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Introduction 

Axial load identification of frame members may be required to support restoration 

project and safety assessments of a structure, or to ascertain how far the structure is to 

buckling. In the last decades, various methods have been proposed for the experimental 

evaluation of the axial load acting in structural members, such as tie beams of arches 

and vaults, stay cables of suspended structures or truss structure elements. Moreover, 

static and dynamic approaches have been formulated to evaluate critical compressive 

axial forces and flexural stiffness of end constraints.  

In particular, tie-rods beams were often used in ancient monumental masonry 

buildings to eliminate the lateral load exercised by vaults and arches. As a consequence 

of foundation settlements, the tensile force on tie-rods can surpass the relatively low 

yield strength offered by the old-time metallurgy. Also corrosion can play a decisive 

role in decreasing the strength of ancient tie-rods. For these reasons, it is important to 

identify the tensile forces in tie-rods of masonry building, especially in the case of 

evident deformations of arcs and vaults (Bruschi et al. 2004, Candela et al. 2004, 

Amabili et al. 2010). For the evaluation of tensile forces static and dynamic methods 

have been proposed.  

Static methods make use of displacements and deformations of tie-beams subjected 

to one or more concentrated loads. For instance, in Briccoli Bati, Puccetti and Tonietti 

(2002) and in Briccoli Bati and Tonietti (2001) a static force is applied at mid-span and 

displacements, as well as axial deformations at the two opposite sides of the cross-

section, are evaluated at three selected locations giving rise to nine distinct 

measurements; hence, a unique solution for the tensile force and the bending moments 

at the end sections is obtained.  

In dynamic methods, vice versa, resort is made to vibration tests making use of beam 

model parameters. In Blasi and Sorace (1994) and in Sorace (1996), an approximate 

method is proposed, using both static deflections and vibration frequencies to evaluate 

axial forces in tie-beams. Making use of the first three modal frequencies, a numerical 

method was suggested (in Lagomarsino and Calderini 2005), which is based on a 
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minimization procedure of a proper error function; hence, the tensile force and the beam 

bending stiffness are obtained. Making use of a FE model, a weighted least-squares 

estimation method was presented in Livingston et al. (1995), which alternatively uses 

the two or three lowest frequencies, or the two lowest frequencies with their 

corresponding (normalized) mode shapes. Moreover, to determine both plane- and 

space-frame forces, sensitivity-based methods are used in Park et al. (2006), Greening 

and Lieven (2003), Bahra and Greening (2006, 2011). An example of multiple 

identification of axial load patterns using vibration data can be found in Bahra and 

Greening (2006, 2011). However, these methods make use of finite element 

formulations coupled with model updating techniques, for which nonuniqueness of 

estimated parameters may arise.  

In Tullini and Laudiero (2008), it is proposed an identification method based on the 

Euler–Bernoulli beam model in which geometric and elastic properties are assumed as 

known parameters. Making use of any natural frequency and of three displacement 

components of the corresponding mode shape, it is shown that both axial loads and 

stiffness of end flexural springs of a beam subjected to tensile or compression forces 

can easily be obtained. As for compression resultants, knowledge of flexural constraint 

stiffness implies that critical loads can analytically be evaluated and compared with 

actual compression forces so as to give an experimental evaluation of the safety factor.  

An identification technique which takes into account a more general model is given in 

Amabili et al. (2010). This technique is based on a frequency-based identification 

method that allows to minimize the measurement error. In particular, the method makes 

use of the Timoshenko beam theory and accounts for shear deformations and rotary 

inertia. Non-uniform rod section is considered since this is often the case for hand-made 

tie-rods in old buildings. The part of the tie-rod inserted into the masonry wall is also 

modeled and a simple support is assumed at the extremities in the interior of the walls. 

The constraints given by the masonry are assumed to be elastic foundations. The 

unknowns are given by the tensile force and the foundation stiffness. Nonetheless, even 

in this method nonuniqueness of estimated parameters may arise. 

The experimental evaluation of critical compressive forces of beams with unknown 

boundary conditions was widely investigated as well. In Lurie (1952) reduction of 

natural frequencies as the value of the compressive force increases is adopted as the 

ruling parameter and the critical axial load is estimated by assuming a linear relation 

between the axial load and the square of the natural frequencies. As a matter of fact, 

approximate formulas of this type need an a-priori estimate of the end constraint 

stiffness and are quite accurate for known boundary conditions only (Shaker 1975, Plaut 

and Virgin 1990, Virgin and Plaut 1993). In Baruch (1973), Segall and Baruch (1980) 

the vibration mode shapes are used to give a kernel approximation for the integral 
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formulation of the (column) elastic stability problem. In Go et al. (1997), the vibration 

mode shapes are used to formulate a FE model for the critical load estimation. In these 

last three papers, knowledge of end constraint stiffness is not required; vice versa, in 

Klein (1957), Jacobson and Wenner (1968), Sweet et al. (1976) stiffness of end 

constraints of a prismatic column subjected to null axial load are determined first and, 

then, the critical load is analytically derived. Kjell and Johnson (2009) proposed a 

method to measure axial forces in rail by means of forced vibration. The longitudinal 

load in rail caused by thermal expansion must be regularly monitored in order to avoid 

buckling or rail fracture. The method has the advantage of being independent of the 

boundary conditions, but requires very accurate measurements, advanced finite element 

calculations, and sophisticated data analysis. 

Due to its flexibility, a stay cable is subjected to pure tension, which provides 

stability to the overall structure. As a result of their load-carrying efficiency, cable 

structures are used for many applications, such as: radio towers, power lines, ski lifts 

and cable bridges. When used as tension members, the cables may take the form of 

catenary or a simple vertical alignment. As long as dynamic loads do not create large 

cable displacements, the tension level does not change its magnitude along the cable 

length. Since vertical cables do not have the complex problem of geometric 

nonlinearity, the tension correlation for these systems is straightforward. Assuming 

hinged boundary conditions, the taut string model is employed (Chen and Petro 2005) 

and the axial force is derived from the knowledge of the first vibration frequency. As 

for axial tension identification, microwave interferometry has recently emerged as an 

innovative technology, suitable to the non-contact vibration monitoring of large 

structures. Indeed, in Gentile (2010) the radar technique is employed to identify the 

natural frequencies (and the cable tension) and a comparison with the corresponding 

quantities obtained by using more conventional techniques is proposed. The advantage 

of this technique is the accuracy and the simplicity of use provided by the microwave 

remote sensing, as well as its effectiveness in the simultaneous measurement of the 

dynamic response of all the stay cables under examination. However, alternatively 

conducted vibration measurements have shown that, due to improper identification of 

natural frequencies or to the use of over-simple force–frequency relationships, the 

accuracies achieved sometimes are not very accurate. For instance, in the presence of 

short cables subjected to high tensile forces, errors up to ±10% can be obtained. The 

effects of bending stiffness, cable sag and boundary conditions on natural frequencies, 

are considered in Geier et al. (2006), Kim and Park (2007), Ceballos and Prato (2008), 

Ren et al. (2008). 
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Two axial load identification methods are proposed in this work: the first one makes 

use of static tests and the second one is based on vibration measurement.  

The latter is a generalization of the identification algorithm for beams on rigid supports 

derived in Tullini and Laudiero (2008). It can be applied to any slender structural 

member, regardless of knowledge of length and boundary conditions. This model adopts 

the Euler–Bernoulli model and assumes cross section geometry and elastic properties as 

known constant parameters whereas rotary inertia is neglected. Making use of any 

natural frequency and of five displacement components of the corresponding mode 

shape, it is shown that the axial load of a beam either in tension or in compression can 

be obtained with high accuracy. In fact, validation of this technique was obtained by 

laboratory tests. Moreover a new formulation of the limit curves derived in Tullini e 

Laudiero (2008) to bound the admissible data domain is given. 

Static procedures are restricted to supported beams and consists in the measure of the 

displacements of three instrumented sections located at the quarters of the beam and at 

mid span, due to the application of a transversal static force. Similar to the 

transcendental equation of the dynamic procedure, an equation irrespective of boundary 

conditions is obtained, together with other two equations for the evaluation of the 

flexural end stiffness. Laboratory tests were performed to validate the analytical results. 

In particular, in Chapter 1 some fundamental principles necessary to introduce the 

governing equations are recalled. Moreover, concepts about the dynamic substructuring 

with finite elements are illustrated, and a brief review of finite element approach by 

means of dynamic stiffness matrix is given (Leung 1993). 

Chapter 2 deals with different kind of condensation method. Firstly, static 

condensation and Guyan’s reduction methods are introduced (Guyan 1964, Hatch 

2001); then, the exact dynamic condensation method (Leung 1978) and some examples 

utilized in Chapter 3 and 4 are illustrated. It is shown that, in order to study the dynamic 

behaviour of a generic substructure, suitable stiffness condensation matrix is to be 

assigned to re-establish the global behaviour of the structure without loss of 

information.  

The first part of Chapter 3 runs through the procedure developed by Tullini and 

Laudiero (2008) again. The new formulation of the admissible data domain has been 

validated by laboratory tests. The dynamic stiffness matrices of the boundary conditions 

for different sets of frame configurations have been derived. In the second part of 

Chapter 3, a new static method for the axial load identification of a slender beam on 

rigid supports is presented. It is shown that, if bending stiffness and mass per unit length 

of a beam with constant cross section are known, the axial force and the flexural 

stiffness of the end constraints can be deduced by three displacements measured along 
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the beam subjected to the application of a transversal static force. Furthermore, the 

analytical procedure is validated by means of experimental tests. 

Finally, in Chapter 4, a dynamic method for the identification of the axial load of a 

beam on elastic supports is presented, which makes use of any natural frequency and of 

five displacement components of the corresponding mode shape. The identification 

method proposed extends the algorithm by Tullini and Laudiero (2008) to the more 

general problem of a slender beam which presents unknown effective length and elastic 

end supports. In fact, for generic structures, such as truss structures, the effective length 

is unknown and the assumption of end rigid supports does not hold anymore. As for the 

end stiffness parameters, the method does not give an accurate estimation of full 

condensation matrices, but an estimate of diagonal terms only. 

