, the results 

collected in this work point to the unique features of the photosynthetic membrane 

assembled under mixotrophy, but remain difficult to interpret because of their novelty with 

respect to the available literature. Further investigation on the interplay between 

photosynthetic light reactions and carbohydrates metabolism need to be pursued in order to 

identify how glucose consumption interferes with the photosynthetic apparatus of N. 

oleoabundans.  
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5. Conclusion 

The genome of  N. oleoabundans is not sequenced and moreover very little is known 

about its physiology and photosynthetic metabolism even when cells are grown 

autotrophically. The capability of the microalga to grow mixotrophically has been discovered 

only recently (Giovanardi et al., 2013), thus improvement in the knowledge of the glucose 

effects on the organisation, assembly and activity of the photosynthetic apparatus might be 

useful to understand the microalgal metabolism. The results obtained in this work suggest 

that dramatic changes in photosystems organisation and  electron flow occur in mixotrophic 

samples, with probable modifications in state-transition capability and possibly reduced 

photosynthetic performance. However, further investigation is needed to provide a 

complete background. For this reason, this work can be considered a starting point from 

which further research can be developed.  
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Tables ans Figures 

 

 

Tab. 1: Chl a, b and total Chl amounts, protein amounts and corresponding ratios in thylakoids 
extracted from N. oleoabundans grown with 0, 2.5 and 5 gL-1 of glucose.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Coomassie-stained SDS-PAGE of thylakoids membrane proteins from N. oleoabundans grown 
with 0 (C), 2.5 (G 2.5) and 5 (G 5) gL-1 of glucose. On each lane, 2 μg of Chl (a) and 20 μg of proteins 
(b) were loaded. Major differences in the protein profile between different samples are marked by 
arrows. For comparison, three different amounts of thylakoids from control sample were loaded. 
Molecular weight marker is reported on the left in each gel. 

 

 

 

 

Samples Chl 
(μg μL-1) 

Prt 
(μg μL-1) 

chl/prt 
 

Chla 
(μg μL-1) 

Chlb 
(μg μL-1) chl a/b ratio 

0 gL-1 glucose 3.380 24.294 0.139 2.623 0.757 3.467 
2.5 gL-1 glucose 1.650 25.768 0.064 1.325 0.324 4.086 
5.0 gL-1 glucose 1.820 27.955 0.065 1.449 0.367 3.953 

a b 
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Fig. 2: immunoblot detection of  ATPβ (40 µg of protein loaded in each lane), PsaB (0.5 µg of Chl 
loaded in each lane),  D1-DE loop (0.5 µg of Chl loaded in each lane) and LHCII (0.25 µg of Chl loaded 
in each lane) in thylakoid membranes of N. oleoabundans grown with 0 (C), 2.5 (G 2.5) and 5 (G 5) gL-

1 of glucose.  
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Fig. 3: distribution of different protein  complexes in BN/SDS PAGE profile of thylakoids membranes.  
a) Representative BN-PAGE profile of thylakoids from Arabidopsis  thaliana (Ara) and autotrophic N. 
oleoabundans (C). b) Representative BN-PAGE profiles of thylakoids from N. oleoabundans grown 
with 0 (C), 2.5 g/L glucose (G2.5) and 5g/L glucose (G 5). For each lane, 5 μg of Chl were loaded. 
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Fig. 4: 2D-BN/SDS-PAGE of protein complexes in thylakoid membranes from autotrophic and 
mixotrophic N. oleoaunbans. a) comparison between cells grown with 0 (C) and 2.5 gL-1 of glucose (G 
2.5). b) comparison between cells grown with 0 (C) and 5 gL-1 of glucose (G 5). The BN-PAGE strips 
were loaded horizontally on the SDS-PAGE. 5 μg of Chl were loaded in each BN well.  The highlighted 
silver-stained spots corresponded to Psa A/B (purple asterisk), PSII subunits associated with PSI 
(yellow square bracket), CP47, CP43, D1 and  D2 subunits of PSII dimer (green arrows) and PSII 
monomer (yellow arrows), ATP synthase (yellow arrowhead), Cyt b6f  (purple arrowhead).  
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Tab. 2: characteristics of flash-induced Chl fluorescence relaxation in N. oleoabundans control cells at 
7 days of growth, control cells in late-exponential phase of growth, cells grown in presence of 2.5 (G 
2.5) and 5 (G 5) gL-1 of glucose. Values are time of decay and relative amplitudes in percent of total 
variable fluorescence obtained after the fired flash. Numbers are means of at least three replicates ± 
s.d. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: relaxation of the flash-induced fluorescence in N. oleoabundans cells grown with 0 (black line), 
2.5 (red line) and 5 (green line) gL-1 of glucose. a, c) control cells sampled after the same time of 
growth (7 days) of mixotrophic samples were used. In c) relaxation as occurring in presence of 5 μM 
DCMU.  b, d) control cells sampled at the same stage of growth (late-exponential) of mixotrophic 
samples were used. In  d) DCMU was added. Curves are average of at least 3 different biological 
replicates and are normalised to the same amplitude. Arrows: saturating-light pulse. 

 
Total Amp (%) Fast phase 

T/Amp (ms/%) 
Middle phase 

T/Amp (ms/%) 
Slow phase 

T/Amp (s/%) 

C 7 days 100 0.57 ± 0.08 /  
85.83 ± 2.60 

13.50 ± 4.76 /  
7.69 ± 1.30 

2.07 ± 0.67 / 
6.48 ± 1.37 

C late exp 100 0.74 ± 0.08 /  
76.11 ± 2.17 

17.35 ± 6.98 /  
13.56 ± 0.98 

3.22 ± 0.82 / 
10.33 ± 1.19 

G 2.5 100 0.55 ± 0.12 / 
 84.83 ± 4.47 

11.73 ± 3.66 /  
7.89 ± 2.19 

1.81 ± 0.58 / 
7.27 ± 2.33 

G5 100 0.51 ± 0.03 /  
86.84 ± 0.88 

7.18 ± 1.66 /  
6.93 ± 0.25 

1.22 ± 0.26 / 
6.23 ± 0.92 

a b 

d c 
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Fig. 6: representative curves of slow Chla fluorescence kinetics in response to changing light 
intensities in N. oleoabundans cells grown with 0 (a), 2.5 (b) and 5 (c) gL-1 of glucose. The 
measurements were started after 10 min of incubation in darkness by turning on the actinic light, 
and the fluorescence parameters  FM and Ft were monitored triggering the samples with different 
light intensities as indicated in “Material and methods” section. μE is equivalent of μmolphotonsm-2s-1. 
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Fig. 7: 77 K fluorescence emission spectra of N. oleoabundans grown with 0 (black), 2.5 (red) and 5 
(green) gL-1 of glucose. a) comparison between mixotrophic samples and control cells with the same 
time of growth. b) comparison between mixotrophic samples and control cells at the same phase of 
growth. The 77 K spectra were recorded from cell suspensions with 8 μg mL-1 (excitation, 440 nm). 
For easier comparison, spectra were each normalized to their maximum peak, except for C in figure 
b), which showed different peak positions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: PSI/PSII fluorescence emission ratio in N. oleoabundans grown with 0 (black), 2.5 (red) and 5 
(green) gL-1 of glucose. Samples are compared on the basis of the same stage of growth. Values are 
means of at least 3 replicates ± s.d. 
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Part III 

Effects of the expression of two phytoene synthase exogenous genes on 
carotenoid accumulation and photosynthetic performances in the green 

microalga Chlamydomonas reinhardtii 
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1. Introduction  

Microalgae are unicellular photosynthetic organisms able to convert solar energy into 

chemical energy for growth (Chisti, 2007). Thanks to their chemical composition, mainly 

enriched in proteins, lipids, carbohydrates, vitamins, pigments and enzymes (Harun et al., 

2010), these organisms are often considered an important source of natural products 

(Becker, 1988; León-Bañares et al., 2004; Pulz and Gross, 2004; Spolaore et al., 2006). 

Microalgae present a pronounced metabolic plasticity, which allows them to rapidly adapt to 

different environments (Gushina and Harwood, 2006). This also permits the production of 

some bioactive molecules by the manipulation of the cultivation systems, making these 

organisms very interesting to be exploited in biotechnological applications (León-Bañares et 

al., 2004; Plaza et al., 2008). Furthermore, during the last recent years, advances in 

molecular engineering have allowed to induce in microalgae the expression of heterologous 

genes, opening up the possibility of producing new heterologous proteins or overproducing 

traditional algal compounds for commercial and research purposes (León-Bañares et al., 

2004; Walker et al., 2005; Del Campo et al., 2007). The idea of using microorganisms as 

bioreactors for the synthesis of recombinant proteins is not new, but has usually involved 

bacteria and yeast fermentation (Walker et al., 2005). However, limitations in using these 

microorganisms occur, as bacteria are unable to perform post-transcriptional and post-

translational modifications, which are essential for the expression of eukaryotic proteins 

(Walker et al., 2005), whereas yeast present a different pattern of glycosylation with respect 

to that of higher plants (Fisher et al., 1999). Microalgae, instead, combine the fast and easy 

growth of bacteria and other microorganisms with the typical properties of higher plants, 

such as the same glycosylation pattern and the efficient oxygenic photosynthesis (Walker et 

al., 2005; Del Campo et al., 2007). Other advantages such as the easy protein purification, 

due to their simpler structure, and the consideration of green microalgae as GRAS (generally 

regarded as safe) organisms ensure their exploitation in large-scale production of 

commercially important proteins (Walker et al., 2005; León et al., 2007). One of the most 

successful branch of microalgal biotechnology is the Car production (Del Campo et al., 2007). 

