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Introduction

The present work has been developed within the framework of the project

to measure the Electric Dipole Moment (EDM) of charged particles in a

storage ring. The measurements presented here were made at the COSY

(COoler SYnchrotron) ring located at the Forschungszentrum-Jülich GmbH

(Germany).

The measurement of a non-zero EDM aligned with the spin of fundamen-

tal particles would contribute to solving one of the puzzles of contemporary

physics, the so-called baryon asymmetry, that asks why matter dominates

over anti-matter in our universe. According to the Big Bang Theory, at

the origin of the universe an equal amount of matter and anti-matter was

present. This symmetry must have been broken by mechanisms violating

charge symmetry C and the combined charge-parity symmetry CP under

conditions far from thermal equilibrium (see Sakharov’s criteria). Despite

the fact that the Standard Model contains all these elements, it is not able

to explain the size of the current baryon asymmetry, especially because the

amount of CP violation (essentially coming from the weak sector) is too

small. This CP violation is scaled to match the observed cross sections

in the decay of K-meson and B-meson. What is needed is a window that

would allow us to observe new forms of CP violation. One way to proceed
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is to measure the time-reversal violation determined by the size of an EDM

aligned with the spin of a particle, nucleon, or atomic system.

The EDM is a charge displacement that lies along the particle’s spin axis.

Under a parity transformation P which inverts the spacial coordinates, the

spin direction remains unchaged while the EDM flips. Under a time reversal

operation T which inverts the time coordinate, the EDM stays the same

and the spin direction is inverted. The failure of either transformation to

reproduce the original system indicates that the presence of an EDM along

the particle’s axis represents a violation of both parity and time-reversal

symmetries. Assuming the conservation of the combined symmetries CPT ,

a violation of T represents a violation of CP . Thus time reversal violation

experiments represent a way to look for CP violation aside from comparing

particle and anti-particle reaction rates.

The theoretical predictions based on multi-loop Standard Model me-

chanisms (e.g. neutron |d⃗n| ∼ 10−34 e·cm) are several orders of magnitude

below the current EDM experimental limits (|d⃗n| ∼ 10−26e·cm). In contrast,

models beyond the Standard Model forsee EDMs well within the planned

experimental precision. The measurement of a non-vanishing EDM at the

sensitivity of present or planned experiments would clearly prove the exi-

stence of new CP violating meachanisms beyond the Standard Model.

Noting that the first CP non-invariance was observed in K-meson decay

in 1964, the question of the symmetry properties of fundamental forces or

particles was put forward by Purcell and Ramsey in 1951. They searched

unsuccessfully for a parity-violating up-down asymmetry in the scattering

of neutrons from nuclei. Even if they were not explicity looking for an

EDM, their work is usually recalled as the first EDM experiment. After
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that, the EDM search intensified and the level of experimental precision

has improved steadily ever since, now including heavy atoms and molecules

as well as neutrons. For a neutral system, the usual method for detecting

the EDM d⃗ is to apply an electric field E⃗ and look for the energy shift

d⃗ · E⃗. Unfortunately, this method cannot be used for charged particles

which would be accelerated by the electric field and then lost.

The development of storage ring technology and polarized beams made

possible the recent proposal to measure the EDM of charged particles. The

proposed solution is the use of a storage ring where the polarized charged

particle beam can be kept circulating while interacting with the radial elec-

tric field always present in the particle frame. Starting with a longitudinally

polarized beam (particle spins aligned along the velocity), the EDM signal

would be detected as a polarization precession starting from the horizontal

plane and rotating toward the vertical direction.

There are two fundamental conditions to fulfill in order to realize this

experiment. One is freezing the polarization precession frequency in the

horizontal plane to the revolution frequency of the beam in the ring, so that

the beam will be always longitudinally polarized. The second condition

is to guarantee a long horizontal polarization lifetime which defines the

observation time available to measure the EDM signal.

A deep comprehension of beam and spin dynamics in a storage ring is

needed to study the feasibility of the proposed EDM experiment for charged

particles. In particular, the understanding of spin dynamics is a crucial

point in order to provide a long horizontal polarization lifetime. The sta-

ble spin axis in a storage ring is along the vertical axis, orthogonal to the

ring plane. Thus, as soon as a spin moves out from the stable direction,
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it will start precessing around it with a frequency proportional to the rel-

ativistic factor γ of its motion and the local magnetic field. The number

of spin precessions per turn around a storage ring is called the spin tune.

Since particles have slightly different velocities, the spins will precess with

different frequencies, spreading around in the horizontal plane and making

the horizontal polarization shrink and vanish. The horizontal polarization

lifetime represents the obervation time available to detect the EDM signal

and is called the spin coherence time. The goal for the deuteron EDM ex-

periment is to achieve an EDM sensitivity of 10−29 e·cm, which requires

a spin coherence time of at least 1000 s along with the ability to measure

microradians of polarization rotation.

The aim of this work is the analysis of the mechanisms which control the

spin coherence time in a storage ring as a part of the feasibility studies for the

deuteron EDM experiment. For this reason a series of dedicated studies has

been started at the COSY ring in Jülich. The COSY ring provides beams

of polarized protons and deuterons in a momentum range from 300 MeV/c

to 3.7 GeV/c. Beam polarimetry tools are also available, such as the LEP

(Low Energy Polarimeter) to measure the polarization of the states injected

and the EDDA scintillator detectors used as a mock EDM polarimeter.

A first set of measurements was devoted to study the spin coherence

time in presence of a radio-frequency (rf) solenoid induced spin resonance.

Since the width of this resonance depends on the spin tune spread and

thus on the particle momentum distribution, it represents a good starting

point to estimate the size of the spin tune spread before moving to a direct

measurement of the spin coherence time. A vertically polarized deuteron

beam was injected in COSY and accelerated to a momentum of 0.97 GeV/c.
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A continuous polarization measurement was provided by slowly extracting

the beam into a thick carbon target and detecting the elastically scattered

deuterons in the EDDA polarimeter. The use of electron-cooled and un-

cooled beams permitted observation of the effect of momentum spread and

beam size on the polarization while running the rf-solenoid either at fixed or

variable frequency. In order to analyze the data, I developed a “no lattice”

model together with Dr. E. J. Stephenson, based on two matrices to decribe

the spin precession about the vertical axis and the spin rotation due to the

solenoid effect.

The second experiment was devoted to the measurement of the horizon-

tal polarization lifetime as a function of time. It required the development

of a dedicated data acquisition system aimed at detecting the precession

of the horizontal polarization as a function of time. Data were analyzed

using a set of template curves which allowed the study the contribution of

beam emittance (transverse beam size) to the spin coherence time. Then,

it was succesfully verifed the possibility to correct emittance effects on the

spin tune spread using sextupole magnets, obtaining a longer spin coherence

time.

The thesis is divided in six chapaters:

• Chapter 1 yields a theoretical overview of the EDM as probe of new

physics including the experimental results achieved up to now. The

new method for the measurement of a charged particle EDM in a

storage ring closes the chapter.

• Chapter 2 provides the basic elements of beam dynamics in a storage

ring which are necessary to understand the analysis and the measure-
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ments presented in the thesis.

• Chapter 3 describes the COSY storage ring where the experiments

have been conducted. It contains the definition of polarization for a

spin-1 particle such as the deuteron and the methods to measure it.

• Chapter 4 illustrates the first set of measurements which focus on the

effects of synchrotron oscillations on the vertical polarization and the

“no lattice model” used for the analysis.

• Chapter 5 shows the direct measurement of horizontal polarization

as a function time including the emittance effects and the sextupole

corrections to the depolarization with time.

• Chapter 6 contains a summary describing what has been achieved and

the prospects for future developments.



Chapter 1

The Electric Dipole Moment as
a probe of CP violation

1.1 Baryon asymmetry

In cosmology, an important fact still lacking explanation is the existence
of the large amount of matter which forms the galaxies, the stars and the
interstellar medium. There is essentially no antimatter in a universe that
started with no particle content right after inflation. This chapter will
explore how this problem of baryogenesis is linked to the possible existence
of an electric dipole moment (EDM) aligned along the spin axis of particles.
All explanations of baryogenesis in the early universe necessarily require a
significant amount of CP violation, the combination of charge conjugation
and parity symmetries, that is a characteristic of an EDM.

The matter content of the universe usually is quantified by the ratio of
the number density of baryons nb to the number density of photons nγ, also
called the asymmetry parameter, which is:

η = nb/nγ = (6.08± 0.14)× 10−10 (1.1)

as the derived from the CMB saltellite data and from primordial nucleosyn-
thesis data [1]. At the present temperature T = 2.728 ± 0.004 K of the
universe, the photon number density is nγ = 405 cm−3. There is strong
evidence that the universe consists entirely of matter, as opposed to anti-
matter, and the few antiprotons np̄/np ∼ 10−4 seen in cosmic rays can be
explained by secondary pair production processes.

The predicted number of baryons and antibaryons is minuscule, nb/nγ =

1
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nb̄/nγ ∼ 10−18, which for baryons is more than 8 orders of magnitude below
the observed value (see Eq. 1.1). The process responsible for this unexpect-
edly large baryon asymmetry of the universe, generated from an initially
symmetric configuration, is called baryogenesis.

The general criteria which allow for the dynamical generation of a baryon
asymmetry from an initial baryo-symmetric configuration were formulated
by Sakharov in 1967 [2] and they include:

1. Violation of baryon number B . The baryon number is defined as
B = nb−nb̄. There must be elementary processes that violate baryon
number such that baryogenesis can proceed from an initial B = 0 to
a universe with B > 0.

2. Violation of C and CP symmetries. It is demonstrated that
if the charge conjugation symmetry C and the combined symmetry
CP were exact, then the reactions that generate an excess of baryons
would occur at the same rate as the conjugate reactions that generate
an excess of antibaryons. Thus, the baryon asymmetry would retain
its initial value η = 0.

3. Departure from thermal equilibrium. Baryon asymmetry gen-
erating processes must take place far from thermal equilibrium. If
this was not the case, particle production reactions and their inverses
would have the same rate and there would be no net increase in the
number of particles.

Remarkably, over the years it was realized that the Standard Model
(SM ) does contain all three ingredients. Despite that, the predicted baryon
asymmetry falls orders of magnitude short of the baryon asymmetry that
is observed experimentally. In particular, the SM contributions to CP
violation are too small to explain baryogenesis.

1.2 CP violation in the SM and beyond

In the standard model, treating neutrinos as massless, there are two
sources of CP violation: one is the phase δ in the quark mixing matrix and
the other is the θQCD coefficient.

The discovery and exploration of CP violation in the neutral B meson
system [3] is, along with the existing data from CP violation observed with
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K-mesons [4], in accord with the minimal model of CP violation known
as the Kobayashi-Maskawa (KM) mechanism. This introduces the 3 × 3
unitary matrix V for three quark families (called the CKM mixing matrix)
which defines the strength of flavor changing weak decays. Indeed, |Vij|2 is
the probability that a quark of i flavor decays into a quark of j flavor. V
involves three mixing angles and one CP violating phase δ. The smallness
of CP violation is not because δ is small. This phase can be large, but
the observed effects are strongly suppressed by small mixing angles. While
the CKM matrix allows for CP violation in the quark-W boson coupling, it
does not explain all of the observed CP asymmetry needed for baryogenesis.
That is, the level of observed asymmetry between matter and antimatter in
the universe is not explained by the Standard Model.

In quantum chromodynamics (QCD), CP violation comes from the so-
called θ term, an additional gauge kinetic term of the Lagrangian. If its
coefficient θQCD is nonzero, the violation of both P and T (or CP assuming
the CPT theorem) symmetries occurs. Moreover, if θQCD were O(1), one
would predict a neutron EDM of sufficient size to ensure that the first EDM
experiment of Purcell and Ramsey [5] would have detected it. In fact θQCD

is now known to be tuned to zero, or at least to cancel, to better than
one part in 1010. This tuning is the well known strong CP problem of
the Standard Model. In other words the strong interactions preserve CP
to high degree of precision. It is not known wether θQCD is small due to
an accidental cancellation or to some dynamical mechanisms. The most
popular explanation is the existence of a new symmetry of QCD, called
Peccei-Quinn symmetry [6], such that θQCD becomes a dynamical variable.
The spontaneous breaking of the symmetry leads to a very light boson called
the axion.

The standard model is not a complete theory [7] because it does not ex-
plain the particle-antiparticle asymmetry in the universe nor solve the hier-
archy problem - why the masses of the known particles are so much smaller
than the fundamental Plank mass (1019 GeV/c) or the grand-unification
mass (1016 GeV/c). And it does not incorporate gravity. One of the most
plausible extensions of the standard model is SuperSymmetry (SUSY), a
symmetry between bosons and fermions. It adds new sources of CP viola-
tion but it doubles the number of particles. Each particle of the standard
model has a more massive superpartner, so for example the photon’s super-
partner is the photino and the electron’s is the selectron. Spin-zero bosons
like the selectron can engage in CP violating interactions with electrons
and quarks. Since the new interactions introduced by SUSY can provide a
measurable electric dipole moment of fundamental particles, the EDM can
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Figure 1.1: A particle with an
EDM d⃗ parallel to its spin µ⃗ is
shown on the left side. An inver-
sion through the origin, parity (P)
reverses the EDM sign and leaves
the spin direction unchanged. A
time reversal operation T trans-
forms the original particle into one
with the same EDM but oppo-
site spin direction. A rotation of
180◦ illustates that the particles
depicted on right side are the same
and unlike the particle on the left.
Thus, violation of P and T can be
seen as changing a particle with an
EDM parallel to the spin direction
into one whose EDM direction is
antiparallel.

be a probe of new physics, as is explained in the following section.