 

 





 

 

1 

Exact stiffness matrix of Euler - Bernoulli beam 

for dynamic and stability elastic problems 

1.1 Introduction 

This Chapter provides the necessary background to introduce the governing equations 

used in the following chapters. Section 1.2 recalls the Hamilton’s principles (Reddy 

2002), which has been applied to the reference model of beam on elastic supports, 

subjected to an axial force and a lumped mass in-span. The differential problem 

obtained and its solution are presented in Section 1.3 (Graf 1975, Low 1999). In order 

to correctly describe the dynamic behaviour of global structure by means of a generic 

substructure, concepts about the dynamic substructuring with finite elements are 

needed. To this end, Section 1.4 reviews the finite element approach adopted to describe 

the dynamic behaviour of a beam by means of the classical and dynamic stiffness 

matrix (Leung 1993). In Section 1.5 some examples of dynamic stiffness of beams 

under different constraint conditions are given. 

1.2 Fundamental principles of continuous dynamic system 

The principle of virtual work is essentially a statement for the equilibrium definition of 

the dynamic system. It is also the foundation of the energy approach used for the 

dynamics of a system. In the following, the virtual work principle is firstly referred to 

static and later it is extended to the dynamic field, e.g. see Reddy (2002). Further 

D’Alembert’s principle and Hamilton’s principle are recalled to derive the equation of 

interest developed in the next chapters. 
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1.2.1 The virtual displacements principle 

A given configuration κ of a continuous body В of volume Ω is considered in 

equilibrium under body force f and surface tractions t. Displacements are assigned over 

portion Γu of the boundary and denoted by û , whereas tractions are assigned on portion 

Γσ and denoted by t̂ . The boundary portions Γu and Γσ are disjointed and their union 

gives the total boundary, Γ. Let u = (u1, u2, u3) denote the displacement vector 

corresponding to the equilibrium configuration of the body, and let σij and εij be the 

associated stress and strain components.  

The set of admissible configuration is defined by sufficiently differentiable 

displacement fields that satisfy the geometric boundary conditions: u = û on Γu. Of all 

such admissible configuration, the actual one corresponds to the equilibrium 

configuration with the prescribed loads. In order to determine the displacements field u 

corresponding to the equilibrium configuration, a virtual displacement δu is 

superimposed to the equilibrium configuration. The principle of virtual displacements 

state that a continuous body is in equilibrium if and only if the virtual work of all 

internal and external forces vanishes for any virtual displacement, i.e.: 

 

 ( ) ˆδ δ d δ ds
σΩ Γ

⋅ − ⋅ + ⋅ = 0∫ ∫f u σ ε x t u  (1.1) 

 

The strains δε are assumed to be compatible in the sense that the strain-displacement 

relations ( ), ,ε 1 2
ij i j j i

u u= +  are satisfied. Eq. (1.1) is the mathematical statement of 

the principle of virtual displacements.  

1.2.2 D’Alembert’s principle 

D’Alembert’s principle extends the virtual work for static equilibrium into the realm of 

dynamic equilibrium. It suggests that, since the resultant of the forces F acting on the 

continuous body В results in its acceleration a, the application of a fictitious force equal 

to the inertia force would produce a state of equilibrium. Newton’s second law of 

motion for a continuous body can be written in general terms as 

 

 0m− =F a   (1.2) 

 

where m is the mass, a the acceleration vector. An application of D’Alembert’s 

principle allow to consider the body B subjected to the forces p equal to the body force f 

increased by the inertia force 
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2

2
t

ρ
∂

= −
∂

u
p f  (1.3) 

 

where ρ is the mass density of the medium. 

1.2.3 Hamilton’s principle for continuous systems 

Hamilton’s principle is a generalization of the principle of virtual displacements to the 

dynamic of system of particles, rigid bodies, or deformable solids. The principle 

assumes that the system under consideration is characterized by two energy functions, a 

kinetic energy T and a potential energy U. For discrete systems, these energies can be 

described in terms of finite number of generalized coordinates and their derivatives with 

respect to time t. For continuous systems, the energies can be expressed in the terms of 

dependent variables which are functions of positions. The main difference between the 

former and the latter is the presence of internal energy WI for deformable bodies. 

Hamilton’s principle reduces to the principle of virtual displacements for systems that 

are in static equilibrium. 

Let F denote the resultant of all forces acting on the continuous body В. The actual 

path u = u(x,t) followed by material particle in position x in the body is varied, 

consistent with kinematic (essential) boundary conditions on Γ, to u + δu, where δu is 

the admissible variation (or virtual displacement) of the path. The varied path differs 

from the actual path except at initial and final times, t1 and t2, respectively. Thus, an 

admissible variation δu satisfies the conditions,  

 

 
( ) ( )1 2

δ on for all ,

δ , δ , for all

u
t

x t x t

= Γ

= =

u 0

u u 0 x
 (1.4) 

 

Substituting Eq. (1.3) into the equation on virtual displacements Eq. (1.1) and 

integrating with respect to time between t1 and t2 

 

 
2

1

2

2
ˆδ ×δ ρ δ d δ d d 0

t

t
s t

t σΩ Γ

  ∂
⋅ − − + ⋅ =  ∂  

∫ ∫ ∫
u

f u σ ε u x t u  (1.5) 

 

Integrating-by-parts the force inertia force term, 

 

 
2

1

ˆρ δ ×δ d δ d d 0
t

t
s t

t t σ

δ
Ω Γ

∂ ∂  
+ ⋅ − + ⋅ =  ∂ ∂  

∫ ∫ ∫
u u

f u σ ε x t u  (1.6) 
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Eq. (1.6) is known as the general form of Hamilton’s principle for a continuous 

medium. 

For an ideal elastic body a strain energy density function U0 = U0(ε) exists so that 

 

 0σ
εij

ij

U∂
=

∂
 (1.7) 

 

If f and t̂  are conservative forces, 

 

 ( )ˆδ δ d δ dV s
σΩ Γ

= − ⋅ + ⋅∫ ∫f u x t u  (1.8) 

 

where V is the external forces potential equal to the opposite of external work done by 

the forces f and t̂ . Substituting Eq. (1.7) and (1.8) into Eq. (1.6),  

 

 ( )
2

1

δ d 0
t

t
T U V t− + =  ∫    (1.9) 

 

where T and U are the kinetic and strain energies: 

 

 0

ρ
d , d

2
T U U

t tΩ Ω

∂ ∂
= ⋅ =

∂ ∂∫ ∫
u u

x x  (1.10) 

 

Eq. (1.9) represents Hamilton’s principle for an elastic body and states that of all such 

an admissible motion, the one that takes place makes minimum the Hamiltonian action 

I,: 

 

   ( )
2

1

d
t

t
I T U V t= − +  ∫   (1.11) 

 
2

1

δ δ d 0
t

t
I L t= =∫  (1.12) 

 

The function L = T – (U + V) is called Lagrangian. Recall that the sum of the strain 

energy and potential energy of external forces, U+V, is called total potential energy of 

the body П. For bodies involving no motion (i.e. forces are applied sufficiently slowly 

so that the motion is independent from time and the inertia forces are negligible), 

Hamilton’s principle reduces to the principle of virtual displacements. Eq. (1.9) may be 

viewed as the dynamics version of the principle of virtual displacements. 
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1.3 Equations of the reference model 

In this section the equations of motion of an Euler-Bernoulli beam under general 

constraint and load conditions are derived. These equations are further used to describe 

its dynamic behaviour and to define the dynamic stiffness matrix. The analysis starts 

with the more general case of a beam on elastic supports carrying a lumped mass-in-

span and subjected to an axial load. These models are used in the next chapters to 

develop an analytical procedure for the identification of the axial stress from the results 

of dynamic tests. 

1.3.1 General formulation of the problem  

A prismatic beam of length L is shown in Figure 1.1. A mass m  is attached in its span 

through a rigid link of length l. The beam is subjected to an axial load N, positive sign is 

assigned to tensile forces, and to time-varying shear forces and bending moments acting 

on their end sections, T0,1(t) and M0,1(t). The cross section, the second moment of area, 

the elastic modulus and the specific weight, which are assumed as constant along the 

beam, are indicated, respectively, with A, J, E and ρ.  
In order to consider general boundary conditions, the beam is supposed to be joined 

to a set of time dependent elastic springs, which can be grouped into two matrices, one 

for each beam end.   

N

m
x

y

N
E,J,A,

a L-a

L

l

M0(t)

T0(t)

M1(t)

T1(t)

K0 K1

 

Figure 1.1 – Reference beam model 

 

0 0 1 1

0 10 0 1 1

v v v v

v v

k k k k

k k k k

ϕ ϕ

ϕ ϕ ϕ ϕ

   
= =   
   

K K  (1.13) 

 

The stiffness matrix of constraints contains translational springs kv
0
, kv

1
, rotational 

springs kφ
0
, kφ

1
, and mixed springs kvφ

0
, kvφ

1
, which simulate the coupling between the 

vertical displacement v and the bending moment or rotation φ and the shear force. These 

conditions enables to model an isolated beam belonging to a generic structure and 

exactly simulate the conditions on its connection to the rest of the structure.  
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In Euler-Bernoulli beam theory, shear deformations are neglected and beam cross 

section remains plane and perpendicular to the beam axes after the deformation, Figure 

1.2.  

y

dx

ϕ = w'

x

w

ϕ = w'

 

Figure 1.2 - Kinematic of a section of an Euler-Bernoulli beam 

Consequently, the following displacements field has to be assumed:  

 

 ( ) ( )
( )

( )
,

, , , ( , , ) ,
x y

w x t
S x y t x t y y S x y t w x t

x
ϕ

∂
= = − =

∂
 (1.14) 

 

where Sx and Sy are the axial and vertical displacements, respectively, whereas w(x,t) 

and φ(x,t) = – ∂w(x,t)/∂x are transverse deflection and rotation of the cross. From  

displacements field (1.14) the only non-zero strain component is: 

 

 
( ) ( )2

2

, , ,
ε x

x

S x y t w x t
y

x x

∂ ∂
= = −

∂ ∂
 (1.15) 

 

In order to derive the equation of motion by means of Hamilton’s principle Eqs. (1.10) 

and (1.8) have to be employed. The kinetic energy T of all masses which experiment 

motion takes the form 

 

 

( ) ( )

( ) ( )

22 2
L

0

22 2

2

, ,1
ρ ρ d

2

, ,1 1

2 2

w x t w x t
T A J x

t x t

w a t w a t
m ml

t x t

  ∂ ∂ 
 = + +  

∂ ∂ ∂     

 ∂ ∂ 
+ +   

∂ ∂ ∂   

∫
 (1.16) 

