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Introduction

The recent events of the world’s financial crisis and its uncontrolled propagation
across the global economic system, have opened the door to a deep rethink of some
basic paradigms and fundamental believes in economic modelling. Already some
efforts has been put in the understanding of stock price dynamics, and also in the
attempt to derive useful models for risk estimation, price prediction, and taxation.
Nevertheless the need to find a compromise between the extraordinary complexity of
the systems and the request of tractable, simplified models from which some basic
information can be derived, represents a big challenge, and it is one of the main
difficulties one has to deal with in the construction of suitable models.

Any reasonable model needs to rely on some fundamental hypotheses and to
rest on a theoretical framework, which should be able to provide some basic and
universal principles. Unfortunately, this is not an easy task when we deal with
economic and financial systems. Looking at stock markets in particular, it is not
obvious to understand which are the fundamental dynamics to be considered and
which aspects can be neglected in order to derive the basic issues.

One of the most classical approach has been to consider the efficient market
hypothesis [50]. It relies on the belief that securities markets are extremely efficient
in reflecting information about individual stocks and about the stock market as a
whole. The efficient market hypothesis is associated with the idea of a random walk
[36] , which is widely used in the finance literature to characterize a price series
where all subsequent price changes represent independent, random departures from
previous prices.

Strongly linked to the market efficiency hypothesis is the assumption of rational
behavior among the traders. Rationality of traders can be basically assumed by
two main features. First, when they receive new information, agents update their
beliefs by correctly evaluating the probability of the hypotheses. Second, given their
beliefs, agents make choices that are completely rational, in the sense that they arise
from an optimization process of opportune subjective utility functions.

By the beginning of the twenty-first century, the intellectual dominance of the
efficient market hypothesis had become far less universal. Many financial economists
and statisticians began to believe that stock prices are at least partially predictable.
A new breed of economists emphasized psychological and behavioral elements of
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stock-price determination. Behavioral economics and its related area of study, be-
havioral finance, have emerged in response to the difficulties faced by the traditional
paradigm [49]. It relies in the fact that some financial phenomena can be better un-
derstood using models in which some agents are not fully rational.

A strong impact in the field of behavioral finance has been given by the introduc-
tion of the prospect theory by Kahneman and Tversky [75]. They present a critique
of expected utility theory as a descriptive model of decision making under risk and
develop an alternative model. Under prospect theory, value is assigned to gains
and losses rather than to absolute wealth and probabilities are replaced by decision
weights. The theory which they confirmed by experiments predicts a distinctive
fourfold pattern of risk attitudes: risk aversion for gains of moderate to high proba-
bility and losses of low probability, and risk seeking for gains of low probability and
losses of moderate to high probability.

Recently, agent based modelling methods have given an important contribute
and provided a huge quantity of numerical simulations [86, 90]. The idea is to
produce a big mass of artificial data and to observe how they can fit with empirical
observations. This approach is now also supported by the availability of many
recorded empirical data [131].The relevant part of physics that is used to build
such models of financial markets consists in methods from statistical mechanics.
This attempt by physicists to map out the statistical properties of financial markets
considered as complex systems is usually referred to as econophysics [101].

The need to recover mathematical models which can display such scaling prop-
erties, but also capable to deal with systems of many interacting agents and to
take into account the effects of collective endogenous dynamics, put the question
on the choices of the most appropriate mathematical framework to use. The clas-
sical framework of stochastic differential equations which played a major rule in
financial mathematics seems inadequate to describe the dynamics of such systems
of interacting agents and their emerging collective behavior [105].

In the last years a new approach based on the use of mean field models and
related mathematical tools has appeared in the mathematics and physics community
[14, 25, 37, 38, 44, 85]. Mean field models were originally introduced in order to
give a statistical description of systems with many interacting particles. Kinetic
theory of rarefied gases can be thought as a paradigm of such complex systems, in
which particles are described by random variables which represents their physical
states, like position and velocity. A Boltzmann equation then prescribes the time
evolution for the particles density probability function [29]. This seems to fit very
well with the necessity to prescribe how the trading agents interacting in a stock
market are leaded to form their expectations and revaluate their choices on the
basis of the influence placed on the neighbor agents’ behavior rather than the flux of
news coming from some fundamental analysis or direct observations of the market
dynamic.
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Summay of the thesis

Our main goal of this PhD was to concentrate our attention on a number of stylized
facts, like volatility clustering and fat tails of returns, that most speculative markets
at national and international level share, for which a satisfactory explanation is still
lacking in standard theories of financial markets [109]. Such stylized facts are now
almost universally accepted among economists and physicists and it is now clear
that financial markets dynamics give rise to some kind of universal scaling laws.

Showing similarities with scaling laws for other systems with many interacting
particles, a description of financial markets as multi-agent interacting systems ap-
peared to be a natural consequence [87, 89, 101, 131, 134]. This topic was pursued
by quite a number of contributions appearing in both the physics and economics lit-
erature in recent years [14, 2, 26, 136, 59, 69, 86, 101, 112, 134]. This new research
field borrows several methods and tools from classical statistical mechanics, where
complex behavior arises from relatively simple rules due to the interaction of a large
number of components.

Starting from the microscopic dynamics, kinetic models can be derived with the
tools of classical kinetic theory of fluids [14, 37, 38, 136, 46, 69, 98, 103, 114, 125].
In contrast with microscopic dynamics, where behavior often can be studied only
empirically through computer simulations, kinetic models based on PDEs allow us
to derive analytically general information on the model and its asymptotic behavior.
For example, the knowledge of the tails behavior for the distributions of returns is
of primary importance, since it determines a posteriori whether the model can fit
data of real financial markets.

The aim of this PHD thesis is to rewiew some of the more influential models of
multi-agent interactive systems in financial markets and to present a new kinetic
approach to the description of etherogeneous systems, where different populations
of agents are involved and interact each others. In the first chapter, we present
the Levy-Levy-Solomon model [86] and The Lux-Marchesi model [89] as microspic
models. In the second chapter staring from the microsopic description we derive
kinetics model for both Levy-Levy solomon and Lux-Marchesi models, furthermore
through the introduction ok Fokker-Plank appoximation models, we are able yo
illustrate some analitycal results and numerical simulations. [37, 98]. In the third
chapter we present a more realistic model whic generalize the works of chapter two.
For such model, starting from a mesoscopic decription an hydrodynamic model is
derived and analytical and numerical results are provided.

We leave as appendix A and B full details of some technical proofs of the second
chapter, in order to let it more readable. Appendix C contains a pubblication in
the Esaim Proceedings where I’m co-author. It was the results of the CEMRACS
summer school held in Marseille in the August 2010. Here a spatial coupling of an
asymptotic preserving scheme with the asymptotic limit model, associated to a sin-
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gularly perturbed, highly anisotropic, elliptic problem is investigated and compared
with the numerical discretization of the initial singular perturbation model or the
purely asymptotic preserving scheme.

Pubblication list
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pareschi, Dario Maldarella
Journal : Science and Culture Vol 76 9-10 October 2010
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Lorenzo Pareschi, Dario Maldarella
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Chapter 1

Microscopic models of financial

markets

After the pioneering microscopic market models from economists like Nobel laureate
Stigler [130], numerous microscopic models were published in the physics literature
in the last two decades [23, 74, 86, 87, 95, 89, 90]. Here we do not aim at a com-
prehensive review of microscopic models in finance we refer to [87, 101, 131, 134]
for a more detailed introduction to this topic. We mainly concentrate here on those
models of speculative financial markets which are enough realistic to include some
essential economic features like the notion of price, dividends and interest rates, and
that at the same time, thanks to their particular structure, admit an interpretation
as a kinetic model. These include the models of Levy-Levy-Solomon (LLS) [86, 87]
and Lux-Marchesi (LM) [95, 89, 90].

From a mathematical viewpoint several of these models can be seen as generaliza-
tions of the the ”Law of Proportionate Effect” introduced by Gibrat [63] according
to which the expected value of the growth rate of a quantity is proportional to the
current size of the quantity. It is well-known that this simple random multiplicative
approach yields a lognormally distributed quantity whereas some seemingly trivial
variations of the same process lead to power laws [97]. Microscopic and kinetic
models that can be considered as variations to a random multiplicative process are
the Cordier-Pareschi-Toscani model [38], the Bouchad-Mézard model [14] and the
generalized Lotka-Volterra model by Solomon et al.[124, 92, 126]. All these models,
although able to reproduce fat tails, are concerned with the distribution of wealth
and the price formation dynamic is not considered.

1.1 The Levy-Levy-Solomon model

The LLS model considers a set of financial agents i = 1, . . . , N who can create their
own portfolio between two alternative investments: a stock and a bond. Let us

11



12 1. Microscopic models of financial markets

denote by wi the wealth of agent i and by ni the number of stocks of the agent.
Additionally we use the notations S for the price of the stock and n for the total
number of stocks.

1.1.1 The wealth dynamic

The essence of the dynamic is the choice of the agent’s portfolio. More precisely, at
each time step each agent selects which fraction of wealth to invest in bonds and
which fraction in stocks. They indicate with r the (constant) interest rate of bonds.
The bond is assumed to be a risk-less asset yielding a return at the end of each
time period. The stock is a risky asset with overall returns rate x composed of two
elements: a capital gain or loss and the distribution of dividends.

To simplify the description we omit the presence of dividends. Thus, if an agent
has invested γiwi of its wealth in stocks and (1−γi)wi of its wealth in bonds, at the
next time step in the dynamic he will achieve the new wealth value

w′i = (1− γi)wi(1 + r) + γiwi(1 + x), (1.1)

where the rate of return of the stock is given by

x =
S ′ − S

S
, (1.2)

and S ′ is the new price of the stock.
The dynamic now is based on the agent choice of the new fraction of wealth he

wants to invest in stocks at the next stage. According to the standard theory of
investment each investor is characterized by a utility function (of its wealth) U(w)
that reflects the personal risk taking preference [70]. The optimal γ′i is the one that
maximizes the expected value of U(w).

1.1.2 Utility function and optimal investments

Different models can be used for this (see [87, 134]), for example, maximizing a von
Neumann-Morgenstern utility function with a constant risk aversion of the type

U(w) =
w1−α

1− α
, (1.3)

where α is the risk aversion parameter, or a logarithmic utility function

U(w) = log(w). (1.4)

As they don’t know the future stock price S ′, the investors estimate the stock’s
next period return distribution and find an optimal mix of the stock and the bond
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that maximizes their expected utility E[U ]. In practice, for any hypothetical price
Sh, each investor finds the hypothetical optimal proportion γh

i (S
h) which maximizes

his/her expected utility evaluated at

wh
i (S

h) = (1− γh
i )w

′
i(1 + r) + γh

i w
′
i(1 + x′(Sh)), (1.5)

where x′(Sh) = (Sh − S ′)/S ′ and S ′ is estimated in some way. For example in [87]
the investors expectations for x′ are based on extrapolating the past values thus
originating a memory span for the trader.

Once each investor decides on the hypothetical optimal proportion of wealth γh
i

that he/she wishes to invest in stocks, one can derive the number of stocks nh
i (S

h)
he/she wishes to hold corresponding to each hypothetical stock price Sh. Since the
total number of shares in the market n, is fixed there is a particular value of the
price S ′ for which the sum of the nh

i (S
h) equals n. This value S ′ is the new market

equilibrium price and the optimal proportion of wealth is γ′i = γh
i (S

′).

1.1.3 Market clearance and equilibrium price

More precisely, following [87], each agent formulates a demand curve

nh
i = nh

i (S
h) =

γh(Sh)wh
i (S

h)

Sh

characterizing the desired number of stocks as a function of the hypothetical stock
price Sh. This number of share demands is a monotonically decreasing function of
the hypothetical price Sh. As the total number of stocks

n =
N
∑

i=1

ni (1.6)

is preserved, the new price of the stock at the next time level is given by the so-called
market clearance condition. Thus the new stock price S ′ is the unique price at which
the total demand equals the supply

N
∑

i=1

nh
i (S

′) = n. (1.7)

This will fix the value w′ in (1.1) and the model can be advanced to the next time
level. To make the model more realistic, typically a source of stochastic noise,
which characterizes all factors causing the investor to deviate from his/her optimal
portfolio, is introduced in the proportion of investments γi and in the rate of return
of the stock x′.
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Figure 1.1: Cyclic behavior in LLS model with periodic booms and crashes using
only one type of traders and a logarithmic utility function. Fraction of the total
wealth as a function of time in LLS model with three equal investor population with
different memory span.

As shown in [86, 87] the model is capable to provide realistic features of a stock
market such as boom, crashes and cycles (see Fig. 1.1). It is not clear however if
such model is able to reproduce fat tails for the price and/or the wealth distribu-
tion. Numerical simulations seem to exclude this possibility [131]. In particular, in
Chapter 2, we give a mathematical proof of self-similar lognormal behavior for the
corresponding kinetic model [37].