1.3 The EDM as probe of new physics

As mentioned in the previous sections, time reversal and CP violation
are closely related, in the sense that any CPT invariant interaction that
violates one must violate the other. Nevertheless, CP and T are different
symmetries with different physical consequences, so possible T violating
observables open a new window on standard model tests and new physics
searches. In particular, the effects of true CP violation are essentially lim-
ited to flavor changing processes such as K and B decays, while T odd
observables such as electric dipole moment are also relevant for flavor diag-
onal channels.

The EDM of a fundamental particle is a charge displacement within the
particle volume. It necessarily lies along its spin axis, because all compo-
nents perpendicular to that average to zero. The alignment of spin and the
EDM leads to violation of time reversal T, that inverts the time coordinate
t → −t, and parity P, that inverts the spatial coordinates r⃗ → −r⃗. As
shown in Fig. 1.1, reversing time would reverse the spin direction but leave
the EDM direction unchanged. So the existence of an EDM would be a vi-
olation of T. A parity operation would leave particle’s spin unchanged but
reverse the EDM sign, violating the P symmetry. Assuming the validity of
the CPT theorem, violation of T implies a violaton of CP symmetry.
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The idea to use the electric dipole moments of particles as a high-
precision probe of symmetry properties of the strong interactions is due
to Purcell and Ramsey in 1951. Remarkably, it precedes not only the dis-
covery of CP violation in K mesons but also the discovery of parity violation
in weak interactions. It was only 25 years later that the establishment of
QCD as the theory of strong interactions led to the possibility of P and
CP violation by the θ term. Although EDMs are not the only observables
sensitive to non-CKM sources of CP violation, the remarkable degree of
precision to which they can currently be measured endows them with a
privileged status.

1.3.1 Theoretical predictions

The predicted EDM effects due to CKM mixing in the standard model
are extremely small. The quark EDMs are only generated at the three-loop
level and are expected to be [10]:

dCKM
q ≃ 10−34e cm (1.2)

while the electron EDM only receives contributions from four-loop diagrams
(at least for massless neutrinos) and should be:

dCKM
e ≤ 10−38e cm. (1.3)

The contributions to the neutron and proton EDM from the θQCD term in
the QCD lagrangian is [11]:

|dθn| = |dθp| ≃ 4.5× 10−15θQCD (1.4)

while the deuteron EDM is expected to be zero. In fact, the upper limit on
dn (see Sec. 1.3.2) now sets the upper limit on θQCD at ≤ 10−11.

Another scenario comes from SUSY where there are two contributions
to CP violation: one from the quark-EDM (dup and ddown) and the other
from the chromo-EDM (dcup and dcdown) where the EDM is generated in a
loop containing a supersymmetric particle. Defining

∆ = ddown − dup/4, ∆+ = dcup + dcdown, ∆− = dcup − dcdown,

neutron, proton and deuteron EDMs [12] are given by:

dn = 1.4∆ + 0.83∆+ − 0.27∆− (1.5)

dp = 1.4∆ + 0.83∆+ + 0.27∆− (1.6)

dd = dup + ddown − 0.2∆+ − 6∆−. (1.7)
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Figure 1.2: The experimental
limits reached for neutron (black)
and electron (red) EDMs are shown
on the left side. On the right side
there are the theoretical predictions
of the standard model (the smallest
values) and beyond, such as Multi
Higgs, Left-Right, and SUSY mod-
els. Although no EDM has been
measured yet, a discovery of a non-
zero EDM between the current ex-
perimental bounds and the stan-
dard model calculations would be
a signal of new physics [8].

If a non-zero deuteron EDM is measured, it would have a special sensitivity
to the chromo-EDM due to the large coefficient of ∆− in Eq. 1.7.

Because the SM contributions are expected to be small, EDMs are an
excellent place to search for the effects of new physics. In Fig. 1.2 a com-
parison between experimental limits and the wide scenarios of theoretical
expectations from the SM and beyond are shown.

No EDM of a fundamental particle has been measured yet. But if a
non-zero EDM value is found between the actual experimental limits and
standard model predictons it will be a clear signal of new physics and thus
it will point to a new CP violation source.

1.3.2 Experiments

After the first experiment in 1951, the EDM search intensified and the
level of experimental precision has improved steadily ever since. Indeed,
following significant progress throughout the past decade, the EDMs of the
neutron and several heavy atoms and molecules have been found to vanish
to remarkably high precision.
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In these measurements, the basic idea for detecting an EDM is to apply
an electric field and look for the energy shift −d⃗ · E⃗. In most of the EDM
experiments there is an external magnetic field B⃗ parallel to E⃗. Considering
a particle of spin 1/2, the energy difference between magnetic and electric
fields parallel or antiparallel is given by:

hν = 2µB ± 2dE, (1.8)

where h is Plank’s constant, ν is the spin precession frequency, µ is the
magnetic dipole moment and the ambiguous sign is determined by whether
d and µ are parallel or antiparallel to each other. The tiny EDM effect
is extracted by switching the polarity on the plates generating the electric
field, thus reversing the sign of E⃗ relative to B⃗. Subtracting the measured
frequencies cancels out the magnetic term and the EDM is given by:

d =
h∆ν

4E
(1.9)

Some results in the last decade are:

• |de| ≤ 1.6× 10−27e · cm, the electron EDM limit derived from 205T l, a
paramagnetic atom [13].

• |dn|exp ≤ 2.9× 10−26e · cm, the neutron EDM limit measured on ultra
cold neutrons [14].

• |datom|exp ≤ 3.1 × 10−29e · cm, the atomic EDM limit measured on
199Hg, a diamagnetic atoms from which an upper limit on the proton
EDM has been derived (|dp| ≤ 7.9× 10−25e · cm) [15].

The atomic EDMs are complementary to those of the electron and neu-
tron because they receive contributions not only from the EDMs of their
constituents but also from CP violating eN or πN interactions (where N
stands for a nucleon). Future experiments may improve the sensitivity sig-
nificantly, by as much as four orders of magntude for de.

There are also prospects for new or greatly improved sensitivities to other
EDMs, such as the muon, proton and deuteron. In these cases, the basic
idea described for neutral systems does not work, since charged particles
would be lost in an electric field. A new technique has to be developed and a
plausible solution is a storage ring. For example, a proton or deuteron beam
can be kept circulating in a storage ring with the polarization aligned along
the momentum. The EDM signal would then arise from the interaction
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of the spin particles with a radial electric field (see Sec. 1.4). A proposal
for the proton EDM experiment has been submitted with a sensitivity of
10−29e cm. To roughly estimate the scale of new physics probed by p/d
EDM experiments, the EDM can be expressed on dimensional grounds as:

di ≈
mi

Λ2
e sinφ (1.10)

where mi is the quark or lepton mass, sinφ is the result of CP violating
phases, and Λ is the new physics mass or energy scale. For mq ∼ 10 MeV
and sinφ of order 1/2, one finds

|dp| ∼ |dd| ∼ 10−24


1TeV

Λ

2

e cm (1.11)

Thus, for a dp or dd ∼ 10−29e cm the sensitivity probe would be Λ ∼ 300
TeV, a scale which is well beyond the center of mass energy of the LHC.
Considering SUSY with superpartner masses MSUSY ≤ 1 TeV, if a dp or
dD ∼ 10−29e cm were not observed, sinφ would be very small, ≤ 10−5.

No EDM has been found, but the current experiments set important
constraints on the theoretical models. It is critical to carry out EDM ex-
periments on different particles in order to understand where the source of
CP violation originates.

1.4 EDM search in storage rings

As mentioned in the previous section, the new proposal to measure the
EDM of a charged particle is based on the employment of a storage ring, a
type of accelerator in which a particle beam can be kept circulating for a
long period, up to hours.

Detection methods rest mainly on observing the precession of the polari-
zation in an external electric field. Beginning with a longitudinally polarized
beam in the storage ring, the EDM can be detected as a rotation of the pola-
rization from the longitudinal to the vertical direction due to the interaction
with the inward radial electric field that is always present in the particle
frame (see Fig. 1.3(a)). This field, which bends the particle trajectories
into a closed orbit, is present whether the ring is magnetic or electrostatic
(as has been proposed for the proton case). However, it is first necessary
to arrange the ring fields so that the precession of the spin relative to the
velocity in the ring plane is suppressed. That precession (without the EDM
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component) is given by the Thomas-BMT equation [16] :

ω⃗G = ω⃗S − ω⃗C = − q

m


GB⃗ −


G−


m

p

2

β⃗ × E⃗

c


(1.12)

where it is assumed that β⃗ · B⃗ = β⃗ · E⃗ = 0, and ω⃗S is the spin precession in
the horizontal plane, ω⃗C is the particle angular frequency and G = (g−2)/2
is the particle anomalous magnetic moment (also denoted by a for leptonic
anomalous moments). The spin precession can be frozen against the particle
velocity with different methods, depending on the sign of the anomalous
magnetic moment.

(a) (b)

Figure 1.3: The sketch in 1.3(a) shows the EDM signal of a charged particle in a storage
ring. The purple arrow repesents the particle spin aligned along the velocity v⃗. Due to
the EDM interaction with the inward electric field present in the particle frame, E⃗, the
spin starts precessing in the vertical plane (orthogonal to the ring plane). The figure
1.3(b) shows in red the additional outward electric field needed for the deuteron EDM
experiment to suppress the horizontal spin precession relative to the velocity.

For protons with G = 1.79, it is possible to make ω⃗ = 0 when B⃗ = 0
(purely electrostatic bending elements) and p = m√

G
= 0.701 GeV/c. This

special value of the momentum is called the magic momentum.

For deuterons with G = −0.14, no such solution exists and the bending
elements of the ring become a combination of vertical magnetic and outward
radial electric fields such that the electric field is related to the magnetic
field through

E =
GBcβγ2

1−Gβ2γ2
. (1.13)

In both cases, ring and experiment performance are enhanced by choosing
as large an electric field as is practical.

At EDM sensitivity levels approaching 10−29 e·cm, the EDM signal
would be a precession on the order of 10−5 rad for a beam storage time
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of 20 min. It is crucial that during these 20 minutes that the beam pola-
rization remains large for the EDM effect to accumulate to a measurable
level. Normally, momentum spread among the beam particles leads to dif-
ferences in the precession rates given in Eq. (1.12) and the particle spins will
decohere by spreading in the horizontal plane. Thus, the aim of the next
chapter is to analyze the contributions from the beam dynamics which can
cause a horizontal polarization loss, preventing the EDM signal from being
measurable. In particular, all the feasibility studies presented in this thesis
are related to the deuteron EDM experiment. The conclusions, however,
are general and apply to the proton case and any other storage ring EDM
experiments.



Chapter 2

Elements of accelerator physics

The proposed method to measure the EDM of a charged particle requires
the use of a storage ring. In this chapter, the main features of the beam
dynamics in a storage ring will be described, including their effects on the
beam polarization, as is shown in the measurements presented in the last
two chapters. The topics illustrated here have been taken from Ref. [17].

2.1 Transverse beam dynamics

A particle beam can be kept circulating in a storage ring using dipole
magnets, which bend the particle trajectory into a closed orbit. A sta-
ble transverse motion is guarateed by quadrupole magnets. In particular,
quadrupoles provide linear restoring forces and it is often possible to treat
the two transverse (vertical and radial directions) degrees of freedom as
uncoupled.

2.1.1 Strong focusing

Strong focusing is a method based on alternating gradient field focusing,
which makes use of quadrupole magnets. Since it is not possible to provide
a restoring force in both transverse directions simultaneously (from ∇⃗×B⃗ =
0), it is necessary to alternate magnets focusing in the vertical and horizontal
directions.

Quadrupoles can be constructed from iron shaped with a hyperbolic

11
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Figure 2.1: The new coordinate system for development of the transverse equations of
motion.

profile. The resulting magnetic field is:

B⃗ = B′(yx̂+ xŷ), (2.1)

where the field gradient B′ = ∂By/∂x = ∂Bx/∂y is evaluated at the center
of the quadrupole and x̂, ŷ and ẑ (shown as ŝ in Fig. 2.1) are the unit vectors
in the horizontal, vertical and longitudinal directions. For a charged particle
passing through the center of a quadrupole, the magnetic field is zero. At
a displacement (x,y) from the center, the Lorentz force on a particle with
charge e and velocity v becomes:

F⃗ = evB′ẑ × (yx̂+ xŷ) = evB′yŷ − evB′xx̂. (2.2)

Thus, a focusing quadrupole in the horizontal direction (x̂) is also a defo-
cusing quadrupole in the vertical direction (ŷ) and vice versa.

2.1.2 Equation of motion

The description of transverse particle motion begins with a closed orbit,
defined as the particle trajectory that closes on itself after one turn, and
small amplitude oscillations around the closed orbit, called betatron oscil-
lations. The closed orbit is defined by bending magnets (dipoles) which
provide a path for a complete revolution of the particle beam. Since the
bending angle of a dipole depends on the particle momentum (Bρ = pe),
the resulting closed orbits will also depend on the particle momentum. Be-
tatron motion around the closed orbit is determined by the arrangement of
quadrupoles.