 

The four terms in Eq. (1.16) represent, respectively, the kinetic energy of the continuous 

beam in its transverse motion, the correspondently rotary inertia and the kinetic energies 

of the translational and rotational motion of the lumped mass around the section x = a.  
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The total strain energy U is the sum of the strain energy of the beam deformation Ub, 

due to the deflection and axial deformation, and the strain energy of the springs Us 

 

 

( )

( )
( )

( )
( )

( )
( )

( )
( )

( )( )
( )

2
2

L

20

0 0

0 0

1 1

1 1

2

20 0 0

,1
d

2

0,
0,1

0, 0,
2

,
,1

, ,
2

0,1 1
0, 0,

2 2

b s

b

v v

s

v

v v

v

v v

U U U

w x t
U EJ x

x

w t
k kw t

U w t w t
k kx

x

w L t
k kw L t

w L t w L t
k kx

x

w t
k w t k k w

x

ϕ

ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

= +

 ∂
=  

∂ 

 
 ∂   = +  ∂   ∂     ∂ 

 
 ∂   + =  ∂   ∂     ∂ 

∂ 
= + + 

∂ 

∫

( )
( )0,w t

t
x

∂
+

∂

 (1.17) 

 ( )( )
( )

( )
( )

2

21 1 1
, ,1 1

, ,
2 2

v v

w L t w L t
k w L t k k w L t

x x
ϕ ϕ

∂ ∂ 
+ + + 

∂ ∂ 
 

 

Finally the potential of external work V consists in the opposite of the work done by the 

forces acting at the beam ends for the boundary displacements 

 

( )
( ) ( )

( )
( )

2

0 0 1 1
0

0, , ,1
0, , d

2

Lw t w L t w x t
V T w t M M T w L t N x

x x x

∂ ∂ ∂  
= − + + + −  

∂ ∂ ∂    
∫

 (1.18) 

Introducing Eq. (1.16), (1.17), (1.18) into Eq. (1.12) and separating the integration 

before and after x = a, the Hamilton’s Principle  

 

 ( ) ( )
2 2 2

1 1 1

δ δ δ δ δ δ 0
t t t

t t t
I L dt T U V dt T U V dt= = − + = − + =      ∫ ∫ ∫  (1.19) 

 

take the form 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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2 22 22 2
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2 22 22 2
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−

+

     ∂ ∂ ∂ ∂   
 + − − +       
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∫ ∫

∫
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22 2

2

2
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2
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2 2
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0, , d 0
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 ∂ ∂ 
+ + +  

∂ ∂ ∂   

∂ ∂ 
− − − + 

∂ ∂ 

∂ ∂ 
− − − + 

∂ ∂ 

∂ ∂ 
+ + + + =

∂ ∂ 
  (1.20) 

Considering the fundamental rules of the variational calculus: 

 

 

( )

( ) ( )

( )

2

2

δ δ δ δ

δ δ δ δ δ

δ δ δ

f
f f f

x x

f f
f f f

x x x x

f g f g g f

∂ ∂ ′′ = = =
∂ ∂

∂ ∂ ∂ ∂  ′ ′′′ ′= = = = 
∂ ∂ ∂ ∂ 

′ ′ ′⋅ = ⋅ + ⋅

 (1.21) 

 

and indicating with prime the spatial derivative and with point the temporal derivative, 

Eq. (1.20) becomes 

 

[ ]{
[ ]
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w L k w L k w L T

w k w k w M

w L k w L k

ϕ

ϕ

ϕ ϕ

ϕ

δ δ δ δ

δ δ δ δ

−

+
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∫ ∫

∫
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& & & &
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1 d 0v w L M xϕ − = 

 (1.22) 
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The following terms are integrated-by-parts: 
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 (1.23) 

 

In deriving Eqs. (1.23), the conditions reported in Eqs. (1.4) have been used, for which 

the extreme configurations at t1 and t2 are assigned, so that for all x δw(x,t1) = δw(x,t2) = 

δw’(x, t1) = δw’(x, t2) = 0. After integration-by-parts, the stationary conditions of 

Hamiltonian action becomes 
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′′′ ′ ′ ′ + − − − − + + 

′ ′′ ′ + − − + + 

 ′ ′′ ′′ ′+ − + − + 

′ ′′ ′ + − − − + = 

&&

&&

 (1.24) 

 

The rotation functions w′  and its acceleration w′&&  have to be continuous and integrable; 

hence conditions ( ) ( )w a w a+ −′ ′=  and ( ) ( )w a w a+ −′ ′=&& &&  are adopted in Eq. (1.24). 
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Because of the arbitrariness of δw, the bracketed expressions in the first two lines in Eq. 

(1.24) have to vanish. Therefore, the field equation is valid in 0 ≤ x ≤ L: 

 

 
( ) ( ) ( ) ( )2 4 2

2 2 2 2

, , , ,
0

w x t w x t w x t w x t
A J EJ N

t t x x x
ρ ρ

∂ ∂ ∂ ∂
− + − =

∂ ∂ ∂ ∂ ∂
 (1.25) 

 

 If δw and δw’ are zero at x = 0, x = a or x = L, essential (geometric) boundary 

conditions are assigned. Alternately, natural (static) boundary conditions in x = 0, L and 

internal conditions in x = a are specified.  
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ϕ
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 ∂ ∂ ∂
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∂ ∂ ∂ ∂
 ∂ ∂
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

∂ ∂ ∂ − − − + + = ∂ ∂ ∂ ∂
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∂ ∂
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 (1.26) 
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( ) ( ) ( )
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2 2 3

2
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, , ,
0
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EJ EJ ml

x x x t

− +

− +

 ∂ ∂ ∂
 − − =

∂ ∂ ∂


∂ ∂ ∂
− + = ∂ ∂ ∂ ∂

 (1.27) 

 

In addition to Eqs. (1.27) two more equations representing the displacement’s and 

rotation’s continuity at section x = a have to be be written 

 

 

( ) ( )
( ) ( )

0, 0, 0

, ,
0

w a w a

w a t w a t

x x

− +

− +

 − =

∂ ∂
 − =

∂ ∂

 (1.28) 

 

Eqs. (1.25), (1.26), (1.27) and (1.28) define the governing equations for the vibration of 

Euler-Bernoulli beam on elastic support, carrying a mass-in-span, subjected to axial 

load, shears and bending moments on its end sections, and taking into account rotary 

inertia.  
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1.3.2 Solution of the problem 

At low vibration frequencies and for slender beams, the contribution of rotary inertia 

can be neglected. In this case the Eqs. (1.25) – (1.26) reduce to the following: 
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ρ 0
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 (1.29) 
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x x

ϕ
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ϕ
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 ∂ ∂
+ − − − =

∂ ∂
 ∂ ∂

− − + = ∂ ∂


∂ ∂ − − + + = ∂ ∂


∂ ∂ + − − =
 ∂ ∂

     (1.30) 

 

with the internal conditions (1.27) and (1.28). 

To solve the partial differential equation (1.25), the method of separation of variables 

is employed (Graff, 1975) 

 

 ( ) ( ) ( ),w x t v x g t=   (1.31) 

 

where the shape function v(x) is expressed in terms of x along the beam, and the time 

function g(t) is related to the time t. Substituting Eq. (1.31) into Eq. (1.25) and then 

separating variables leads to 

 

 
( )
( )

( )
( )

( )
( )

4 4 2 2 2 2

ρ

d v x dx d v x dx d g t dtEJ
N

A v x v x g t
− = −  (1.32) 

 

Since v and g are depending on x and t, respectively, Eq. (1.32) must be equal to a 

constant, say ω2
. Thus, assuming a dimensionless coordinate z = x/L and indicating with 

m = ρA the weight per unit length, the equation of normal modes and the equation of 

harmonic motions are 

 

 ( ) ( ) ( )4λ 0v z nv z v z′′′′ ′′− − =   (1.33) 

 ( ) ( )2ω 0g t g t+ =&&   (1.34) 
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where these notations have been introduced  

 

 
2 4 2

4 ω
λ

NL mL
n

EJ EJ
= =  (1.35) 

 

Let the solution of Eq. (1.33) be v(x) = e
rx

, then the characteristic equation is given by 

 

 4 2 4λ 0r nr− − =  (1.36) 

 

whose roots are 

 

 

( )

( )

( )

( )

2 2 4

1 1

2 2 4

2 1

2 2 4

3 2

2 2 4

4 1

1
i i 4λ

2

1
i i 4λ

2

1
4λ

2

1
4λ

2

r q n n

r q n n

r q n n

r q n n

= = + −

= − = − + −

= = + +

= − = − + +

 (1.37) 

 

Therefore, solution of Eq. (1.33) admits the representation 

 

 ( ) 1 1 2 1 3 2 4 2cos sin cosh sinhv z C q z C q z C q z C q z= + + +  (1.38) 

 

where  

 

 ( ) ( )2 2 4 2 2 4

1 2

1 1
4λ 4λ

2 2
q n n q n n= + − = + +  (1.39) 

 

The constants C1, …, C4 can be determined using the boundary conditions of the 

member and characterize its modal form of vibration. 

Similarly, the general solution of Eq. (1.34) is  

 

 ( ) 1 2cosω sinωg t G t G t= +   (1.40) 

 

where the constants G1 and G2 should be determined from the initial conditions of 

displacement and velocity at given time.  



Exact stiffness matrix of Euler-Bernoulli beam for dynamic and stability elastic problems  19 

 

 

The parameter ω assumes the meaning of natural pulsations of the vibration motion of 

the beam. Natural pulsation are the roots of the frequency equation, which are obtained 

by vanishing the determinant of the coefficient matrix of the boundary condition 

system. The generic solution of (1.29) can be written as 

 

 ( ) ( ) ( )1, 2,

n=1

, = cosω sinωn n n n nw z t v z G t G t
∞

⋅ +∑  (1.41) 

 

where vn(z) represents the n-th mode shape 

  

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]1, 1 2, 1 3, 2 4, 2
= cos ω sin ω cosh ω sinh ω

n n n n n n n nn
v z C q z C q z C q z C q z+ + +  

(1.42) 

 

Making use of Eq. (1.31), boundary and internal conditions (1.26), (1.27) and (1.28) 

reduce to 

 

Boundary conditions 

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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1 1 1

1 1 1
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η′′′ ′ + + − − =


′′ ′− − + =

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 (1.43) 

Internal conditions   
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( ) ( ) ( )

( ) ( )
( ) ( )

4

2 2 4

α α µ λ α 0
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 (1.44) 

 

where the following dimensionless parameters have been introduced  

 

 

0,1 20,10,1 3
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vv
k Lk Lk L
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T M
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1.4 Finite elements approaches  

The solution of the governing equation (1.29) in the whole domain is generally 

untreatable for complex practical problems; consequently, it is useful to reduce the 

problem in smaller subdomains. The finite element discretization implies a division of 

the total volume into subdomains denoting finite elements. The function chosen to 

represent approximate displacement and stress field are specified within each element, 

and condition imposed on certain parameters at interelement boundaries provide the 

necessary continuity requirement of field functions.  