Car are C40 tetraterpene pigments synthesised by all photosynthetic organisms, as well as by 

some non-photosynhtetic bacteria and some fungi (Jin et al., 2003; McCarthy et al., 2004; 

Cordero et al., 2011). The main classes of Car are two: carotenes are represented by linear or 
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cyclized hydrocarbons, whereas oxygen derivative of carotenes are called xanthophylls (Jin 

et al., 2003). In plants and green algae, the synthesis of Car occur inside chloroplast from the 

precursor geranylgeranyl pyrophosphate (GGPP), generated from isopentenyl 

pyrophosphate and dimethylallyl pyrophosphate by the action of GGPP synthase (Fig. 6 in 

“General introduction” section). The condensation of two molecules of GGPP yields the first 

Car of the biosynthetic pathway, the phytoene. The reaction is catalysed by the phytoene 

synthase (PSY), which has been considered a rate limiting key-enzime of the biosynthetic 

pathway, thus an important control point for the regulation of the carbon flux into and 

through the pathway (Shewmaker et al., 1999; Fraser et al., 2002; Sandmann et al., 2006; 

Couso et al., 2011). From phytoene, 4 sequential desaturation and one isomerization yield to 

lycopene, from which α- and β-carotene are obtained. The hydroxylation of  β-carotene 

allows to obtain zeaxanthin, which is epoxidated to form antheraxanthin and violaxanthin, 

whereas neoxanthin is obtained by a different rearrangement of violaxanthin (Richmond et 

al., 1990). On the other hand, lutein and its derivative loroxanthin are generated from 

hydroxilation of α-carotene (Baroli et al., 2003). In microalgae and higher plants, Car are 

important constituent of the photosynthetic apparatus. In particular, two β-carotenes are 

found in the RCII, whereas the xanthophylls lutein, violaxanthin, zeaxanthin and neoxanthin 

are accessory pigments in the antenna system LHCII (Depka et al., 1998; Jin et al., 2003; 

McCarthy et al., 2004). Thus, in addition to their participation in light-harvesting processes, 

main functions of Car are to maintain structure and function of photosynthetic complexes, 

to dissipate the excess of light energy absorbed by the antenna pigments and to play an 

important role in the protection of photosynthetic apparatus from photooxidative damage 

(McCarthy et al., 2004). Their antioxidant properties are also important in the human health 

care, and are used in pharmaceutical, exerting intrinsic antinflammatory properties, 

prevention against oxidative stress and therapeutic chemopreventive anticancer effects, 

among others (Guerin et al., 2003; Spolaore et al., 2006; León et al., 2007). With these 

purposes, natural carotenes are usually preferred as they are a mixture of cis and trans 

molecules, thus Car production from biological sources, like microalgae, is promoted (Del 

Campo et al., 2007). Despite microalgae are the most important source of Car, literature 

about the genetic manipulation of the Car biosynthetic pathway in these microorganisms is 

very rare and related to few microalgae species, such as Dunaliella (Sun et al., 2007), 

Haematococcus (Steinbrenner and Sandmann, 2006) and Chlamydomonas (León et al., 2007; 
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Vila et al., 2007; Cordero et al., 2011; Couso et al., 2011). Among them, C. reinhardtii is 

considered a model organism, during the past years it has been well characterised (Harris et 

al., 2001; Walker et al., 2005) and its nuclear genetic manipulation is easy and well 

established. Then, C. reinhardtii can be considered the best candidate for the expression of 

foreign genes involved in the carotenogenic pathway (León et al., 2007; Cordero et al., 

2011). In a recent work, the transformation of C. reinhardtii with a foreign β-carotene 

oxygenase gene induced the production of a new ketocarotenoid, even if in very small 

quantities and without any further changes in the Car profile (León et al., 2007). Many 

progresses have been achieved transforming the microalga with two exogenous PSY genes 

from D. salina (Couso et al., 2011) and C. zofingensis (Cordero et al., 2011). In both cases, 

accumulation of Car was observed in some transformants, confirming the possibility of 

employing molecular engineering for commercial purposes, as well as improving the 

knowledge about the carotenogenic pathway, not fully understood yet (Couso et al., 2011). 

However, no information about the effects of the transformation on the physiology of these 

microorganisms are still available. In this study, the effects of the expression of two 

exogenous PSY genes from Arabidopsis thaliana (AtPSY) and Oryza sativa  (OsPSY1) in the 

green microalga C. reinhardtii has been studied, with particular regards to the responses of 

the photosynthetic apparatus. With these purposes, fluorimetric analyses have been 

performed on positive transformants which expressed a different phenotype compared to 

that of wt cells, in order to observe if eventual modification of the carotenogenic pathway 

would lead to different behaviour to exposition to different light regimes. 

 

2. Materials and Methods 

2.1. Strain and culture conditions 

The Chlamydomonas reinhardtii cell-wall deficient strain cc-3491 was obtained from 

the Chlamydomonas Genetics Center (Duke University, Durham NC, USA). Cultures were 

maintained on solid Tris acetate/phosphate medium added with 10 gL-1 of sorbitol (TAP-

S)(www.chlamy.org) in a growth chamber (24±1°C, 100 μmolphotonsm-2s-1 PAR, 16-8 h light-

darkness photoperiod). For physiological analyses of positive transformants, liquid cultures 

were prepared in 100 mL Erlenmeyer flasks (50 mL total volume) and shaken continuously at 
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90 rpm. For experiments at different light exposures, cells were grown in the same growth 

chamber as described above at: a) 30 μmolphotons m-2s-1 PAR (low-light cultures - LL); b) 150 

μmolphotons m-2s-1 PAR (high-light cutures - HL). Experiments were always carried out in 

triplicates and growth was always monitored by measurement of optical density (OD) at 750 

nm with a PharmaciaBiotech Ultrospec® 2000 UV-Vis (1 nm bandwidth; Amersham 

Biosciences,Piscataway, NJ, USA). OD was referred to a calibration curve with known cell 

number, previously estimated by cell counting with a Thoma’s counting camera, versus 

optical density. Escherichia coli strain TOP10 (Invitrogen) was used and transformed by heat 

shock with the plasmids constructed as follows.  

2.2. Construction of the expression vector for C. reinhardtii transformation 

Gateway Technology (Invitrogen) was used in order to obtain expression vectors to 

be used for C. reinhardtii transformation. Different entry vectors were firstly created to 

obtain each expression construct. The coding sequences of Phytoene Synthase (PSY) of 

Arabidopsis thaliana (At5g17230), and Oryza sativa 1 (Os06g0729000) were kindly provided 

by Dr. Ralf Welsh (University of Freiburg, Germany). AtPSY and OsPSY1 sequences were 

amplified using HotStart HiFidelity DNA Polymerase (QIAGEN) following the manufacturer’s 

instruction, using primers flanked by AttB1 and AttB2 sequences, as indicated in Tab. 1. The 

obtained PCR products were subsequently used for BP recombination with pDONR221 

(Invitrogen). A second entry clone contained the C. reinhardtii β2-tubulin gene promoter, 

which had been selected to drive the expression of both AtPSY and OsPSY1 in the microalga, 

in combination with the first intron of small subunit of ribulose bisphosphate carboxylase 

(rbcS2). This sequence was amplified by PCR using pHyg3 (Berthold et al., 2002), with 

primers flanked by AttB4 and AttB1R (Tab. 1) and subsequently recombined in pDONR P4-

P1R (Invitrogen). Finally, the C. reinhardtii 3' untranslated region of small subunit of rbcS2 

gene was amplified from pHyg3 (Berthold et al, 2002) using specific primers flanked by 

AttB2R and AttB3 sequences (Tab. 1), and PCR products were used for BP recombination 

with pDONRP2R-P3 (Invitrogen). This 3′end contains 230bp of the 3′ untranslated region of 

the C. reinhardtii rbcS2 gene (Goldschmidt-Clermont and Rahire, 1986) with a functional 

TGTAA polyadenylation signal. The Destination vector was generated subcloning the 

multisite recombination cassette (R4-Cmr-ccdB-R3) of pKm43GW,0 (Karimi et al, 2002) in 

pUC19 multiple cloning site (HindIII/KpnI). Then, hygromycin resistance cassette was excided 
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from pHyg3 (Berthold et al, 2002) with HindIIII and subcloned upstream of Gateway cassette 

(Invitrogen), to allow selection of transformed individuals. The obtained Destination vector 

was named pHyg6. Two versions of pHyg6 (B-D) were obtained by mean of two distinct 

multiple LR recombination reactions with pDONR vectors carrying sequences of interest 

(Tab. 2; Fig. 1). Nucleotide sequences of all PCR products were confirmed by sequencing 

both strands (Macrogen Inc.). 