To properly write the equation of motion, a dedicated coordinate system
is needed as is sketched in Fig. 2.1. Locally, the design trajectory (reference



2.1 Transverse beam dynamics 13

orbit) has a radius ρ and the path length along this curve is s. At any point
along the reference orbit, three unit vectors can be defined: ŝ, x̂, ŷ. The
position of a particle is then expressed as a vector R⃗ in the form:

R⃗ = rx̂+ yŷ, where r ≡ ρ+ x. (2.3)

Let’s consider a generic particle with the correct momentum required
for the experiment. This is called reference or synchronous particle. The
coordinates defining its position and motion in the horizontal and vertical
plane are respectively (x, x′) and (y, y′), where x′ = dx/ds and y′ = dy/ds
represent the divergences from the reference orbit. In general, the equations
of motion will be non-linear. But assuming only linear fields in x and y (such
as dipoles and quadrupoles) and keeping only the lowest order terms in x
and y, the linearized betatron equation of motion is given by the Hill’s
equation:

d2x

ds2
+


1

ρ2
+

1

Bρ

∂By(s)

∂x


x = 0 (2.4)

d2y

ds2
− 1

Bρ

∂By(s)

∂x
y = 0. (2.5)

Let (z, z′) represent either horizontal and vertical phase space coordinates.
The equations above are both of form z′′ + Kz(s)z = 0, and differs form
a simple harmonic oscillator only in the “spring constant” Kz, which is a
function of position s. The general solution can be expressed in the form:

z =

Aβz(s) cos[ψz(s) + ψz(0)] (2.6)

where A and ψz(0) are constants to be determined from the initial conditions
and βz(s) is the betatron amplitude function. This is a pseudo-harmonic os-
cillation with varying amplitude βz(s)

1/2 and the local betatron wavelength
is λ = 2πβz(s).

The phase advance is given by:

ψz(0 → s) ≡ ∆ψ =

 s

0

1

βz(s)
ds, (2.7)

and thus, for a circulare machine, the number of oscillations per turn is

Qz ≡
1

2π


1

βz(s)
ds, (2.8)

which is called betatron tune of the accelerator. If Qz were an integer num-
ber, any errors in the magnetic fields of the magnets will be amplified since
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Figure 2.2: A resonance diagram for the Diamond light source. The lines shown are
the resonances and the black dot shows a suitable place where the machine could be
operated. Image courtesy J.A. Clarke et al, STFC Daresbury Laboratory.

the particle will be in exactly the same place each time it passes through
the magnet, so this error will get amplified. These field errors cause the
particle to take the wrong path and will eventually cause it to be lost. If
the particle has an integer plus a half tune it will see this same error every
second turn and integer plus a third will see the error every third turn and
so on. Tunes in different planes can also combine to cause errors in the par-
ticle path. The places where these tunes and combinations of tunes occur
are called resonances. They are referred to as first, second, third order etc.
referring to integer, half integer, third integer fractional tunes etc. The low-
est order resonances are the most problematic. Most particle accelerators
do not have to worry about tunes beyond about fourth or fifth order since
the oscillations are usually damped on a sufficiently short time scale that
they are not a problem. A simple example is shown in Fig. 2.2 where the
lines represent the resonances and a good working place is indicated by a
black dot.

It is useful to define other two new variables1:

α ≡ −1

2

dβ(s)

ds
(2.9)

γ ≡ 1 + α2

β
(2.10)

that together with β(s) compose the Courant-Snyder or Twiss parameters.

1To simplify the notation, the subscript z is neglected hereafter.



2.1 Transverse beam dynamics 15

Figure 2.3: The Courant-Snyder invariant ellipse defined by α, β, γ. The area enclosed

by the ellipse is equal to ϵ. The maximum amplitude of the betatron motion is


ϵβ
π and

the maximum angle is


ϵγ
π .

Using the new notation, it is possible to rewrite the Hill’s equation as:

A = γz2 + 2αzz′ + βz′2 (2.11)

where πA is the area of the Courant-Snyder invariant ellipse (see Fig. 2.3).
The trajectory of particle motion with initial condition (z0, z

′
0) follows the

ellipse described by the Eq. (2.11). The phase space area πA enclosed
by (z, z′) is constant at all places along the orbit while the shape of the
ellipse evolves as the particle moves. After one turn, the ellipse returns
to its orignal shape while the particle has propagated on the ellipse by a
certain phase angle. The phase space area associated with the largest ellipse
that the accelerator will accept is called the admittance. The phase space
area occupied by the beam is called the emittance, ϵ = πA, and commonly
measured in π ·mm ·mrad. The maximum displacement z and angle z′ at
one point s along the orbit are given by:

z =


ϵβ(s)

π
and z′ =


ϵγ(s)

π
. (2.12)

It is often convinient to speak of emittance for a particle distribution
in terms of rms transverse beam size. Assuming a Gaussian particle distri-
bution in both transverse degrees of freedom and an equilibrium situation
where the distribution is indistinguishable from turn to turn, the emittance
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is given by:

ϵ = −2πσ2
z

β(s)
ln(1− F ) (2.13)

at a point s where the amplitude function is β(s) and σz is the rms beam
size. F represents the beam fraction included in the phase space area ϵ.
Measuring the transverse beam width σz (for example with an Ionization
Profile Monitor, IPM) the emittance can be calculated as:

ϵ =
σ2
z

β(s)
(2.14)

2.1.3 Momentum dispersion

We have just examined the motion of particles having the same mo-
mentum as the ideal particle but differing in transverse position. What
happens to a particle that differs in momentum by an amount ∆p = p−p0?
As already mentioned before, the bending angle of a dipole depends on the
particle momentum. Thus, the resulting closed orbits are displaced from the
reference orbit by an amount defined by the momentum dispersion function
D(p, s). The displacement from the ideal trajectory of a particle due to the
momentum spread is then given by:

x = D(p, s)
∆p

p0
+ xβ (2.15)

where the first term represents the new closed orbit of the off-momentum
particle and the second the betatron oscillation about that closed orbit.

In addition, higher momentum particles are bent less effectively in the
focusing elements. That is, there is an effect analogous to chromatic aberra-
tion in conventional optics. The dependence of focusing on momentum will
cause betatron oscillation tune dependence on momentum. The parameter
quantifying this relationship is called chromaticity and it is defined as:

δν = ξ(p)
∆p

p0
, (2.16)

where δν is the change in tune, ξ(p) is the chromaticity and ∆p/p the frac-
tional momentum deviation from the synchronous particle. The source of
chromaticity discussed here is the dependece of focusing strength on mo-
mentum for ideal accelerator fields. This is called natural chromaticity.
There are additional sources coming, for example, from field imperfections
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but they will not be treated here. It is important to worry about chro-
maticity because if the beam has a large momentum spread, then a large
chromaticity may place some portion of the beam on resonance where it
will be lost.

In order to correct the chromaticity effect, what is needed is a mag-
net that presents a gradient depending on the particle momentum. A dis-
tribution of sextupole magnets is normally used for this purpose. In the
horizontal plane, the sextupole field is of the form

B = kx2, (2.17)

and so the field gradient on a displaced equilibrium orbit is

B′ = 2kx = 2kD
∆p

p0
. (2.18)

Unfortunately, the sextupoles inevitably introduce non-linear aberrations
which need a more complicated description than the linear dynamics briefly
shown in this chapter.

Let’s emphasize here the role of betatron oscillations on the particle path
length. This is a crucial contribution to the horizontal polarization lifetime,
as will be explained in the next chapter.

In general, a particle undergoing betatron oscillations travels a longer
path compared to the ideal particle. Let’s consider the simplest example
in one dimension. Fig. 2.4 shows the reference orbit (horizontal straight
line) and the trajectory of a particle undergoing a betatron oscillation by
drawing a triangle built on the design orbit. The length of the segment
along the hypotenuse is L = L0

√
1 + θ2, where θ is the angle deviation

from the central ray. If the angle is small, the Taylor series expansion of
the square root produces ∆L/L0 = θ20/2, but this is an overestimate. The
velocity for the triangle path is a constant v > v0. In fact, the velocity
oscillates between these two extremes, remembering that this is added as
a correction transverse to the main velocity around the ring. The best
value then becomes the average of these two extremes, v and v0, since the
oscillation between them is sinusoidal. So there is another factor of 2 in the
denominator. The X and Y contribution add in quadrature, so

∆L

L0

=
θ2x + θ2y

4
. (2.19)

Since bunching the beam (see Sec. 2.2) keeps all particles on average isochronous,
such oscillations lead to a longer beam path and a higher particle speed, thus
changing the spin tune. This concept describes a fundamental contribution
to the horizontal polarization lifetime.
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Figure 2.4: Sketch of a betatron oscillation in one dimension. The horizontal straight
line represents the design orbit and is the basis of a triangle describing the particle
trajectory undergoing a betatron oscillation.

2.2 Longitudinal beam dynamics

In a storage ring after the acceleration process to the experimental en-
ergy, the beam can be kept circulating in “packages” (bunched beam) or it
can occupy the whole ring (coasting beam). In this section, the bunched
beam case will be described since all the data presented in the thesis were
taken under this condition.

The bunching process is obtained by using a radio-frequency (rf) cavity,
which provides a longitudinal oscillating electric field. Phase stability en-
sures the stability of the longitudinal motion for particles in the bunch that
normally differ in momentum from the ideal one.

2.2.1 Phase stability

For a particle with charge e, the energy gain per passage through the
cavity gap is

ϵ = eV0 sin(ωrf t+ φs), (2.20)

where V0 is the effective peak accelerating voltage, ωrf is the rf frequency
synchronized with the arrival time of the beam particles and φs is the phase
angle. A particle synchronized with the rf phase φ = φs at revolution
period τ and momentum p0 is called a synchronous particle. A synchronous
particle will not gain/loose energy per passage through the rf cavity when
φs = 0. Normally the magnetic field is ideally arranged in such a way that
the synchronous particle moves on a closed orbit that passes through the
center of all magnets.

What happens to a particle with a slightly different momentum from the
synchronous particle? Let L be the length of the ring circumference and
v0 the synchronous particle velocity. The time τ needed for one complete
turn is given by τ = L/v. The fractional change in τ associated with the
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deviation in L or v is:
∆τ

τ
=

∆L

L
− ∆v

v0
. (2.21)

This means that a particle moving faster than the ideal particle will take less
time to complete one turn. But if the path length is larger, this deviation
will tend to increase the time to reach the rf cavity. The velocity deviation,
can be expressed in terms of the fractional momentum deviation by

∆v

v0
=

1

γ2


∆p

p0


. (2.22)

where γ is the relativistic factor. The orbit circumference can be larger for
a particle of momentum slightly above the ideal particle momentum, since
the magnetic rigidity (Bρ = pe) is proportional to the momentum. The
fractional change in the orbit length for a given fractional change in the
momentum is:

∆L

L
= αc

∆p

p0
(2.23)

where αc is the momentum compaction factor. Its value depends on the
accelerator design. The fractional change in τ can finally be expressed in
terms of ∆p/p0 as:

∆τ

τ
=


αc −

1

γ2


∆p

p0
=


1

γ2t
− 1

γ2


∆p

p0
= η

∆p

p0
(2.24)

where

αc ≡ 1

γ2t
(2.25)

η =
1

γ2t
− 1

γ
. (2.26)

γt is the transition energy and it is a property of the accelerator design,
while η is the slip factor. Equivalently, Eq. (2.24) can be written in terms
of the revolution frequency f0 (the number of turns per second):

∆f

f0
= −η∆p

p0
(2.27)

Eq. (2.27) is the key to understanding the concept of phase stability, as it is
shown in Fig. 2.5. Below the transition energy, when η < 0, a higher energy
particle (∆p/p0 > 0) has a higher revolution frequency and it will arrive at
the rf gap before the syncrhonous particle. That makes φ < 0, the energy
gain is ϵ < 0, and the particle slows down. Similarly, a lower energy particle
(∆p/p0 < 0) will arrive at the rf cavity later and gain more energy relative
to the synchrounous particle. This process provides the phase stability of
synchrotron motion.
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Figure 2.5: Schematic drawing of an rf wave, where the rf phase angles of a synchronous
particle and the lower and higher energy particle are shown. For stationary motion, the
phase stability requires φs = 0 for η < 0 and φs = π for η > 0.

2.2.2 Equation of motion

From the phase stability process, the synchrotron equations of motion
can be derived. They are two difference equations describing the motion
of a particle with arbitrary energy E and phase φ with respect to the syn-
chronous particle:

φn+1 = φn +
wrfτη

β2Es

∆En+1 (2.28)

∆En+1 = ∆En + eV (sinφn − sinφs) (2.29)

where the subscript n stands for the nth traversal of the rf cavity and
∆E = E − Es represents the energy difference between a generic particle
and the synchronous particle. (φ,∆E) are pairs of conjugate phase-space
coordinates. The demonstration can be found in D. A. Edwards’s and M.
J. Syphers’s book in Ref. [17].

In Fig (2.6) the application of the synchrotron equation of motion is
shown for 8 different initial enegies (∆E). In each case, the starting value
of the phase is equal to the synchrotron phase. Several features are note-
worthly. There is a well defined boundary between the confined and un-
confined motion. This boundary is called the separatrix. The area in phase
space within the separatrix is called a bucket while the collection of particles
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Figure 2.6: Application of the difference equations for synchrotron motion for a sta-
tionary condition (no acceleration). Each orbit represents a different initial condition.
All of them start with the synchronous phase but different energies.

sharing a particular bucket is called a bunch. Finally, the harmonic number
corresponds to the number of buckets.

The two difference equations, Eqs. (2.28) and (2.29), can be turned into
one differential equation of the second order, assuming the turn number n
as an independent variable. After a first integral and assuming ∆φ = φ−φs

being small, the equation becomes:

d2∆φ

dn2
+ (2πνs)

2∆φ = 0 (2.30)

where νs is the synchrotron tune, that is the number of synchrotron oscilla-
tions per turn. This quantity is given by:

νs =


−ωrfτeV η cosφs

4π2β2Es

, (2.31)

where η cosφs < 0 is the stability condition. The synchrotron oscillation
frequency is 2πfνs, where f is the revolution frequency, and it is much
smaller than the betatron oscillation frequency.





Chapter 3

The COSY storage ring

The COoler SYnchrotron COSY (see Fig. 3.1) at the Forschungszentrum-
Jülich represents an ideal environment for the feasibility studies of the stor-
age EDM experiment. For the experients described here, a deuteron beam
was used.