In dynamic analysis, the shape functions for each beam element can be either 

frequency independent or frequency dependent. In the first case the shape functions 

satisfy the static governing equation, so yielding exact results in the finite element 

nodes, but in the dynamic case approximate frequencies and mode shapes are obtained. 

In the second case, the shape functions are the frequency-dependent solutions of the 

governing equation (1.29). In this case, the assembled stiffness matrix can be used to 

accurately predict an infinite number of frequencies and mode shapes with a minimum 

number of elements. In the following a brief introduction of both finite element 

approaches are given, e.g. see Leung (1993).  

1.4.1 Classical finite element approach 

A typical finite element is shown in Figure 1.3, such an element is a particular case of 

the more general problem presented in Section 1.3.1., where lumped mass and end 

springs are neglected. The beam is subjected to an axial force N, vertical displacements 

vi, vj and rotations θi, θj at the element ends i and j, their associated end moments and 

shears are denoted by Mi, Mj, and Ti, Tj.  

z

v

EJ, m

1

ϑj

MjMi

ϑi vj

vi
i j

Ti Tj
NN

 

Figure 1.3 - Typical finite element 

For an beam element with two nodes, the displacement field w(z,t) is given by  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

2 3 2 3

2 3 3 2 3

, θ θ

1 3 2 3 θ

3 2 2 θ

i i j j

i i

j j

w z t z v t z t z v t z t

z z v t z z z t

z z z v t z z t

= Ν + Ν + Ν + Ν

= − + + − + − +

+ − + + −

 (1.46) 

 

where Ni = Ni(z) represent the Hermite polynomials, collected into the shape functions 

matrix N = [N1, N2, N3, N4]
T
, the nodal displacements are collected into the vector u = 

[vi, θj, vi, θj]
T
. 

The kinetic energy of the beam, Eq. (1.10), can be expressed by 
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= = = 
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∫ ∫u Ν Ν u u M u& & & &  (1.47) 

 

where the term inside the brackets is called mass matrix of the element 
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The strain energy becomes 
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where KE is the stiffness matrix of the element 
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d
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L
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E
EJ x′′ ′′= ∫K Ν Ν   (1.50) 

 

Considering the work done by the axial force, the potential of external work takes form 
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( )

2
L

T T T

0 0

,1 1 1
d d
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where KG is the geometric stiffness matrix of the element 
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T

0

1
d

2

L

G
x′ ′= ∫K Ν Ν   (1.52) 

 

The substitution of Eqs. (1.47), (1.49) and (1.51) into the Hamilton’s principle yields  

 

( ) [ ] ( ) ( )E Gt t t+ + =M u K Κ u F&&   (1.53) 

 

where F(t) is the vector of generalized forces. For free vibration F(t) is zero, and Eq. 

(1.53) reduces to 

 

T

2ω  = K - M u 0   (1.54) 

 

where KT = KE + KG is the total stiffness matrix. Making use of Eqs. (1.50), (1.48) and 

(1.52) the stiffness matrix KE, consistent mass matrix M and geometric matrix KG take 

the well known forms 
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 − −
 =

− 
 
 

K  (1.57) 

 

Since the Hermite polynomials do not satisfy the spatial differential equation (1.33), the 

solution of the vibration problem is approximate and mesh-dependent.  

1.4.2 Dynamic stiffness matrix of the Euler-Bernoulli beam element 

Unlike the classical element method, where the mass and stiffness matrix are obtained 

separately in order to solve the structural vibration problems, the dynamic stiffness 

matrix method offers a better alternative because it provides more accurate results, 

obtained from a matrix defined by exact theoretical methods.  
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The spatial governing equation is reported in Eq. (1.33), from which the shape functions 

are derived. The mode shape (1.38) can be represented in term of nodal displacements. 

Indicating with C the vector of unknowns C1,.., C4 and with φ(z) the vector of 

elementary functions, Eq. (1.38) can be written as 
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φ C
 (1.58) 

 

The four constants C1,.., C4 can be obtained in terms of nodal displacements of the 

beam: 
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 (1.59) 

 

where Φ collects the coefficients of the linear system (1.59), whose resolution is: 

 

 -1=α Φ u   (1.60) 

 

Using Eq. (1.60), the displacement field (1.58) can be written as 

 

 ( ) ( ) ( )-1 ,ωv x x x= = =φ α φ Φ u N u   (1.61) 

 

where N(x, ω) = φ(x) Φ
-1

 collects the shape functions. They are frequency dependent 

because are function of the constants coefficients q1, q2 of Eq. (1.39), in turn function of 

natural frequency ω. The shape function matrix N is given in Leung (1993). The 

dynamic stiffness matrix D(ω) relates the end-shears and moments to the end 

displacements in which the end-forces are  
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  (1.62) 

 

which are derived from boundary conditions (1.43). Therefore by carrying out 

appropriate differentiations of the shape functions,  
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where D(ω) is the dynamic stiffness matrix of the reference beam, which has both 

properties of stiffness and mass of the element combined in it. Indeed the elements of 

the matrix express the dynamic stiffness of the beam with a uniformly distribute mass. 

The generic term of the matrix represents the rising action when it undergoes a unitary 

displacement with time-varying harmonic law and with the other d.o.f clamped. Its 

elements are the following ones: 
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 (1.64) 

 

As shown in the previous section, the stiffness matrix K, the mass matrix M and the 

geometric matrix G admit the following representation: 
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 (1.65) 

 

The dynamic stiffness matrix of a system which vibrates harmonically at frequency ω 

relates the amplitudes of the response displacements to those of exciting forces. Let the 

beam be excited by a system of nodal forces Fe
iωt

, the steady response is ue
iωt

; hence  

 

 ( )ω =D u F    (1.66) 

 

The K and M matrices in Eqs. (1.55), (1.56) are now rewritten using the classical 

normal modes as shape functions. Let introduce them into Eq. (1.54) and consider the 

case of free vibration, F = 0: 

 

 ( ) ( )ω ω ω2  = K - M u 0   (1.67) 

 

and by comparing with Eq. (1.66)  

 

 ( ) ( ) ( )ω ω ω ω2=D K - M   (1.68) 

 

Furthermore it can be proved that the mass matrix is related to the dynamic stiffness 

matrix by Leung’s theorem (Leung, 1978, Simpson, 1984) 

 

 ( )
( )

2

ω
ω

ω

∂
= −

∂

D
M   (1.69) 

 

In other words the exact mass matrix can be obtained simply by differentiating the 

dynamic stiffness matrix with respect to the square of frequency. 

If D(ω) is expanded in Taylor series up to first order at ω = 0 respect to ω2
, making 

use of (1.68) and (1.69), gives 
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where K and M are the classical stiffness and mass matrix presented in the Eq. (1.55) 

using Hermite polynomials as shape function (Paz, 1990). Therefore, employing the 

classical static matrices for the vibration problem of the Euler-Bernoulli beam 

represents a first order approximation of the exact method of the dynamic stiffness 

matrix. 

Eqs. (1.67) and (1.68) suggest that the dynamic stiffness matrix of a structure is useful 

to finding its natural modes of vibration. Indeed the vanishing of its determinant 

correspond to the frequency characteristic equation related to the eigenvalues problem, 

Eq. (1.54): 

 

 ( ) ( ) ( )2 2Det ω = Det ω ω ω Det ω = 0   − ≅ −      D K M K M  (1.71) 

 

Since the shape functions with which the matrix D is built are mathematically exact 

solutions of the governing equation for the free beam vibration, its elements can be used 

to predict an infinite number of modes with a minimum number of elements.  

1.4.3 Dynamic stiffness matrix of the reference model 

The model considered in this section consists in the beam analyzed previously with a 

lumped mass-in-span. This particular case, together with the previous one, is the 

analytical reference for the interpretation of the experimental test presented in the next 

chapters. 
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Figure 1.4 - Typical finite element 



Exact stiffness matrix of Euler-Bernoulli beam for dynamic and stability elastic problems  27 

 

 

In order to construct the dynamic stiffness matrix of the reference element, it is 

necessary to subdivide the length into two subintervals, one before the lumped mass and 

an another after it. Consequently the two solutions of the field equation are: 
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 (1.72) 

 

The eight constants can be obtained in terms of nodal displacements using the boundary 

and internal conditions  

End deformations  
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   (1.73) 

Internal conditions 
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 (1.74) 

 

Solving the system (1.74) and introducing the constants into Eq. (1.62), the stiffness 

matrix of the element can be derived as sum of the stiffness matrix of the simple 

element derived in the previous section, Eq. (1.64), and that related to the lumped mass. 

In particular, for lumped mass placed in the midspan, α = 1/2: 
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where 
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    (1.77) 

 

Parameters F1,.., F6 and χ are given in Eq. (1.64). Eqs. (1.76) suggest that if the mass-in-

span vanishes then the same stiffness coefficients given in equations (1.64) are 

obtained. Alternative formulation of Eq. (1.75) is given in Karnovsky (2000). 

1.5 Dynamic stiffness of beams under different constraint 

conditions 

In this section the stiffness coefficients of some remarkable cases of beams under 

various boundary conditions are derived. These results are used in the next chapter in 

order to derive the stiffness of substructures by means of exact dynamic condensation.  