1.2 The Lux-Marchesi model

The LM model consider the behavior of an ensemble of N speculators. These traders
may adhere to chartist or fundamentalist practices. The number of chartists at
any point in time will be denoted by NC , the number of fundamentalist is NF

(NC + NF = N). Furthermore, they distinguish two subgroups of chartists: those
with an optimistic disposition and those who are pessimistic about the market’s de-
velopment in the near future. The number of individual in these groups is denoted
by N+ and N−, respectively (N+ + N− = NC). The dynamic of the model encap-
sulates the endogenous switching of agents between the groups defined above and
the prices dynamics resulting from their market activities. So the entire dynamic is
characterized by three elements, we discuss below.
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1.2.1 Chartists switching between optimistic and pessimistic

An opinion index Y is introduced which is defined as the difference between opti-
mistic and pessimistic chartists scaled by their total number

Y =
N+ −N−

NC

, Y ∈ [−1, 1] (1.8)

denoting the price change in continuous time by Ṡ = dS/dt and following a con-
venient formalization for transition probabilities the probability of a formerly pes-
simistic individual to switch to the optimistic group (P−+) and vice versa (P+−)
within some small time interval ∆t may be written as

P−+ = ν1 (NC/N) exp(U1), P+− = ν1 (NC/N) exp(−U1), (1.9)

where
U1 = α1y + α2Ṡ/(Sν1),

ν1 is a parameter for the frequency of revaluation of opinion, and α1 and α2 are
parameters measuring the importance the individuals place on majority opinion
and actual price trend in forming expectation about future price changes.

1.2.2 Switching between chartist and fundamentalist strat-

egy

Chartists are assumed to buy (sell) a fixed number of units if they are optimistic
(pessimistic). Fundamentalists on the other hand are assumed to buy (sell) if the
actual market price is below (above) the fundamental price SF . These behavioral
changes are modeled in the following way: agents meet individuals from the other
groups, compare excess profits from both strategies and with a probability depending
on the pay-off differential switch to the more successful strategy. Excess profits per
unit (compared to alternative investments) gained by chartist are given by (D+Ṡ)/S.
These are composed of nominal dividends (D) and capital gains due to the price
change (Ṡ). Dividing by the actual market price gives the revenue per unit of the
asset. Excess returns compared to other investment opportunities are computed by
subtracting the average real return R received by the holders of other assets in our
economy.

In the case of fundamentalist traders excess profits per unit of the asset can
be written as : k|(SF − S)/S|. As the gains of chartists are immediately realized
whereas those claimed by fundamentalists occur only in the future (and depend on
the uncertain time for reversal to the fundamental value) the latter are discounted by
a factor k < 1. Neglecting the dividend term in fundamentalists’ profits is justified
by assuming that they correctly perceive the (long-term) real returns to equal the
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average return of the economy (i.e. D/SF = R) so that the only source of excess
profits in their view is arbitrage when S 6= SF .

According to above, transition probabilities for changes of strategies are formal-
ized as follows

PF+ = ν2(N+/N) exp(U2,1), P+F = ν2(NF/N) exp(−U2,1), (1.10)

with

U2,1 = α3

((

r +
Ṡ

ν2

)

1

S
−R − k

∣

∣

∣

∣

SF − S

S

∣

∣

∣

∣

)

,

and
PF− = ν2(N−/N) exp(U2,2), P−F = ν2(NF/N) exp(−U2,2), (1.11)

with

U2,2 = α3

(

R−
(

r +
Ṡ

ν2

)

1

S
− k

∣

∣

∣

∣

SF − S

S

∣

∣

∣

∣

)

.

Here ν2 is again a parameter for the frequency of the transition, while α3 is a measure
of the pressure exerted by profit differentials. As transition are governed by some
type of pair interaction, the probability for an individual to change strategy also
depend on the number of individuals pursuing other strategies at that time.

1.2.3 The Price formation process

The dynamic of the price is explained by the presence of an auctioneer which react
with respect to the excess demand by adjusting the price to the next higher (lower)
possible value within the next time increment with a certain probability depending
on the extent of the balance between demand and supply. Assuming furthermore
that there are additional liquidity traders in the market whose excess demand is
stochastic or that the value of excess demand (ED) is perceived with some impre-
cision by the auctioneer, a small noise term µ is added, and arrive at transition
probabilities for an increase or decrease of the market price by a fixed amount ∆S

P↑S = max{0, β(ED + µ)}, P↓S = min{β(ED + µ), 0}.

Where β is a parameter for the reaction speed of the auctioneer. Hence, if for exam-
ple, the perceived excess demand is positive, an increase of the price towards the next
elementary unit occurs with probability β(ED + µ)∆t within an infinitesimal time
increment. Aggregate excess demand ED is composed of excess demand of chartists
and fundamentalists ED = EDC +EDF . The former is EDC = (N+−N−)tC since
all chartists either buy or sell the same number tC of units. Fundamentalists’excess
demand is given by EDF = NFγ(SF − S), depending on the deviation from the
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fundamental value, reaction strength γ, and the number of individuals behaving
this way at that time, NF .

This probabilistic rule for price adjustments is, in fact, equivalent to the tradi-
tional Walrasian adjustment scheme. It can be shown that the mean value dynamics
of the price is governed by the simple differential equation [95, 89]

dS

dt
= βED = β ((N+ −N−)tC +NFγ(SF − S)) . (1.12)

Typically in order to assure that none of the stylized facts of financial prices can
be traced back to exogenous factors, one assumes that the log-changes of SF in time
are Gaussian random variables.

The overall results of this dynamics is easily understood by investigation of the
properties of stationary states. Introducing the fraction of chartists Z = NC/N we
have[95, 89]

Proposition 1.2.1

(a) The mean-value dynamics of Y , S and Z possesses the following stationary
solutions:

– (i) Y = 0, S = SF with arbitrary Z,

– (ii) Y = 0, Z = 1 with arbitrary S,

– (iii) Z = 0, S = SF with arbitrary Y ;

(b) no stationary states with both Y 6= 0 and S 6= SF exist.

The equilibria of major interest are those depicted in item (i) of the first part of
the proposition. These stationary states are characterized by a balanced disposition
among chartists and the price equal to the fundamental value. Situations (ii) and (iii)
denotes the prevalence of one strategy over the other, since in case (ii) only chartists
are present whereas in case (iii) only fundamentalists survive. It is remarkable
that state (i) characterizes a stable point only under certain assumptions over the
parameters otherwise it is unstable[95, 89].

In addition numerical results show the emergence of deviation from normal be-
havior with presence of fat tails for the distribution of the time series of returns[95].
Figure 1.2 illustrates the interplay between the dynamics of relative price changes
and the fraction of chartists Z among traders. An increase of the number of chartists
leads to intermittent fluctuations. Note that, thanks to the presence of fundamen-
talists, the model incorporates self-stabilizing forces leading to a reduction of the
number of chartists after a period of severe fluctuations. In fact, large deviations
of the price from its fundamental value lead to high potential profits of the funda-
mentalist strategy which induces a certain number of agents to switch away from
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Figure 1.2: Time series of returns (top) and the fraction of chartists (bottom) from
a typical simulation of the LM model.

chartism. The dashed line in the bottom picture is the critical threshold for Z lead-
ing to the loss of the self-stabilizing forces and to the extinction of fundamentalists.

As we will see in Chapter 2 using a related kinetic model we will determine
an analogous of Proposition 1.2.1 and show how the presence of fundamentalists is
essential in order to obtain fat tails in the price distribution.



Chapter 2

Kinetic models of financial

markets

Starting from the microscopic dynamics one can aim at deriving the correspond-
ing kinetic or mesoscopic models using the tools of classical kinetic theory of fluids
[14, 38, 37, 136, 46, 69, 103, 98, 114, 125]. In contrast with microscopic dynamics,
where behavior often can be studied only empirically through computer simulations,
kinetic models based on partial differential equations allow to derive analytically
general information on the model and its asymptotic behavior. For example, the
knowledge of the tails behavior for the wealth/price is of primary importance, since it
determines a posteriori whether the model can fit data of real markets. In the sequel
we will consider two different kind of kinetic models for financial markets introduced
in [37, 98] which are strictly related to the LLS and the LM model respectively. For
standard Boltzmann-like models the determination of an explicit form of the asymp-
totic wealth/price distribution of the kinetic equation remains difficult and requires
the use of suitable numerical methods. A complementary method to extract infor-
mation on the tails is linked to the possibility to obtain particular asymptotics which
maintain the characteristics of the solution to the original problem for large times.
Following the analysis developed in [38], we shall prove that the Boltzmann models
converge in a suitable asymptotic limit towards convection-diffusion equations of
Fokker-Planck type. Other Fokker-Planck equations were obtained using different
approaches in [14, 126, 127]. This permits to study the asymptotic behavior of
the wealth and the price distributions and to characterize the regimes of lognormal
behavior and the ones with power law tails.

2.1 Modeling speculative markets

One of the aims of kinetic modeling is motivated by the desire to have a more realistic
description of the speculative dynamics in the multi-agents models. An interesting

19
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model in this direction has been obtained in [37], who derived a kinetic description of
the behavior of a simple financial market where a population of homogeneous agents
can create their own portfolio between two investment alternatives: a stock and a
bond. The model is closely related to the Levy-Levy-Solomon (LLS) microscopic
model in finance [86, 88], described in chapter 1

In this non-stationary financial market model, the average wealth is not con-
served and this produces price variations. Let us point out that, even if the model
is linear since no binary interaction dynamics between agents is present, the study
of the large time behavior is not immediate. In fact, despite conservation of the
total number of agents, there are no additional conservation equations, and the de-
termination of an explicit form of the asymptotic wealth distribution of the kinetic
equation remains difficult and requires the use of suitable numerical methods.

By resorting to a particular asymptotic which maintain the characteristics of
the solution to the original problem for large times, one can prove also in this case
that the Boltzmann model converges towards a Fokker-Planck type equation for the
distribution of wealth among individuals.

In this case, however, due to the variation in time of the average wealth, no
steady solutions exist, and one can only show that the Fokker-Planck equation ad-
mits self-similar solutions that can be computed explicitly and which are lognormal
distributions.

2.1.1 Kinetic modeling

We define f = f(w, t), w ∈ R+, t > 0 the distribution of wealth w, which represents
the probability for an agent to have a wealth w. We assume that at time t the
percentage of wealth invested is of the form γ(ξ) = µ(S) + ξ, where ξ is a random
variable in [−z, z], and z = min{−µ(S), 1− µ(S)} is distributed according to some
probability density Φ(µ(S), ξ) with zero mean and variance ζ2. This probability
density characterizes the individual strategy of an agent around the optimal choice
µ(S). We assume Φ to be independent of the wealth of the agent. Here, the optimal
demand curve µ(·) is assumed to be a given monotonically non-increasing function
of the price S ≥ 0 such that 0 < µ(0) < 1.

Note that given f(w, t) the actual stock price S satisfies the demand-supply
relation

S =
1

n
〈γw〉, (2.1)

and f(w, t) has been normalized

∫ ∞

0

f(w, t)dw = 1.
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More precisely, since γ and w are independent, at each time t, the price S(t) satisfies

S(t) =
1

n
〈γ〉〈w〉 = 1

n
µ(S(t))w̄(t), (2.2)

with

w̄(t):=〈w〉 =
∫ ∞

0

f(w, t)wdw, (2.3)

being the mean wealth and by construction,

µ(S) =

∫

Φ(µ(S), ξ)ξ dξ.

At the next round in the market, the new wealth of the investor will depend on
the future price S ′ and the percentage γ of wealth invested according to

w′(S ′, γ, η) = (1− γ)w(1 + r) + γw(1 + x(S ′, η)), (2.4)

where the expected rate of return of stocks is given by

x(S ′, η) =
S ′ − S +D + η

S
. (2.5)

In the above relation, D ≥ 0 represents a constant dividend paid by the company and
η is a random variable distributed according to Θ(η) with zero mean and variance
σ2, which takes into account fluctuations due to price uncertainty and dividends
[88, 66]. We assume η to take values in [−d, d] with 0 < d ≤ S ′ +D so that w′ ≥ 0
and thus negative wealths are not allowed in the model. Note that equation (2.5)
requires estimation of the future price S ′, which is unknown.

The dynamics is then determined by the agent’s new fraction of wealth invested
in stocks, γ′(ξ′) = µ(S ′) + ξ′, where ξ′ is a random variable in [−z′, z′] and z′ =
min{µ(S ′), 1−µ(S ′)} is distributed according to Φ(µ(S ′), ξ′). We have the demand-
supply relation

S ′ =
1

n
〈γ′w′〉, (2.6)

which permits us to write the following equation for the future price:

S ′ =
1

n
〈γ′〉〈w′〉 = 1

n
µ(S ′)〈w′〉. (2.7)

Now
w′(S ′, γ, η) = w(1 + r) + γw(x(S ′, η)− r), (2.8)

thus

〈w′〉 = 〈w〉(1 + r) + 〈γw〉(〈x(S ′, η)〉 − r) (2.9)

= w̄(t)(1 + r) + µ(S)w̄(t)

(

S ′ − S +D

S
− r

)

. (2.10)
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This gives the identity

S ′ =
1

n
µ(S ′)w̄(t)

[

(1 + r) + µ(S)

(

S ′ − S +D

S
− r

)]

. (2.11)

Using equation (2.2) we can eliminate the dependence on the mean wealth and write

S ′ =
µ(S ′)

µ(S)
[(1− µ(S))S(1 + r) + µ(S)(S ′ +D)]

=
(1− µ(S))µ(S ′)

(1− µ(S ′))µ(S)
(1 + r)S +

µ(S ′)

1− µ(S ′)
D. (2.12)

Equation (2.12) determines implicitly the future value of the stock price. Let us
set

g(S) =
1− µ(S)

µ(S)
S. (2.13)

Then the future price is given by the equation

g(S ′) = g(S)(1 + r) +D (2.14)

for a given S. Note that

dg(S)

dS
= −dµ(S)

dS

S

µ(S)2
+
1− µ(S)

µ(S)
> 0,

so the function g(S) is strictly increasing with respect to S. This guarantees the
existence of a unique solution

S ′ = g−1 (g(S)(1 + r) +D) > S. (2.15)

Moreover, if r = 0 and D = 0, the unique solution is S ′ = S and the price remains
unchanged in time.