It is a ring of 184 m length where two ion sources [18] provide polarized
and unpolarized protons and deuterons. These beams are accelerated in
the JULIC cyclotron and strip-injected into the COSY ring where they can
be accelerated and used for the experiments in a momentum range from
300 MeV/c to 3.7 GeV/c. Electron cooling (electron energy 25-100 keV)
at or near injection momentum and stochastic cooling covering the range
from 1.5 GeV/c up to the maximum momentum are available to prepare
monochromatic beams. The installation of vertical and horizontal dampers
at COSY provides the possibility to stack electron-cooled beams and thus
increase the beam intensity up to ∼ 1010 stored particles.

After the polarized source, the cyclotron accelerates the beam to the
injection energy where the Low Energy Polarimeter (LEP) provides a pola-
rization measurement of the states generated by the source. The rf solenoid
(see Fig. 3.2) placed in one arc of COSY is a powerful tool to manipulate
the beam polarization. Indeed, in the experiments presented in the next
chapters, it was used to move the polarization from the vertical (stable)
axis to the horizontal (ring) plane by inducing a spin resonance, whose fea-
tures have been studied as a function of the emittance of the beam. Finally,
the EDDA scintillator detectors (see Fig. 3.5) have been used as a mock
EDM polarimeter to measure the vertical and the horizontal polarization
components as a fuction of time, as is explained in the next section.

23
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This chapter aims to describe the experimental setup and in particular
the polarization measurements and the data acquisition systems used to
record the data presented in this thesis.

Figure 3.1: The COSY ring. Starting from the bottom: the beam sources providing
polarized and unpolarized protons and deuterons, the cyclotron accelerating the beam to
the injection energy, the low energy polarimeter (LEP) measuring the beam polarization,
the COSY ring with the rf solenoid, and the EDDA polarimeter.
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Figure 3.2: The rf solenoid used to manipulate the beam polarization.

3.1 Experimental techniques and setup

3.1.1 Polarization measurement

For a beam of particles, the polarization is defined as the ensemble aver-
age of the individual spins. In a spin-1 system [19] such as deuterons, there
are three magnetic states along the quantization axis. In Cartesian nota-
tion, the fractional populations of the deuterons in terms of the magnetic
quantum number along some spin axis is given by f1, f0 and f−1, where
f1 + f0 + f−1 = 1. The unpolarized state is described by the condition
f1 = f0 = f−1 = 1/3, while the vector pV and tensor pT polarizations are
defined by

pV = f1 − f−1 and pT = 1− 3f0. (3.1)

The range of the vector polarization pV is from 1 to −1, while the range
of the tensor polarization pT is from 1 to −2. Given that the sum of the
fractions has to remain 1, a pure vector polarization without tensor (f0 =
1/3) can only reach |pV | = 2/3. If a large tensor polarization is allowed,
values may reach |pV | = 1. These values may be reduced by any inefficiency
in the polarized source operation.

The polarization of a deuteron beam can be determined by measuring
deuteron-induced reaction rates on a target, provided that the relevant an-
alyzing powers (or sensitivities to the polarization) are sufficiently large.
For the EDM experiment, the large vector analyazing power available with
suitably chosen targets make it preferable to concentrate on this polariza-
tion measurement rather than the tensor. Fig 3.3 shows the definition of
the spin direction with respect to a coordinate system determined by the
detected reaction products. The beam defines the positive ẑ axis. The loca-
tion of the particle detector, along with the beam axis, defines the scattering
plane and the direction of the positive x̂ axis. The scattering angle is β. In
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Figure 3.3: The coordinate system for polarization direction (red arrow) based on the
observation of a reaction product in a detector (small box). The beam travels along the
ẑ axis. The detector position at angle β defines, along with the beam, the reaction plane
and positive x̂. The quantization axis for the polarization (red arrow) lies in a direction
given by the polar angles θ and φ (as measured from ŷ axis).

this coordinate system we can specify the orientation of the deuteron beam
quantization axis by using the two angles of a spherical coordinate system,
θ and φ, where φ is measured from the ŷ axis and increases toward the
positive x̂ axis. The interaction cross section between a polarized deuteron
beam and an unpolarized carbon target is given by:

σ(β, θ, φ) = σunp(β)[1 +
√
3 pV iT11(β) sin θ cosφ

+
1√
8
pT T20(β)(3 cos

2 θ − 1)

−
√
3 pT T21(β) sin θ cos θ sinφ (3.2)

−
√
3

2
pT T22(β) sin

2 θ cos 2φ]

where the Tkq are the spherical tensor analyzing powers (k = 1 for vector,
k = 2 for tensor). Both the unpolarized cross section and the analyzing
powers are properties of the reaction.

Measurement of vertical polarization The reaction is most sensitive
to the vertical (along ŷ axis) component of the vector polarization when
sin θ cosφ is near 1 or −1. If both pV and iT11 are positive, for example, then
the rate at the detector (shown by the small box in Fig. 3.3) will increase
relative to the unpolarized beam rate when sin θ cosφ ∼ 1. Likewise, a
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detector on the opposite side of the beam (on the −x̂ side) will see a reduced
rate. The asymmetry in these two rates is a measure of the product pV iT11
and, for iT11 known, of the vertical component of pV . If the left and right
rates are L and R, then

ϵLR =
√
3 pV,y iT11(β) =

L−R

L+R
. (3.3)

If positive (+ŷ) negative (−ŷ) vector polarization are available from the
polarized source, the vector polarization can be determined from the cross
ratio formula given by:

ϵCR =
r − 1

r + 1
where r2 =

L(+)R(−)

L(−)R(+)
, (3.4)

and L and R are the count rates for the left and right systems for the
positive (+) and negative (−) polarization states. Ths combinaion of count
rates tends to suppress errors that arise as first-order contributions from
geometric misalignments due to beam position or angle, or from detector
acceptance.

Measurement of horizontal polarization If the polarization lies in
the x-z plane or COSY ring plane, there will be a large and oscillating x̂
component of the deuteron polarization due to the precession of the mag-
netic moment in the dipole fields in the ring. In a flat storage ring that is
horizontal bending only, the stable spin direction is called spin closed orbit,
n̂co, and coincides with the vertical axis, orthogonal to the ring plane. Any
horizontal polarization component would precess about n̂co while the beam
circulates in the storage ring. In a similar manner as described above, this
will generate a difference in count rates for detectors mounted above and
below the beam, such that

√
3 pV,x iT11(β) = ϵDU =

D − U

D + U
. (3.5)

Spin tune This asymmetry will oscillate with the g − 2 frequency. The
number of spin precessions per turn about n̂co is the spin tune, defined as:

νs = Gγ. (3.6)

The spin precession rate depends on the particle velocity through the rela-
tivistic factor γ.
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Figure 3.4: Starting from the left side, all the spins are alligned along the same
direction so that the beam is horizontally polarized. After a while (right side), the spins
spread out in the horizontal plane due to different particle velocities and thus different
spin tunes. In this case, the horizontal polarization is lost.

Spin coherence time Let’s consider a particle beam, polarized in one
direction in the horizontal plane (see Fig. 3.4). After some time, the spins
go out of phase due to the momentum spread of the particles in the beam,
making the horizontal polarization vanish. For the purpose of this the-
sis, the horizontal polarization lifetime is the spin coherence time, the time
during which the particle spins precess coherently around n̂co while main-
taining some fraction of their initial polarization. In an EDM experiment
where the longitudinal polarization must be aligned along the velocity, the
horizontal polarization lifetime represents the time available to measure the
EDM signal.

3.1.2 EDDA polarimeter

One concept for the EDM polarimeter involves stopping detectors that
deliver their largest signals for elastic scattering events, since they are the
most sensitive to spin interactions. In order to reduce the background of
other processes such as break-up interactions, an absorbing medium between
the target and the detector is installed. This arrangement was already
developed in a previous experiment [20] using a thick carbon target (see
Fig. 3.5) and the scintillators of the EDDA detector [21]. Long scintillators,
called “bars”, run parallel to the beam and are read out with photomultiplier
tubes mounted on the downstream end. These 32 scintillators are divided
into groups of 8, corresponding to scattering to the left, right, down, or up
directions. Outside the bars are “rings” that intercept particles scattering
through a range of polar angles beginning at 9.1◦. Four consecutive EDDA
rings were included in the “polarimeter group”, extending the sensitive angle
range to 21.5◦. Over this angle range, the vector analyzing power for the
elastic scattering of deuterons from carbon is positive and passes through the
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Figure 3.5: The carbon target used to extract the beam is placed in front of the EDDA
detector. The left/right sectors are highlighted in light blue while up/down are in blue.

Figure 3.6: Deuteron elastic scattering cross section and vector analyzing power iT11

at 270 MeV [22].

first interference maximum [22] (see Fig. 3.6), making this an excellent range
for operation as a polarimeter. The requirement that elastically scattered
deuterons stop within the forward angle ring detectors led to the choice of
0.97 GeV/c as the optimum beam momentum.

Slow extraction In order to provide a continuous monitoring of the beam
polarization during the storage time, the deuteron beam is slowly and con-
tinuously extracted onto a thick carbon target (see Fig. 3.5), a carbon tube
15 mm long that surrounds the beam [20]. Slow extraction of the beam onto
the target is achieved by locally steering the beam vertically upward into
the top edge of the tube. Deuterons intercepting the target front face pass
through the full target thickness, which greatly increases their probability
of scattering into the EDDA scintillator system. This polarimeter scheme
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offers a continuous monitor of the polarization during the beam store in
contrast to previous experiments where observations were made at only one
time during the polarization manipulation process [23].

3.2 Data Acquisition

3.2.1 Vertical polarization measurement

The triggers from the four segments (left, right, up, and down) of the
EDDA detector were recorded in a single computer file for each run. A run
consisted of a number of stores whose events could be added as a function of
time since the start was synchronized to polarization precession operations
through the use of a reproducible start time marker.

Analysis of the stores produced two cross ratio asymmetries, one for
vector and one for vector-tensor polarized states. For comparison to the
model calculations to be discussed later in Chap. 4, the two sets of cross
ratio (see Eq. 3.4) data from each run were normalized to one based on
the asymmetries recorded prior to any polarization manipulations being
made. Then the two measurements were averaged. This combined all of
the polarized beam data from a given run into one time-dependent set of
vector polarization measurements.

3.2.2 Horizontal polarization measurement

The most critical new capability needed to measure the spin coherence
time was the development of a “time-stamp system” which made possible
recording the horizontal polarization as a function of time while it pre-
cessed at 120 kHz. Thanks to the efforts of E. J. Stephenson, who prepared
the project, and V. Hejny, who wrote the DAQ software, the first direct
measurement ever of the rapidly rotating horizontal polarization was ac-
complished.

A vertically polarized beam was injected into COSY and then the po-
larization was rotated to the horizontal plane (null vertical polarization)
using the rf solenoid operating at the spin resonance:

fres = fcyc(1−Gγ) (3.7)

where fcyc is the cyclotron frequency and Gγ is the spin tune. The TDC,
a ZEL GPX Time-to-Digital Converter (created locally at the Forschungs-
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Figure 3.7: Scatterplot of polarimeter events as a function of location around the
ring (vertical) and clock time in seconds (horizontal). There is sufficient time that parts
of four different machine cycles are present. The intensity scale starts with violet and
proceeds through blue, green, and yellow to red.

zentrum-Jülich) marked the polarimeter events with the elapsed time from
a continuously running clock.

Particle position in the bunch The clock period of the TDC was 92.59
ps, a value much smaller than the COSY beam revolution time of 1.332
µs. This allowed good resolution on the longitudinal position of a detected
particle within the beam bunch. Once the rf cavity signal and the TDC
oscillator were cross-calibrated so that the turn number since DAQ start
could be calculated, it became possible to use the fractional part of the turn
number to provide a map of the particle distribution within the beam bunch.
Fig. 3.7 is a scatterplot of polarimeter events as a function of location around
the ring (vertical) and clock time in seconds (horizontal). It shows that as
the cycles start, the beam is spread around the ring. The first few seconds
are for injection, ramping, bunching, and the start of cooling. Bunching
moves events out of the area near 300 and toward the center of the bunch
near 1000 along the vertical axis. Electron cooling makes the bunch more
compact (narrow yellow-red band). Outliers are slowly gathered into the
main beam. After about 30 s, extraction of the bunch onto the polarimeter
target starts. After that the height of the cooling peak declines until the
beam is nearly gone. One machine cycle represents about 8.8× 107 turns.
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Total spin precession angle For the next step, calculating the total
precession angle, only the integer part of the turn number is used. A phase
factor may be used to locate the break point in Fig. 3.7 so that the turn
number does not increment in the middle of the bunch. The calculation of
the total precession angle requires the knowledge of the spin tune frequency,
Gγfcyc (about 120 kHz). This value may be obtained from the difference
between the rf solenoid resonance frequency and the cyclotron frequency (see
Eq. 3.7). The rf solenoid spin resonance was determined at the beginning of
the experiment using a variable-frequency Froissart-Stora [24] scan across
the resonance (which flips the vertical polarization component) and refined
with a series of fixed-frequency scans to locate the center of the resonance
to within an error of about 0.2 Hz. With this as a start, the total horizontal
polarization precession angle was calculated for each event as the product
of the spin tune and the integral part of the turn number:

ωTOT = 2π Gγ Int(Nturns). (3.8)

Amplitude of D/U asymmetry The circle around which the polari-
zation precessed was divided into 9 bins and polarimeter events from the
up and down detector quadrants sorted separately into each bin. The ex-
perimental challenge was the high frequency of the polarization precession.
One full precession corresponded to only 6 turns of the COSY beam (about
8.3 µs) while the rate of the elastic scattered deuterons was approximately
one in 700 turns. In order to provide some statistics, an accumulation time
of 3 s was chosen and the down-up asymmetries were calculated for each
bin and reproduced with a sine wave (see Fig. 3.8) of variable magnitude,
phase, and offset (which is non-zero if there is a systematic difference in the
detector acceptances):

D − U

D + U
= f(ω) = A sin(ω + φ) +B. (3.9)

The magnitudes from successive 3-second accumulation times were strung
together to create a history of the horizontal polarization during the store.
In the fitting of a sine curve to the down-up asymmetries, even a random
distribution will produce a non-zero value of the amplitude. The so-called
“positivity correction” of data will be described in Chap 5.