Exact stiffness matrix of Euler-Bernoulli beam for dynamic and stability elastic problems  29 

 

 

1.5.1 Clamped beam, translation of an end section 

For the beam shown in Figure 1.5, the stiffness coefficient for the translation of an end 

section is simply provided by the (1,1) or (3,3) element of the dynamic stiffness matrix 

D(ω) (Eq. (1.75) ): 
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L/2
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Figure 1.5 - Clamped-clamped beam 
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Apex “M” indicates that the stiffness coefficient takes into account the lumped mass-in-

span. Expanding 6F , Eqs.(1.78) takes the form 
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Neglecting the presence of lumped mass-in-span, Eq. (1.79) becomes 
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Moreover, for µ,n,λ 0→ , the dynamic stiffness of the model considered reduce to the 

well known static stiffness: 
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1.5.2 Clamped-pinned beam, moment in one end section 

For the beam depicted in Figure 1.6, the stiffness coefficient for the end rotation is 

simply provided by the (2,2) or (4,4) element of the dynamic stiffness matrix D(ω), Eq. 

(1.75)  
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Figure 1.6 - Clamped - support beam 
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From Eqs. (1.76) and (1.77), K
M

 takes the form 
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  (1.83) 

Neglecting the presence of lumped mass-in-span, Eq. (1.83) reduces to 
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Moreover, for µ,n,λ 0→ , the dynamic stiffness of the model considered reduce to the 

well known static stiffness: 
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1.5.3 Simply supported beam, rotation of an end section 

A simple supported beam subjected to an axial force and carrying a mass-in-span 

located at the middle of the span as shown in Figure 1.7 is now considered. 
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Figure 1.7 – Pinned-pinned beam, moment in one end section 

The formulation of the dynamic equilibrium of the structure is 
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Obtaining θ0 from the first equation of the system in Eq. (1.86) and substituting it in the 

second one, the stiffness coefficient K
M

 is given by 
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   (1.87) 

where Fi, F
M

i, χ and χM 
 are given in Eqs. (1.64) and (1.77). Neglecting the presence of 

lumped mass-in-span, Eq. (1.87) becomes 
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Moreover, for µ,n,λ 0→ , the dynamic stiffness of the model considered reduce to the 

well known static stiffness: 
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1.5.4 Simply supported beam, symmetric rotations 

The same beam of the previous section is now subjected to two symmetric bending 

moments of its end sections, as shown in Figure 1.8.  
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Figure 1.8 – Pinned-pined beam, symmetric rotations 

The formulation of the dynamic equilibrium of the structure is  
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  (1.90) 

 

Because of the symmetry of the system: θ0 = - θ1 = θ and M0 = – M1 = M. Equating the 

sum of the two equations in Eq. (1.90), the stiffness coefficient is obtained 
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Neglecting the presence of lumped mass-in-span, Eq. (1.91) becomes 
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Moreover, for µ,n,λ 0→ , the dynamic stiffness of the model considered reduce to the 

well known static stiffness: 
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1.5.5 Simply supported beam, asymmetric rotations 

For the same model of the previous section, asymmetric rotations are now considered,  

Figure 1.9.   
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Figure 1.9 – Pinned-pined beam, asymmetric rotations 

The formulation of the dynamic equilibrium of the structure is 
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Because of the asymmetry of the system: θ0 = θ1 = θ and M0 = M1 = M. Equating the 

sum of the two equations in Eq. (1.94), the stiffness coefficient is obtained 
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Neglecting the presence of lumped mass-in-span, the dynamic stiffness becomes 
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Moreover, for µ,n,λ 0→ , the dynamic stiffness of the model considered reduce to the 

well known static stiffness: 
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1.5.6 Cantilever beam, moment at free end  

For the cantilever beam in Figure 1.10, the formulation of the dynamic equilibrium is 
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Figure 1.10 - Cantilever beam, moment at free end 
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      (1.98) 

 

Solving for v1 the first equation of the system in Eq. (1.98) and substituting it to the 

second one, the sought stiffness coefficient is 

 

 
2

2 6 41

1 6

=
θ χ

M F F FM EJ
K

L F

 −
=  

 
      (1.99) 

 

The explicit formulas are too complicated to be exposed. 

Moreover, for µ,n,λ 0→ , the dynamic stiffness of the model considered reduces to the 

well known static stiffness: 

 

 
µ,n,λ 0
lim M EJ

K
L→

=   (1.100) 

1.5.7 Cantilever beam, shear force at free end 

For the cantilever beam in Figure 1.11, the formulation of the dynamic equilibrium is  

N

L/2

L

L/2

ϑ1
m v1

T1

N

 

Figure 1.11 - Cantilever beam, shear force at free end 
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1 16 4

3 2

14 2

=
θ 0χ

v TF F LEJ

L F L F L

−     
     −    

 (1.101)  

 

Solving for θ1 the second equation of the system in Eq. (1.101) and substituting it to the 

first one, the dynamic stiffness is given by 

 

2

2 6 41

3

1 2

=
χ

M F F FT EJ
K

v L F

 −
=  

 
 (1.102) 

 

The explicit formulas are too complicated to be exposed.  

Moreover, for µ,n,λ 0→ , the dynamic stiffness of the model considered reduces to the 

well known static stiffness: 

 

3µ,n,λ 0

3
lim M EJ

K
L→

=   (1.103) 

1.5.8 Pinned beam at one end and only translation allowed at the other 

end 

For the beam in Figure 1.12, the formulation of the dynamic equilibrium is 

 

N

L/2

L

L/2

m

v1

T1

ϑ0N

 

Figure 1.12 - Pinned beam at one end and only translation allowed at the other end 
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      (1.104) 

 

Solving for θ0 the second equation of the system in Eq. (1.101) and substituting it to the 

first one, the dynamic stiffness is given by 
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Neglecting the presence of lumped mass-in-span, the dynamic stiffness becomes 

 

 
( )2 2

1 2 1 2

2

2 1

cos cosh

cosh cos

q q q qEJ
K

L q q

+
=

−
      (1.106) 

 

Moreover, for µ,n,λ 0→ , the dynamic stiffness of the model considered reduce to the 

well known static stiffness: 

 

 
2µ,n,λ 0

2
lim M EJ

K
L→

=         (1.107) 

1.6 Conclusions 

Making use of Hamilton’s principle, the governing equations of the vibration problem 

of a Euler-Bernoulli beam carrying a mass-in-span have been obtained. In particular, 

general constraint for beam on elastic supports, subjected to axial load, shears and 

bending moments on its end sections, have been obtained. Since a correct description of 

the dynamic behaviour of a structure by means of a substructure needs the use of the 

dynamic stiffness matrix, exact finite element are adopted. Correspondingly, the shape 

functions are frequency-dependent solutions of the governing equations; hence, the 

assembled stiffness matrix can be used to accurately predict an infinite number of 

frequencies and mode shapes with a minimum number of elements.  

Finally, the stiffness coefficients of some remarkable cases of beams under various 

boundary have been derived. Indeed, the dynamic stiffness matrix characterizes the 

basis of the substructuring method, which is introduced in the following chapter.  

 

 



Equation Section 2 

 

2 

Exact dynamic condensation of frames 

 using the dynamic stiffness matrix 

2.1 Introduction 

In this chapter it is shown that, in order to study the dynamic behaviour of a simple 

substructure extracted from a generic structure, exact dynamic condensation method is 

required. This technique allows to derive the stiffness condensation parameters which 

are to be assigned to the substructure to re-establish the global behaviour of the 

structure without loss of information. 

Firstly static and Guyan’s reduction methods are introduced, in Section 2.2 and 2.3, 

respectively (Guyan 1964, Hatch 2001). Both methods require the selection of a limited 

number of degree of freedom, (master dof), which capture the essential physical 

behaviour of the structure. It will be shown that, under specific conditions, static 

condensation can be defined as an exact method, whereas Guyan’s reduction method 

gives only approximate results. Indeed this procedure makes use of classical stiffness 

and mass matrices, which inevitably provides a mesh-dependent result. 

Moreover, making use of the dynamic stiffness matrix introduced in Chapter 1, 

Section 2.4 shows that exact dynamic condensation provides the exact parameters to be 

used as boundary conditions for the substructure, with a minimum number of finite 

element (Leung 1978). Therefore it will be used to formulate the reduced model of the 

structure of interest for the experimental tests of Chapter 3 and 4. 

Finally, in Sections 2.5-2.6-2.7, some examples utilized in Chapter 3 and 4 are 

carried out. 
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2.2 Static condensation 

Static condensation involves the separation of the degrees of freedom (dof) into master 

and slave components. If master dofs are chosen so as to include all dof where 

forces/moments are applied and also dof where displacements are desired, the resulting 

solution is exact. In the opposite case, an approximate solution only is obtained. For 

dynamic problems, master dof are typically chosen as displacements and rotations 

corresponding to the higher masses and mass moments. Hence, the first step is to 

rearrange the dof (rows and columns of the stiffness matrix) into independent (master) 

displacements um and dependent (slave) displacements us to be reduced (Hatch, 2001): 

 

 Ku = F  (2.1) 

ss sm s s

ms mm m m

     
=     

     

K K u F

K K u F
 (2.2) 

 

The first matrix equation: 

 

ss s sm sm s+ =K u K u F   (2.3) 

 

can be solved for us giving 

 

( )-1

s ss sm sms= −u K F K u   (2.4) 

 

or 

 
-1

s ss sm m= −u K K u   (2.5) 

 

if no forces (moments) are applied at the dependent (slave) dof (Fs = 0). Rewriting the 

displacement vector in terms of um only: 

 

-1 -1
s ss sm ss sm m

m
m m

   − − 
= = =    

        

u K K K K u
u u

u I u
  (2.6) 

 

and defining a transformation matrix for brevity 
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-1
s smss sm

m m m
m

 −   
= = = =    

     

u TK K
u u u Tu

u II
 (2.7) 

 

where 

 

sm-1

sm ss sm and
 

= − =  
 

T
T K K T

I
  (2.8) 

 

the original static equilibrium equation takes the form 

 

( )m= =K u K Τu F   (2.9) 

 

Multiplying both sides by T
T
 to reduce the number of degrees of freedom from (s + m) 

to (m) 

 

( )T T

m =Τ Κ Τ u Τ F   (2.10) 

 

the term in parentheses above is redefined to be K
*

mm 

 

ss sm sm* T T

mm sm
ms mm

-1

mm ms ss sm

  
 = =    

    

= −

K K T
K T K T T I

K K I

K K K K

 (2.11) 

 

where  

 

 -1 T -1

sm ss sm sm ms ssand= − = −T K K T K K   (2.12) 

 

Hence, the original (m + s) dof problem now can be transformed to an (m) dof problem 

by partitioning into dependent and independent dof, and solving for the reduced 

stiffness matrix K
*

mm and force vector Fm: 



40  Chapter 2 

 

 

 

* T

m

sT

sm ms s m

m

-1

m ms ss s

=

 
 = = +  

  
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F T F

F
T I T F F

F

F K K F

  (2.13) 

 

Then the reduced problem becomes: 

 

 * *

mm m m=K u F   (2.14) 

 

After the um dofs are known, the us dofs can be expanded from the master um using, if 

Fs = 0, Eq. (2.5). 