2.3. Glass beads nuclear transformation and screening of trasformants 

Nuclear transformation was carried out using glass beads method as described by 

Kindle et al. (1990), with some modifications. Cells were grown until they reached the 

density of 1-2 x 106 cell mL-1 and subsequently harvested by centrifugation (5000 g, 5 min), 

resuspended in 1/100 of the original volume and incubated in continuous shaking (50 rpm) 

at room temperature for 2-4 hours. 0,3 mL of this cell suspension was added to a glass tube 

containing 0,3 g of sterilized glass beads (0,3 mm Ø), 100 µL of 20% polyethylene glycol (MW 

8000) and 2 µg of Phyg6-B or Phyg6-D plasmid. Cells were then vortexed at maximum speed 

for 30 seconds and incubated o/n in 10 mL of TAP-S. The day after aliquots of 7,5 and 15 x 

106 cells mL-1 were spread onto solid TAP-S containing 10 µg mL-1 Hygromycin B. Colonies 

were visible after 10-14 days. 

The genomic DNA extraction from colonies grown in selective medium was 

performed as described in previous works (Murray and Thompson, 1980; Rogers and 

Bendich, 1985), with modifications. One loop full of cells was scrapped and cultured in 3 mL 

of TAP-S with 10 µg mL-1 Hygromycin B. After 3 d of growth cells were harvested by 

centrifugation at 10000 g for 5 min and pellet was grinded in liquid nitrogen. 400 µL of CTAB 

extraction buffer (100 mM Tris-HCl pH 8.0, 50 mM Na2EDTA pH 8.0, 500 mM NaCl, 2% CTAB 

w/v, 1% β-mercaptoethanol v/v) and 100 µL of 0,5% 30.000 PVP where then added. DNA 

extraction was firstly performed with 850 µL of 1:1 phenol/chloroform. Top phase was 

harvested and extracted with phenol. DNA contained in the following top phase was 

precipitated adding 0.7 volumes of isopropanol and incubating at -20°C for 4 hours. After 

washing with 70% ethanol for three times, the obtained pellet was resuspended in 30 µL of 

5mM Tris-HCl pH 8.0. Samples were kept at -20°C. PCR reaction was carried out in order to 

detect the presence of the transgene. The specific primer pairs AtPSY RTfor - attb3-rbcS2 rev 
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and OsPSY1 RTfor - attb3-rbcS2 rev (Tab. 1) were used. 1 µL of 1:10 diluted genomic DNA 

was added to 25 µL of total volume reaction containing 1µL of each primer (10 µM), 2.5 µL of 

10x Dream Taq™ Green Buffer including 20 mM MgCl2, 0.2 mM dNTPs and 0.625 U of Dream 

Taq™ DNA polymerase. All reagents were obtained from FERMENTAS®. Cycling conditions 

were: denaturation 5 min at 95°C, melting 30 s at 95 °C, annealing 30 s at 60 °C and final 

extension 45 sec at 72 °C in order to complete all the amplicons. The amplification products 

were analysed by electrophoresis on  1% agarose gel. The sizes of amplified products were 

estimated by comparison with 1kb DNA ladder (Applichem). 

2.4. RNA extraction, cDNA synthesis and Reverse transcription-PCR (RT-PCR).  

RNA extraction was performed using freshly collected algae from 1ml of liquid culture 

in TAP-S medium with 10 µg mL-1 hygromycin. Samples were grinded with liquid nitrogen 

and then processed using Aurum RNA Fatty and Fibrous kit (Bio-Rad). RNA integrity was 

evaluated by 1% agarose gel electrophoresis. A 9 μL sample of the extracted RNA was retro-

transcribed using the ImProm-II reverse transcription system (Promega) with an oligo(dT) 

primer, following the manufacturer’s instruction. qRT-PCR was performed with GoTaq® Flexi 

DNA Polymerase (Promega) following the manufacturer’s instructions. Reaction mixtures 

were set up in duplicate, using 0.5 μL of cDNA 1:4 diluted and 0.5 μL of each primer (0.5 mM 

final concentration for each) in a 20 μL final volume. Primers were AtPSY RT for and AtPSY RT 

rev (Tab. 1). A no-template control reaction was also performed.  

2.5. Pigment extraction and analysis 

For pigment extraction, aliquots of 1mL of cell suspension were harvested by 

centrifugation at 600 g for 10 min. 2 mL of methanol were added to the pellet and incubated 

at 80°C for 15 min in the dark (Ferroni et al., 2007). The extracts were clarified by 

centrifugation and analyzed with a UV/Vis Spectrophotometer (Pharmacia Biotech 

Ultrospec® 2000) (1 nm resolution). For Chla, Chlb and Car quantification, the extracts were 

measured at 750 nm, 666 nm (Chla), 653 nm (Chlb) and 470 nm (Car). The quantification was 

performed according to Wellburn (1994).  

For HPLC analyses, 1 mL samples were harvested by centrifugation and pigments 

were extracted with 1 ml acetone 80% over night at -20°C. The extracts were analysed by 
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HPLC (Agilent Zorbax ODS-C18 4.6 x 250 mm, 5 μm column), as described in Färber and Jahns 

(1998). Car were identified by retention times and absorption spectra, and quantification 

was referred to total Chl. 

2.6. Fluorimetric analyses  

 Modulated Chl fluorescence 

Pulse amplitude modulated (PAM) fluorescence was analysed with an ADC OS1-FL 

fluorometer (ADC Bioscientific Ltd, Hoddesdon, Hertfordshire, UK). Aliquots of cell 

suspensions from wt and transformed cells were centrifuged at 10000 g for 3 min and the 

pellets were deposited onto pieces of wet filter paper (Schleicher & Schuell)(Ferroni et al., 

2011). After 15 min of dark adaptation, initial fluorescence (F0) and maximum fluorescence 

(FmM) values were measured and used to calculate the maximum quantum yield of PSII, i.e. 

Fv/FmM ratio, where Fv=FmM-F0 (Lichtenthaler et al., 2005). After the determination of Fv/FmM, 

the samples were exposed to 1200 µmolphotons m-2s-1  for 5 min. At the end of induction, the 

steady state fluorescence yield was measured (Ft) and a saturation pulse was applied for the 

determination of the maximum fluorescence in the light-adapted state (Fm’). Subsequently, 

cells were allowed to recover in darkness for 5 min and a pulse was applied for the 

determination of Fm. The fluorescence parameters were used in preliminary experiments to 

calculate the yield of PSII photochemistry in the light-adapted state as Y=((Fm’-Ft)/Fm’) (Genty 

et al., 1989). The quantum yield of thermal dissipation associated with inactivated PSII after 

the light induction was determined as Y(NF) = 1-((Fv/Fm)/(Fv/FmM)) (Hikosaka et al., 2004).  

In HL and LL cultures, for a detailed analysis of the energy partitioning in a mixed 

population of active and photoinactivated PSII complexes, the measuring sequence 

described above was applied, but calculation of quantum yields was performed following 

Hendrickson et al. (2005), with modifications. In particular, the total absorbed energy 

fraction was partitioned in Y(PSII), Y(NO), Y(npq) and Y(NF). In this procedure, each quantum 

yield described by Hendrickson et al. 2004 was corrected for a factor which is directly 

proportional to the remaining active fraction of PSII capable of photochemical activity after a 

photoinhibitory light treatment ((Fv/Fm)/(Fv/FmM)) (Hendrickson et al., 2005). Consequently, 

the following equations were used: 
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Y(PSII)=[(Fm’-Ft)/Fm’] [(Fv/Fm)/(Fv/FmM)] (yield of PSII photochemistry) 

Y(NO)= (Ft/FmM) [(Fv/Fm)/(Fv/FmM)] (combined yield of fluorescence and constitutive 

thermal dissipation) 

Y(npq)= (Ft/Fm’-F/Fm) [(Fv/Fm)/(Fv/FmM)] (yield of regulated thermal dissipation) 

The sum of the 4 yields is the unity. Experiments were carried out in triplicates. 