Spin tune refinement As a last refinement of the process, the spin tune
itself was varied over a small range in each accumulation time to locate
the value that gave the largest polarization magnitude. A peak was always
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Figure 3.8: Sketch of the procedure to extract the horizontal polarization as a function
of time from the total spin precession angle. On the left panel there are the sine waves,
each of them used to fit a circle total spin precession angle accumulated for 3 s. On the
right panel there is one example of the horizontal polarization measurement for three
different beam emittances from a large (green) to a small (black) size. Each point of
these curves corresponds to the amplitude of the sine wave, corrected for the “positivity”
effect.

evident. Its FWHM was 1.8× 10−6 of the value of the spin tune. Typically
the spin tune would be known to 10−8 in each accumulation time and vary
by 10−7 during a beam store. The variation appears to be associated with
the changing spin tune across the profile of the beam as it is extracted onto
the carbon polarimeter target.





Chapter 4

Study of an rf-solenoid spin
resonance

The search for an electric dipole moment using a polarized, charged-
particle beam in a storage ring requires ring conditions that can maintain a
longitudinal and stable polarization for long time. In fact, the EDM signal
would be detected as a vertical polarization component arising from the
rotation of the horizontal plane polarization toward the vertical direction.
For the deuteron case, the detection of the EDM signal at level above one
part per million requires a horizontal polarization lifetime, also called the
spin coeherence time, of at least 1000 s.

The spin coherence time depends on the spin tune spread of the particles
in the beam. As explained in Chap. 3, the spin tune, which is the number
of spin precessions around the vertical axis during one turn around the
ring, is proportional to the particle velocity as expressed by the relativistic
factor γ. In a real beam, particles have different velocities and spins will
precess with different frequencies. For this reason, the initial horizontal
polarization of the beam will vanish with time because the spins spread out
in the horizontal plane.

The feasibility of the deuteron EDM experiment depends on the mini-
mization of the spin tune spread. In order to understand the mechanism
which causes it, a series of polarization studies began at COSY. The first
step was the analysis of a spin resonance curve and the measurements are
presented in this chapter. Since the width of a spin resonance curve de-
pends on the spin tune spread and thus on particle momentum distribution,
each meachanism that can change the particle velocity in the beam could
contribute to the spin tune spread. In particular, these mechanisms are

35
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betatron oscillations which are due to the beam emittance and synchrotron
oscillations that are present only in a bunched beam.

This study can be performed using either a coasting beam or a bunched
beam.

In the first case, the particle beam is injected in the storage ring and
it occupies the entire circumference. The main effect to the spin tune
spread comes from ∆p/p (the fractional change in momentum respect to
the reference particle) which kills the spin coherence time in milliseconds
(∼ (fcyc∆p/p)

−1). In this case there is no direct effect from the beam emit-
tance on the momentum spread, since particles off from the reference orbit
will undergo betatron oscillations simply covering a longer path compare to
the reference particle.

For a bunched beam, the framework is completely different. An rf cavity
confines the particles inside a bucket, as described in Chap. 2. Particles
with a different velocity from the reference particle will undergo synchrotron
oscillation inside the bunch such that the first order effect of ∆p/p averages
to zero. The path lengthening due to betatron oscillations forces the par-
ticles to go faster in order to respect the isochronous condition introduced
by the rf cavity. Thus, this effect can be described as a second order contri-
bution from the beam emittance in the vertical and horizontal direction. A
second order contribution from ∆p/p exists but is expected to be negligible
compared to transverse size of the beam. The bunched case appears then to
be a good solution in order to separately study the different contributions
to the spin tune spread.

The tests at COSY made use of a bunched polarized deuteron beam with
a momentum p=0.97 GeV/c. In order to provide a continuous measurement
of the polarization as a function of time, the beam slowly extracted into a
thick carbon target, placed in front of the EDDA detector. The vertical
polarization was perturbed by a longitudinal radio-frequency (rf) magnetic
field, inducing an rf depolarizing resonance which can flip the spin direction
of stored polarized particles. The resonance frequency is defined as:

fres = fcyc(k ±Gγ) (4.1)

where fcyc is the cyclotron frequency and k is an integer. The studies
began by exciting the 1−Gγ resonance and different tests were run at fixed
and variable rf-solenoid frequency. Using a bunched beam, we compared
the results obtained in case of electron-cooled and uncooled beam, since
cooling shrinks the transverse sized of the beam and reduces the momentum
spread ∆p/p. The data analysis was based on a simple no-lattice model
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Machine parameter Value

Tune, Qx 3.60

Tune, Qy 3.62

Compaction factor, αc 0.177± 0.003

Slip factor, η −0.612± 0.003

Beam parameters Uncooled Cooled

∆p/p (8.02± 0.23) · 10−4 (4.91± 0.13) · 10−5

Width, ∆X 6.01 mm 1.43 mm

Width, ∆Y 6.51 mm 1.77 mm

Emittance, ϵx 1.6 µm 0.09 µm

Emittance, ϵy 5.8 µm 0.42 µm

Table 4.1: Machine and beam parameters.

developed in order to reproduce the data collected during the beam time.
The main focus of this analysis were the synchrotron oscillation effects on
a spin resonance induced by an rf-solenoid, a side issue which may not help
directly with the EDM study. The measurements presented in this chapter
have been published for general accelerator physics in Ref.[25].

4.1 Machine parameters and measurements

The experimental set up used for beam extraction and polarization mea-
surements has been described in Chap. 3. In order to have information
available for modeling the results, a number of machine parameters were
measured for the various running conditions. These are summarized in Ta-
ble 4.1 where the slip factor η is calculated from the measure of αc using
Eq. 2.26 and the emittances are obtained by substituing the measured Gaus-
sian beam widths (∆X and ∆Y ) into the formula 2.14. The beam, with
momentum p = 0.97 GeV/c, was bunched on the first harmonic (h = 1)
with a maximum oscillator voltage of 400 V. For the uncooled beam, this
captures most of the beam into about half of the ring circumference, as
illustrated in Fig. 4.1. When electron cooling is applied at the beginning of
beam storage, the momentum spread and the size of the beam are greatly
reduced. The cyclotron frequency was 750602.5(5) Hz.
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(a) (b)

Figure 4.1: Oscilloscope traces of the main rf (top) and beam pickup (bottom) for
the uncooled (see Fig. 4.1(a)) and the cooled (see Fig. 4.1(b)) beam. The time trace
represents roughly 1.5 rf periods. For the uncooled case, the pickup sees no beam for
about half of the machine cycle, while in the cooled case the beam is gathered into a
narrow bunch and there is a long residual uncooled tail on either side of pick.

Several measurements were made to study the dependence of the res-
onance width on the particle momentum distribution. The experiment
started with a Froissart-Stora scan [24], ramping the solenoid frequency
across the expected location of the resonance using an uncooled beam. The
frequency at which the polarization changed sign was taken as the initial
resonance location. It was then followed by a set of measurements at fixed
solenoid frequency to compare the polarization oscillation patterns observed
on and off-resonance for a cooled and an uncooled beam.

The next section will describe the model developed to analyze the data
which includes two rotation matrices for the spin interaction with the mag-
netic fields of the ring and the rf-solenoid, and synchtron oscillations. The
critical parameters for this model are the resonance frequency and the rf-
solenoid strength, which are extracted from the comparison of the model
with data as is shown in section 4.3. Then the full analysis of measurements
presented here will follow.

4.2 Spin tracking model

The analysis of the data reported here is based on a “no lattice” model
which I developed together with E. J. Stephenson. It is called the “no-
lattice” model because it does not include explicitly the contribution of
each magnetic device in the ring. Rather it describes the deuteron spin
precession as simply due to two interactions of the spin with:



4.2 Spin tracking model 39

1. the vertical (ŷ axis) magnetic field that arises from the cumulative
effect of the ring dipoles.

2. the longitudinal (ẑ axis) magnetic field of the rf solenoid.

These two effects are interpreted in a classical form using two rotation ma-
trices which are applied to the spin particle on every turn around the ring.

The first rotation is around the ŷ axis perpendicular to the ring plane.
The precession angle on each turn is given by the size of the anomalous part
of the deuteron magnetic moment, G = (g − 2)/2:

ωa = 2πνS = 2πGγ (4.2)

where νS = Gγ is the spin tune. The angle ωa changes only as γ changes.
The rotation matrix acting on the spin vector S⃗ becomes:

S⃗ ′ =

 cosωa 0 − sinωa

0 1 0

sinωa 0 cosωa

 S⃗ (4.3)

The second rotation is generated by an rf solenoid. It presents an oscil-
lating field where the angle of spin rotation is given by

θS = 2πϵ cos[2πfCYC(1−Gγ)t+ δ(t) + φSOL] (4.4)

where t = n/fCYC with n the turn number and ϵ is the strength of the rf
solenoid. The 1−Gγ harmonic of the spin tune Gγ was chosen before the
experiment to best match the peak power output of the solenoid’s driver
amplifier. δ(t) represents a small perturbation that may or may not be
time dependent and that is chosen in the design of the experiment to study
phenomena near the resonance. Normally φsol is an arbitrary phase chosen
in the interval [0, 2π). The rf solenoid rotates the spin about the beam, or
ẑ, direction. This rotation is described by

S⃗ ′ =

 cos θS − sin θS 0

sin θS cos θS 0

0 0 1

 S⃗ (4.5)

Repeated applications of these two rotations for each turn of the beam
around the ring generates S⃗(t) from a given starting point S⃗(0).

This description is valid for the reference particle which travels along the
design trajectory with the assigned momentum. Since the beam is bunched,
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the particles collected in the bucket undergo synchrotron oscillations whose
contribution changes the particle velocity and the transit time through the
solenoid. Synchrotron oscillations were added to the model as longitudinal
sinusoidal oscillations in the z direction (along the beam) about the center
of the beam bunch with amplitude A and a frequency fSYNC = 331 Hz as
given by

z(t) = A sin(2πfSYNCt+ φSYNC) (4.6)

At the same time there is an oscillation of the momentum whose change,
∆p/p, is 90◦ out of phase with the position oscillation

∆p

p
(t) =

1

η

fSYNC

fCYC

2π
A

C
cos(2πfSYNCt+ φSYNC) (4.7)

where C is the ring circumference and η is the slip factor. Changes to the
spin tune are scaled by

∆νs
νs

= β2∆p

p
(4.8)

The precession of the spin as it goes around the ring is changed because the
momentum has changed, so that

ωa = 2π(νs +∆νS). (4.9)

The main effect arises from transit time through the rf solenoid. Since par-
ticles have different velocities, they travel through it at different rf solenoid
phases so that the rotation depends on the transit time:

θS = 2πϵ cos


2πfCYC(1−Gγ)


t− A

fCYCC
sin(2πfSYNCt+ φSYNC)


+ δ(t) + φSOL


.

(4.10)

Thus both the spin precession in the ring magnetic field and the effect of
the rf-solenoid oscillate with the synchrotron motion of the particle. As
will be covered in the next section, detailed agreement with the uncooled
data was made possible by choosing the appropriate distribution of orbit
amplitudes A.

The sine and cosine functions used here to describe the synchrotron mo-
tion represent the solution for the differential equation of simple harmonic
motion in a parabolic potential. A more accurate model would involve a
sinusoidal potential and numerical integration of the synchrotron motion.
This was tested for the present situation. While this changes some details
of the shape of the beam distributions described later, there is no essential
change in either the quality of the reproduction of the measurements or the
interpretation based on this model.
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Figure 4.2: Froissart-Stora scan for the uncooled beam. The zero crossing was used to
make a first estimate of the spin resonance frequency. The curve is calculated assuming
a resonance frequency of 871434 Hz and a ramp rate of 10 Hz/s starting from 871200 Hz
at 5.8 s. The calculation includes synchrotron oscillation effects as described in the text
later.

4.3 Data analysis

4.3.1 Model parameters

The most important parameters of the “no lattice” model to reproduce
the data are the resonance frequency (1−Gγ)fCYC and the magnetic field
strength ϵ of the rf solenoid.

The frequency of the 1−Gγ resonance was estimated at the beginning
of the experiment by making a Froissart-Stora frequency sweep across the
expected location of the resonance using the uncooled beam. The frequency
at which the polarization changed sign was taken as the initial resonance
location. Fig. 4.2 shows the data from this scan, which was started at
871200 Hz (at a time of 5.8 s) and ramped at a speed of 10 Hz/s for a total
of 40 s. The zero crossing is clearly evident near 29 s and corresponds to
871434 Hz.

The solenoid strength was extracted by the interpretation of a cooled
beam measurement on resonance, shown in Fig. 4.3. The data represent a
slow oscillation of the vertical component of the polarization with a period
of about 2/3 s. It persists for the 55 s that the rf solenoid was kept running
after the initial ramp-up, which lasted 200 ms. This permits a very precise
determination of the magnetic field strength of the rf solenoid by match-
ing the frequency of the polarization oscillation using calculations with the
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model described in the previous section. The oscillation pattern requires an
effective strength of ϵ = (4.05± 0.01)× 106 rev/turn.

The knowledge of the resonance frequency can be improved using the
rf solenoid operating at a fixed frequency in the immediate neighborhood
of the resonance. Being off-resonance by even a fraction of one Hz creates
clear changes in the polarization oscillation pattern. The most precise re-
sults were obtained with the cooled beam case in which the beam can be
considered as “point-like” and the synchrotron oscillation contribution is
very small (see Sec 4.3.2).