For the average stock return, we have

x̄(S ′)− r =
(µ(S ′)− µ(S))(1 + r)

(1− µ(S ′))µ(S)
+

µ(S ′)D

S(1− µ(S ′))
, (2.16)

where

x̄(S ′) = E[x(S ′, η)] =
S ′ − S +D

S
. (2.17)

Now the right hand side of (2.16) has non-constant sign since µ(S ′) ≤ µ(S). In
particular, the average stock return is above the bonds rate r only if the (negative)
rate of variation of the investments is above a certain threshold

µ(S ′)− µ(S)

µ(S)µ(S ′)
S ≥ − D

(1 + r)
.
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In the constant investment case µ(·) = C, with C ∈ (0, 1) constant, then we have
g(S) = (1− C)S/C and

S ′ = (1 + r)S +
C

1− C
D, (2.18)

which corresponds to a dynamics of growth of the prices at rate r. As a consequence,
the average stock return is always larger then the constant return of bonds:

x̄(S ′)− r =
D

S(1− C)
≥ 0.

The previous dynamics originate the linear kinetic equation for the evolution of the
wealth distribution, which is fruitfully written in weak form

d

dt

∫

ϕ(w)f(w, t)dw =

〈
∫

R+

β(w → w′) (ϕ(w′)− ϕ(w)) f(w, t)

〉

. (2.19)

The above equation takes into account all possible variations that can occur to the
distribution of a given wealth w, according to (2.8) and equation (2.15) for the price.
In (2.19), the kernel β takes the form

β(w→ w′) = Φ(µ(S), ξ)Θ(η). (2.20)

The distribution function Φ(µ(S), ξ), together with the function µ(·), characterizes
the behavior of the agents on the market (more precisely, they characterize the way
the agents invest their wealth as a function of the actual price of the stock).

From (2.19) follows the conservation of the total number of investors if φ(w) = 1.
If we set φ(w) = w we obtain the time evolution of the average wealth which
characterizes the price behavior. The mean wealth is not conserved since we have

d

dt

∫ ∞

0

f(w, t)w dw =

(

r + µ(S)

(

S ′ − S +D

S
− r

))
∫ ∞

0

f(w, t)w dw. (2.21)

Note that since the sign of the right hand side is nonnegative, the mean wealth is
nondecreasing in time. In particular, we can rewrite the equation as

d

dt
w̄(t) = ((1− µ(S))r + µ(S)x̄(S ′)) w̄(t). (2.22)

From this we get the equation for the price

d

dt
S(t) =

µ(S(t))

µ(S(t))− µ̇(S(t))S(t)
((1− µ(S(t)))r + µ(S(t))x̄(S ′(t)))S(t), (2.23)

where S ′ is given by (2.12) and

µ̇(S) =
dµ(S)

dS
≤ 0.
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Now since from (2.16) it follows by the monotonicity of µ that

x̄(S ′) ≤M :=r +
D

S(0)(1− µ(S(0)))
,

using (2.22) we have the bound

w̄(t) ≤ w̄(0) exp (Mt) . (2.24)

From (2.2) we obtain immediately

S(t)

µ(S(t))
≤ S(0)

µ(S(0))
exp (Mt) ,

which gives

S(t) ≤ S(0) exp (Mt) . (2.25)

For a constant µ(·) = C, C ∈ (0, 1) we have the explicit expression for the growth
of the wealth (and consequently of the price)

w̄(t) = w̄(0) exp(rt)− (1− exp(rt))
nD

1− C
. (2.26)

2.1.2 Fokker-Planck asymptotics and wealth distribution

As usual it is difficult to study in detail the large time behavior of the system.
We can therefore apply a quasi-invariant limit technique described in the previous
Chapters to derive simplified models whose behavior is easier to analyze. Here we
consider the limit of large times in which the market originates a very small exchange
of wealth (small rates of return r and x).

In order to study the asymptotic behavior of the distribution function f(w, t),
we set

τ = rt, f̃(w, τ) = f(w, t), S̃(τ) = S(t), µ̃(S̃) = µ(S),

which implies that f̃(w, τ) satisfies the weak form of the kinetic equation

d

dτ

∫ ∞

0

f̃(w, τ)φ(w)dw =

(2.27)
1

r

∫ ∞

0

∫ d

−d

∫ z

−z

Φ(µ̃(S̃), ξ)Θ(η)f̃(w, τ)(φ(w′)− φ(w))dξ dη dw

and consider a second-order Taylor expansion of φ around w,

φ(w′)− φ(w) = w(r + γ(x(S ′, η)− r))φ′(w) +
1

2
w2(r + γ(x(S ′, η)− r))2φ′′(w̃),
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where, for some 0 ≤ ϑ ≤ 1,

w̃ = ϑw′ + (1− ϑ)w.

Now we insert this expansion into the right-end-side, and compute the limit of very
small values of the constant rate r. In order for such a limit to make sense and
preserve the characteristics of the model, we must assume that

lim
r→0

σ2

r
= ν, lim

r→0

D

r
= λ. (2.28)

Note that the above limits in (2.15) imply immediately that

lim
r→0

S̃ ′ = S̃. (2.29)

Omitting the details of the computations, sending r → 0 under these assump-
tions, we obtain the weak form

d

dτ

∫ ∞

0

f̃(w, τ)φ(w)dw

=

(

1 + µ̃(S̃)

(

(κ(S̃)− 1) +
µ̃(S̃)(κ(S̃)− 1) + 1

1− µ̃(S̃)

λ

S̃

))

∫ ∞

0

f̃(w, τ)wφ′(w) dw

+
1

2

(µ̃(S̃)2 + ζ2)

S̃2
ν

∫ ∞

0

f̃(w, τ)w2φ′′(w) dw,

with

0 < κ(S̃):=
µ̃(S̃)(1− µ̃(S̃))

µ̃(S̃)(1− µ̃(S̃))− S̃ ˙̃µ(S̃)
≤ 1, ˙̃µ(S̃) =

dµ̃(S̃)

dS̃
≤ 0. (2.30)

This corresponds to the Fokker-Planck equation

∂

∂τ
f̃ =

∂

∂w

[

−A(τ)wf̃ + 1

2
B(τ)

∂

∂w
w2f̃

]

, (2.31)

with

A(τ) = 1 + µ̃(S̃)

(

(κ(S̃)− 1) +
µ̃(S̃)(κ(S̃)− 1) + 1

1− µ̃(S̃)

λ

S̃

)

(2.32)

B(τ) =
(µ̃(S̃)2 + ζ2)

S̃2
ν. (2.33)
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In order to search for self-similar solutions, we consider the scaling

f̃(w, τ) =
1

w
g̃(χ, τ), χ = log(w). (2.34)

Simple computations show that g̃(χ, τ) satisfies the linear convection-diffusion equa-
tion

∂

∂τ
g̃(χ, τ) =

(

B(τ)

2
− A(τ)

)

∂

∂χ
g̃(χ, τ) +

B(τ)

2

∂2

∂χ2
g̃(χ, τ),

which admits the self-similar solution

g̃(χ, τ) =
1

(2b(τ)π)1/2
exp

(

−(χ + b(τ)/2− a(τ))2

2b(τ)

)

, (2.35)

where

a(τ) =

∫ τ

0

A(s) ds+ C1, b(τ) =

∫ τ

0

B(s) ds+ C2.

Reverting to the original variables, we obtain the lognormal asymptotic behavior of
the model,

f̃(w, τ) =
1

w(2b(τ)π)1/2
exp

(

−(log(w) + b(τ)/2− a(τ))2

2b(τ)

)

. (2.36)

The constants C1 = a(0) and C2 = b(0) can be determined from the initial data
at t = 0. If we denote by w̄(0) and ē(0) the initial values of the first two central
moments, we get

C1 = log(w̄(0)), C2 = log

(

ē(0)

(w̄(0))2

)

.

2.1.3 Numerical examples

In this section we report the results of different numerical simulations of the proposed
kinetic equations. In all the numerical tests, we use N = 1000 agents and n = 10000
shares. Initially, each investor has a total wealth of 1000 composed of 10 shares,
at a value of 50 per share, and 500 in bonds. The random variables ξ and η are
assumed distributed according to truncated normal distributions so that negative
wealth values are avoided (no borrowing and no short selling). In the test case we
consider the time-averaged Monte Carlo asymptotic behavior of the kinetic model
and compare its numerical self-similar solution with the explicit one computed in
the last section using the Fokker-Planck model.

To this end, we consider the self-similar scaling (2.34) and compute the solution
for the values r = 0.001, D = 0.0015 with ξ and η/S(0) distributed with standard
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Figure 2.1: Test 3. Distribution function at t = 50, 200, 500. The continuous line is
the lognormal Fokker-Planck solution. The right plot is in log-log scale.
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Figure 2.2: Test 3. The corresponding Lorentz curves. The Gini coefficients are
G = 0.1, G = 0.2 and G = 0.3 respectively.

deviation 0.05. We report the numerical solution for a constant value of µ = 0.5 at
different times t = 50, 200, 500 in Figure 2.1. A very good agreement between the
Boltzmann and the lognormal Fokker-Planck solutions is observed, as expected from
the results of the last section. We also compute the corresponding Lorentz curve
L(F (w, t)) defined as

L(F (w, t)) =

∫ w

0

f(v, t)v dv
∫ ∞

0

f(v, t)v dv

, F (w, t) =

∫ w

0

f(v, t) dv,

and the Gini coefficient G ∈ [0, 1]

G = 1− 2

∫ 1

0

L(F (w, t)) dw.

The Gini coefficient is a measure of the inequality in the wealth distribution [62]. A
value of 0 corresponds to the line of perfect equality depicted in Figure 2.2 together
with the different Lorentz curves. It is clear that inequalities grow in time due to
the speculative dynamics.
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2.2 A kinetic model for multiple agents interac-

tions

In this chapter we introduce a simple Boltzmann-like model for a speculative mar-
ket characterized by a single stock and an interplay between two different types of
traders, chartists and fundamentalists. The model is strictly related to the micro-
scopic Lux-Marchesi model [89].

Furthemore, the kinetic formalism allow us to introduce some psychological and
behavioral components in the way the agents interact each other and percive the risk,
giving the possibility to investigate non-rational dynamics, this can be done trough
a suitable “value function” as introduced in the Prospect Theory by Kahneman
and Tversky [75, 76], providing a bridge with some topics which have been deeply
explored in the growing field of the Behavioral Finance.

Following the analysis developed in [38], we shall prove that the Boltzmann mod-
els converge in a suitable asymptotic limit towards convection-diffusion equations of
Fokker-Planck type. Other Fokker-Planck equations were obtained using different
approaches in [14, 126, 127]. This permits to study the asymptotic behavior of the
investments and the price distributions and to characterize the regimes of lognormal
behavior and the ones with power law tails.

We describe a simple financial market characterized by a single stock or good
and an interplay between two different traders populations, chartists and funda-
mentalists, which determine the price dynamic of such stock (good). The aim is
to introduce a kinetic description both for the behavior of the microscopic agents
and for the price, and then to exploit the tools given by kinetic theory to get more
insight about the way the microscopic dynamic of each trading agent can influence
the evolution of the price, and be responsible of the appearance of ’stylized’ fact like
’fat tails’ and ’lognormal’ behavior.

2.2.1 Kinetic setting

Similarly to Lux and Marchesi model [89], the starting point is a population of two
different kind of traders, chartists and fundamentalists. Chartists are characterized
by their number density ρC and the investment propensity (or opinion index) y of
a single agent whereas fundamentalists appear only through their number density
ρF . The value ρ = ρF + ρC is invariant in time so that the total number of agents
remains constant. In the sequel we will assume for simplicity ρ = 1.

2.2.2 Dynamic of investment propensity among chartists

Let us define f(y, t), y ∈ [−1, 1], the distribution function of chartists with invest-
ment propensity y at time t. Positive values of y represent buyers, negative values
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characterize sellers and close to y = 0 we have undecided agents. Clearly

ρC(t) =

∫ 1

−1

f(y, t) dy.

Moreover we define the mean investment propensity

Y (t) =
1

ρC(t)

∫ 1

−1

f(y, t)y dy

.

For a given price S(t) and price derivative Ṡ(t) = dS(t)/dt the microscopic
dynamic of the investment propensity of chartists is characterized by the following
binary interactions (y, y∗)→ (y′, y′∗) with

y′ = (1− α1H(y)− α2)y + α1H(y)y∗ + α2Φ

(

Ṡ(t)

S(t)

)

+D(y)η,

y′∗ = (1− α1H(y∗)− α2)y∗ + α1H(y∗)y + α2Φ

(

Ṡ(t)

S(t)

)

+D(y∗)η∗.