RT Microspectrofluorimetry 

In order to study the assembly state of the light harvesting complex (LHCII) with 

photosystem II (PSII) in transformed and wt cells, room temperature (RT) fluorescence 

emission spectra were recorded using a microspectrofluorimeter (RCS, Firenze, Italy), 

associated with a Zeiss model Axiophot epifluorescence photomicroscope (Pancaldi et al., 

2002). Samples were prepared as described by Ferroni et al. (2011). Groups of living cells 

(x40 magnification) were excited at 436 nm. Excitation wavelength was provided by a 

BP436/10 filter (Zeiss), using a 1.6 mm diaphragm. Autolab software (RCS) was employed to 

set the recording range (620-780 nm), optimise the photomultiplier response and visualize 

the emission spectra (Ferroni et al., 2009). Spectra were recorded from wt and transformed 

cells both in normal growth conditions and after photoinhibition treatment (5 min exposure 

to 1200 μmolphotons  m-2s-1
, followed by 5 min of recovery in darkness). For each sample, at 

least 5 spectra were recorded. Microcal Origin 6.0 software (OriginLab, Northampton, MA, 

USA) was used for elaboration of spectra, which were corrected as described by Ferroni et 

al. (2011). The Gaussian fitting procedure was carried out as described in previous works 

(Bӧddi and Franck, 1998; Šiffel and Braunová, 1999; Ferroni et al., 2009, 2011). Fluorescence 

yield of emission bands, whose attribution is shown in Tab. 3, was evaluated as the area 

subtended under the corresponding Gaussian curve. Moreover, calculation of difference 

spectra between photoinhibited samples and their relative emission in normal cells was 

performed.  
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2.7 Data treatment 

Data were processed with Microsoft Excel™ and Microcal Origin 6.0 (OriginLab, 

Northampton, MA, USA) softwares, means±standard deviations (SD) for n (number of 

samples) are given in each case. Statistical analyses were carried out with Student’s t-test, 

with a significant level of 0.05.  

 

3. Results 

3.1. Screening of transformants and transformation efficiency 

Cells of C. reinhardtii cc-3491 cw-less strain were transformed with plasmids pHyg6-B 

and pHyg6-D, obtained as described in “Materials and methods” section. These plasmids 

contained the cDNA sequence encoding AtPSY and OsPSY1 respectively (Welsch et al., 2008). 

Sequences were flanked by the constitutive β-tubulin promoter in combination with the first 

intron of rbcS2 and the 3’ untranslated terminator region of C. reinhardtii rbcS2 gene. 

Moreover, the plasmids contained the Hygromycin-resistance cassette excised from pHyg3 

(Berthold et al., 2002), with the aphVII’ gene that confers resistance to eucariotic antibiotic 

Hygromycin B. Hygromycin-resistant colonies were identified based on their growth on 

selective medium, with a frequency of 0.22 x 10-6 cells for pHyg6-B and 0.26 x 10-6 cells for 

pHyg6-D. Afterwards, the integration of the recombinant genes was confirmed by PCR 

screening. The combination of primers showed in Tab. 1 was used and fragments of 1.118 

and 1.242 kb were amplified for pHyg6-B and D respectively. Among the transformants 

grown in selective medium, the 60% of colonies contained pHyg6-B (Fig. 2 a), whereas 67% 

of colonies transformed with pHyg6-D showed the insertion of the transgene (Fig. 2 b). Then, 

Hygro-PSY positive colonies were inoculated in liquid TAP-S with 10 µg mL-1 of Hygromycin 

and further analysed. Among the positive colonies, only one transformant with pHyg6-B 

construct (hereafter named B3 colony) showed an increased content of Car of about 40% 

with respect to the control in late stationary phase of growth (Data not shown). RT-PCR 

analyses confirmed the transcription of the relevant mRNA, and thus the expression of AtPSY 

gene (Fig. 2 c). Subsequently, further physiological analyses were then focused on this 

transformant. 
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3.2. Phenotypic characterisation of B3: preliminary analyses  

In order to better identify the effects of the nuclear transformation for the 

expression of the exogenous AtPSY in C. reinhardtii, new cultures of the Hygro-PSY positive 

colony B3 were set up and compared with wt cells. Physiological analyses were performed at 

4, 11 and 30 days of growth on cells cultured in liquid medium at 100 μmolphotons m-2s-1 of 

light intensity. 

Pigment content 

The trends of pigment content are shown in Fig. 3. During the experimental time, a 

decreasing trend of total Chl content was observed both in wt and B3 cells (Fig. 3 a). 

However, in wt a strong decrease in total Chl occur from 11 to 30 days of growth (-53%), 

while in B3 the decrease was less marked, resulting in higher concentrations at 30 days of 

growth with respect to control (+62%, p < 0.01). Same decreasing trend was observed for Car 

concentration in both samples (Fig. 3 b). As concerns the transformed cells, Car content was 

significantly higher already at 4 days of growth (p < 0.05). Increased concentrations were 

observed also at 30 days of growth with respect to wt cells, despite difference was not 

significant at this point (p = 0.06). The simultaneous variations of Chl and Car contents led to 

a gradual increase in the Chl/Car ratio in B3 cells, whereas in wt cells the ratio remained 

stable, except at 30 days of growth, when a slight decrease was observed (Fig. 3 c).  

PAM fluorimetry 

The effects of the transformation on photosynthetic efficiency were evaluated by 

PAM fluorimetry. In particular, maximum quantum yield of PSII, as Fv/FmM ratio, actual yield 

of PSII (Y(PSII)) and yield of dissipation in photoinactivated PSII (Y(NF)) were obtained from 

samples exposed to 1200 μmolphotons m-2s-1 for 5 min, followed by 5 min of dark recovery (Fig. 

4). Fv/FmM ratios appeared significantly different between wt and B3 cells after the 4th day of 

growth (Fig. 4 a). In wt cells the ratio was maintained around 0.55, while in B3 cells a 

decreasing trend from ca. 0.6 to ca. 0.35 was observed during the experimental time, 

reaching 37% lower values with respect to wt at 30 days of growth (p < 0.05 at 11 days and p 

< 0.01 at 30 days). Y(PSII) is a useful parameter to evaluate the proportion of potentially 

active PSII after high-light exposure. Despite the lower Fv/FmM ratios, unexpectedly in B3 cells 
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Y(PSII) was always higher, with values varying from 0.09 at 4 days to 0.12 at 30 days of 

growth (Fig. 4 b). Conversely, in wt cells this percentage varied from 0.036 at 4 days to 0.055 

at 30 days, thus was always lower at the same experimental time (-61% and -53% 

respectively, p < 0.05). Finally, Y(NF) is the ratio between PSII actual quantum yield after light 

induction and PSII maximum quantum yield at time 0, thus indicated the proportion of 

inactivated PSII after light induction. Despite increasing trends were observed for both wt 

and B3 cells during the time, transformed cells always showed a minor proportion of 

inactivated PSII with respect to wt cells (Fig. 4 c). In these latter samples, percentages of 

photoinactivated PSII varied from 24 to 34%, whereas in transformed cells the values never 

exceeded 21% (p < 0.05). 

RT Microspectruofluorimetric analysis and comparison with photoinhibited cells 

RT Fluorescence emission spectra analyses were obtained for both wt and B3 cells 

grown in liquid medium at 100 μmolphotons m-2s-1 of light exposure after 15 days of growth. 

The spectra showed a typical peak at 683 nm, assigned to the PSII emission (Franck et al., 

2002), and a broad shoulder at 710-740 nm, which correspond to PSI-LHCI emission, with the 

contribution of vibrational satellites (Franck et al., 2005) (Fig. 5 a, b). In order to get more 

precise information on the origin of fluorescence, fourth-order derivatives were calculated 

to find the components to be used for the deconvolution by Gaussian fitting procedure 

(Ferroni et al., 2011). Gaussian deconvolution of spectra showed three emission peaks 

assigned to PSII. Free LHCII emitted at 680 nm, PSII core emitted at 686 nm, while emission 

at 694 nm was attributed to LHCII-PSII functional assemblies. Moreover, emission at 702 nm 

was attributed to the contribution of LHCII aggregates and LHCI-PSI complexes, while 

emissions at 660 and 670.5 nm were assigned to uncoupled Chl (Tab. 3) (Ferroni et al., 

2011). No differences in the peak positions were observed between wt and B3 cells. 

However, differences in the relative intensities of the emission bands were present, as 

demonstrated by the different dimension of areas subtended the different peaks (Fig. 5 a, b). 

In particular, B3 cells showed increased emissions from uncoupled Chl (F660, ca. +82%) and 

LHCII-PSII functional assemblies (F694, ca. +26%), whereas decreased emission from PSII 

core (F686, ca. -17%) and LHCII aggregates (F702, ca. -21%) were shown with respect to wt 

cells. After photoinhibition treatment, RT microspectrofluorimetric spectra were recorded 

both for wt and B3 cells, and difference spectra with their relative non-photoinhibited 
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samples were calculated. Analyses showed differences in emission intensities in both 

photoinhibited samples with respect to their relative non-photoinhibited controls. In 

photoinhibited wt, increased emission at 677 nm and decreased emission at 683 nm were 

observed in comparison with spectra of wt cells grown in normal light conditions (Fig. 5 c). 

Conversely, photoinhibited B3 cells did not show such strong variations with respect to non-

photoinhibited B3 cells, except for a decrease in the emission range between 667 and 687 

nm (Fig. 5 d). 