Four sets of data with a cooled and bunched beam were recorded with
the rf solenoid frequency at ±1 and ±2 Hz from the nominal resonance
frequency of 871434 Hz. Assuming that the rf solenoid strength was un-
changed after the data taken in Fig. 4.3, then the only parameter that may
be adjusted in order to match the oscillation frequency is the frequency
separation between the rf solenoid and the resonance. The shifts needed for
the off-resonance data are given in Table 4.1, along with the average and an
error that spans the four cases of Fig. 4.4. Since the additional frequency
shifts move the points below the resonance away from the resonance, and the
points above the resonance toward the resonance, the resonance frequency
is higher. The average shift gives a resonance position of 871434.13 ± 0.04
Hz. The error was estimated from the scatter in the shift measurements.
The data and calculations of Fig. 4.4 illustrate the general features of the
vertical polarization when operating the rf solenoid off-resonance. As the
distance from the resonance increases,

• the oscillation frequency increases,

• the oscillation amplitude goes down,

as is shown in Fig. 4.4. Note in particular that the top of the oscillation
pattern always remains close to one so that off-resonance polarization mea-
surements quickly become completely positive.

In Fig. 4.4, the average polarization value of the calculated oscillation is
more positive than the measurements, a trend that becomes more promi-
nent as the distance from the resonance increases. The reason for this
disagreement is not understood.

Once the resonant frequency and the frequency of the bunching cavity
(750602.5 ± 0.5 Hz) are known, then it is possible to determine other pa-
rameters of the beam and the properties of the COSY ring for the setup
that existed during this experiment. These are given in Table 4.3 where p
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Figure 4.3: Cooled beam measurements on resonance. From this set of data where the
vertical polarization oscillates for 55 s, it was possible to obtain a precise value for the
solenoid field strength, ϵ = (4.05±0.01)×10−6 rev/turn. The empty circles are the data
points recorded while the black line is the result of the “no lattice” model calculation.
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Nominal shift (Hz) Additional shift (Hz) Osc. Freq. (Hz)

−2 −0.096 2.676

−1 −0.121 2.006

+1 −0.161 1.864

+2 −0.126 2.506

Average −0.13± 0.04

Table 4.2
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Figure 4.4: Fixed frequency measurements made off resonance at ±1 and ±2 Hz from
the nominal value of 871434 Hz. By fitting the oscillation frequency of the data with the
model calculations it was possible to refine the resonance frequency. The larger distance
from the center of the resonance, the higher the frequency oscillation and the smaller the
oscillation amplitude.



4.3 Data analysis 45

Assumed

c 299792458 m/s

md 1875.612793(47) MeV/c2

G −0.14298754(26)

Measured

fCYC 750602.5(5) Hz

fRES 871434.13(4) Hz

fSYNC 331(1) Hz

Calculated

p 970.057(24) MeV/c

C 183.4817(37) m

T 236.006(11) MeV

γ 1.1258289(58)

β 0.4593905(89)

Table 4.3: Beam and machine parameters

is the beam momentum, C is the ring circumference, and T is the beam
kinetic energy. All model calculations use these values.

4.3.2 Synchrotron oscillation effects

As already mentioned in Sec. 4.2, synchrotron oscillations change the
transit time of the particle through the rf solenoid so that these particles do
not feel the effect of the same magnetic field as the central particle. Such a
time shift effect is enhanced when the rf solenoid operates on a harmonic of
the deuteron spin tune, increasing its rate of change. In addition, when the
rf cavity is operated on first harmonic, it allows a larger range of synchrotron
oscillation amplitudes (the beam occupies half of the ring circumference).

Amplitude distribution Fig. 4.5 shows several tracks, each of them cor-
responding to a particle undergoing a synchrotron oscillation of amplitude
A. With larger synchrotron amplitudes, the particle spends less time pass-
ing through the rf solenoid at times that are close to optimum for reversing
the polarization. Thus this effectively weakens the solenoid and slows the
oscillations for large values of A as appear in the figure. But still the pola-
rization flips completely.

Unlike the continuous pattern of oscilations (see Fig. 4.3) measured
with a cooled beam, the same experiment with an uncooled beam and
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Figure 4.5: Single particle functions, fAi
(t) representing the change of the vertical

polarization as a function of time for different synchrotron amplitudes, A = 0, 30, 40, 50
and 55 m. All these tracks are obtained from the model calculation on resonance. A
clear effect of synchrotron oscillations is that the larger the amplitude, the longer the
oscillation period.

large synchrotron amplitudes produces a pattern shown in Fig. 4.6 that
is quickly damped. In order to model the oscillations of Fig. 4.6 (uncooled
and bunched beam), it was necessary to find the correct amplitude distri-
bution in the beam bunch. Aside from the distributions shown in Fig. 4.1,
there is no direct knowledge from the experiment of the distribution of par-
ticles. It is possible to assume a Gaussian distribution, but this proves to
be the wrong shape for a detailed reproduction of the measurements. The
better choice was to fit the data with a function Py(t) given by the combi-
nation of single particle functions fA(t) for a specific amplitude A (like the
curves shown in Fig. 4.5):

Py(t) = c1fA1(t) + c2fA2(t) + · · ·+ cNfAN
(t). (4.11)

Representative values of A were chosen and the fitted fraction, ci, of the
tracks with different values of A that resulted is shown in Fig. 4.7(a). For
further calculations, it seemed prudent to replace the fitted distribution of
Fig. 4.7(a) with a larger number of tracks chosen randomly. Each point of
Fig. 4.7(a) was replaced by a bin whose area represented the same fraction
of the tracks and whose width was adjusted to span the range of Fig. 4.7(a).
The 1000 random tracks were chosen with a distribution of amplitudes that
matched the areas of the bins. In the case of the first bin with a negative
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Figure 4.6: Measurements made on-resonance with the uncooled beam and an rf
solenoid strength of 4.43× 10−6 rev/turn.

coefficient, the sign was changed to a positive one to maintain the contribu-
tion of small amplitudes to the whole distribution. When this distribution
is combined with random synchrotron phases, φSYNC, the resulting beam
distribution is shown in Fig. 4.7(b). This shape compares favorably with
Fig. 4.1(a).

Damped oscillations The contribution of synchrotron oscillations gives
rise to damped oscillations which have characteristics different from off-
resonant behavior. The damped oscillations are very sensitive to details of
the synchrotron amplitude distribution. For example, in Fig. 4.8 there are
two sets of measurements on-resonance for the uncooled beam, with two
different solenoid strengths. The attempt to reproduce the data with same
amplitude distribution used for the data in Fig. 4.6 partially failed.

This distribution of particles in the beam seems to change by small
amounts over time during the experiment. Figs. 4.8(a) and 4.8(b) show
time curves calculated with the model of Fig. 4.6, but with different solenoid
strengths. In Fig. 4.8(b), agreement is not as good. In particular, more
tracks are needed with small amplitudes and faster oscillation frequencies
to better match the first two oscillations in the polarization. Adding such
tracks improves the agreement for that feature, but this change overes-
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Figure 4.7: (a) Distribution of values of A leading to the model calculation of Fig. 4.6.
Note that the first coefficient is negative, an unphysical result. (b) Distribution of par-
ticles in the beam obtained by reproducing the time dependence of Fig 4.6 with the
amplitude distribution here on the left side and matching that with 1000 tracks follow-
ing the same amplitude distribution.

timates the oscillations at larger times. The calculations shown in Figs.
4.8(a) and 4.8(b) are similar, but in Fig. 4.8(b) the data display different
polarization oscillations and the central value is now positive. This supports
the conclusion that the distribution of synchrotron amplitudes changes with
time. It is possible to reproduce these measurements with a quality similar
to that shown in Fig. 4.6 provided we repeat the fitting process and obtain
a new set of coefficients similar to those in Fig. 4.7(a). During the several
hours spent taking these measurements, it is likely that the distribution
of particles within the rf bucket changed, even if the bucket potential is
unchanged. These measurements are clearly very sensitive to that choice.
The range of variation seen in Figs.4.8(a) and 4.8(b) demonstrate by exam-
ple the level of stability of these features. Unfolding this through a fitting
process produces a beam bunch distribution that is consistent with what is
observed using beam pickup monitors.

Final polarization value from Froissart-Stora scan and the reflec-
tion point Due to the synchrotron oscillations, particles with particularly
large amplitudes will respond to the rf solenoid as if it is effectively very
weak. At some point these particles will no longer undergo a complete spin
flip as the rf solenoid frequency passes over the position of the resonance.
To illustrate this, a model calculation was made of the frequency scan of
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Figure 4.8: (a) Measurements similar to Fig. 4.6 but with a solenoid strength of 2.66×
10−5 rev/turn. The model calculation uses the distribution of 1000 randomly chosen
amplitudes. (b) The same as Fig. 4.6 but with a solenoid strength of 8.87×10−7 rev/turn.
The solenoid was turned off at t = 15 s.

Fig. 4.2 using the distribution of amplitudes shown in Fig. 4.7(b). Then, for
each of the 1000 tracks in that simulation, the vertical projection of the spin
was plotted at the end of the frequency scan. The result is shown in Fig. 4.9.
For most of the range of amplitudes A, the final spin projection is practi-
cally indistinguishable from 1. At roughly A = 48 m, the effective solenoid
strength becomes sufficiently weak that some departure can be seen from a
final value of pY = 1. As the size of A increases, the result moves quickly
to +1, and for higher values falls again toward −1. Some admixture of the
large synchrotron amplitude particles into the beam bunch will thus cause
the frequency scan to fall short of a complete polarization reversal. At the
point near A = 57.8 m, where the final polarization goes to +1 the period
of the oscillation in Fig.4.5 goes to infinity. For larger values of A the set
of oscillating functions retraces its path back down again with progressively
shorter and shorter polarization oscillation periods. Thus, A = 57.8 m is a
reflection point in this pattern.

For the data in Fig. 4.2, the uncooled distribution of Fig. 4.7(b) resulted
in a final polarization value of −0.8, while the measured value came close
to −0.96. A closer reproduction required that the fraction of tracks in the
region of A > 50 m be reduced by a factor of 5. This is another example of
the change with time of the particle distribution in the bunch.

Another feature caused by synchrotron oscillations is that the polariza-
tion in Fig. 4.3 falls slightly short of reaching 1 or −1. When presented
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Figure 4.9: Final polarization value of a single particle track as a function of the
synchrotron amplitude A after a frequency scan as shown in Fig. 4.2.

to a fitting program using the same basis set that was used for the un-
cooled beam, most of the strength appeared for amplitude that was closest
to zero. The reminder, a few percent, was distributed widely among the
larger amplitudes, as is shown in Fig. 4.10. The distribution in Fig. 4.10
compares well with the distribution measured by the beam pick up shown
in Fig. 4.1(b), which also has tails emerging on each side of the central
peak. In this case, the uncooled component is approximately 9%. This is
probabily due to particle collisions with the residual gas in the beam pipe
or close encounters with electrons in the electron region, both of which can
remove some particles from the central peak.

4.3.3 Resonance shape

A series of fixed frequency measurements were made around the center
of the resonance for the cooled and uncooled beam. Fig. 4.11 shows the
resonance curves for these two cases, where each point is the average value
of the polarization oscillation while the rf solenoid is on.

For the cooled case, the calculation of Fig. 4.11(a) was made using only
a single particle track with no synchrotron amplitude because the inclusion
of a full distribution as in Fig. 4.10 makes no signficant difference (< 0.003)
in the resulting average polarization. The strength of the rf solenoid was
4.43 × 10−6 rev/turn and the ramp-up time was 200 ms. The calculated
width is narrower compared to the data points.
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Figure 4.10: Synchrotron amplitude distribution for the cooled beam shown in Fig. 4.3.

For the uncooled case, the average polarization was taken to be the
mean value after damping for about 0.5 s. Indeed, the solenoid strength
was 2.66 × 10−5 rev/turn, its maximum value, and this caused the oscilla-
tion pattern to damp quickly. The ramp-up time for the rf solenoid was
200 ms. The model calculation was based on the amplitude distribution
shown in Fig. 4.7(b) and used to reproduce the oscillation pattern of all the
data points shown in Fig. 4.11(b). Here the level of agreement is mixed,
with some calculations appearing above their respective data points and
others below. The center of the resonance is placed at 871434 Hz. A finer
adjustment was not possible because the frequency of the polarization os-
cillations is not well determined and in any case depends in the distribution
of synchrotron amplitudes included in the calculation. Points whose aver-
age polarization is less than 0.5 suggest the resonance position should be
slightly higher while those with a larger average suggest the opposite.

The shape of the resonance in Fig. 4.11(b) appears to be a “V” with
gently curving sides. This shape is a consequence of the definition of the
average polarization that makes up the data points. If instead the shape is
taken to be the polarization at a specific time during the scan or the result
at the end of the scan [23], then the shape will be different. On a very close
inspection, the shape is in fact parabolic at the bottom point of the “V”.
The scale of these graphs is not sufficiently expanded to reveal this feature,
but it is more evident in Fig. 4.11(a).

In the attempt to reproduce the data points shown in Fig. 4.11, a lot of
features of the resonance curve have been observed. This comparison made
a strong test of the simple “no lattice” model used here. A short list is
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Figure 4.11: The resonance curves for the cooled (see Fig. 4.11(a)) and uncooled (see
Fig. 4.11(b)) cases. The solid line represents the model calculation while the black circles
are the data points.

given as follows to summarize the results:

• at a particular frequency, the average value of the polarization is lower
for a stronger rf solenoid field and a faster ramp-up time. This causes
the resonance curve to be wider. The opposite situation appears for
a weaker rf solenoid and a slower ramp-up time.

• there is a dependence on the distribution of synchrotron amplitudes.
Variations in the trend of the reproduction may reflect changes in the
amplitude distribution for the uncooled case from run to run. Each
run, which corresponds to one data point, took about one hour to
accumulate.