Here α1 ∈ [0, 1] and α2 ∈ [0, 1], with α1 + α2 ≤ 1, measure the importance the
individuals place on others opinions and actual price trend in forming expectations
about future price changes. The random variables η and η∗ are assumed distributed
accordingly to Θ(η) with zero mean and variance σ2 and measure individual devia-
tions from the average behavior. The function H(y) ∈ [0, 1] is taken symmetric on
the interval I, and characterize the herding behavior, whereas D(y) defines the dif-
fusive behavior, and will be also taken symmetric on I. Simple examples of herding
function and diffusion function are given by

H(y) = a+ b(1− |y|), D(y) = (1− y2)γ,

with 0 ≤ a + b ≤ 1, a ≥ 0, b > 0, γ > 0 (see figure 2.2.2). Other choices are of
course possible, note that in order to preserve the bounds for y it is essential that
D(y) vanishes in y = ±1. Both functions take into account that extremal positions
suffer less herding and fluctuations. For b = 0, H(y) is constant and no herding
effect is present and the mean investment propensity is preserved when the market
influence is neglected (α2 = 0) as in classical opinion models a model ( see [132] at
the reference therein).
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Figure 2.3: Typical examples of herding function H(y) (left) and diffusion function
D(y) (right).

A remarkable feature of the above relations is the presence of the normalized
value function Φ(Ṡ(t)/S(t)) in [−1, 1] in the sense of Kahneman and Tversky [75, 76]
that models the reaction of individuals towards potential gain and losses in the
market [75]. This permits to introduce behavioral aspects in the market dynamic
and to take into account the influence of psychology on the behavior of financial
practitioners.

The value function is defined on deviations from a reference point, which is
ususlly assumed equal to zero (but it can be considered also positive or negative), and
is normally concave for gains (implying risk aversion), commonly convex for losses
(risk seeking) and is generally steeper for losses than for gains (loss aversion)(see
figure 2.2.2)
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Figure 2.4: An example of value function Φ(Ṡ(t)/S(t)).
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Let us ignore for the moment the price evolution. The above binary interaction
gives the following kinetic equation for the time evolution of chartists

∂f

∂t
= Q(f, f), (2.37)

where for any test function ϕ the interaction operator Q can be conveniently written
in weak form as

∫ 1

−1

Qϕ(y) dy =

∫

[−1,1]2

∫

R2

B(y, y∗)f(y)f(y∗)(ϕ(y
′)− ϕ(y))dη dη∗ dy∗ dy

with the transition rate has given by

B(y, y∗) = Θ(η)Θ(η∗)χ(|y′| ≤ 1)χ(|y′∗| ≤ 1),

being χ(·) the indicator function. Note that the mass density of chartists ρC(t) is
an invariant for the interaction, (ϕ ≡ 1).
It is worth to observe that for a given DC(y) a suitable choice of the support of the
random variable η, avoids the dipendence of the collisional kernel B(y, y∗) on the
variables y,y∗.
As an example, if we take D(y) = 1− y2 we have

y′ = (1− α1H(y)− α2)y + α1H(y)y∗ + α2Φ

(

˙S(t)

S(t)

)

+ (1− y2)η

≤ (1− α1H(y)− α2)y + α1H(y) + α2 + (1− y2)η.

Then to have y′ ≤ 1 for any y ∈ [−1, 1], we have to chose η such that

(1− y2)η ≤ (1− α1 − α2)(1− y)

wich gives

η ≤ 1

2
(1− α1 − α2)

Analogously we can ensure y′ ≥ −1 , thus it is enough to take

η ∈ [−1
2
(1− α1 − α2),

1

2
(1− α1 − α2)]

. to be y ∈ [−1, 1] at all times. For this reason, in the rest of the paper, we will
consider only kernel of “maxwellian type”

B(y, y∗) = Θ(η)Θ(η∗)

.
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2.2.3 Strategy exchange chartists-fundamentalists

In addition to the change of investment propensity due to a balance between herding
behavior and the price followers nature of chartists, the model includes the possibility
that an agent changes its strategy from chartist to fundamentalists and viceversa.

Agents meet individual from the other group, compare excess profits from both
strategies and with a probability depending on the pay-off differential switch to
the more successful strategy. When a chartist and a fundamentalist meet they
characterize the success of a given strategy trough the profits earned by comparing

XC(y, t) = ψ(y)

(

Ṡ(t)/µ+D

S(t)
− r

)

, XF (t) = k
|SF − S(t)|

S(t)
. (2.38)

Here ψ(y) ∈ [−1, 1] has the same sign of y and takes into account the change of sign
in the profits accordingly to the actual behavior of the agent in the market which
rely on his investment propensity y. The simplest choice is ψ(y) = sign(y).

The value D is the nominal dividend and r the average real return of the market,
such that r = D/SF , i.e. evaluated at its fundamental value SF in a state of stable
price Ṡ = 0 the asset yield the same returns of other investments, or equivalently
XC = XF = 0. The discount factor k < 1 is justified by the observation that XF

is an expected gain realized only after reversal to the fundamental value. Finally
µ > 0 measures the frequency of the exchange rates.

A chartist characterized by an investment propensity y and a fundamentalist
meet each other, and after comparing their strategies, they exchange strategies with
a rate given by a suitable monotone function BFC(·) ≥ 0. More precisely a chartist
switch to fundamentalist with a rate BFC(XF − XC) and a fundamentalist switch
to chartist at a rate BFC(XC −XF ). A possible choice for the rate function is for
example BFC(x) = ex.

For chartists we define the following linear strategy exchange operator

QFC(f) = µρF (t)f(y)(BFC(XC −XF )− BFC(XF −XC))

where µ > 0 measures the frequency of the exchange rates.
Taking into account such strategy exchanges we have the chartists-fundamentalists

model














∂f

∂t
= Q(f, f) + µρF (t)f(y)(BFC(XC −XF )−BFC(XF −XC))

∂ρF

∂t
= µρF (t)

∫ 1

−1

f(y)(BFC(XF −XC)−BFC(XC −XF )) dy.
(2.39)

(It is immediate to verify that the total number density ρC + ρF is conserved in
time).
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2.2.4 Price evolution

Finally we introduce the probability density V (s, t) of a given price s at time t. The
effective market price S(t) is defined as the mean value

S(t) =

∫ ∞

0

V (s, t)s ds.

Following Lux and Marchesi [89] the microscopic dynamic of the price is given by

s′ = s+ β(ρCtCY (t)s+ ρFγ(SF − s)) + ηs

where the parameters β, represent the price speed evaluation, η is a random variable
with zero mean and variance ζ2, distributed accordingly to Ψ(η). In the above
relation chartists either buy or sell the same number tC of units and γ is the reaction
strength of fundamentalists to deviations from the fundamental value.

Thus the chartists-fundamentalists system of equations (2.39) is complemented
with the equation for the price distribution

∂V

∂t
= L(V ), (2.40)

where the operator L, is linear, and in weak form it reads
∫ ∞

0

Lϕ(s) ds =

∫ ∞

0

∫

R

b(s)V (s)(ϕ(s′)− ϕ(s))dη ds (2.41)

with the transition rate b(s) = Ψ(η)χ(s′ ≥ 0).
As before, a suitable choice of the domain for the support of variable η ensures
s′ ≥ 0, and permit to express the transition rate in the simpler form

b(s) = Ψ(η).

Note that the expected value for the stock price satisfies the same differential
equation as in[95, 89]

dS(t)

dt
= βρCtCY (t)S(t) + βρFγ(SF − S(t)). (2.42)

2.2.5 Booms, crashes and macroscopic stationary states

In order to study the macroscopic steady states of the system let us start by observ-
ing that the equilibrium states for the price satisfy

ρCtCY S + ρFγ(SF − S) = 0

and thus fall in one of the following categories
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(i) ρF 6= 0, S = ρF γSF

ρF γ−ρC tCY
, ρFγSF − ρCtCY ≥ 0.

(ii) ρF = 0, Y = 0, S arbitrary,

(iii) ρF = 0, S = 0, Y arbitrary.

At equilibrium we require ρF , ρC and Y to be constants. In order for the number
densities to be constants we require QFC = 0. For ρF 6= 0 and ρC 6= 0, thanks to
monotonicity of BFC , we have XC = XF or equivalently S = SF . Note that QFC

vanishes also when ρF = 0 or ρC = 0. These considerations reduce the set of possible
equilibrium configurations to

(i) ρF 6= 0, S = SF , Y = 0,

(ii) ρF = 0, Y = 0, S arbitrary,

(iii) ρF = 0, S = 0, Y arbitrary.

Finally we consider the requirements for Y to be constant. In the case QFC = 0 the
first moment equation reads

d

dt
Y (t) = − α1

∫ 1

−1

H(y)yf(y)dy− α2ρCY (t)

+ α1Y (t)

∫ 1

−1

H(y)f(y)dy+ α2ρCΦ

(

Ṡ(t)

S(t)

)

,

which gives the steady state condition

−α1

∫ 1

−1

H(y)yf(y)dy− α2ρCY + α1Y

∫ 1

−1

H(y)f(y)dy+ α2ρCΦ

(

Ṡ(t)

S(t)

)

= 0.

This gives a constraint for the value function Φ, precisely

α2ρCΦ

(

Ṡ(t)

S(t)

)

= α1

∫ 1

−1

H(y)yf(y)dy+ α2ρCY − α1Y

∫ 1

−1

H(y)f(y)dy

which in the simple case of H constant reduces to

α2ρC

(

Φ

(

Ṡ(t)

S(t)

)

− Y

)

= 0.

Now using the fact that

Ṡ(t)

S(t)
= βρCtCY (t) + βρFγ

(SF − S(t))

S(t)
,

we can state
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Proposition 2.2.1 The system of equations (2.39) in the case of H constant ad-
mits the following possible equilibrium configurations

(i) ρF 6= 0, S = SF , Y = 0, Φ(0) = 0,

(ii) ρF = 0, Y = 0, Φ(0) = 0, S arbitrary,

(iii) ρF = 0, Y = Y∗, with Y∗ = Φ(βtCY∗), S = 0.

Note that if the reference point for the value function Φ(0) 6= 0 configuration (i)
and (ii) are not possible for a constant H . This is in good agreement with the fact
that an emotional perception of the market from the chartists acts as a source of
instability for the market itself. In contrast configuration (iii), corresponding to a
market crash, can be achieved also for Φ(0) 6= 0. The existence of a unique fixed
point Y∗ has to be guaranteed by the choice of Φ, β and tC . Of course if the reference
point is set to zero, Φ(0) = 0, we have Y∗ = 0. It is easy to verify that these possible
equilibrium configurations includes the ones in the original Lux-Marchesi model [?].

In addition to the above equilibrium configurations the model admits several
other possible asymptotic behavior in the form of booms and cycles. Some of the
fundamental features of the model are summarized in the following.

Remark 2.2.2 • Chartists alone (ρF = 0, ρC = 1) influence the price through
their mean propensity to invest Y (t) and at the same time the price trend in-
fluences their mean propensity through the value function Φ(Ṡ(t)/S(t)), since
Ṡ(t)/S(t) = βY (t)tC. Thus, except for the particular shape of the value func-
tion, if the mean propensity is initially (sufficiently) positive then it will con-
tinue to grow together with the price and the opposite occurs if it is initially
(sufficiently) negative.

The market goes towards a boom (exponential grow of the price) or a crash
(exponential decay of the price) with

S(0)e−βtC ≤ S(t) ≤ S(0)eβtC ,

and agents tend to concentrate in y = 1 and y = −1 respectively depending
on the choices of H and Φ. This is in good agreement with the price followers
nature of chartists.

• Fundamentalists alone (ρF = 1, ρC = 0) influence the price through their ex-
pectation of the fundamental price. So their effect is to drive the price towards
the fundamental price. For a constant fundamental price SF the equilibrium
state reached is characterized by S = SF and the trend is exponential.
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• The presence of fundamentalists acts in contrast to the chartists pressure to-
wards market booms or crashes. If their number is large enough they are ca-
pable to drive the price towards the fundamental value otherwise the chartists
dynamic may dominate. In addition to booms and crashes, we have now the
possibility of price cycles/oscillations around the fundamental value.

2.2.6 Fokker-Plank approximation and kinetic asymptotic

behaviour

Now we consider what happens at the kinetic scale. Due to the extreme difficulty to
get detailed information on the asymptotic behavior of the kinetic coupled system,
we will recover for both distribution functions f , and V , simplified Fokker-Planck
models which preserve the main features of the original kinetic model. To keep
notations simple, since we are mostly interested in the study of the equilibrium states
we ignore the presence of the terms describing the change of strategy. However they
can be easily included in the scaling described below.

For this purpose we introduce a time scaling parameter ξ and define

τ = ξt, f̃(y, τ) = f(y, t), Ṽ (s, τ) = V (s, t).

To preserve the chartists dynamic in the limit, we must require that

lim
α1,ξ→0

α1

ξ
= α̃1, lim

α2,ξ→0

α2

ξ
= α̃2, lim

σ,ξ→0

σ2

ξ
= λ,

where λ is a positive constant.
Similarly for the price dynamic, we assume

lim
β,ξ→0

β

ξ
= β̃, lim

ζ,ξ→0

ζ2

ξ
= ν.

Performing similar computations as in [37] (see Appendix A and B for details)
we recover the following Fokker-Plank system

∂f̃

∂τ
+

∂

∂y

[(

ρC α̃1H(y)(Ỹ − y) + ρCα̃2

(

Φ

(

˙̃S

S̃

)

− y

))

f̃

]

=
λρC

2

∂2

∂y2
[(D2(y))f̃ ], (2.43)

∂

∂τ
Ṽ +

∂

∂s

[

β̃
(

ρC Ỹ tCs+ ρFγ(SF − s)
)

Ṽ
]

=
ν

2

∂2

∂s2

(

s2Ṽ
)

. (2.44)

For notation simplicity in the sequel we will omit the tildes in the variables f ,
V , Y and S.
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Figure 2.5: Equilibrium distribution function of the chartist investment propensity
for different values of Y∗ = 0, 0.2,−0.2 (left) and corresponding behavior of the
price S (right). Exact solutions with ρC = 1, β = 0.1, tC = 1, λ/(α̃1 + α̃2) = 1 and
f(y, 0) = f∞(y).