3.3. Phenotypic characterisation of B3 to different light intensities: effects of 

the transformation  

Despite Car accumulation occurred only in slightly higher amounts in transformed 

cells with respect to wt cells and in stationary phase of growth, preliminary experiments on 

B3 phenotype showed increased characteristics of photoprotection when samples were 

subjected to photoinhibition treatments (see sections 3.2.2. and 3.2.3.). In order to 

characterise this physiological response and investigate if and how photoprotection could be 

related with the nuclear transformation with the exogenous AtPSY, liquid cultures were set 

up and grown under contrasting light regimes, such as 30 μmolphotons m-2s-1 as low-light 

intensity (LL cultures; Fig. 6 a) and 150 μmolphotons m-2s-1 as high-light intensities (HL cultures; 

Fig. 6 b). Growth was monitored after 4, 11, 21 and 31 days from the inoculum, showing no 

differences between control and transformed cells, irrespective of the light intensity, except 

for B3 grown under LL conditions, which showed reduced cell density at 11 and 21 days, 

though it reached the same values as the other samples at 31 days (Fig. 6 c). Parallel to 

growth measurements, photosynthetic pigment analyses and PAM fluorimetry were 

performed. Moreover, samples were analysed by HPLC at 4 and 31 days of growth and 

compared, in order to investigate in transformation induced changes in the composition of 

Car profile when transformed cells were exposed at different light regimes.  

Effects of transformation on photosynthetic pigments amount and Car profile in LL 

and HL conditions 

Different trends of photosynthetic pigments were observed based on the growth 

light intensities in wt and B3 cells (Fig. 7). About total Chl content in LL cultures, similar 
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effects as described in section 3.2.1. were observed, even if less marked (Fig. 7 a). Indeed, 

Chl concentration in wt cells slightly diminished during the experimental time, reaching at 

the end values 30% lower than those measured at 4 days of growth. Conversely, no variation 

occurred in transformed cells during the time, thus at 31 days of growth values 21% higher 

than those measured for wt were detected (p < 0.05). About total Chl content in HL cultures 

(Fig. 7 b), a very evident decreasing trend was observed in wt cells, which showed at the end 

of the experimental time values 55% lower than at 4 days. Interestingly, in transformed cells 

the Chl content was constant throughout the experiment, except at 31 days of growth, when 

lower values were measured. However, very reduced values were detected already at 4 days 

of growth with respect to wt (-42%, p < 0.01). In this case, the Chl concentration in B3 cells 

did not exceed that of wt 31 days of growth, but similar values were measured in the two 

samples. Differences between wt and B3 cells in LL and HL conditions were observed also for 

Car content. About wt-LL cultures (Fig. 7 c), a slightly decreasing trend was found, less 

marked than that described previously for Chl content. Conversely, transformed cells 

showed a nearly constant content of Car, thus from 21 days onwards higher concentrations 

were measured with respect to wt cells, with an increase by ca. 33% at 31 days of growth (p 

< 0.05). In HL cultures, instead, no significant variations were observed throughout the 

experiment for both wt and B3 cells (Fig. 7 d). Simultaneous variations in Chl and Car content 

led to Chl/Car ratios between 5 and 6.5 throughout the experiment in LL cultures, with no 

differences between wt and transformed cells (Fig. 7 e). Conversely, in HL cultures higher 

values were measured in wt cells only at 4 days of growth (p < 0.05), after that no 

differences between samples were observed (Fig. 7 f). 

HPLC analyses of samples grown in LL conditions showed modifications of the Car 

profile in transformed cells, especially after 4 days of growth (Tab. 4). Despite the total 

xanthophyll concentration was similar, at this time of growth intracellular levels of 

zeaxanthin, which were not detected in wt-LL cells, were measured in transformed cells, 

whereas 2-fold higher levels of antheraxanthin were found with respect to control cells (p < 

0.01). Conversely, the presence of neoxanthin was 0.7-fold lower following the expression of 

exogenous AtPSY (p < 0.05). After 31 days of growth, the effect of transformation did not 

strongly alter the Car profile, which only showed a decrease in β-carotene content (-21%; p < 

0.05) in transformed cells with respect to wt. A weak accumulation of violaxanthin was 
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found in B3 cells, despite differences were not significant (Tab. 4). As shown in Tab. 5, the 

effects of transformation on the Car profile was emphasized when cells were grown in high-

light. No differences in Car concentration between wt- and B3-HL cells at 4 days of growth 

were found, and in both cases lutein represented the major proportion of Car. Despite this, 

transformed cells showed 2-fold higher levels of β-carotene (p < 0.05), 4.5-fold higher levels 

of antheraxanthin (p < 0.01) and 1,2-fold higher levels of violaxanthin (p < 0.05) with respect 

to wt cells. Moreover, zeaxanthin, not detected in wt cells, was also found. The increased 

content of these xanthophylls occurred at the expense of neoxanthin and loroxanthin, 

whose sum was halved as compared to wt cells (p < 0.01). This resulted in an unchanged 

xanthophyll content. Even at 31 days of growth, strong variations in the Car profile occurred. 

In particular, 6.12- and 3.68- higher folds of zeaxanthin and antheraxanthin were 

accumulated in transformed cells with respect to wt (p < 0.01 in both cases), at the expense 

of β-carotene (-26%; p < 0.05), violaxanthin (-33%, p < 0.01), the sum of neoxanthin and 

loroxanthin (-37%; p < 0.01) and lutein (-17%). This resulted in higher concentration of total 

xanthophylls in wt cells. These concentrations were used to calculate some parameters 

which were useful for understanding the effect on photoacclimation with the expression of 

AtPSY under low-light and high-light conditions. In wt-LL cells, the total xanthophylls/β-

Carotene ratio, as a result of the Car balance between antenna and reaction centers, 

decreased during the time, mainly because of the major increase in β-carotene with respect 

to total xanthophylls. In wt-HL cultures, instead, the strong decrease in β-carotene at 4 days 

of growth resulted in a higher ratio, which then decreased because of the accumulation of 

this Car upon xanthophylls, despite an increase in them was also observed. On the other 

hand, in LL and HL transformed cells no strong variations occurred in total xanthophylls/β-

Car ratio, irrespective of the light intensity and time of growth. Moreover, different 

xanthophylls profile among different samples allowed to measure the 

(zeaxanthin+antheraxanthin)/violaxanthin ratio [(Z+A)/V)], indicative of the de-epoxidation 

level. In LL-cultures, the ratio was indeed 2.2 times higher in B3 cells with respect to wt at 4 

days of growth, mainly due to the higher concentrations of the de-epoxidised xanthophylls. 

In HL-cultures, the ratio increased throughout the experiment both in wt and B3 cells, but 

values of the latter were ca. 5 and 7 times higher compared to wt cells at 4 and 31 days of 

growth, respectively.  
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Energy partitioning of absorbed light energy in LL and HL cultures 

In this work, the partitioning of the absorbed excitation energy in PSII was described 

between 4 fundamental pathways, according to different approaches (Hendrickson et al., 

2005). The first component is the fraction of energy which can be photochemically 

converted in PSII, the PSII quantum yield, i.e. Y(PSII). The other components represented the 

total quantum yield of all dissipative processes. In particular, Y(npq) is the fraction of energy 

passively dissipated in form of heat by the regulated photoprotective NPQ mechanisms, 

Y(NF) is the fraction of energy dissipated as heat by photo-inhactivated PSII and Y(NO) is the 

fraction of energy constitutively dissipated in form of heat and fluorescence emission, 

mainly due to emission of closed PSII.  

In wt cells of C. reinhardtii cc-3491 grown under LL conditions, only 5% of the energy 

absorbed by PSII was consumed via photochemistry (Fig. 8 a). This proportion remained 

constant throughout the experiment. Among all dissipative processes, most of the energy 

fraction was passively dissipated, in fact Y(NO) represented 40% of total energy during the 

entire experimental time. Same proportion was observed at day 4 for the energy fraction 

dissipated by inactive PSII, Y(NF). However, this proportion decreased from 40 to 35% after 

11 days, and then it increased again until reaching 45% at 31 days. The trend of Y(NF) was 

inversely linked to that of Y(npq), which increased from 12 to 20% at 11 days of growth and 

subsequently decreased to 6% at the end of the experiment. Confirming the observations as 

in section 3.2.3, B3-LL always showed higher proportion of Y(PSII), which varied in a range 

between 6 and 13%, with respect to wt cells (Fig. 8 b). Moreover, lower percentage of 

energy dissipated by inactive PSII, Y(NF), which varied between 32 and 16%, were observed 

as well. The absorbed energy fraction which was dissipated by NPQ mechanisms, instead, 

increased from 6% at day 4 to 19% at day 11, after that it slightly decreased until it reached 

14% at 21 and 31 days of growth. Interestingly, despite the higher proportion of PSII 

quantum yield and the lower fraction of Y(NF), B3-LL cells showed a higher percentage of 

constitutive energy dissipation, Y(NO), which varied from 60% at day 4 to 48% at day 11 and 

reached the 50% at the end of the experimental time. When cells were grown under HL 

conditions, different partitioning of absorbed energy was observed both in wt and B3 cells. 

In wt cells (Fig. 8 c), the proportion of PSII quantum yield was slightly higher with respect to 

wt-LL cultures, and variable between 6 and 8%, as well as the fraction of energy 
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constitutively dissipated, Y(NO), which was the 60% at 4 days, decreased to 45% at 21 days 

and then increased again to 57% at the end of the experiment. About the energy fraction 

dissipated by inactivated PSII, Y(NF), a gradual increasing trend was observed during the 

experiment. Finally, Y(npq) remained almost constant until day 31. At the end of the 

experiment, indeed, the energy loss as heat or fluorescence was exclusively dissipated by 

the contribution of Y(NO) and Y(NF), whereas NPQ mechanisms contributed only for 1%. 