• during the experiment it has been observed that after the solenoid
was ramped down, the average polarization for the uncooled beam
rose to a more positive value. In general, the model also contains
the same feature, but the amount of rise was not well reproduced.
Like the effect of ramp-up time, the amount of rise depended on the
ramp-down time. An investigation with different calculated ramp-
down times showed that the dependence on this time was exponential
(like the final value of the polarization in a Froissart-Stora scan) but
did not offer any clear clues to the values of the exponential slope nor
the final value of the polarization. A more detailed analysis is needed.
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4.4 Conclusions

This study resulted from the attempt to measure depolarizing effects
on the shape of the RF-solenoid spin resonance. Two choices in the setup,
the use of a harmonic of the resonance because of the requirements on
the operation of the RF-solenoid and the choice of bunching the beam on
the first harmonic, led to the contribution of large amplitude synchrotron
oscillations in the uncooled beam to the evolution in time of the vertical
polarization. These contributions contain tracks that reflect an effectively
weakened RF-solenoid and consequently have a longer oscillation period,
even on-resonance. For the uncooled beam, this substantially changes the
response of the system, creating a damped oscillation in the vertical polari-
zation in the place of the continuously running oscillation observed for the
cooled beam. These damped oscillations are built up of precession curves
for the individual particles that continue to oscillate between a vertical po-
larization of +1 and -1. Compared to the on-resonance particle with no
synchrotron amplitude, the oscillations in this set of functions have lower
frequencies. This makes them different from the oscillations observed by
moving the RF-solenoid frequency away from the resonance. In this case,
the oscillations away from the resonance are characterized by higher frequen-
cies and smaller amplitudes that cover a maximally positive range. Thus
these two phenomena are distinguishable by the character of the damped
oscillation.

The effects of transverse emittance or momentum spread were not di-
rectly or unambiguously observed during the experiment. Pursuing this
further requires that we look directly at the spin decoherence of a horizon-
tally polarized beam by unfolding the precession of the spin from the po-
larimeter measurements using time stamps associated with each polarimeter
event. Such a stamp would allow us to locate it in the precession history
of the beam since the inception of any spin manipulation within the beam
store. This study is the subject of the next chapter.





Chapter 5

Spin Coherence Time
measurements

The goal of the experiment presented in this chapter was the measure-
ment of a rapidly rotating horizontal polarization as a function of time,
made possible by the development of the data acquisition system explained
in Sec. 3.2. The fitting procedure used to calculate the amplitude of the
down/up asymmetry creates a positive offset of the measured polarization
magnitude a low asymmetry. For this reason a section is dedicated to the
method for correcting the model for this systematic effect and, at the same
time, providing the definition for and extracting the spin coherence time
(SCT). In the preliminary tests presented here, the vertical polarization
was moved into the horizonal plane using an rf-solenoid running at the res-
onance frequency fcyc(1−Gγ) (as explained in the previous chapter). The
horizontal polarization lifetime was then measured for different values of
horizontal beam emittance and different setting of the sextupole magnets.

5.1 Exprimental setup

The new DAQ system was developed for the beam time of May 2012.
The experiment was run with a bunched beam at the first harmonic and
with momentum p = 0.97 GeV/c as for the measurements discussed in the
previous chapter. But the available polarization states were only three:
vector V(+), vector V(−) and unpolarized. The measured asymmetries ϵy
gave a polarization down by more than a factor of three compared to sets
of data shown in Chap. 4. Then a a better polarization was measured when
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making the substitution of the vector V(+) state with a tensor-vector state.
It improved the vertical polarization of a factor of two and hence it has been
used for the analysis presented here.

The goal was to study separately the size of the emittance effects in both
X (radial) and Y (vertical) directions. But it proved difficult during the run
to find a machine condition where the vertical emittance could be varied
by itself (through electron cooling and then selective heating with white
noise on electric field plates) while keeping the beam bunched. However,
this was possible in the horizontal direction. So that degree of freedom
was explored. Extraction of the beam was made through a vertical steering
bump that brought the beam close to the thick polarimeter target. This
helped to keep the size of the vertical emittance small so that changes could
be related to the horizontal profile. The horizontal polarization was obtain
by swithing the solenoid on for few seconds on resonance, such that it could
flip the polarization and stop it in the horizontal plane.

The next step was to test a possible correction of the emittance effects
by using sextupole magnets. In the COSY arcs there are two sextupole
familes, groups of four magnets, MXS and MXL, which are located respec-
tively where the βx and βy functions are large. Due to the machine tuning
problems discussed above, only the effects of the MXS family were studied
on a beam with a large horizontal emittance.

5.2 Extracting spin coherence time with cor-

rection of the systematic positive bias

Figure 5.1 shows horizontal polarization asymmetries measured for small
to large horizontal beam profiles. As the profile becomes larger, the horizon-
tal polarization lifetime shrinks because of the larger spread in spin tunes.
The measured data (open circles) are subject to a positive bias since fitting
a sine wave (see Sec. 3.2) with an undetermined phase to a random distri-
bution always produces a non-zero magnitude. An initial correction for this
effect produced the solid data points in Fig. 5.1 but a better method [26] (de-
veloped by E. J. Stephenson) that also determines the spin coherence time
is described as follows. The time dependent shapes shown in Figure 5.1 are
neither Gaussian nor exponential, so a numerical template was matched to
the data in order to characterize the shape with a value of the spin cohe-
rence time. This also allowed for the correction of the systematic positive
bias to be applied to the template, a procedure that is much better defined
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Figure 5.1: The three panels show horizontal polarization asymmetries measured for
small, medium and large horizontal beam profiles respectively. As the profile becomes
larger, the spin coherence time shrinks. A positive offset of the measured data (open
circles) at low asymmetry comes from the fitting process using of a sine wave with an
undetermined phase to reproduce a random distribution. An initial correction for this
effect produced the solid data points. Overcorrections to magnitudes less than zero were
replotted at zero.

than substracting the bias the asymmetry measurements directly.

Template curve Fα(t) The template assumes that the spread of spin
tunes is due solely to the path lengthening (see Sec. 2.1.3) associated with
the finite ϵx and ϵy emittances of a bunched beam. At any point in the
ring with known beta functions, the emittance may be characterized by the
angles θx and θy that represent the maximum deviation from the direction
of the central orbit (see Eq. 2.14) at the location of the rms deviation of the
distribution. The change in spin tune depends on the combination θ2X + θ2Y
for each particle track. The values for θx and θy were chosen from two
separate Gaussian distributions, each characterized by a width, σx and σy.
Changing these widths relative to one another alters the time-dependent
shape of the template curve, which may then be characterized by a new
parameter α = σy/σx. A change to the spin coherence time itself is equiv-
alent to rescaling the time axis t of the template curve, Fα(t). During the
experiment, it was possible to make σx, originally reduced through electron
cooling, wider by applying white noise to a set of horizontal-field electric
plates. Thus all tests were made with horizontal ribbon beams whose cross-
sectional shape represented cases with α < 1.

The template shapes were constructed by taking 106 spins and distribut-
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ing them around a unit circle (in the storage ring plane) in accordance with
the spin tune model just described for a particular value of α. An example
of such a distribution for 300 spins and a single non-zero emittance is shown
in Figure 5.2(a). At t = 0 all of the spins were at (X,Y) = (0,1) and the
beam represented by this ensemble was completely polarized (p = 1). As
time increases, the points revolve around the unit circle in one direction (in-
creasing spin tune) since the quadratic sum of the angles is always positive.
The distribution was allowed to spread linearly with time. At each time
point, the X and Y components of the polarization were calculated, and the
total polarization determined by adding these components in quadrature.
For the single distribution case (α = 0), the resulting polarization time de-
pendence is the solid curve F0(t) in Figure 5.2(b). For larger values of α
with σy fixed, the template curve falls more quickly, as shown by the broken
curves in Figure 5.2(b).
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Figure 5.2: Figure 5.2(a) shows the unitary circle in the XY plane where the spin
are distributed following the square of a Gaussian distribution. It represents the spin
positions in the plane at one time. Figure 5.2(b) shows five example of the numerical
function used to describe the horizontal polarization as a function of time. These curves
have the same properties except for the α value which is equal to 1, 1/2, 1/3, 1/4 and 0
(starting from the bottom). α = 0 means that the beam is horizontal and flat because
the vertical size becomes. α = 1 is a round beam, the case in which the beam emittance
effect on polarization is the largest.

Spin coherence time The initial departure of the template shape from
one at small times is quadratic and in this respect like a Gaussian function.
We chose as the “spin coherence time” the width at p = 0.606, the same
value that corresponds to the amplitude of a Gaussian function whose ar-
gument is the function’s width σ. In order for this to work for the double



5.2 Extracting spin coherence time 59

distributions represented here, it is necessary to scale the template curve
according to Fα(

√
1 + α2 t). The curves in Figure 5.2(b) include this scaling

and remain well-matched to each other down to p = 0.6. Other parameters
were included in order to match individual sets of asymmetry measurements
and produce the adjustable template:

f(α, t) = a1Fα(ttab)

texp = a2
√
1 + α2 ttab + a3 where (5.1)

• a1 scales to match the asymmetry at the start of the horizontal pola-
rization measurement;

• a2 is proportional to the spin coherence time;

• a3 is a time shift used to synchronize the template with the start time
in the data stream.

The numerical lookup table is based on a fixed array ttab whose interpreta-
tion as experimental time texp is given by the second line in Eq. 5.1. The
factor

√
1 + α2 decouples a2 from the particle distribution in the transverse

directions and thus provides a consistent definition for the spin coherence
time indipendently from the shape Fα. The matching of the template to
each data set was done with a numerically-driven non-linear regression rou-
tine.

In order to convert a2 into the spin coherence time a scale calibration is
needed. As was mentioned at the beginning of this paragraph, the initial
behavior of the template curves follows a Gaussian function whose width
is the spin coherence time. The value of ttab at which the template curves
cross p = 0.606 is the convertion factor called index and equal to 125.43.
Finally, the spin coherence time can be obtained by multiplying a2 times
the index value.

Bias correction Let’s consider the procedure to extract the horizontal
polarization as a function of time described in Sec. 3.2. The amount of pos-
itive bias in the extraction of the amplitude of a sine wave representation of
the 9 asymmetry points around the horizontal plane depends on the size of
the statistical errors in the 9 points. These errors are typically similar for
all bins, and a single average value is used. The value of the positive bias
is the average magnitude of the sine wave fit to data with a random and
a signal component minus the signal component. The larger the error, the
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larger is the positive bias. This effect is shown in Figure 5.3(a) where each
axis is plotted in units of the typical error in a single angle bin. Below one,
this bias becomes large. It is approximately, but not exactly hyperbolic,
so the numerical table represented by Figure 5.3(a) was used to calculate
the correction in each case. The asymmetries shown in Figure 5.1 represent
an average over typically 15-20 storage cycles at COSY. While the error on
the average becomes smaller, the bias remains the same. For each template
shape and data point, the bias was calculated knowing the individual angle
bin error and applied to the template curve. An example is shown in Fi-
gure 5.3(b) by the solid curve in comparison to the original template shape
as a dashed line. A set of eleven template curves were generated for a range

(a) (b)

Figure 5.3: Figure 5.3(a) shows a Monte Carlo simuation relating the observed asym-
metry to the real asymmetry. The asymmetry scale is adjusted so that it represents the
size of the statistical error in one angle bin for one time bin in one store. The positive
bias problem becomes evident when the real asymmetry goes to zero and the error is
about the size of the typical signal. Figure 5.3(b) is an example of the correction for
a real case. The empty circles are the uncorrected data. The real polarization which
corresponds to the data is represented by the dashed line. The real polarization with the
positive bias included is the solid line.

of α values between 0 and 1. Non-linear regression fits were made for each
template, and the final value of the spin coherence time taken from the one
with the smallest reduced chi square. In general, this correlated well with
changes in the ribbon beam shape during the experiment. Additional error
contributions from the fitting process were added to the statistical errors
when quoting the final spin coherence time. An example of the fitting pro-
cedure is shown in Fig. 5.4. On the top left corner, the experimental data
represented by the balck dots are fitted with a non-linear regression routine
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for each template curve. The quality of these fits is given by the value of
the reduced chi square which is plot for each α in the graph on the top right
corner. The minimum of the quadratic curve fitting the reduced chi square
points corresponds to the best value of α and is shown by a vertical solid red
line. The horizontal dashed red line is the standard deviation width for this
chi square curve. In the bottom of Fig. 5.4, there are two graphs represent-
ing the values of the parameters a1 and a2 resulting from the matching of
the templates curves to the data set. In both cases, the red star represents
the parameter value corresponding to the best α. The vertical error bars
are calculated from the fitting porcedure and the statistical errors. The
horizontal error bars of the red stars represent the width of the chi square
curve. In the example shown here, the best value of α is 0.35 ± 0.05, the
fitting parameters are a1 = 0.218 ± 0.007 and a2 = 0.080 ± 0.005 and the
spin coherence time is τSCT = 10.0 ± 0.6 s. The finale curve produced by
the analysis is shown with a solid red line in the top left graph of Fig. 5.4.

5.3 Emittance effects

There are two kinds of contributions to the spin tune spread from beam
dynamics:

• at first-order, the spin tunes spread because of the spread of particle
momenta described by the momentum distribution of ∆p/p, where p
is the reference value. This is removed by bunching the beam.

• a second-order contribution appears due to betatron oscillations that
occur when beam particles oscillate about the central trajectory. Since
bunching the beam keeps all particles on average isochronous, such
oscillations lead to a longer beam path, a higher particle speed, and
a change in the spin tune, as explained in Sec. 2.1.3.

The change in path length goes as the square of the maximum angle of
deviation from the central ray. Then, it is expected that the reciprocal of
the spin coherence time should go as the square of the width of the beam
profile

1

τSCT

= A⟨θ2x⟩+B⟨θ2y⟩, (5.2)

as appears to be the case in Fig. 5.5.