If we now take D(y) = 1 − y2, and H(y) = 1 we can compute explicitly the
equilibrium state for chartists with a constant mean investment propensity Y = Y∗
as

f∞(y) = C0(1 + y)−2+Y∗
(α̃1+α̃2)

2λ (1− y)−2−Y∗
(α̃1+α̃2)

2λ

exp

(

−(1− Y∗y)(α̃1 + α̃2)

λ(1− y2)

) (2.45)

where C0 = C0(Y∗, λ/(α̃1 + α̃2)) is such that the mass of f
∞ is equal to ρC . Other

choices of the diffusion function originate different steady states (see [132]).

Observe that, in the case Y∗ 6= 0, the distribution is not symmetric and in the
chartist population a predominant behavior arise. Otherwise when the reference
point of the value function is set to zero we have a symmetric distribution with
two peaks and mean value zero, and the macroscopic state of indecision is given,
microscopically, by a polarization of the chartist population among two opposite
kind of behaviors (see Figure 2.5).

In order to study the asymptotic behavior for the price we must distinguish
between the case ρF 6= 0 and ρF = 0.

Let us consider first the situation in which ρF = 0 (or equivalently ρC = 1). For
this purpose, we introduce the scaling

V (s, τ) =
1

s
v(χ, τ), χ = log(s).
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It is straightforward to show that v(χ, τ) satisfies the following linear convection
diffusion equation

∂

∂τ
v(χ, τ) =

[ν

2
− β̃Y tC

] ∂

∂χ
v(χ, τ) +

ν

2

∂2

∂χ2
v(χ, τ),

which admits the self-similar solution [37]

v(χ, τ) =
1

(2 log(E(τ)/S(τ)2)π)
1
2

exp

(

−(χ+ log(
√

E(τ)/S(τ))− log(S(τ)))2

2 log(E(τ)/S(τ)2)

)

,

with

E(τ) =

∫ ∞

0

V (s, τ)s2 ds.

Then reverting to the original variables it gives the lognormal behavior

V (s, τ) =
1

s(2 log(E(τ)/S(τ)2)π)
1
2

exp

(

−(log(s
√

E(τ)/S(τ)2)2

2 log(E(τ)/S(τ)2)

)

. (2.46)

where E(τ) satisfies the differential equation

dE

dτ
= (2β̃Y tC + ν)E(τ).

Thus for a steady state characterized by (ii) in Proposition 2.2.1 we have S(τ) = S0,
Y = 0 and E(τ) = eντE0.

Besides the above equilibrium state, equation (2.46) characterizes also the self-
similar behavior of the price distribution in the case of booms and crashes, when the
price S(τ) grows arbitrary or decays to zero. In particular in the limit S(τ) → 0,
point (iii) in Proposition 2.2.1, the distribution function V (s, τ) concentrates near
zero.

Finally we consider the microscopic behavior of the model where both ρC 6= 0
and ρF 6= 0.

Recall now the Fokker-Plank equation for the price in (2.43) and consider the
stationary case (i) in Proposition 2.2.1. The Fokker-Planck equation in such case
reads

∂

∂τ
V +

∂

∂s

[(

β̃ρFγ(SF − s)
)

V
]

=
ν

2

∂2

∂s2

(

s2V
)

.

In this case the steady state can be computed as [14, 38] and yelds

V ∞(s) = C1(µ)
1

s1+µ
e−

(µ−1)SF
s , (2.47)
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where µ = 1 + 2β̃ρFγ/ν and C1(µ) = ((µ − 1)SF )
µ/Γ(µ) with Γ(·) being the usual

Gamma function. Therefore the stationary state is described by a Gamma-like
distribution with Pareto power law tails.

Remark 2.2.3 1. The presence of fundamentalists is then essential in order to
obtain fat tails in the price distribution. Their presence force the price to
approach the mean value SF in a way similar to the redistribution of wealth
in the models proposed in [14, 38]. This feature seems to be essential for the
development of power law behaviors. The stationary state for the price (2.47)
has in fact the same structure of the stationary states for the wealth in [14, 38].

2. we have considered in our description a constant value for the fundamental
price. This may look as an unrealistic choice, according to the economic liter-
ature where the fundamental price is often treated like a temporal series with a
stationary lognormal distribution. This reflect the facts that the returns in log-
aritmic form are gaussian distributed with zero mean and a fixed variance, i.e
big jumps between two successive realizations are rarely verified. It is worth to
observe that by introducing a time independent distribution function, VSF (q, t)
such that

SF (t) =

∫ +∞

0

VSF (q, t)dq

and considering the following dynamic in the kinetic evolution of the price

s′ = s+ β(ρCtCY (t)s+ ρFγ(q − s)) + ηs

we get
∫ ∞

0

Lϕ(s) ds =

∫ ∞

0

∫ ∞

0

∫

R

b(s)VSF (s∗)V (s)(ϕ(s′)− ϕ(s))dη ds ds∗

which is the analogous of 2.41 which permit to recover the same Fokker-Plank
equation 2.43 for the asymptotic behaviour. We omit the details.

2.2.7 Numerical tests

We considered a Monte Carlo simulation of the kinetic system using N = 50000
chartists agents and no averages. In order to simulate the kinetic behavior of the
price, we use a set of NS = 50000 samples which can be though as possible real-
izations of the random variable s denoting the price. Since at the initial time the
stock price S0 is supposed to be known, all samples are initialized at the same value
initially. In all our computations we take the value function

Φ(x) =







(

x−R0

L−R0

)r

, L > x > R0,

−
(

R0−x
R0+L

)l

, −L < x ≤ R0,
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Figure 2.6: Equilibrium distribution function of the chartist investment propensity,
with Φ(0) = 0 (left) and log-normal distribution for the price (right) at t = 1500.
The continuous line is the solution of the corresponding Fokker-Plank equations.

where x ∈ [−L,L], R0 is the reference point and 0 < l ≤ r < 1. For example we
choose r = 1/2 and l = 1/4.

Test 1 In the first test we consider the case with ρF = 0 i.e only chartists are
present in the model. We computed the equilibrium distribution for Φ(0) = 0 the
investment propensity. We take β = 0.1, tC = 1, a constant herding function
H(y) = 1 and the coefficients α1 = α2 = 0.01. The initial data for the chartists is
perfectly symmetric with Y = 0, so the price remains constant S = S0 with S0 = 10.
A particular care is required in the simulation to keep Y = 0 since the equilibrium
point is unstable and as soon as Y 6= 0 the results deviate towards a market boom
or crash.

After T = 1500 iteration the solution for the investment propensity has reached
a stationary state and is plotted together with the solution of the Fokker Plank-
limit in Figure 2.6. In the same figure we report also the computed solution for
the price distribution and the self-similar lognormal solution of the corresponding
Fokker-Plank equation. A very good agreement between the computed Boltzman
solution and the Fokker-Plank solution is obseved.

Test 2 In the second test case we considered the most interesting situation with
the presence of fundamentalists, i.e both chartists and fundamentalists interact in
the stock market. We compute an equilibrium situation where ρF = ρC = 1/2 and
the price is stationary at the fundamental value SF = 20. We take β = 0.1, tC = 1,
γ = 1.3, α1 = α2 = 0.01,and β̃ = 0.4, ν = 0.5 for the analytical steady state. We
report the result of the simulation for the price distribution at the stationary state.
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In Figure 2.7 we show the price distribution together with the steady state of the
corresponding Fokker-Planck equation. The emergence of a power law is clear also
for the Boltzmann model, and deviations of the two models is observed for small
values of the price.
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Figure 2.7: Stationary price distribution for the price with ρF = ρC = 0.5. Figure
on the right is in log-log scale. The continuous line is the Fokker-Planck solution.

Test 3 In the third test we consider the case with strategy exchange betwen the
two populations of interacting agents. The swithcing rates used to run the simulation
are of the following form:

BFC(XC −XF ) = e(σ(XC−XF )), BFC(XF −XC) = e(σ(XF−XC))

Where XC and XF represent the profits realized by chartists and fundamentalists
respectively who pursue their own strategies, their expression are given by 2.38 and
σ represent the inertia of the reaction to profit differentials. We start the simulation
considering NC = 2500 chartists and NF = 2500 fundamentalists, futhemore in
order to make simulations more realistic we take a time varing fundamental price,
by defining the following sequence SF n+1 = SF n+η, where η it’a a random number
sampeld from a truncated gaussian distribution with 0 mean and variance 0.1, at
initial time we have SF 0 = 20. For the others parameter we take β = 6, Tc =
0.02, γ = 0.1, σ = 0.8, µ = 0.2, D = 0.004, k = 0.75, and ψ(y) = sign(y).
We run different simulations for different values of α1, and α2, which measures
respectively the herding and the market influence on the chartists. We note that
the price seems to follow the fundamental price, but when the herding effects become
predominant with respect to the direct influences of the market, stronger deviations
can be observed, up to produce a situations of boom or chras of the market itself.
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In particular three fundamental behaviours can be highlighted. The predominance
of chartists, which leads the market thowards a crash or a boom (see figure 2.8), the
predominance of fundamentalist, which originates damped oscillation of the price
towards the fundamental value (see figure 2.9,2.10).
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Figure 2.8: Crash market due to a chartist predominance. The chartist population
is characterized by the parameters α1 = 0.5, and α2 = 0.35. Figure on the right
represent the variation of the chartists’s fraction among the entire population of
agents.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
5

10

15

20

25

30

35

time t

p
ri
c
e
 S

(t
)

time=2000 S=28.147239 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Figure 2.9: The price follow the fundamental price but strong oscillations appears.
The chartist population is characterized by the parameters α1 = 0.3, and α1 = 0.45.
Figure on the right represent the variation of the chartists’s fraction.
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Figure 2.10: A strong fundamentalist predominance force the price to follow the
fundamental on. Again the chartist population is characterized by the parameters
α1 = 0.2, and α2 = 0.5. Figure on the right represent the variation of the chartists’s
fraction.

Remark 2.2.4 The picture in the Test 3 seems to confirm the belive that the market
efficent hypotesys does not hold, while the fundamental price react the flux of the
incoming news with gaussian variations, the price’behaviour can deviate from it
considerabily, due to the non rational pressure coming from the chartist’s action.

2.2.8 Conclusion

We derived an interacting agent model for a simple stock market, characterized
by two different strategies that can be pursued by the agents, a chartist strategy
an a fundamentalist strategy. We have introduced a mesoscopic description for the
opinion formation of a class of chartist agents, and also for the price formation mech-
anism, finally a coupled system of kinetic equations has been derived. The model is
able to describe both phenomena of boom or chrash, and cyclic oscillations of the
market’sprice. The long time behavior has been studied in a suitable asymptotic
regimes and a pair of Fokker-Planck equation has been recovered, for the chartist’s
opinion dynamics and the price formation. We found that in a system of agents
acting only in a chartist way the distribution of price converges towards a lognormal
distribution, while when the fundamentalist strategy is also allowed price’s distri-
butions display a power low with fat tails, wich is in accordance to what observed
in the reality. In the description of charist’s behavior we also introduce a value
function, this tales into account some psychological factors in the opinion formation
dynamic, which is relate to the way investors percive the risk at the time of buy or
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sell in the stock market. We preserve for future works a deeper investigation of the
roole of suchs ingredient.
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Chapter 3

Towards hydrodynamic models of

financial markets

The goal of the models introduced in Chapter 2 is to follow the evolution of wealth
distribution in a multi-agent society, and overall to be able to describe its large-time
behavior, which in most cases is represented by an equilibrium distribution with a
certain number of properties to be interpreted in terms of economic relevance.

As a matter of fact, in statistical physics, the knowledge of the large time behavior
of the density of energy, and its approach to a universal profile are subsequently used
to construct equations for hydrodynamics, which describe the space-time evolution
of macroscopic observables.

A similar procedure could be in principle applied to the evolution of the density
of wealth, in case this density depends on other important parameters (typically the
space variable in a physical system).

The analogy with the evolution of a gas density depending of both the space
and velocity variable has been recently developed in [46], in the case in which the
behavior of each agent in the system is identified by two main variables, the first
given by his wealth, the second by his propensity to invest (in the hope of making
a profit).

Similarly to what happens in a physical system, where each particle is identified
by its position and velocity, and the position depends on the velocity through the
classical equations of motion, in [46] it has been assumed that the propensity still
depends on the wealth through a suitable equation of motion. This relationship
between propensity and wealth is largely formal, and could be modified in many
ways. Nevertheless, it is quite interesting to observe how the behavior of the hydro-
dynamics equations depends of the assumption of this equation of motion.

One important aspect of this passage is to justify it by solid arguments. In sta-
tistical mechanics the validity of the fluid dynamics is related to the gas density,
or, what is the same, to the mean time between subsequent collisions [30]. In the

47
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present situation this validity is linked to the mean number of trades which occur
in a fixed interval of time. This aspect of the matter has been recently discussed in
a paper of Y. Wang, N. Ding, L. Zhang [135], who introduced the concept of the
statistical description of the velocity of money circulation. This concept is based on
holding time of money which is defined as time interval between two transactions.
Although this concept is kept in mind when economists think of the velocity, even if
the term referring to this kind of time interval has been mentioned in several cases,
it is somewhat new to them since there has been no explicit specification of it in
economics. Recently, several efforts have been devoted to measure the waiting time
distributions in financial markets, see e.g. [99, 120]. In the process of money circu-
lation, not only the amount of money each agent holds can be considered as random
variable, but also the holding time between two transactions varies randomly. The
theoretical investigation and the numerical simulations in [135] led to the conclu-
sion that the velocity of money is proportional to the share for exchange, and, most
important, reversely proportional to the number of agents, and independent of the
average amount of money.