Same situation was observed at 4 days of growth in B3-HL cultures, when the absorbed 

energy fraction was dissipated for the 90% by the only contribution of Y(NO) (70%) and Y(NF) 

(20%), while the remaining 10% was the fraction of energy used in photochemistry. 

However, Y(npq) subsequently increased to around 10%, whilst the energy fraction 

dissipated by non-NPQ mechanisms remained stable at 70%. An increase in the latter 

fraction at 31 days of growth was linked to a decrease in Y(PSII) fraction from 10 to 6%. 

When energy partitioning diagrams in LL and HL cultures were compared with each other, an 

interesting observation was made between wt-HL and B3-LL. In fact, energy partitioning in 

transformed cells grown at LL conditions after 4 days was the same of that measured in wt 

cells grown in HL conditions for 31 days, showing the same unusual characteristics of 

photoacclimation to high-light conditions. 

 

4. Discussion 

Microalgae represent one of the most important biological sources of natural 

compounds which can be used for biotechnological applications (León-Bañares et al., 2004). 

Among the several products that can be obtained from microalgae, carotenoids play an 

important role for their possible exploitation in pharmaceutical, cosmetic, and medical 

fields, thanks to their intrinsic  antioxidant, anti-inflammatory and anticancer properties (Del 

Campo et al., 2007; Liu et al., 2009b). Phytoene synthase (PSY) is the first key-enzyme 

involved in the Car biosynthetic pathway, catalysing the condensation of two GGPP 

molecules to generate phytoene. This enzyme is considered rate-limiting in the pathway and 

determines the carbon flux towards Car production (Shewmaker et al., 1999; Fraser et al., 

2002; Sandmann et al., 2006; Couso et al., 2011). For this reason, the first step of the Car 

biosynthetic pathway has often been the target of genetic engineering in order to induce Car 
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accumulation in many crop plants (Fray et al., 1995; Hauptmann et al., 1997; Fraser et al., 

2002; Lindgren et al., 2003; Ducreux et al., 2005). However, the regulation of the 

carotenogenic pathway in plants and green algae is not fully understood, and this causes  

limitations for the application of protocols of the genetic engineering (Couso et al., 2011). As 

a model organism, Chlamydomonas reinhardtii is considered an excellent host for foreign 

genes encoding for enzymes involved in the carotenogenesis (Cordero et al., 2011; Couso et 

al., 2011). The genome of this microalga is completely sequenced, thus the nuclear 

manipulation is easy and well-established (Harris et al., 2001). Then, this organism could 

offer an excellent tool to unravel the Car biosynthetic pathway and, at the same time, to 

obtain its modification and promote the accumulation of Car with commercial interest.   

In  this study, the cDNA sequences encoding for Arabidopsis thaliana PSY (AtPSY) and 

the first isoform of Oryza sativa PSY (OsPSY1) were expressed in the cc-3491 cell wall-less 

strain of C. reinhardtii. The PSY gene products are targeted to the chloroplast. The nuclear 

transformation efficiencies were very low for both cases, and not all the colonies grown on 

selective medium showed the presence of the transgenes. It is well-documented that 

transgene expression is often lowered by silencing of exogenous DNA by a host system, with 

a consequent direct influence on the stability of transformant phenotype (De Wilde et al., 

2000). However, also a fragmented integration of the plasmids inside the genome, as well as 

deletions caused by recombination events, could explain the absence of the DNA sequences 

of interest, in spite of the capability of colonies to grow in presence of Hygromycin-B  

(Berthold et al., 2002).  Despite the low number of positive colonies, the transformation of C. 

reinhardtii with both AtPSY and OsPSY1 generated stable transformants. However, only one 

colony, B3, showed in late stationary phase of growth a 40% higher content of Car if 

compared with the parental strain. This different phenotype was confirmed to be linked to 

the expression of AtPSY by the detection of the corresponding PSY transcript. It is known 

that stable transformants of C. reinhardtii integrate different copies of exogenous DNA 

inside the nucleus by heterologous recombination mechanisms (Harris, 2001) and that 

difficulties in the expression of heterologous genes could be related both with the insertion 

position in the genome and the gene copy number. However, the functional expression of 

the exogenous PSY and consequent Car accumulation could have been prevented in the 

positive transformants that did not exhibit the phenotype by some unknown post-
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transcriptional or post-translational inhibition mechanisms, although these possibilities have 

not been further investigated.  

In previous works, the capability to accumulate Car as a consequence of the 

transformation with carotenogenic genes in C. reinhardtii did not take into consideration the 

variability in pigment content linked with the phase of growth (León et al., 2007; Cordero et 

al., 2011; Couso et al., 2011). For this reason, in this study wt and B3 cells have been 

monitored during cell growth up to the late stationary phase. In wt cc-3491 strain grown in 

normal light intensities, the amount of Chl and Car decreased indeed during the experiment, 

without affecting the Fv/FmM. Interestingly, such decrease in pigments was less marked in B3 

cells, leading to higher amounts with respect to wt cells at the end of the experiment. 

However, B3 showed a decreasing trend of Fv/FmM. Decreasing levels of maximum quantum 

efficiency of PSII have been linked to exposure of photosynthetic organisms to biotic or 

abiotic stresses in the light (Baker, 2008). However, identification of the intrinsic causes of 

such decreases can often be difficult. Moreover, a decrease in maximum quantum yield is 

often linked with photo-inactivation of PSII reaction centres, which dissipate excitation 

energy as heat rather than using it for photochemistry (Melis, 1999). Conversely, in B3 cells 

the decreased Fv/FmM was accompanied by higher actual quantum yield of PSII and lower 

yield of photo-inactivated PSII after a short exposure to high-light, supporting the idea that 

the decrease in the Fv/FmM is not caused by stress conditions induced by the expression of 

AtPSY. Different organisation of PSII in these samples was shown by deconvoluted RT 

emission spectra. Indeed, higher F694, indicative of LHCII-PSII functional assemblies (Ferroni 

et al., 2011), confirms that PSII activity is not compromised in B3 cells. Moreover, alteration 

of the fluorescence spectra after photoinhibition treatments is much less marked in B3 cells 

than in wt. These preliminary results strongly suggested that B3 could exhibit an interesting 

phenotype with respect to photoacclimation. For these reasons, new cultures were set up 

and exposed to two contrasting light regimes. The trend of pigment content from LL to HL 

was analysed first in wt cells in order to obtain a photoacclimation sequence that could be 

used for comparison with B3 cells. This sequence includes a transition from wt-LL at 4 days 

of growth through wt-HL at 4 days of growth and, finally, to wt-HL at 31 days of growth. 

Following this sequence,  decrease in total Chl, total Car and Chl/Car ratio were observed in 

wt. It is well-known that in photosynthetic organisms photoacclimation to high light induces 
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a decrease in the LHCII pigment-protein complexes and PSII reaction centres in order to 

avoid photoinhibition (Fujita et al., 1989; Durnford et al., 2002). The decreasing trend of 

total Chl content observed in this study was in line with previous experiments performed in 

C. reinhardtii cells, which showed a 50% lower amount of Chl and a decline by 40% of LHC 

abundance when LL-acclimated cells were exposed to HL (Durnford et al., 2002). Car content 

was also affected by HL exposure, but the decreasing trend from LL to HL acclimation were 

less marked. Indeed, only lower amounts of neoxanthin were detected, while lutein, total 

amount of violaxanthin, antheraxantin and zeaxanthin, as well as the de-epoxidized fraction 

of xanthophylls (A+Z)/V, were increasing in wt-HL cells. Despite xanthophylls are mainly 

bound to the Lhc proteins of PSI and PSII (Bassi et al., 1993), only neoxanthin plays the single 

role of accessory antenna pigment (Demmig-Adams, 1998), whereas violaxanthin, 

zeaxanthin and lutein are involved in dissipation of excess-light energy (Dall’Osto et al., 

2006; Jahns and Holzwarth, 2012). The pigment trends characterising wt cells provided the 

framework for understanding how B3 had changed its photoacclimation properties. On the 

whole, a reduction in the pigment content was observed in transformed cells, similar to wt. 

However, Chl and Car amounts in HL cells were already lower at 4 days of growth with 

respect to wt, indicating an anticipation of photoacclimation to HL. For this reason, the 

accumulation of Car in transformed cells was not observed, differentfrom what was shown 

in previous works where microalgae and higher plants were transformed with exogenous 

PSY (Shewmaker et al., 1999; Fraser et al., 2002; Ducreaux et al., 2005; Cordero et al., 2011; 

Couso et al., 2011). Then, the expression of AtPSY did not induce an absolute Car 

accumulation, but the amount of each single Car varied to determine a different Car profile. 