As already mentioned in the first section, the vertical emittance was kept
small while only the horizontal emittance was varied for the tests. Fig. 5.5
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Figure 5.4: The four graphs show an example of the fitting procedure to calculate the
spin coherence time. Starting from the top left corner, the experimental data are the
balck dots and the solid red line is the final result of the analysis. In the right panel, the
reduced chi square resulting from the fitting procedure of the template curves is plotted
against the corresponding α value. The best α (shown by a vertical solid red line) is
determined by the minimum of a quadratic curve fitting the reduced chi square points.
In the bottom graphs, the values of the fitting parameters a1 and a2 are shown for each
α. The red stars in these plots are the a1 and a2 values corresponding to the best α.
For this set of measurement, the best value of α is 0.35± 0.05, the fitting parameters are
a1 = 0.218±0.007 and a2 = 0.080±0.005, and the spin coherence time is τSCT = 10.0±0.6
s.

shows a set of measurements for several horizontal profile widths (solid
points). The vertical axis is the horizontal polarization lifetime, here chosen
to be the time required for the beam to lose 1/3 of its initial polarization.
The horizontal axis is the average beam profile Gaussian width in mm.
Both quantities represent values from a preliminary analysis during the
experiment. All of these were taken with electron cooling off, following a
period with cooling on to reduce the phase space size with another short
period of heating to expand the space horizontally. This gave profile sizes
typically larger than 4 mm. A single point at 2 mm (star) was taken with
cooling running continuously through the measurement.

Fig. 5.6 shows two example of horizontal polarization for a narrow (see
Fig. 5.6(a)) and a wide (see Fig. 5.6(b)) beam. It is clear the emittance
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Figure 5.5: Measurements of the reciprocal of the horizontal polarization lifetime, here
chosen to be the time required for the beam to lose 1/3 of its initial polarization. The
horizontal axis is the average beam profile Gaussian width in mm. Both quantities
represent values from a preliminary analysis during the experiment. Only the point with
the star was measured with electron cooling running during data taking. The solid line
represents a guide to the eye with a parabolic function.

effect on the spin coherence time, which is 50.0± 2.5 s in the first case and
5.5± 0.6 s in the second one.

(a) (b)

Figure 5.6: Comparison of the horizontal polarization as a function of time for a narrow
beam (see Fig. 5.6(a)) and a wide beam ((see Fig. 5.6(b)). It is evident how emittance
affects the spin coherence time, which is 50.0 ± 2.5 s in the first case and 5.5 ± 0.6 s in
the second one.
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5.4 Sextupole corrections

Sextupole magnetic fields, which vary as the square of the radius from
the center, can provide an adjustment to the particle orbit to remove the
term driving the change in spin tune. Starting from Eq. 5.2, the sextupole
corrections can be added as follows:

1

τSCT

= A⟨θ2x⟩+B⟨θ2y⟩+ (c1J + d1K)⟨θ2x⟩+ (c2J + d2K)⟨θ2y⟩, (5.3)

where J and K are sextupole currents for magnets installed respectively
where the βx and βy functions are separately large. In order to find the
sextupole corrections to cancel the emittance effects on the spin coherence
time, the system to solve is given by setting 1/τSCT to zero:

J

K


= −


c1 c2

d1 d2

−1
A

B


(5.4)

where A, B, ci and di with i = 1, 2 are coefficients to be determined exper-
imentally. The idea is to measure the spin coherence time while varying J
and K separately for different value of θx and θy.

During the beam time in May 2012 we used a setup with one of the
larger horizontal beam profiles and the horizontal polarization lifetime was
measured as a function of the setting of the MXS magnet strength (located
where the βx function is large). The strength, called K2, is defined as:

K2 =
1

Bρ

∂2B

∂x2
, (5.5)

where B is the magnetic field and 1/ρ is the curvature. This reduces Eq. 5.3
to:

1

τSCT

= (A+ c1J)⟨θ2x⟩, (5.6)

where J corresponds to the sextupole strength K2.

An initial investigation showed that changes were capable of lengthen-
ing the polarization lifetime. In contrast to the data shown in Fig. 5.5, the
measure of the lifetime is changed to the spin coherence time . The results
are shown in Fig. 5.7 which plots the reciprocal of the spin coherence time
(1/a2 scaled to 1/seconds) as a function of the strength of the MXS sex-
tupole magnets. If the magnet strength increases beyond the point where
the 1/SCT becomes zero and the spin tune spread is canceled, then a finite



5.4 Sextupole corrections 65

-2 -1 0 1 2 3 4 5 6 7
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

Sextupole Field (K2)   (1 / m^3)

1
  
/ 

 S
C

T
  
 (

1
 /

 s
)

5 6

0.00

0.04

Figure 5.7: Measurements of the reciprocal of spin coherence time. The horizontal scale
is the sextupole magnetic field strength. The three lines correspond to three different
beam profile widths, starting from a narrow (bottom, blue) to a wide (top, black) profile.
In order to determine wether this behavior is linear, all the points above the zero crossing
at 5.4± 0.1 m−3 were reversed in sign.

polarization lifetime will return. In order to determine whether this behav-
ior is linear, it is necessary that the 1/SCT values on one side or the other
of such a zero crossing be reversed in sign. In Fig. 5.7, this was done to all
of the points above 5.4 m−3.

Changing the value of the sextupole field has a dramatic effect on the
horizontal polarization lifetime. This approaches infinity as the 1/SCT goes
to zero. The linearity of the effect comes from the matching of the quadratic
sextupole field as a correction to the quadratic path lengthening, a function
of the size of the horizontal emittance. Over most of this range, the depen-
dence is clearly linear (after correction of the sign). The lack of distortions
in the linear behavior near value of zero points to the lack of other contribu-
tions to shortening the polarization lifetime. Such contributions could come
from the vertical beam emittance or couplings to the momentum spread.

Cooled beam Another test was made to measure the horizontal polariza-
tion lifetimes by cooling the beam for all the storage time, since it represents
the case where the particle momentum distribution and emittances are the
smallest. The beam was extracted onto the EDDA thick carbon target
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Figure 5.8: Measurements of the spin coherence time for a electron cooled beam. This
represents the longest polarization lifetime recorded and corresponds to 316± 40 s.

for only a short time at the beginning and end of the horizontal polariza-
tion window, as is shown in Fig. 5.8. Under these conditions, the longest
polarization lifetime recorded is 316 ± 40 s for the time required for the
polarization to fall to 1/e of its initial value.

5.5 Conclusions

The goal of this set of experiments was to provide a demonstration that
sextupole fields in a storage ring may be used to reduced the spread of spin
tunes in a horizontally polarized deuteron beam. Such a demonstration is
a critical part of showing that it is possible to build a special storage ring
dedicated to the search for an Electric Dipole Moment (EDM) on charged
particles. In order to have a sensitivity to the deuteron EDM that is about
10−29 e·cm, the spin coherence time should reach 1000 s.

The spin coherence time studies presented here confirm that the proper
choice of sextupole fields could be used to preserve the polarization for
times up to 1000 s. The correction illustrated in Figure 5.7 is for the
one-dimensional problem, fixing a large horizontal emittance and spin tune
spread with a sextupole located at a place with a large horizontal beta
function. The zero corssing point represents the condition in which the spin
tune spread due to the horizontal emittance is cancelled and it happens



5.5 Conclusions 67

for a sextupole field strength of 5.4 ± 0.1 m−3. In general, both X and Y
emittance must be corrected. The MXL sextupole family is located where
the vertical beta function is large, and is thus the right choice for the Y
dimension. It is expected that the cancellation will require a consideration
of the cross terms, MXS changing Y and MXL changing X. This study is
left for the future.

It is also demonstrated that a long horizontal polarization lifetime (316±
40 s) can be achieved in the case of a cooled beam, since it represents
the case where the particle momentum distribution and emittances are the
smallest. Although this result is promising as it approaches the goal value
for dedicated EDM measurements, the adopted cooling technique, making
use of the electron cooler, cannot be directly applied to the final experiment
as the magnetic fields used in the electron cooling system would destroy the
EDM signal. As a possible alternative, the use of stochastic cooling has
been proposed, but the effect of the stochastic cooling system on the spin
dynamics of the stored beam has to be both theoretically and experimentally
investigated.





Chapter 6

Conclusions

This thesis is part of the feasibility studies for a search for an Electric

Dipole Moment (EDM) of charged particles in a storage ring. The evidence

for a non-vanishing EDM at the sensitivity of present or planned experi-

ments would clearly prove the existence of new CP violating meachanisms

beyond the Standard Model. The proposed solution to measure the EDM

of charged particles is the use of a storage ring where the polarized charged

particle beam can be kept circulating while interacting with a radial elec-

tric field. Starting with a longitudinally polarized beam, the EDM signal

would be detected as a polarization precession starting from the horizontal

plane and rotating toward the vertical direction. A long horizontal polari-

zation lifetime is required since it represents the time available to observe

the EDM signal. In order to have a sensitivity to the deuteron EDM that

is about 10−29 e·cm, the spin coherence time should reach 1000 s while the

measurement of a vertical polarization change should detect angles as small

as micro-radians.

The aim of this work is the analysis of the mechanisms which control

the spin coherence time in a storage ring. The measurements presented

69
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here were made at the COSY (COoler SYnchrotron) ring located at the

Forschungszentrum-Jülich GmbH (Germany).

There are two set of measurements presented in this thesis: the first is

a study of an rf-solenoid induced spin resonance and the second shows the

results from the first direct measurement of the horizontal polarization as

a function of time.

The first experiment sought to estimate the spin coherence time by mea-

suring the width of a deuteron spin resonance induced by an rf-solenoid.

Since the width of the resonance depends on the spin tune spread and

thus on particle momentum distribution, each mechanism that can change

the particle velocity in the beam could contribute to the spin tune spread.

In particular, these mechanisms are betatron oscillations which are due to

the beam emittance and synchrotron oscillations that are present only in

a bunched beam. In order to enphasize the dependence on the momentum

distribution, several tests were made using a bunched polarized deuteron

beam, either uncooled or electron-cooled. Similar studies on induced spin

resonances can be found in the literature but none of them provided a con-

tinuous measurement of the vertical polarization as function of time. It was

expected to see the effects of betatron oscillations on the spin resonance

width. Instead, the measurments showed the effect of synchrotron oscilla-

tions on the induced spin resonance, an effect that was large enough to hide

any dependence on emittance.

The experiment consisted of vertical polarization measurements with the

rf-solenoid running at fixed frequency on and off resonance, and for uncooled

and cooled bunched beam. Beginning with the on-resonance case, the ob-

served vertical polarization patterns were clearly different for the cooled and
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uncooled beam conditions. In the cooled case, long lasting oscillations were

observed whose period depended on the rf-solenoid strength. The polariza-

tion flip was complete. In the uncooled case the oscillation damped, ending

finally in a constant polarization value. Moving off resonance, the ampli-

tude oscillation for a cooled beam was smaller and the frequency was higher

compared to the on-resonance case. For the uncooled beam, the oscillations

were still damped and the final polarization value became more positive the

further the measurement was made from the resonance frequency.

In order to understand these behaviors, a simple “no-lattice” model was

developed based on two rotation matrices for the spin precession about the

vertical axis and the solenoid kick about the longitudinal axis, while syn-

chrotron oscillations were included as simple harmonic motion. The model

results showed that for a single particle undergoing synchrotron oscillations,

the spin flips completely under the resonance condition but the oscillation

frequency depends on the amplitude of the synchrotron oscillations, the

larger the amplitude, the slower the frequency. This is a very important re-

sult because it means that the effect of synchrotron oscillations is to weaken

the rf-solenoid strength.

The second experiment was the direct measurement of the horizontal

polarization as a function of time, made possible through the development

of a dedicated data acquisition system synchronized with the revolution

frequency of the horizontal polarization. By changing the horizontal beam

emittance with a white noise electric field, the measurements gave the first

experimental evidence of a dependence of the spin coherence time on the

horizontal beam size. The dependence is due to the path lengthening intro-

duced by betatron oscillations which forces the particles to go faster in order
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to respect the isochronous condition in a bunched beam. A possible method

to correct for emittance effects is to use sextupole magnets whose field varies

as the square of the radius from the center, providing an adjustment to the

particle orbit to remove the term driving the spin tune change. Indeed, it

has been demonstrated that for a particular value of sextupole strength the

contribution from the horizontal emittance was canceled, reaching a spin

coherence time of a hundred seconds. The same study for the vertical emit-

tance is planned for the future. The longest horizontal polarization lifetime

was reached in case of a cooled beam, corresponding to a 1/e spin coherence

time of 316± 40 s.

A fundamental requirement for the EDM experiment is to get a long a

spin coherence time. The presented results provided a demonstration that

sextupole fields in a storage ring may be used to reduced the spread of spin

tunes in a horizontally polarized deuteron beam. Such a reduction would

make possible spin coherence lifetimes of a hundred seconds, as represented

here by measurements of the lifetime of the horizontal polarization. Such a

demonstration is a critical part of showing that it is possible to build a spe-

cial storage ring dedicated to the search for an EDM on charged particles.

It is also demonstrated that the longest horizontal polarization lifetime can

be achieved in the case of a cooled beam, since it represents the case where

the particle momentum distribution and emittances are the smallest. The

measurement of a spin coherence time of 316 ± 40 s is also a world record

compared to the previous result obtained with electrons and positrons [27].

Although this result is promising as it approaches the goal value for ded-

icated EDM measurements, the adopted cooling technique, making use of

the electron cooler, cannot be directly applied to the final experiment as the
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magnetic fields used in the electron cooling system would destroy the EDM

signal. As a possible alternative, the use of stochastic cooling has been

proposed, but the effect of the stochastic cooling system on the spin dy-

namics of the stored beam has to be both theoretically and experimentally

investigated.
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