Using this result in a kinetic model of Boltzmann type, shows that the velocity
of relaxation to the steady distribution of wealth is inversely proportional to the
velocity of money circulation, which justifies an hydrodynamical description when
the same velocity is sufficiently high.

3.1 Inhomogeneous kinetic models

Taking into account the results of Chapter 2, collision-like kinetic models seem to
share some common features. Almost all of these models identify a very important
variable for the shape of the wealth distribution, which is usually called the saving
propensity to trade or the saving rate, respectively. This parameter can both enter
into the collision rule as a constant factor [27], or it can be chosen as a random
quantity [26]. Other studies include the saving propensity as an independent variable
[32], without questioning on the relationship between wealth and saving.

These approaches to study both wealth and saving distributions show that in
any case it could be reasonable to introduce other types of propensities into the
game, which are not directly connected to the microscopic binary trade, while they
could be important in the evolution of wealth in a market of agents. Among others,
one can assume that the evolution of the density of wealth is heavily dependent on
the propensity to invest, and at the same time that this propensity is closely related
to the amount of money one agents has to deal with.
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3.1.1 Models including propensity and wealth

If this is the case, one is led to study the evolution of the distribution function as a
function depending on the propensity x ∈ [0, 1], wealth w ∈ R+ and time t ∈ R+,
f = f(x, w, t). In analogy with the classical kinetic theory of rarefied gases, it is
useful to emphasize the role of the different parameters by identifying the velocity
with the wealth, and the position with the saving propensity. By doing this, one
assumes at once that the variation of the distribution f(x, w, t) with respect to the
wealth parameter w will depend on collisions between agents, while the change of
distributions in terms of the propensity x depends on the transport term, which
contains the equation of motion, namely the law of variation of x with respect to
time,

dx

dt
= Φ(x, w). (3.1)

The time-evolution of the distribution will obey a non-homogenous Boltzmann-like
equation, given by

∂

∂t
f(x, w, t) + Φ(x, w)

∂

∂x
f(x, w, t) =

1

τ
Q(f)(x, w, t). (3.2)

In (3.2) Φ is the law of variation of the propensity to invest given in (3.1), while Q
represents as usual the collision operator which describes the change of density due
to binary trades. Finally τ is a suitable relaxation time, depending on the velocity
of money circulation [135]. Note that in physical applications where no forces are
present, the transport term is simply Φ(x, w) = w.

In any trading, savings come naturally [121]. In a real society or economy, the
saving propensity is a very inhomogeneous parameter, and the interest of saving
varies from person to person, according to their wealths. To move a step closer to
the real situation, one has to introduce a saving factor widely distributed within the
population [26, 32], and responsible of different outcomes into binary trades. The
evolution of money in such a trading can be written as

v∗ = γv + ǫ(γ, µ) [(1− γ)v + (1− µ)w] ,

(3.3)
w∗ = µw + (1− ǫ(γ, µ)) [(1− γ)v + (1− µ)w] .

Here (γ, w) and (µ, v) denote the saving propensities and wealths of agents before
collisions. In a single collision it is assumed that the agents maintain their sav-
ing propensities fixed, so that the post-collision parameters are (γ, w∗) and (µ, v∗).
Moreover ǫ(γ, µ) denotes a random fraction, coming from the stochastic nature of
the trading. Also, one can assume, like in [38] the trade

v∗ = (1− γ)v + γw + ηv,

(3.4)
w∗ = γv + (1− γ)w + η̃w.
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In (3.4) the trade depends on a single saving rate γ ∈ (0, 1), while the risks of the
market are described by η and η̃, equally distributed random variables with zero
mean and variance σ2.

In all cases, the operator which describes the binary interaction is the usual
bilinear operator , we rewrite below by convenience

∫

R+

Q(f, f)(w)φ(w) dw =

1

2

〈
∫ 1

0

dy

∫

R+

∫

R+

dv dw (φ(v∗) + φ(w∗)− φ(v)− φ(w))f(y, v)f(x, w)

〉

. (3.5)

In the continuous trading limit (γ → 0, σ2/γ → λ), it has been shown in [38], that
the collision operator (3.5) is well described by the Fokker-Planck collision operator

P(w) = λ

2

∂2

∂w2
(w2f(w)) +

∂

∂w
(w −m(f))f(w), (3.6)

where m(f) is the mean wealth of f(w). The key parameter λ is obtained as the
limit of the quotient of the variance and the saving rate. The homogenous kinetic
equation

∂

∂t
f(w, t) = P(w, t), (3.7)

is such that both the mass and the mean wealth m(f) are conserved in time. More-
over, for any initial density f(w, t = 0) = f0(w) with mass ρ and mean m, equation
(3.7) has a unique stationary state, the so-called Maxwellian state Mρ,m(w) given
by

Mρ,m(w) = ρ
((µ− 1)m)µ

Γ(µ− 1)

1

w1+µ
exp

(

−(µ− 1)m

w

)

, (3.8)

where

µ = 1 +
2

λ
> 1.

Therefore the Maxwellian distribution exhibits a Pareto power law tail for large w’s.
In particular, higher moments of the equilibrium Maxwellian are given in terms of
mass ρ and mean m. The second moment can be easily evaluated considering that
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in equilibrium, i.e. as t→∞, one has

0 =
λ

2

∫

R+

w2 ∂
2

∂w2
(w2Mρ,m(w)) dw +

∫

R+

w2 ∂

∂w
[Mρ,m(w)(w −m)] dw

=λ

∫

R+

w2Mρ,m(w) dw− 2

∫

R+

w(w −m)Mρ,m(w) dw

=(λ− 2)

∫

R+

w2Mρ,m(w) dw + 2m

∫

R+

wMρ,m(w) dw

=(λ− 2)

∫

R+

w2Mρ,m(w) dw + 2ρm2.

Thus, if λ < 2, the second moment of the Maxwellian is bounded, and
∫

R+

w2Mρ,m(w) dw =
2

2− λ
ρm2. (3.9)

In the rest of this Chapter, we will assume that in a closed economy the Maxwellian
distribution Mρ,m, equilibrium solution of the Fokker-Planck equation (3.7), plays
the same role as played by the Maxwell distribution in kinetic theory of rarefied
gases. However, on the contrary to what happens in classical kinetic theory, where
the equilibrium Maxwellian has all moments bounded, in this case the number of
moments bounded in the equilibrium depends on the parameter λ in front of the
second-order term in (3.6).

3.2 Hydrodynamic modelling

Section 3.1 enlightened the main properties of the collision operator (3.6), like the
existence of a unique Maxwellian equilibrium with tails, and the consequent possi-
bility to obtain higher order moments from the first two (mass and mean wealth).
Like in classical kinetic theory of rarefied gases, these properties are the basis of
the construction of a reasonable hydrodynamics for the evolution of the propen-
sity. The underlying kinetic model is obtained by substituting the Fokker-Planck
operator into the Boltzmann equation (3.2)

∂

∂t
f(x, w, t) + Φ(x, w)

∂

∂x
f(x, w, t) =

1

τ
P(f)(x, w, t). (3.10)

The τ -parameter (the analogous of the Knudsen number in kinetic theory of gases
[29]) represents a suitable relaxation time, and has to be assumed small in fluid
dynamical regimes. A clear understanding of the derivation of macroscopic equations
in kinetic theory can by obtained through the use of the splitting method, very
popular in the numerical approach to the Boltzmann equation [64, 113]. If at each
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time step we consider sequentially the transport and relaxation operators in the
Boltzmann equation (3.10), during this short time interval we recover the evolution
of the density from the joint action of the relaxation

∂f

∂t
=
1

τ
P(x, w, t), (3.11)

and transport
∂f

∂t
+ Φ(x, w)

∂

∂x
f(x, w, t) = 0. (3.12)

As in classical kinetic theory, where the energy is conserved in collisions, the conser-
vation of the mean wealth in the relaxation step is enough to guarantee that (3.11)
pushes the solution towards the Maxwellian equilibrium with the same mass and
mean of the initial datum. Then, if τ is sufficiently small, one can easily argue that
the solution to (3.11) is sufficiently close to the Maxwellian, and this Maxwellian can
be used into the transport step (3.12) to close the equations. In more details, since
the Fokker-Planck operator (3.6) is both mass and momentum preserving, integrat-
ing equation (3.10) with respect to the wealth velocity w, using as test functions
φ(w) = 1, w respectively we obtain

∫

R+

(

∂f

∂t
+ Φ(x, w)

∂

∂x
f(x, w, t)

)

dw = 0, (3.13)

and
∫

R+

w

(

∂f

∂t
+ Φ(x, w)

∂

∂x
f(x, w, t)

)

dw = 0, (3.14)

Let us fix the law Φ to be linearly dependent on w,

Φ(x, w) = (w − χw̄)µ(x), (3.15)

where χ is a positive constant and w̄ represent a suitable fixed value of the wealth.
Then, one obtains from (3.13), (3.14) the equations

∂ρ

∂t
+ µ(x)

∂

∂x

[

ρ
(

m− χw̄
)

]

= 0, (3.16)

∂(ρm)

∂t
+ µ(x)

∂

∂x

[

∫

R+

w2f(x, w, t) dw− χw̄ρm

]

= 0. (3.17)

In (3.16), (3.17) ρ(x, t), m(x, t) are the macroscopic variables, the local density of
agents with propensity x at time t, given by

ρ(x, t) =

∫

R+

f(x, w, t) dw, (3.18)
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and the local mean

m(x, t) =
1

ρ(x, t)

∫

R+

wf(x, w, t) dw. (3.19)

Equation (3.17) depends on the second moment of the density. Using the equilibrium
Maxwellian (3.9), however, we can express this second moment in terms of the first
two. By this relationship we finally obtain the following system of equations

∂ρ

∂t
+ µ(x)

∂

∂x

[

ρ
(

m− χw̄
)

]

= 0, (3.20)

∂(ρm)

∂t
+ µ(x)

∂

∂x

[

ρm
( 2

2− λ
m− χw̄

)]

= 0, (3.21)

which have to be solved on (0, 1) × (0, T ) with appropriate boundary and initial
conditions. Using (3.20) we can rewrite the second equation as

∂m

∂t
+ µ(x)(m− χw̄)

∂m

∂x
+

λ

2− λ

1

ρ

∂

∂x

[

ρm2
]

= 0. (3.22)

The hydrodynamic equations (3.20), (3.21) can be written in symmetric hyper-
bolic form [?]. Multiplying (3.20) by m and subtracting it from (3.21) we obtain

ρmt + µ(x)
[

−(ρxm+ ρmx)m

+ χw̄mρx + (ρxm+ 2ρmx)
2

2− λ
m− (ρxm+ ρmx)χw̄

]

= 0. (3.23)

Define u = (ρ,m). Then a direct computation shows that the system (3.20), (3.23)
can be written in compact form as

A0(t, x, u)
∂u

∂t
+ A1(t, x, u)

∂u

∂x
= 0. (3.24)

In (3.24) A0 and A1 denote the with symmetric matrices

A0(t, x, u) =

(

1
ρ

λ
2−λ

m2 0

0 ρ

)

, (3.25)

A1(t, x, u) =

(

ρ(m− χw̄) λ
2−λ

m2 λ
2−λ

m2

λ
2−λ

m2
(

1 + 4
2−λ

)

ρm− ρχw̄

)

. (3.26)

Note that, for all ρ,m ∈ G belonging to a suitable set G, A0(t, x, u) is uniformly
positive definite provided λ < 2. Due to their structure, suitable numerical methods
are available [83].
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3.2.1 Universality of the closure

One of the main advantages linked to the use of the Fokker-Planck collision operator
(3.6) is that it is immediate to recover its steady state, namely the Maxwellian (3.8).
Unlikely, if we use a different collision operator like the Boltzmann operator (3.5),
the explicit form of this Maxwellian is unknown. This problem is not present in
classical elastic kinetic theory of rarefied gases, where the Maxwellian is uniquely
defined independently of the choice of the binary collision operator [30]. This fact
causes a first serious problem in the justification of the validity of the closure, which
in principle has to be independent of the choice of the underlying microscopic model
of collisions, except, eventually, for constant parameters. Using the results of [104],
however, we can easily conclude that the closure law

∫

R+

w2Mρ,m(w) dw = Cρm2. (3.27)

where C = 2/(2− λ) in (3.9), has a universal validity, and the type of binary trade
used into the collision operator (3.5) is reflected only through the precise value of the
constant C. Let us suppose once more that the (conservative) binary interactions
are described by the rules

v∗ = p1v + q1w, w∗ = p2v + q2w, (3.28)

where
〈p1 + p2〉 = 1, 〈q1 + q2〉 = 1. (3.29)

We remark that both trades (3.3) and (3.4) satisfy assumption (3.29). In this case,
application of formula (3.5) with φ(w) = wn allows to compute recursively the
evolution of the principal moments

Mn(t) =

∫

R+

wnf(w, t) dw

with n ≥ 2 (see [104] for details). One obtains

d

dt
Mn(t) =

1

2
〈(pn

1 + pn
2 − 1) + (qn

1 + qn
2 − 1)〉Mn(t)+

1

2

n−1
∑

k=1

(

n
k

)

〈

pk
1q

n−k
1 + pk

2q
n−k
2

〉

Mk(t)Mn−k(t). (3.30)

Considering that the first moment is conserved, M1(t) = m, equation (3.30) also
furnishes a recursive computation of the principal moments of the stationary solution

Mn = ρ

∑n−1
k=1

(

n
k

)

〈

pk
1q

n−k
1 + pk

2q
n−k
2

〉

MkMn−k

2− 〈pn
1 + pn

2 + qn
1 + qn

2 〉
. (3.31)
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In particular,

M2 =

∫

R+

w2Mρ,m(w) dw = ρm2 2 〈p1q1 + p2q2〉
2− 〈p2

1 + p2
2 + q2

1 + q2
2〉
, (3.32)

that coincides with the law (3.27), in which

C =
2 〈p1q1 + p2q2〉

2− 〈p2
1 + p2

2 + q2
1 + q2

2〉
. (3.33)

If we consider the trade (3.4), where

p1 = 1− γ + η, q1 = γ,

(3.34)
p2 = γ, q2 = 1− γ + η̃.

we obtain for C the value

C =
2γ(1− γ)

2γ(1− γ)− σ2
. (3.35)

Note that this value corresponds to the choice

λ =
σ2

γ(1− γ)

in (3.9). This result enlightens the meaning of the constant λ appearing in the
Fokker-Planck equation (3.6) in terms of the underlying binary trade (3.4). We
remark that also in this case the stationary state of the Boltzmann equation possesses
tails. Consider now the trade (3.3), where for simplicity ǫ(γ, µ) = 1/2,

p1 = (1 + γ)/2, q1 = (1− µ)/2,

(3.36)
p2 = (1− γ)/2, q2 = (1 + µ)/2.