2.3 Dynamic condensation: Guyan’s reduction method 

In a large-scale structural analysis, not all the nodes are subjected to external forces, nor 

all the nodal displacements are of interest. Substructure methods of dynamic analysis 

have been developed, which reduces the number of coordinates of a complex structures. 

The terms master and slave refer to the interface coordinates and internal coordinates of 

a substructure, respectively. The category of substructure method of interest is based on 

the elimination of the slaves in the dynamic stiffness relations. 

Guyan’s reduction is a method of decreasing the number of degrees of freedom in a 

dynamics problem, similar to the process of static condensation. Unlike static 

condensation, however, Guyan’s reduction introduces errors due to an approximation, 

as shown in the following. The magnitude of the errors introduced depends upon the 

choice of the dof to be reduced (Hatch, 2001). 

Consider the undamped equations of motion  

 

=Mu + Ku F&&   (2.15) 

 

Is it possible to rearrange and partition Eq. (2.15) into displacements to be reduced, us, 

and independent displacements, um  

 

ss sm s ss sm s s

ms mm m ms mm m m

         
+ =         

         

M M u K K u F

M M u K K u F

&&

&&

 (2.16) 

 

The first equation of the system in Eq. (2.16) 
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ss s sm m ss s sm m s+ + +M u M u K u K u = F&& &&   (2.17) 

 

can be solved for us  

 

( )

( )

-1

s ss s sm m ss s sm m

-1 -1

ss sm m ss s ss s sm m

= − − −

= − + − −

u K F K u M u M u

K K u K F M u M u

&& &&

&& &&

 (2.18) 

 

Instead of letting us depend upon the entire right-end side of Eq. (2.18), the following 

approximation of static equilibrium is introduced 

 
-1

s ss sm m= −u K K u   (2.19) 

 

Typically the choice of degrees of freedom to be reduced does not include any degrees 

of freedom to which forces are applied, thus Fs = 0. The static equilibrium 

approximation basically sets the term in brackets in Eq. (2.18) to zero. Setting Fs = 0 

and using the second derivative of Eq. (2.19), the form of Msm is 

 

( )

s ss s sm m

ss s sm m

1

ss ss sm m sm m

1

ss ss sm sm

−

−

= − −

= − −

= − − −

= −

0 F M u M u

M u M u

M K K u M u

M K K M

&& &&

&& &&

&& &&

       (2.20) 

1

sm ss ss sm

−=M M K K    (2.21) 

 

It is assumed that the ss sM u&&  terms are zero and that Mss and Msm are related as in (2.20)

. The force transmission between the su&&  and mu&&  dof is related only to the stiffnesses as 

denoted in Eq. (2.20), which is equivalent to the “static equilibrium” approximation.  

Assuming Eq. (2.19) holds, the displacements vector u can be written in terms of um 

only  

 

-1
s smss sm

m m m
m m

 −   
= = = =    

     

u TK K
u u u Tu

u II
 (2.22) 

 

Substitution of Eq.(2.22), with derivatives, into (2.15) yields  
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m m+M T u K T u = F&&  (2.23) 

 

Equation (2.23) still contains (s + m) dof, so premultiplication by T
T
 is required to 

reduce to (m) dof and to return symmetry to the reduced mass and stiffness matrices 

 

( ) ( )T T T

m m+T M T u T K T u = T F&&  (2.24) 

 

Rewriting Eq. (2.24) in a more compact form 

 
* * *

m m m+M u K u = F&&  (2.25) 

 

Equation (2.25) is the final reduced equation of motion which can be solved for the 

displacements of type (m). Displacements of type (s), assuming static equilibrium, can 

then be solved for using Eq. (2.19).  

K
*

 can be shown to be the same as that derived in the static condensation, Eq. (2.11) 

 

( ) ( )

* T

smT T

sm ss ms sm sm mm

-1

mm ms ss sm

=

 
 = + +   

  

= −

K T K T

T
T K k T K K

I

K K K K

 (2.26) 

 

The reduced mass matrix becomes 

 
* T

-1 -1 -1 -1

mm ms ss sm ms ss sm ms ss ss ss sm

=

= − − +

M T M T

M K K M M K K K K M K K
 (2.27) 

 

In the case of the reduced stiffness matrix, none of the structural complexity is lost since 

all elements of the original stiffness matrix contribute. However, in the reduced mass 

matrix, combinations of stiffness and mass elements appear. The results is that the 

eigenvalue problem is closely but not exactly preserved (Guyan, 1964). 

2.4 Exact dynamic condensation 

As shown in Section 1.4.2, the following equation results from a finite element analysis 

of linear system undergoing forced harmonic oscillations 
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( )ω =D u F  (2.28) 

 

where  

 

( ) 2ω ω= −D K M  (2.29) 

 

D is the dynamic stiffness matrix, K and M are the stiffness and mass matrices, 

respectively. 

These matrices may be functions of frequency depending on the method of analysis. 

Fe
iωt

 and ue
iωt

 are the force excitation and displacement response vectors respectively.  

A system may be referred to an element, a substructure or to the overall system. Upon 

choosing a set of masters and slaves so that the slave coordinates are not subjected to 

driving forces, Eq. (2.28) is partitioned as  

 

mm ms m m

sm ss s

     
=     

     

D D u F

D D u 0
 (2.30) 

 

Eliminating us from Eq. (2.30), the following equations are derived: 

 
1

s ss sm m

−= −u D D u  (2.31) 

and 

 
*

m m=D u F  (2.32) 

 

where 

 

 * 1

mm ms ss sm

−= −D D D D D  (2.33) 

 

is the condensed dynamic stiffness matrix associated with the master dofs. From Eq. 

(2.33) it is clear that the dynamic condensation method is equal to the static 

condensation using the dynamic stiffness matrix instead of the classical static stiffness 

matrix (1.55).  

Section 1.4.2 showed that the dynamic stiffness matrix D and the mass matrix M of 

an elastic system are related by the equation (Leung, 1978) 
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 ( )
( )

2

ω
ω

ω

∂
= −

∂

D
M  (1.69) 

 

where M and D correspond to the same set of coordinates. Differentiation of the 

dynamic stiffness matrix D
*
gives  

 

 

( )*

*

2

-1 -1 -1 -1

mm ms ss sm ms ss sm ms ss ss ss sm

ω

ω

∂
= −

∂

= − − +

D
M

M D D M M D D D D M D D

 (2.34) 

 

which has the same form of the Guyan’s results exposed in Eq. (2.27). In this case, apart 

from the approximation inherent in Eq. (2.28), the derivation is exact.  

In the next section, in order to study the dynamic behaviour of a simple substructure 

extrapolated from a generic structure, exact dynamic condensation method is used. In 

fact this technique allows to derive the stiffness condensation parameters which must be 

assigned to the substructure, so that it can represents the global structure without loss of 

information. 

2.5 Example 1: two-span beam 

2.5.1 Exact dynamic condensation and natural frequencies 

Considering the two span beam shown in Figure 2.1 and making use of the dynamic 

condensation method described above, the expression of the stiffness condensation 

parameter K1, which represents the stiffness of the side span of the structure, is derived 

L L1

EJ,m

L

K1

L1

ϑ1

Main Subtructure

Global Structure

Substructure 1

Φ20, steel E = 206 GPa

ρ = 7850 kg/m
L = 3 m
L1 = 1.10 m

3

ϑ2

 

Figure 2.1 – Two-span beam and simplified model 

The condensation parameter K1 is the rotational dynamic stiffness of the substructure 1. 

This parameter is obtained applying the dynamic condensation method to the 
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substructure 1 and condensing the two degrees of freedom θ1 and θ2 into the master dof 

θ1. The dynamic stiffness matrix of substructure 1 is partitioned as in Eq. (2.35)  

 
( )

1 2

2,1 1,1 mm ms

1
1,1 2,1 sm ss1 1

θ θ

ω =
χ

F FEJ

F FL

   
=    

   

D D
D

D D

 (2.35) 

 

where F1 and F2 are the stiffness coefficients derived in Section 1.4.2 and the subscript 

1 indicates substructure 1. Making use of Eq. (2.33), K1 takes the same form of the 

rotational stiffness of a simply supported beam with a moment in one end, obtained in 

Section 1.5.3 Eq. (1.88) without axial load influence (q1 = q2 = λ): 
 

 ( ) 1

1 mm ms ss sm

1

2 λ sin λ sinh λ
ω

sin λ cosh λ cos λ sinh λ
EJ

K
L

−= − =
−

D D D D  (2.36) 

 

Hence, the dynamic stiffness matrix of the main substructure is 

 

 ( )
2 1

sub

1 2 1

χ χ
ω

χ χ

EJ EJ
F F

L L

EJ EJ
F F K

L L

 
 
 =
 +  

D  (2.37) 

 

As described in Section 2.4, the vanishing of the determinant of the dynamic stiffness 

matrix of the substructure Dsub provides the natural frequencies of the global system:  

 

 ( )sub 1,2,..,nDet ω = 0 ω→  D  (2.38) 

 

It can be proved that the eigenvalues which satisfy Eq. (2.38) are also the natural 

frequencies of the dynamic stiffness matrix of the global structure: 

 

 ( ) ( )sub 1,2,..n 1,2,..nDet ω = Det ω = 0      D D  (2.39) 

 

where D(ω) is the dynamic stiffness matrix of the global structure (Eq. (2.40)), obtained 

by assembling the dynamic stiffness matrix of the two finite elements, one for each 

span. 
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1 1 1 1
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EJ EJ
F F
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 
 
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 

= + 
 
 
 
 

D  (2.40) 

 

The determinant of Eq. (2.37) or (2.40) represents the characteristic frequency equation 

of the structure. Hence, roots of the characteristic frequency equation are the natural 

frequencies of the global structure (Figure 2.2 and Table 2.1). 