On the whole, in a young (4 days) B3 culture grown in LL conditions: i) Chl amount was 

reduced like in a HL-photoacclimated wt; ii) the amount of neoxanthin was already lower 

than that of wt-HL at 31 days, indicating a high reduction of the antenna function; iii) 

accumulation of violaxanthin, zeaxanthin and antheraxanthin was enhanced, as well as a 

high amount of de-epoxidized xanthophylls was observed. Under physiological conditions in 

vivo, zeaxanthin occurs only in trace amounts within the LHC (Ruban et al., 1994; Lee and 

Thornber, 1995; Verhoeven et al., 1996) and is usually formed upon de-epoxidation of 

violaxanthin during high-light exposure through the operation of the reversible xanthophyll 

cycle (Yamamoto, 1979, 1985). Therefore, B3 resembles pre-adapted to HL conditions even 

when grown in LL conditions. However, these characteristics were lost at 31 days of growth, 
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when the concentration of neoxanthin increased and the level of de-epoxidation decreased 

dramatically to 0. When B3 was grown in HL conditions, photoacclimation was further 

enhanced if compared to wt-HL even at 31 days, with further reduction in neoxanthin 

content until reaching halved levels and highly increased levels of zeaxanthin and 

antheraxanthin. Accumulation of zeaxanthin and other xanthophylls such as lutein and 

violaxanthin was also previously observed in other experiments with transgenic C. reinhardtii 

transformed with exogenous PSY from Dunaliella salina and Haematococcus pluvialis 

(Cordero et al., 2011; Couso et al., 2011).  

Energy partitioning is a useful methods which allows to better understand how 

photosynthetic organisms use or dissipate the absorbed light energy through several 

mechanisms, in order to maximize photosynthetic carboxylation and limit the formation of 

reactive oxygen species and other photooxidative risks (Nyogi, 1999; Losciale et al., 2011). 

According to Hendrickson et al. (2005), the light energy absorbed by PSII can be quantified in 

i) fraction used for photochemistry [Y(PSII)]; ii) fraction of energy quenched by light-

dependent [Y(npq)] or light-indipendent [Y(NO)] thermal dissipation; iii) fraction of energy 

dissipated by photo-inactivated PSII [Y(NF)]. In wt-LL, Y(NO) and the sum of energy fractions 

which are dissipated by light-dependent mechanisms [Y(NF)+Y(npq)] were constant 

throughout the experiment. Among the latter components, Y(NF) progressively prevailed 

over Y(npq). Y(NF) is a slowly reversible protective mechanism (Losciale et al., 2011), which 

might be promoted in cells in stationary phase either by the cell ageing or by the capacity of 

developing long-term responses during photoacclimation. In wt-HL cells, an increase in the 

amount of Y(NO) and a decrease in [Y(NF)+Y(npq)] were observed with respect to LL-cells. 

The decrease in Y(npq) component was enhanced in HL cells and progressively reached the 0 

level.  This is in line with what observed by Casper-Lindley and Bjӧrkman (2008), i.e. that LL-

grown algae have a smaller pool of xanthophyll-cycle pigments per Chl, but develop more 

NPQ during exposure to high-light than cells grown in medium light, probably because of a 

lower lumen acidification inside thylakoids with respect to LL-cultures (Casper-Lindley and 

Bjӧrkman, 2008).  

Differences in the energy partitioning observed between B3-LL cells and wt-LL at 4 

days of growth are probably linked to the constitutive accumulation of lutein and zeaxanthin 

in transformants. In B3-LL cells, indeed, light-dependent mechanisms of energy dissipation 
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were reduced, with a strong component of Y(NF) and the almost absence of Y(npq), but a 

higher proportion of Y(NO) with respect to wt-LL. In A. thaliana mutants which contained 

constantly high zeaxanthin levels, maximal quenching was similar to that of wt plants, 

indicating that an excess of zeaxanthin does not effectively contribute to NPQ (Tardy and 

Havaux, 1996). Moreover, it has been demonstrated that NPQ can be mediated by pigments 

already present in darkened cells (Casper-Lindley and Bjӧrkman, 1998). Thus, the cabability 

of developing low NPQ when B3-LL cells at 4 days of growth are exposed to saturating light 

might be linked to the constitutive presence of de-epoxidized xanthophylls, which led 

instead to the increase in the constitutive dissipation energy fraction Y(NO). Again, energy 

partitioning in B3-LL at 4 days of growth resembles much more that of a wt-HL than of a wt-

LL. This photoacclimation to HL is clearly not functional in cells grown in LL conditions, in fact 

the reduced cell growth confirmed the ineffectiveness of light capturing and use. Several 

compensation mechanisms  appear to have been subsequently developed in order to 

emphasise light harvesting, with increase in neoxanthin  concentrations, reaching the same 

amounts as in wt, and decrease in de-epoxidized xanthophylls during time. In this way, 

Y(npq) was allowed to increase and light harvesting was promoted to support growth. In B3-

HL at 4 days of growth, the photoacclimation to HL was highly emphasised, not only with 

respect to wt-HL, but also to B3-LL. Indeed, the increased amounts of violaxanthin and de-

epoxidized xanthophylls, as well as decreased amounts of neoxanthin, resulted in increased 

Y(NO) and decreased energy dissipation by light-dependent mechanisms, exclusively 

represented by Y(NF). However, these characteristics of enhanced long-term 

photoprotection are probably not required during exposition to such light intensity, as 

photoacclimation of C. reinhardtii to light intensities higher than that used in this study was 

shown (Durnford et al., 2002). Then, despite at 31 days of growth the effects of 

transformation were further enhanced, with continuous increase in xanthophylls and 

decrease in neoxanthin concentration, light-dependent energy dissipation mechanisms were 

activated in order to try to compensate a de-regulated system and use energy in a more 

efficient way. 

On the whole, these results suggest that the expression of AtPSY in B3 colony 

promotes accumulation of dissipative Car, such as zeaxanthin and its intermediate 

antheraxanthin, inducing the (de-)regulation of the carotenogenesis towards 
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photoacclimation to HL. When transformed cells are grown in LL, a feed-back mechanisms 

acting on the endogenous metabolic pathway might be gradually activated, avoiding further 

de-epoxidation of violaxanthin and inducing accumulation of neoxanthin to improve light 

harvesting. On the other hand, if transformed cells are grown in HL, this feed-back 

mechanism might be not sufficient, and other mechanisms of energy-dissipation might be 

activated by cells in order to compensate the excessive increase in de-epoxidized 

xanthophylls. 

 

5. Conclusion 

In this work, the genetic transformation of the microalga C. reinhardtii with AtPSY 

and OsPSY1 was performed. The expression of the transgenes was confirmed in only one 

transformant with AtPSY, which showed increased amounts of Car. However, by further 

experiments in which cells were grown in different light regimes, it was shown that Car 

accumulation was light-dependent, while a different Car profile, with initial increased 

amounts of zeaxanthin, antheraxanthin, violaxanthin and lutein, was always observed. This 

altered Car profile caused a different use of light during photosynthesis, with differences in 

the partitioning of absorbed energy towards constitutive energy dissipation fraction Y(NO) 

and highly reduced Y(npq). In LL cultures, a feed-back mechanism might be activated in 

order to avoid growth inhibition and promote light-harvesting. Conversely, the accumulation 

of de-epoxidized xanthophylls was further enhanced in HL, then mechanisms of energy 

dissipation might be increased in order to compensate the de-regulated accumulation of 

zeaxanthin. In order to optimize exogenous Car production in microalgae like C. reinhardtii, 

basic knowledge of the Car biosynthetic pathway and its regulation needs to be improved. 

However, this work shows how genetic engineering together with detailed physiological 

studies could offer the possibility to obtain a more complete picture of this complex 

metabolic pathway. 
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Tables and Figures 

 

Primer Sequence (5’  3’) 

Primers for AtPSY  amplification 

attB1-AtPSY1 for GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCTTCTTCTGTAGCA 

attB2-AtPSY1 rev GGGGACCACTTTGTACAAGAAAGCTGGGTAGGATCMTATCGATAGTCTTGA 

Primers for OsPSY1  amplification 

attB1-OsPSY1 for GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCGGCCATCACGCTC 

attB2-OsPSY1 rev GGGGACCACTTTGTACAAGAAAGCTGGGTAGGATCMCTTCTGGCTATTTCTC 

Primers for β-tubulin gene promoter amplification 

attB4-B tub for GGGGACAACTTTGTATAGAAAAGTTGCTCTTTCTTGCGCTATGACA 

attB1-B tub promo intro rev GGGGACTGCTTTTTTGTACAAACTTGCGCCAGCGGCTGCAAATGGAAACGG 

Primers for 3’ untranslated region of small subunit of rbcS2 amplification and C.reinhardtii 
transformation  

attB2-rbcS2 for GGGGACAGCTTTCTTGTACAAAGTGGCTTAAGGATCCCCGCTCCGTGTA 

attb3-rbcS2 rev GGGGACAACTTTGTATAATAAAGTTGCGGTACCCGCTTCAAATACG 

AtPSY1 RT for TTTGCTTATGACACCCGAAA 

AtPSY RT rev  ATAACCGGAACGCTCATCAA 

OsPSY1 RT for AACCACACACCATTCCCATC 

 

Tab. 1: nucleotide sequences of primer pairs used for PCR amplifications.  
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Tab. 2: Plasmid description. 