In this case

C =
2(1− γµ)

2− (γ2 + µ2)
. (3.37)

This corresponds to the choice

λ =
(γ − µ)2

1− γµ

in (3.9). Here, however, the constant λ is always strictly less than 2. This is
related to the fact that, for pointwise collisions like the one defined by (3.36), the
stationary solution has all moments bounded [104]. In conclusion, there is a universal
validity of the closure of hydrodynamic equations, at least in the well-defined case
of conservative economies.
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3.2.2 Which law for the propensity to trade?

To proceed and to obtain (at least numerical) results on the time-evolution of the
macroscopic quantities, it is necessary to set the two variables x and w into relation.
In classical hydrodynamics, where the variables are position and velocity, this rela-
tion is obvious, since velocity is the time derivative of position. In absence of forces,
it corresponds to choose Φ(x, w) = w. To find an analogue for our economic setting,
namely a law for the propensity to trade, we resort to some arguments within the
concepts of opinion formation.

There, a class of kinetic models of opinion formation, based on two-body inter-
actions involving both compromise and diffusion properties in exchanges between
individuals have been introduced. In the quasi-invariant opinion limit, these models
are described by partial differential equation of Fokker-Planck type

The equilibrium state of the Fokker-Planck equation can be computed explicitly
and, in absence of internal points in which diffusion is missing, is in most cases well
represented by a Beta distribution

B(x; a, b) =
xa(1− x)b

∫ 1

0
ua(1− u)b du

=
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)
xa(1− x)b (3.38)

where a, b > −1, and Γ is the gamma function. In what follows, we assume that
the stationary profile for the distribution of our propensity to trade follows a law
of type (3.38). Taking into account that this stationary profile is stable, a highly
reasonable hypothesis is to assume that the rate of variation of the propensity is
proportional to the density of people having that propensity. In this case, in order
to maintain the lower and upper bounds of x(t) we assume the law

Φ(x, w) = xa(1− x)bH(w), (3.39)

where a, b > 0, and the coefficient H(w) takes into account the dependence of the
law of variation on the (relative) wealth. We remark that, thanks to the positivity
of a, b, people with propensity to trade close to zero or one are more stable in
their propensity, while people with intermediate propensity have more inclination
to change their idea.

Last, the form of H(w) can be deduced from an argument similar to that intro-
duced in Chapter2, Section 2.2.

Consider the case of a rational investor seeking to maximize his utility from
wealth after each trade. He can choose a combination of saving his current wealth
and the return from a trade, thus, since η has zero mean, his expected post-trade
wealth is

〈w∗〉 = w + x(v − w) = (1− x)w + xv.

The investor’s choice of his propensity to invest can be interpreted as the choice of
combinations of two options, w and v. The investor tries to maximize his expected
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utility from post-trade wealth 〈u(w∗)〉, where u is a utility function characterizing
the investor’s satisfaction from wealth, e.g. the Cobb-Douglas function

u(w, v) = wαvβ, α + β = 1.

The projection of this function onto the w-v-plane gives level curves of constant
utility, the so-called indifference curves. The investor is indifferent to the different
combinations of v and w on such a curve, or in other words, at each point on an
indifference curve he has no preference for one combination over another. A rational
investor will choose a value for x that maximizes his utility from post-trade wealth.
Therefore it is clear, that x should be a function of the investor’s wealth w or his
relative wealth w− χw̄, if utility from wealth is measured with respect to the mean
wealth χw̄ as a reference value (ξ denotes here a suitable constant). In other words,
the fundamental law of physics about position and velocity and their relation is
replaced here by an economic law that relates a rational investor’s propensity to
invest and his wealth based on the principle of utility maximization.

In general, the optimal choice of x depends on the underlying utility function and
this can lead to quite complex and non-linear relationships between propensity to
invest x and wealth w. However, recall that we are considering a regime where the
time between trades τ is very small. If we assume that Φ is smooth enough, we can
approximate it by a linear relation and ignore terms of higher order. Furthermore,
empirical results [121] from economic literature suggest, that typically individuals
have decreasing absolute risk aversion.

A simple way to take into account these facts is to relate the time variation of
the propensity to the relative (with respect to the mean) wealth. A way to cope
with these demands is to introduce the following law

Φ(x, w) = ±ϑxa(1− x)b
(

w − χm̄(t)
)

, (3.40)

where m̄(t) =
∫ 1

0
m(x, t) dx denotes the mean wealth at time t, and ϑ is a positive

constant. Let us remark that the choice a = b = 1 implies an exponential decay
of x(t) towards one of the two extremal points. Since x(t) < 1, its variation with
respect to time can be controlled by a suitable choice of these parameters. Let us
note further that the choice of a positive (negative) sign into (3.40) implies that
individuals with a higher (lower) wealth will be more (less) willing to trade than
individuals with lower (higher) wealth. Clearly, this is only one choice among many
possibilities. However, it seems a promising, quite natural approach, which is at the
same time flexible enough, and sufficiently easy to be tractable from a numerical
point of view. Using this choice in (3.20) and (3.21), and absorbing ϑ into time, we
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arrive to the following system

∂ρ

∂t
+ xa(1− x)b

∂

∂x

[

ρ
(

m− χm̄
)

]

= 0, (3.41)

∂ρm

∂t
+ xa(1− x)b

∂

∂x

[

ρm
( 2

2− λ
m− χm̄

)]

= 0. (3.42)

As before, using (3.41) we can rewrite the second equation as

∂m

∂t
+ xa(1− x)b(m− χm̄)

∂m

∂x
+

λ

2− λ

1

ρ

∂

∂x

[

ρm2
]

= 0. (3.43)
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Figure 3.1: Influence of different values for λ (λ = 1, 1.3, 1.5, 1.8, 1.9)

3.2.3 Numerical examples

To solve (3.41), (3.42) numerically, we use a standard finite element method. We
choose quadratic Lagrangian elements on a uniform grid with 480 nodes. We use
the initial conditions

ρ0(x) = 0.1, m0(x) = x(1− x), x ∈ (0, 1).

At the boundaries we use homogenous Neumann conditions for ρ and homogenous
Dirichlet conditions for m. If not mentioned otherwise, we choose a = b = 2, χ = 1,
λ = 1 and the final time is T = 15.

Figure 3.1 displays the numerical solution for different values of λ. Recall that
a higher λ corresponds to tails with a lower Pareto index, and this corresponds
to a society with a strong economy. We can observe the same effect here at the
macroscopic level. As λ increases, the density of agents with a high propensity to
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Figure 3.2: Influence of different values for b (b = 1.5, 2, 3, 5)
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Figure 3.3: Influence of different values for χ (χ = 0.5, 1, 2, 5, 10)

trade increases while the wealth density is increasing for larger propensities and
decreasing for smaller propensities, i.e. a large fraction of the total wealth is owned
by a small group of agents.

Figure 3.2 shows the influence of different variants of law (3.40). For a value of
b = 1.5 agents with wealth above the mean wealth increase their propensity to trade
which leads to a peak formation in the density ρ close to x = 1. For higher values
of b the propensity to invest grows slower when above the average wealth, therefore
the peak is less pronounced.

The influence of the parameter χ can be observed in Figure 3.3. For high values
of χ only very wealthy agents increase their propensity to trade, all other decrease
it. This results in a peak formation at lower levels of x with agents saving most of
their wealth.

The previous examples enlighten the influence of the law (3.1) in the evolution
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Figure 3.4: Functions b(x) and ν(x) used in the numerical illustration.
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Figure 3.5: Influence of different laws for propensity: solid lines correspond to law
(3.44), broken lines to (3.40).
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of the macroscopic quantities. Clearly, the proposed law (3.40) constitutes only a
prototype towards a better understanding of the whole matter. Changing the law
(3.40) allows to clarify the role of the various parameters involved. By maintaining
the linearity with respect to the wealth parameter w, we consider in what follows
the law

Φ̃(x, w) = ν(x)(w − m̄(t)), (3.44)

with ν(x) = cxa(1/2 − x)γ(1 − x)b. Law (3.44) assumes as hypothesis the (reason-
able?) fact that in correspondence to some point (in this case x = 1/2) the propen-
sity tends to stabilize. Figure 3.4 shows a comparison of µ(x), ν(x) corresponding
to the same values of a and b.

For numerical simulation we choose a = b = 4, γ = 2, c = 750, T = 5 and λ = 1
and the same initial and boundary conditions as above. Figure 3.5 shows the plot
of the densities ρ and m at time T = 5 resulting from the computations with the
different laws.
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Appendix A

Derivation of the Fokker-Plank

approximation for the chartist

distribution

First we recall the definition of weak solution for kinetic equations of the form
(2.37). Let Mp(I) =

{

Θ ∈ Mp :
∫

I
|y|pdΘ(y) < +∞

}

be the space of all Borel mea-
sure of finite p-th order momentum, equipped with the topology of weak conver-
gence of the measures. Let Fs(I) be the class of all real functions h on I such that
h(1) = h(−1) = h′(1) = h′(−1) = 0 and hm(y) is holder continuous of order δ

‖h(m)‖δ = sup
y1 6=y2

|h(m)(y1)− hm(y2)|
|y1 − y2|δ

<∞

where 0 < δ ≤ 1 and m+ δ = s

Definition A.0.1 Let f 0(y) ∈ Mp(I) with p > 1 an initial probability density, a
weak solution for (2.37) is any probability density f ∈ C1(R+,Mp(I)) satisfying

d

dt

∫

I

f(y, t)φ(y)dy = (Q(f, f), φ) =
∫

I2

∫

B

B(y, y∗)f(y, t)f(y∗, t)(φ(y
′)− φ(y))dy∗dydηdη∗

for t > 0 and all φ ∈ Fp(I), and such that

lim
t→0

∫

I

f(y, t)φ(y)dy =

∫

I

f 0(y)φ(y)dy

Similarly
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A. Derivation of the Fokker-Plank approximation for the chartist

distribution

Definition A.0.2 Given an initial price distribution V0(s) ∈ Mp(R
+) with p > 1

a weak solution to (2.40) is any probability density V ∈ C1(R+,Mp(R
+)) satisfying

d

dt

∫

R+

V (s, t)φ(y)dy = L(V, φ) =
∫

R+

∫

B

b(s)V (s, t)(φ(s′)− φ(s))dsdη

for t > 0 and all φ ∈ Fp(K), with K compact ∈ R
+ and such that

lim
t→0

∫

I

V (s, t)φ(s)ds =

∫

I

φ(s)V0(s)ds

We start analyzing the Boltzman equation for the investment propensity distribution
of chartists. The scaled density f̃(y, τ) satisfies the equation in weak form

d

dτ

∫

I

f̃(y, τ)φ(y)dy =
1

ξ
(Q(f̃ , f̃), φ(y)) =

1

ξ

∫

I2

∫

B2

Θ(η)Θ(η∗)f̃(y)f̃(y∗)(φ(y
′)− φ(y))dy∗dydηdη∗

Given δ ≥ 0 let us take φ ∈ F2+δ(I).
From the microscopic dynamic of the Chartists we have

y′ − y = −(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

. In the asymptotic limit ξ → 0, σ2 → 0, we have y − y′ ∼ 0 and we can use the
Taylor expansion

φ(y′)− φ(y) =

(

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

)

φ′(y)

+
1

2

(

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

)2

φ′′(ỹ),

where, for some 0 ≤ θ ≤ 1
ỹ = θy′ + (1− θ)y.