 

Figure 2.2 – Characteristic frequency equation of the system 

Table 2.1 shows that, if the eigenvalue problem is solved by means of the classical static 

matrices (1.55) (1.56), 6 finite element are not sufficient to describe the dynamic 

behaviour of the structure. Otherwise, dynamic condensation method, provides the exact 

solution with 2 elements only for each span. To get to this result with the classical FEM, 

48 finite elements are needed.  

 

Modal frequency  [Hz] 
Method 

I II III IV 

Dynamic Condensation (Exact) - 2 elements 5.952 19.677 37.546 48.738 

Classical FEM - 6 finite elements 5.945 19.431 36.503 44.570 

Classical FEM - 48 finite elements 5.952 19.677 37.546 48.738 

Table 2.1 – First four modal frequencies of the structure 

The condensation parameter K1, Eq. (2.36), is a continuous function of natural 

frequency, so for any normal mode of the global structure it is possible to identify a 
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specific value of this parameter, which represents the dynamic stiffness of the adjacent 

span. Otherwise, assuming a vibration frequency of the system, the expression of K1 

provides the value of the dynamic stiffness explicated by the adjacent (Table 2.2). It 

depends only on the geometrical and mechanical properties of adjacent span. Figure 2.3 

show the plot of the condensation parameter K1 versus frequency. 

 

Figure 2.3 – Condensation parameter K1 – frequency 

Vibration mode I II III IV 

Modal frequency f  [Hz] 5.952 19.677 37.546 47.738 

Condensation parameter K1 [kNm/rad] 4.324 3.314 -2.446 -28.264 

Table 2.2 – First four modal frequency of the structure 

When frequency goes to zero, the condensation parameter K1 of the adjacent span tends 

to the rotational static stiffness of the simply supported beam: 

 

 ( )1 ω 0
1 1

2 λ sin λ sinh λ 3
0 = lim 4.412 kNm/rad

sin λ cosh λ cosλ sinh λ
EJ EJ

K = =
L L→ −

 (2.41) 

 

Furthermore it is evident that values of frequency exist for which K1 reaches zero and 

others for which it has singular points. The former are the modal frequencies for which 

the global system vibrates so that there is no transmission of bending moments between 

the main substructure and the adjacent one (substructure 1). If the central span had 

mechanical or geometrical characteristics for which the first or second vibration mode 

are, 33.251 Hz or 133.004 Hz (first two roots of the function K1(ω)), it would be as if 

the adjacent span did not exist and the main span would undergo a deflection shape as if 

it were isolated, Figure 2.4 a).  
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The frequencies for which K1 is singular, i.e. 51.945 Hz and 168.333 Hz are reached 

when the system has mechanical or geometrical characteristics for which the flexural 

modal shape does not experiment rotation at the right support, e.g. the second modal 

frequency of the system with L = L1, Figure 2.4 b). 

8

L1L = L1

K1 = 0 kNm/rad

f 1 = 33.251 Hz

L = L1

First Flexural Mode

L1L = L1

K1 =     kNm/rad

f 1 = 51.945 Hz

L = L1

Second Flexural Mode

 

Figure 2.4 a), b) – Physical meaning of K1 for L = L1 

From the plot of Figure 2.3 and Table 2.2 it’s clear that K1 can assume negative 

values, for example at the third and fourth normal modes. Nonetheless, it is possible to 

have a negative condensation parameter just on the first modal frequency. It depends 

only on the mechanical or geometrical characteristics of the structure. For instance, the 

plots in Figure 2.5 and 2.6 depict the relation between the condensation parameter K1 

and the length of the main span of the main structure. For each value of the length L, the 

system of the Figure 2.1 has a specific first frequency (Figure 2.5), which corresponds 

to a specific condensation parameter of the substructure 1 (Figure 2.6).  
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Figure 2.5 – First modal frequency vs. length of the main span  
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Figure 2.6 – K1
 
at the first modal frequency vs. length of the main span 

The plot in Figure 2.6 shows that if the span of the main substructure had the same 

length as the adjacent span L1 = 1.1 m, K1 would vanish and there would be no 

transmission of bending moment through the two spans. In this case, the system is 

perfectly symmetric (see Figure 2.4.a) and the first flexural mode shape experiments 

free rotation at the right support. Indeed, plot of Figure 2.5 shows that, for L1 = 1.1 m, 

the first modal frequency is 33.251 Hz and this value is exactly the frequency for which 

the function K1(ω) has the first root in the plot of Figure 2.3.  

Now, it can be noted that an asymptote occurs at 51.945 Hz in the plot of K1(ω) 

(Figure 2.3). This frequency corresponds to the second vibration mode of the symmetric 

system, for which the central support is clamped in the second flexural modal shape 

(Figure 2.4.b). Hence the dynamic stiffness of the section reaches infinity                           

K1
II
(f

  II 
= 51.945 Hz) → ∞, Figure 2.3.  

Moreover, Figure 2.6 shows that K1 takes negative values at the first modal 

frequencies when L1 < 1.1 m. In this case, the first mode shape of the structure is 

governed by the longer right span. In particular, when the length L goes to zero, the 

rotational stiffness of the substructure 1 tends to infinity, because the global structure 

tends to the simply substructure 1 with clamped left end. Conversely, when L approach 

infinity, the first vibration frequency tends to zero, and the condensation parameter 

tends to the static stiffness of the substructure 1: 3EJ/L1 = 4.412 kNm/rad, as indicated 

by the horizontal asymptote in Figure 2.6. 
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2.5.2 Comparison between exact dynamic condensation and Guyan’s 

reduction method 

For the same structure of the previous section, exact dynamic condensation method and 

Guyan’s reduction are now compared in terms of condensation parameter K1. 

Consider the substructure 1 in Figure 2.1, for which the dof θ1 is assumed as master  

dof. Exact dynamic condensation (apex ex) yields Eq. (2.36) for the condensation 

parameter K1
ex

. 

Guyan’s dynamic condensation has been introduced in Section 2.3, where the 

condensed mass matrix and the condensed stiffness matrix have been derived (Eq. 

(2.26) and (2.27)). Making use of this equations to describe the  substructure 1 of Figure 

2.7, yield:  

L1

ϑ1

Substructure 1

ϑ2master slave

 

Figure 2.7 – Two-span beam and the simplified model 
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Hence, the condensed dynamic stiffness obtained from application of Guyan’s reduction  

method (apex G) can be written as 

 

 ( )
3

* 2 * 2 1
1 1 1

1

23
ω = ω = ω

105

G mLEJ
K K M

L
− −   (2.44) 
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As described in Section 1.4.2, the use of the classical static matrices for the vibration 

problem of the Euler-Bernoulli beam represents a first order approximation of the exact 

method of the dynamic stiffness matrix. Hence, K1
G
 is the first order approximation of 

the condensation parameter K1
ex

, Eq. (2.36). 

In Figure 2.8 exact and Guyan’s condensed dynamic stiffness, (Eq. (2.44) in solid 

line and Eq. (2.36) in dash line respectively) have been plotted versus frequency. It is 

evident how the Guyan’s reduction method approximates the exact method in the 

neighbourhood of ω = 0. Furthermore Table 2.3 shows a comparison between the 

condensed stiffness K1 estimated with the two methods at the first six modal frequencies 

of the structure. It is worth noting that Guyan’s reduction method gives an acceptable 

value of K1 only for the first two modes. 

 

Figure 2.8 – Exact and approximated condensed dynamic stiffness vs. frequency 

Vibration mode I II III IV V VI 

Modal frequency  f  [Hz] 5.952 19.677 37.546 47.738 76.761 115.16 

Condensation parameter Exact 

K1
ex

 [kNm/rad] 
4.324 3.314 -2.446 -28.264 13.233 5.473 

Condensation parameter Guyan 

K1
G

 [kNm/rad] 
4.325 3.457 0.933 -1.213 -10.131 -28.322 

Percent difference  [%] 0.02 4.32 - - - - 

Table 2.3 – Comparison between Guyan’s reduction method and exact element method 
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2.6 Example 2: two-span beam with lumped mass and axial 

force 

2.6.1 Natural frequencies 

In this section a more general problem is considered: a two-span beam with lumped 

mass and subjected to an axial force of compression, (Figure 2.9). The beam has one 

end simply supported and clamped the other. 

L L1

m

L

K1 N

L1

Nϑ1

Substructure 1

E = 206 GPa

ρ = 7850 kg/m
L = 3 m
L1 = 1.10 m

m = 20 kg

N = -10 kN

3

NEJ,m

Main Subtructure

Global Structure
Φ20, steel

N

N

 

Figure 2.9 – Two-span beam and the simplified model 

The spring K1 is the dynamic stiffness of the end section rotation of the substructure 1. 

Since the substructure 1 has a single dof, the dynamic stiffness is represented by the 

element of position (2,2) in the dynamic stiffness matrix of the beam. Its expression is 

just obtained in Section 1.5.2, Eq. (1.83) . 

The dynamic stiffness matrix of the main substructure with the rotational spring is 

 

 ( )
2 1

1 2 1

EJ EJ
F F

L L

EJ EJ
F F K

L L

χ χ
ω

χ χ

 
 
 =
 +  

D  (2.45) 

 

As described in the last section, the vanishing of the determinant of D(ω) gives the 

modal frequencies of the global system (Figure 2.10).  

It is worth noting that the first four natural frequencies of the structure have been 

searched in a larger range of frequency than the previous example. This happens 

because of the influence of the compression load which reduces the stiffness of the 

beam, even though it has a greater static stiffness. Table 2.4 summarizes the first four 

natural frequencies related to Figure 2.10. 
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Figure 2.10 – Frequency equation of the system 

 

Vibration Mode I II III IV 

Modal frequency by Exact dynamic condensation 

2 elements 
12.483 30.631 62.666 102.504 

Table 2.4 – First four modal frequency of the structure 

2.6.2 Condensed dynamic stiffness versus frequency 

Figure 2.11 shows the relation between the dynamic stiffness of the substructure 1, K1, 

Eq. (1.83), and the vibration frequencies. The considerations made in the last section 

also apply here. Hence, the roots of Eq. (1.83) represent the natural frequencies of a 

symmetric vibrating system, in which substructure 1 does not transmit bending moment 

to the main substructure. 

 

Figure 2.11 – Condensation parameter K1 vs. frequency  
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The vertical asymptotes represent particular geometrical or mechanical characteristics 

of the system for which the condensation parameter K1 natural approaches infinity: e.g. 

when the main span tends to zero (left side of singularity) or when the main substructure 

has such a length that the two spans of the structure vibrate symmetrically without 

rotation of the common section (right side of singularity). For this example these critical 

values of main span length are not so evident because of the axial load influence and 

lumped mass in span.  