 

 

  

 

 

 

 

 

 

 

 

Fig. 1: pHyg6 plasmidic vectors obtained using Gateway Technology recombination. a)pHyg6-B, 
carrying the coding sequence for AtPSY and b) pHyg6-D, containing the coding sequence for  OsPSY1 
(Welsh et al., 2008). 

 

 

 

 

 

 

 

Plasmid version Promoter CDS Terminator 

pHyg6 - B β2-tubulin promoter + rbcS2 1st intron AtPSY rbcS2 3’ UTR 

pHyg6 - D β2-tubulin promoter + rbcS2 1st intron OsPSY1 rbcS2 3’ UTR 

a b 
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Fig. 2: a) PCR analysis of C. reinhardtii transformed with pHyg6-B. 1-5 lines are transformants 
analysed, line 6 is wild type strain of C. reinhardtii and line 7 is pHyg6-B vector. Line 8 is 1 kb DNA 
ladder (0.1-10 kb, Applichem) Amplified fragments were 1.118 kb length. b) PCR analysis from 
genomic DNA of C. reinhardtii transformed with pHyg6-D. 1-6 lines are transformants analysed, line 7 
is wild type strain of C. reinhardtii and line 8 is pHyg6-D vector. Line 9 is 1 kb DNA ladder.  Amplified 
fragments were 1.242 kb length. c) RT-PCR Analysis on cDNA  from C. reinhardtii transformed with 
pHyg6. Line 1 is 1 kb DNA ladder (0.1-10 kb, Applichem). Line 2 is cDNA from B3 colony, line 3 is wild 
type strain of C. reinhardtii, line 4 is MQ water. Amplified fragments was 348 bp length.   
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Fig. 3: time course of total Chl (a), Car (b) and Chl/Car ratio (c) during the experimental time in C. 
reinhardtii wt (black) and transformed cells from B3 colony (grey) (n=3 ± s.d.). 
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Fig. 4: time courses of FV/FmM ratio (a), PSII actual quantum yield (b) and yield of photoinactivated 
PSII (YNF; c) in C.reinhardtii wt (filled circles) and transformed cells from B3 colony (empty circles) 
n=3 ± s.d.). 
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λ (nm) Attribution 
660-670.5 uncoupled Chl 
680 free LHCII 
686 PSII core 
694 LHCII-PSII functional assemblies 
702 LHCII aggregate  
 

Tab. 3: attribution of fluorescence emission bands by PSII in C. reinhardtii wt cells, according to 
Ferroni et al. (2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Gaussian deconvoluted RT emission spectra of wt (a) and B3 (b) C. reinhardtii cells. The 
emission wavelength contributing to PSII region are indicated and different areas subtending the 
curves have been coloured. c, d: calculation of difference emission spectra between photoinhibited 
and not-photoinhibited cells of C. reinhardtii wt (c) and B3 (d) cells. The emission wavelength altered 
by photoinhibition treatment are indicated. Deconvoluted spectra derives by the average of at least 5 
spectra recorded for each sample. 
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Fig. 6: a) C. reinhardtii wt and transformed cells grown at 30 μmolphotons m-2s-1 (LL cultures) and b) 150 
μmolphotons m-2s-1 (HL cultures). c) cell densities of C. reinhardtii wt (filled symbols) and B3 (empty 
symbols) grown in LL (squares) and HL (circles) conditions (n=3 ± s.d.). 
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Fig. 7: time-course variations of total Chl (a, b), Car (c, d) and Chl/Car ratio (e, f)  in C. reinhardtii wt 
(dark) and B3 (stripes) cells grown at 30 μmolphotons m-2s-1 (LL-cultures) and 150 μmolphotons m-2s-1 (HL-
cultures) of light intensities (n = 3 ± s.d.). 
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 LL 4 days LL 31 days 
Car content wt B3 wt B3 
Total Car 26.30 ± 0.12 25.11 ± 1.01 29.76 ± 1.59 28.23 ± 1.37 
β-Carotene 4.46 ± 1.09 3.85 ± 0.56 6.49 ± 0.45 5.12 ± 0.35 
Zeaxanthin n.d. 0.13 ± 0.02 n.d. n.d. 
Antheraxanthin 0.20 ± 0.05 0.42 ± 0.04 n.d. n.d. 
Violaxanthin 4.13 ± 0.38 4.86 ± 0.97 4.34 ± 0.62 5.27 ± 0.60 
Neoxanthin+Loroxanthin 9.25 ± 0.80 6.79 ± 0.61 9.22 ± 0.92 8.71 ± 0.94 
Lutein 8.26 ± 0.70 9.05 ± 1.58 9.91 ± 1.05 9.27 ± 0.72 
Total xanthophylls 21.84 21.85 23.47 23.25 
Total xanthophylls/β-Carotene 4.90 5.52 3.62 4.54 
(Z+A)/V 0.05 0.11 0 0 
 

Tab. 4: Car content in C. reinhardtii wt and transformed cells grown in LL conditions after 4 and 31 
days. Car are normalized per 100 chl (n = 3 ± s.d.). 

 

 

Tab. 5: Car content in C. reinhardtii wt and transformed cells grown in HL conditions after 4 and 31 
days. Car are normalized per 100 Chl (n = 3 ± s.d.). 

  

 HL 4 days HL 31 days 
Car content wt B3 wt B3 
Total Car 26.80 ± 0.47 28.39 ±4.06 39.19 ± 2.30 31.67 ± 2.06 
β-Carotene 2.55 ± 0.98 5.15 ± 1.22 8.08 ± 0.,72 5.99 ± 0.32 
Zeaxanthin n.d. 0.36 ± 0.12 0.25 ± 0.08 1.53 ± 0.65 
Antheraxanthin 0.13 ± 0.02 0.58 ± 0.07 0.35 ± 0.01 1.29 ± 0.39 
Violaxanthin 4.75 ± 0.40 5.79 ± 0.40 6.21 ± 0.70 4.14 ± 0.30 
Neoxanthin+Loroxanthin 8.81 ± 0.55 4.35 ± 0.21 6.98 ± 1.04 4.42 ± 0.59 
Lutein 10.56 ± 0.94 12.16 ± 0.73 17.41 ± 1.78 14.4 ± 1.77 
Total xanthophylls 24.25 23.24 31.2 25.78 
Total xanthophylls/β-Carotene 9.51 4.51 3.86 4.30 
(Z+A)/V 0.03 0.16 0.10 0.68 
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Fig. 8: estimated fraction of the absorbed irradiance 1200 μmolphotonsm-2s-1 partitioned in 
photochemistry [as yield of PSII; Y(PSII)] and in quantum yield of all dissipative processes, such as 
yield of non-photochemical quenching [Y(npq)], fraction of energy which is constitutively dissipated 
in form of heat and fluorescence by closed PSII [Y(NO)] and quantum yield of thermal dissipation in 
inactive PSII [Y(NF)] in C. reinhardtii wt and B3 cells grown under LL and HL conditions. 
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Concluding remarks  

During the last few years an increased number of Laboratories have started to 

develop researches in which microalgae are involved as source of biomass to be exploited 

for biofuel production (Brennan and Owende, 2010; Mata et al., 2010; Leonardi et al., 2011; 

Singh et al., 2011; Smith et al., 2010). In this Thesis, research was aimed at increasing the 

knowledge of microalgal physiology, in order to obtain new useful information for the 

improvement of culture performance in the perspective of large-scale cultivation (Scott et 

al., 2010; Wijffels and Barbosa, 2010). In detail, it has been demonstrated that mixotrophy 

can be considered the best cultivation system for increasing the biomass concentration in 

the promising microalga N. oleoabundans. Several additional advantages in mixotrophic 

cultivation can be considered, such as the lipid accumulation when cells enter the stationary 

phase, the possibility of using waste products as organic carbon source and the reduced risks 

of contamination, which nearly unavoidably mine the success of heterotrophic cultivation 

(Scott et al., 2010; Chen et al., 2011). With the perspective of transferring the microalgal 

cultivation process on the large scale, the Laboratory of Plant Cytophysiology (University of 

Ferrara, Italy, Supervisor: Prof. Simonetta Pancaldi) is now optimising the cultivation of N. 

oleoabundans in two tubular photobioreactors of 20 and 100 L of capacity, respectively. 

This Thesis provides also advanced insights in the organization of the thylakoid 

protein complexes which characterize the photosynthetic membranes when N. 

oleoabundans is grown mixotrophically. Indeed, very little is known about this topic, but 

investigation in mechanisms which regulate photosynthetic light reactions and carbohydrate 

metabolisms might be useful for the scaling up of mixotrophic microalgal cultivation, for 

instance to plan the most fruitful type of illumination.  

Finally, it has been demonstrated that molecular engineering, together with detailed 

physiological studies, can be considered a useful tool which can be targeted to different 

metabolic pathways of microalgae, such as that leading to neutral lipid accumulation. This 

might offer the possibility to obtain a more complete picture of this complex metabolic 

pathway and to allow the overproduction of lipids for biofuel purpose inside microalgal cells.  
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