Inserting this expansion in the weak formulation of the Boltzman equation, we get

d

dτ

∫

I

f̃(y, τ)φ(y)dy =

1

ξ

∫

I2

∫

B2

Θ(η)Θ(η∗)[

(

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

)

φ′(y)+

+
1

2

(

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

)2

φ′′(y)]f̃(y, τ)f̃(y∗, τ)dy∗dydηdη∗

+R(ξ, σ)
(A.1)
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where

R(ξ, σ) =
1

2ξ

∫

I2

∫

B2

Θ(η)Θ(η∗)

(

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

)2

·

· (φ′′(ỹ)− φ′′(y))f̃(y, τ)f̃(y∗, τ))dy∗dydη∗dη

To get a rigorous derivation of the Fokker-Plank limit we need to show that the
above expression goes to zero in the asymptotic limit. In order to prove that the
remainder in (A.1), goes to zero we start observing that, being φ ∈ F2+δ(I), and
|ỹ − y| = θ|y′ − y|

|φ′′(ỹ)− φ′′(y)| ≤ ‖φ′′‖|ỹ − y|δ ≤ ‖φ′′‖δ|y′ − y|δ

Hence

|R(ξ, σ)| ≤ ‖φ
′′‖δ

2ξ

∫

I2

∫

B2

Θ(η)Θ(η∗)·

·
∣

∣

∣

∣

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

∣

∣

∣

∣

2+δ

f̃(y, τ)f̃(y∗, τ))dy∗dydη∗dη.

Using the fact that |H(y)| ≤ 1 and |Φ
(

S′(t)
S(t)

)

| ≤ 1, and applying the following

inequality

∣

∣

∣

∣

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

∣

∣

∣

∣

2+δ

≤

21+δ
{

[α1H(y)y∗ − (α1H(y) + α2)y]
2+δ + [α2Φ

(

S′(t)
S(t)

)

+D(y)η]2+δ
}

≤ 21+δ
{

21+δ[α2+δ
1 + 21+δ(α2+δ

1 + α2+δ
2 )] + 21+δα2+δ

2 + 21+δη2+δ
}

≤ 22+δ
[

K(δ)(α2+δ
1 + α2+δ

2 ) + η2+δ
]

with K(δ) a suitable constant, we finally obtain

|R(ξ, σ)| ≤ 21+δ‖φ′′‖δ

(

K(δ)(
α2+δ

1

ξ
+
α2+δ

2

ξ
+

1

2ξ

∫

B

Θ(η)|η|2+δdη

)

To simplify computations, we assume that Θ, with zero mean and variance λξ is the
density of

√
λξW , where W is a random variable with zero mean and unit variance,

that belongs to M2+α, for α > δ, so we have
∫

B

Θ(η)|η|2+δdη = E

(

∣

∣

∣

√

λξW
∣

∣

∣

2+δ
)

= (λξ)1+
δ
2E

(

|W |2+δ
)

,

and E
(

|W |2+δ
)

is bounded. This is enough to show that when both αi, i = 1, 2, ξ
and σ goes to zero with σ2 = λξ the quantity R(ξ, σ) tends to zero.
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A. Derivation of the Fokker-Plank approximation for the chartist

distribution

Taking the limit in the weak formulation we obtain now

lim
ξ→0

1

ξ

∫

I2

∫

B2

Θ(η)Θ(η∗)

[(

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

)

φ′(y)+

+
1

2

(

−(α1H(y) + α2)y + α1H(y)y∗ + α2Φ

(

S ′(t)

S(t)

)

+D(y)η

)2

φ′′(y)

]

f̃(y, τ)f̃(y∗, τ)dy∗dydηdη∗

=

∫

I

[(

ρC α̃1H(y)(Y − y) + ρC α̃2

(

Φ

(

S ′(t)

S(t)

)

− y)

))

φ′(y) +
λ

2
(ρCD

2(y))φ′′(y)

]

f̃(y, τ)dy

Which is nothing but the weak form of the Fokker-Plank equation

∂f̃

∂τ
+
∂

∂y

[(

ρC α̃1H(y)(Y − y) + ρC α̃2

(

Φ

(

S ′(t)

S(t)

)

− y)

))

f̃C

]

=
λρC

2

∂2

∂y2
[(D2(y))f̃ ].

(A.2)
We can then state the following theorem

Theorem A.0.3 Let the probability density f 0 ∈ M0(I), and let the symmetric
density Θ be in M2+α with α > δ. Then, as β → 0, σ → 0 in such a way that
σ2 = λβ the weak solution to the Boltzmann equation for the scaled density f̃(y, τ)
with τ = βt converges, up to extraction of a subsequence, to the weak solution of the
Fokker-Plank equation (A.2).



Appendix B

Derivation of the Fokker-Plank

limit for the price distribution

In this appendix we recover the Fokker-Plank limit for the Boltzman equation of
the scaled density distribution of the price.
Again we start with the weak formulation which now is

d

dτ

∫ +∞

0

Ṽ (s, τ)φ(s)ds =
1

ξ

∫ +∞

0

∫

B

Ψ(η)Ṽ (s, τ)(φ(s′)− φ(s))dsdη (B.1)

for all φ ∈ F2+δ(K), with δ > 0 and for any compact interval I = [0, a] ⊂ [0,+∞)
Using a Taylor expansion of φ around s

φ(s′)− φ(s) = (β(ρCtCY (t)s+ ρFγ(SF − s)) + ηs)φ′(s)

+
1

2
(β(ρCtCY (t)s+ ρFγ(SF − s)) + ηs)2 φ′′(s̃),

where for some 0 ≤ θ ≤ 1

s̃ = θs′ + (1− θ)s

and substituting into (B.1) we have

d

dτ

∫ +∞

0

Ṽ (s, τ)φ(s)ds =
1

ξ

∫ +∞

0

∫

B

Ψ(η)[(β(ρCtCY (t)s+ ρFγ(SF − s)) + ηs)φ′(s)

+
1

2
(β(ρCtCY (t)s+ ρFγ(SF − s)) + ηs)2 φ′′(s)]Ṽ (s, τ)dsdη

+
1

ξ
R(β, ζ)

where

1

ξ
R(β, ζ) =

1

2ξ

∫ +∞

0

∫

B

Ψ(η) (β(ρCtCYC(t)s+ ρFγ(SF − s)) + ηs)2 · (φ′′(s̃)− φ′′(s))Ṽ (s, τ)dsdη
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Analogously as before, in order to perform the asymptotic limit we need to show
that the quantity R(β, ζ) approach to zero. We observe that being φ ∈ F2+δ(R+)
and |s̃− s| = θ|s′ − s| we have

|φ′′(s̃)− φ′′(s)| ≤ ‖φ′′‖δ|s′ − s|δ

hence

|1
ξ
R(β, ζ)| ≤ ‖φ

′′‖δ

2ξ

∫ +∞

0

∫

B

Ψ(η)

∣

∣

∣

∣

β(ρCtCY (t) + ρFγ
(SF − s)

s
) + η

∣

∣

∣

∣

2+δ

s2+δṼ (s, τ)dsdη

we observe that
∣

∣

∣

∣

β(ρCtCY (t) + ρFγ
(SF − s)

s
) + η

∣

∣

∣

∣

2+δ

≤

22(1+δ)β2+δ|ρCtCY (t)|2+δ + 22(1+δ)β2+δ(ρFγ)
2+δ

∣

∣

∣

∣

SF − s

s

∣

∣

∣

∣

2+δ

+ 21+δ|η|2+δ

As in appendix A we assume that Ψ, with zero mean and variance νζ is the
density of

√
νζW , where W is a random variable with zero mean and unit variance,

that belongs to M2+α, for α > δ, so we have

∫

B

Ψ(η)|η|2+δdη = E

(

∣

∣

∣

√

νζW
∣

∣

∣

2+δ
)

= (νζ)1+
δ
2E

(

|W |2+δ
)

, (B.2)

and E
(

|W |2+δ
)

is bounded.
Then we can see that

|1
ξ
R(β, ζ)| ≤ ‖φ′′‖δ

2ξ

[

22(1+δ)β2+δ|ρCtCYC(t)|2+δ + 23(1+δ)(βρFγ)
2+δ + (νξ)1+

δ
2K

]

∫ +∞

0

s2+δṼ (s)ds

+ 23(2+δ)(βρFγ)
2+δS2+δ

F ,

where the constant K is a bound for E
(

|W |2+δ
)

. From this inequality it follows
that 1

ξ
R(β, ζ) tends to zero as ξ → 0 if

∫ +∞

0

Ṽ (s, τ)s2+δds

is bounded at any fixed time τ > 0, provided that the same bound holds at time
τ = 0 .

To show this we start from the weak formulation of the Boltzman equation as-
sociated to V (s) given by (2.40-2.41).



69

The choice φ(y) = yp give us the following

d

dt

∫ +∞

0

V (s, t)spds =

∫ +∞

0

∫

B

Ψ(η)V (s, t)(s′p − sp))dsdη.

Now

s′p − sp = psp−1(s′ − s) +
1

2
p(p− 1)s̃p−2(s′ − s)2

where for some 0 ≤ θ ≤ 1,

s̃ = θs′ + (1− θ)s.

Recalling the microscopic dynamic for the evolution of the price variable s we
can write

d

dt

∫ +∞

0

V (s, t)spds =

∫ +∞

0

∫

B

Ψ(η)V (s)

[

psp−1(s′ − s) +
1

2
p(p− 1)s̃p−2(s′ − s)2

]

dsdη =
∫ +∞

0

∫

B

Ψ(η)V (s, t)
[

βpsp−1 (β(ρCtCY (t)s+ ρFγ(SF − s)) + ηs)
]

dsdη+

p(p− 1)

2

∫ +∞

0

∫

B

Ψ(η)V (s, t)s̃p−2

{

s2

[

β

(

ρCtCY (t) + ρFγ
(SF − s)

s

)

+ η

]2
}

dsdη

by virtue of the fact that the random variable η has zero mean value, the first
therm of the last inequality reduces to

pβ (ρCtCY (t)− ρFγ)

∫ +∞

0

V (s, t)spds+ βρFγ

∫ +∞

0

V (s, t)sp−1ds.

and so both of the two coefficent goes to 0 when β → 0. For the second therm, we
know that

s̃ = θ(s + β(ρCtCY (t)s+ ρFγ(SF − s)) + ηs) + (1− θ)s =

s[θβ(ρCtCY (t) + ρFγ
(SF − s)

s
) + θη + 1].

which implies the following estimation

s̃p−2 ≤ Cp

[

|βρCtCY (t)|p−2 + |η|p−2 +
C̄p

Cp
|βρFγ|p−2 + 1

]

sp−2 + C̄p|βρFγ|p−2Sp−2
F

with Cp and C̄p suitable constants.
Recalling now that
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s2

[

β

(

ρCtCY (t) + ρFγ
(SF − s)

s

)

+ η

]2

≤ C2

[

(βρCtCY (t))
2 + η2 +

C̄2

C2
(βρFγ)

p−2

]

s2 + C̄2(βρFγ)
2S2

F .

Gathering all this and substituting in the weak formulation gives

d

dt

∫ +∞

0

V (s)spds ≤

pβ (ρCtCY (t)− ρFγ)

∫ +∞

0

V (s, t)spds+

p(p− 1)

2

∫ +∞

0

∫

B

ψ(η)V (s, t)

{

Cp

[

|βρCtCY (t)|p−2 + |η|p−2 +
C̄p

Cp
|βρFγ|p−2 + 1

]

sp−2 + C̄p|βρFγ|p−2Sp−
F

{

C2

[

(βρCtCY (t))
2 + η2 + C̄2

C2
(βρFγ)

p−2
]

s2 + C̄2(βρFγ)
2S2

F

}

dsdη

Now if we consider in the symptotic limit β, ζ → 0 and recalling B.2 for the high
order moments of η, the above expression goes to zero.

Coming back to the asymptotic expansion we can finally perform the limit

lim
ξ→0

1

ξ

∫ +∞

0

∫

B

ΘV (η)[(β(ρC(t)Y (t)tCs+ ρFγ(SF − s)) + ηs)φ′(s)

+
1

2
(β(ρC(t)Y (t)tCs+ ρFγ(SF − s)) + ηs)2 φ′′(s)]Ṽ (s, τ)dsdη

=

∫ +∞

0

[

β̃(ρC(t)Y (t)tCsρFγ(SF − s))φ′(s) +
ν

2
s2φ′′(s)

]

Ṽ (s, τ)ds.

Which is the weak form of the Fokker-Plank equation

∂

∂τ
Ṽ +

∂

∂s

[

β̃ (ρC(t)Y (t)tC)s+ ρFγ(SF − s)) Ṽ
]

=
ν

2

∂2

∂s2

(

s2Ṽ
)

. (B.3)

So we proved the following

Theorem B.0.4 Let the probability density V0 ∈ M0(R
+). Then as β → 0, and

ζ → 0 in such a way that ζ2 = νβ the weak solution to the Boltzman equation for
the scaled density Ṽ (s, τ) = V (s, t), with τ = βt converges up to extraction of a
subsequence, to a weak solution of B.3.



Appendix C

Hybrid model for the coupling of

an asymptotic preserving scheme

with the asymptotic limit model:

the one dimensional case

In the present appendix I show the results of an investigation work produced dur-
ingthe CEMRACS summer school held in Marseille in the August 2010. Here
a spatial coupling of an asymptotic preserving scheme with the asymptotic limit
model, associated to a singularly perturbed, highly anisotropic, elliptic problem is
investigated and compared with the numerical discretization of the initial singular
perturbation model or the purely asymptotic preserving scheme
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C. Hybrid model for the coupling of an asymptotic preserving scheme with

the asymptotic limit model: the one dimensional case
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