2.6.3 Condensed dynamic stiffness versus axial load 

2.6.3.1  Static case 

Figure 2.11 shows that, when the frequency goes to zero, the condensation parameter K1 

tends to the rotational static stiffness of the clamped beam with the effects of the 

compression force 

 ( ) ( )
( )

1 1ω 0
1

csch cosh sinh
2

0, = lim ω,
2

cosh 2sinh
2 2

n
n n n n

EJ
K N K N

L n n
n

→

−
=

−

 (2.46) 

 ( )1 0, 10000 = 4.245K kNm/rad−  

 

which is the value of the intercept of the plot on the vertical axis. Eq. (2.46) is 

equivalent to the well known equation of static stiffness with second order effects 

(Bazant and Cedolin 1991): 

 

 ( ) 1
1 2 2

1 1 2

34
0, =

4

IEJ
K N

L I I−
 (2.47) 

 

where  

 1 2

1 1 1 1 1 1

3 1 1 6 1 1

tanh sin
I I

nL nL nL nL nL nL

   
= − − = −      

   
 (2.48) 

 

It is interesting to plot the Eq. (2.46) respect to the axial force N (Figure 2.12).  

It is clear that, if the axial force is a tensile stress, it increases the stiffness of the 

beam and, for higher values of N, K1 increases until the yielding of material. For 

compression stress the graph shows singularity points, which represent the Eulerian 

critical loads of substructure 1 with clamped-clamped restraint (Figure 2.13). So the 
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expression of K1 Eq. (2.46) holds information about the buckling loads of the beam. The 

vertical asymptotes in Figure 2.12 depict the first four critical loads (Table 2.5). 

 

Figure 2.12 – Static stiffness K1(0) vs axial load 

L1

N

Substructure 1

 

Figure 2.13 – Model of substructure 1with clamped ends 

Vibration Mode I II III IV 

Eulerian critical loads [kN] -52.744 -107.804 -210.435 -317.535 

Table 2.5 – First four Eulerian critical load of the substructure 1 doubly clamped. 

2.6.3.2  Dynamic case 

For the same model of the previous section, the relationship between the condensation 

parameter K1, as function of natural frequencies of the global system, and the axial force 

assigned is derived. This relationship will be useful to understand the experimental data 

presented in the next chapter.  

The maximum axial load may attain the material yielding. However, the maximum 

tensile load adopted during the experimental tests was about 40 kN. The minimum axial 

load can be the Eulerian critical load of the system, which is obtained from the 

vanishing of the modal frequencies of the frame. In Figure 2.14 the roots of the 

determinant of the dynamic stiffness matrix (Eq. (2.45) and (1.88)) are plotted versus 

different values of axial load. The natural frequencies of the system vanish at about      



56  Chapter 2 

 

 

N1 =  – 3.07 kN and NII = – 8.98 kN, which are exactly the first two Eulerian critical 

loads of the frame. 
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Figure 2.14 – Modal frequency of the system vs. axial load  
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Figure 2.15 – Nondimensional condensation parameter β1
(I)

 vs. axial load 
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Figure 2.16 – Nondimensional condensation parameter β1
(II)

 vs. axial load  
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Figure 2.15 and Figure 2.16 show the nondimensional condensation parameter       

β1
(I)

(N) = K1(ω,N)L/EJ evaluated at the first and the second natural frequencies of the 

system, β1
(I)

(N) = β1(ω1,N) and β1
(II)

(N) = β1(ω2,N) respectively.  

The coefficient β1
(I)

 is a continuous function of the axial load and reaches negative 

values for axial load higher than about 25 kN. The coefficient β1
(II)

 assumes negative 

values up to vertical asymptote close to N = 33 kN. This happens because the two spans 

vibrate almost symmetrically for each load step and they vibrate exactly symmetrically 

for the value of axial load for which the vertical asymptote occurs. In this ideal 

configuration  the right span clamps the left one because of the stiffness variation due to 

the axial load, while in the previous example this phenomenon was produced by a 

length variation of the main span. 

2.7 Example 3: substructuring 

Consider the system shown in Figure 2.17: a simply supported beam subjected to a 

tensile axial load. In order to consider the left part of the span as isolated, the 

condensation parameter matrix K1, which reproduces the contribution of the right part 

of the beam, has to be derived. In this example the dynamic condensation method has 

been used differently than in previous examples.  

The global structure is divided in two finite elements and four dofs are considered as 

shown in Figure 2.17. Modelling the left part of the beam with only one finite element, 

the master dofs are the two rotations θ1, θ2 and translation v2.  

NEJ,m

L

N
K1

L1

E = 206 GPa

ρ = 7850 kg/m

L = 3 m
L1 = 1 m

N = 15 kN

Global Structure

Φ20, steel

Substructure

L

ϑ1

L

3
v2

ϑ1 ϑ3ϑ2

v2

ϑ2

N

N

 

Figure 2.17 –  Simply supported beam and the corresponding substructure 

The dynamic stiffness matrix of the global structure is 
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 
=  
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D D

D D
 

 

The dynamic condensation of D yields a 3x3 dynamic stiffness matrix of the 

substructure 

 

 ( ) ( )* 1

sub mm mm ms ss smω = ω = −−D D D D D D   (2.50) 

 

The stiffness matrix of the substructure Dsub can also be seen as the assembly of the 

stiffness matrix of the substructure D0 and the condensation parameter matrix K1: 

 

( ) { } ( ) ( )

( ) ( )

2 3 12

sub 0 1 3 6 42 3 2

1 4 22

χ χ χ

ω = assemble = 1,1 1, 2
χ χ χ

1, 2 2, 2
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EJ EJ EJ
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L L L

EJ EJ EJ
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EJ EJ EJ
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 
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 
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 
 
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 

1 1

1 1

D D K K K

K K

  

   (2.51) 

 

Therefore, condensation parameter matrix K1 may be obtained by the difference 

between the condensed stiffness matrix Dsub (2.50) and the stiffness matrix of the 

substructure D0: 
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where the components of K1 take the forms 
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The diagonal coefficients represent translational and rotational springs, the off-diagonal 

coefficient can be seen as a mixed spring that describes the coupling between vertical 

displacement v and bending moment or rotation θ and shear force.  

Hence, describing the system with the dynamic stiffness matrix (2.51) is equivalent 

to using a single finite element of length L = L + L1 for the whole structure, whose 

dynamic stiffness matrix is: 

 

( )

1 3

2 2

2 1

3 2 2

1 2

θ θ

ω =
χ

F L F LEJ

L F L F L

 
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 

D
 (2.56) 

 

In fact, as shown in Figure 2.18, the vanishing of the determinants of                     

Dsub(ω) = assemble{D0 + K1} (Eq. (2.51) in solid line) and D  (Eq. (2.56) in dash line) 

provides the same natural frequencies (Table 2.6). 

 

Vibration mode I II III IV 

Dynamic Condensation (Exact) 10.068 21.939 36.980 56.030 

Table 2.6 – Roots of the characteristic frequency equation of the system 
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Figure 2.18 - Frequency equation of the main substructure, Dsub. 

For each modal frequency, the condensation parameter matrix K1, Eq. (2.52), are 

reported in Table 2.7. The generic element K1
i
 represents the condensation parameter 

contribution of the right side of the span for i –th normal mode.   

 

Mode I Mode II 
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1
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Mode III 

 

Mode IV 
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− −
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−

 
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− −
=

− −

 
 
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K  

Table 2.7 – Condensation parameter matrix K1. 

2.8 Conclusions 

In this chapter, the exact dynamic condensation method has been presented (Leung 

1978). It gives the exact condensation parameters to be assigned to the dynamic 

stiffness matrix of the substructures of interest. Vice versa, Guyan’s reduction method 

provides only a first order approximation of them (Guyan 1964).  

For each examples, the analytical equations of the condensation parameters and its 

relation with axial force or frequency has been derived. These examples represent the 

basis to understand the end stiffness experimental results obtained in the next chapters.  

 



 

 

3 

Static and dynamic algorithms for axial load 

identification of frames on rigid supports 

3.1 Introduction 

The dynamic behaviour of a generic member belonging to a structure can be modelled 

as a substructure provided that boundary conditions are correctly assigned (Leung 

1978). In Chapters 1 and 2, the analytical bases to model such a beam have been given. 

This chapter proposes two axial load identification methods of beam on rigid supports, 

which make use of dynamic and static tests. 

The first one is based on the procedure developed by Tullini and Laudiero (2008), 

which shows that, if geometric and elastic properties of the beam are known, the axial 

force and the flexural stiffness of the end constraints can be deduced by one vibration 

frequency and three components of the corresponding mode shape. Moreover, a simple 

relation, irrespective of boundary conditions, between mode shape displacements and 

axial resultant is determined. In Section 3.2.3 a new formulation of the limit curves 

which bound the admissible data conditions for a physically correct identification of the 

unknown parameters is given. Validation of this technique was obtained by laboratory 

tests having many control point positions and with lumped mass-in-span. The dynamic 

tests were performed through pulse tests and the data analysis made use of peak picking 

method (PPM, Ewins 1984) and pole/residue model identification (PRMI, Balmés 

1997).  

Static procedures are restricted to supported beam and consists in the measure of the 

displacements of three instrumented sections located at the quarters of the beam, due to 

the application of a vertical force. An equation similar to the transcendental equation of 
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the dynamic procedure is obtained, together with two equations for the evaluation of the 

flexural end stiffness. Laboratory tests are performed to validate the analytical results. 

3.2 Axial load identification by means of dynamic tests 

The identification method proposed hereafter for the axial load identification of Euler-

Bernoulli beam assumes geometric and elastic properties as known parameters. Making 

use of any natural frequency and of three displacement components of the 

corresponding mode shape, both axial loads and stiffness of end flexural springs of a 

beam subjected to tensile or compression forces can easily be obtained. Moreover, 

relations between mode shape displacements and axial resultants are determined. In 

Section 3.2.1 and 3.2.2, some basic results suggest by Tullini and Laudiero (2008) are 

reported. 

3.2.1 Governing equations 

The reference model is constituted by a simply supported prismatic beam of length L, 

constrained by two end elastic-springs with k0 and k1 flexural stiffness, subjected to an 

axial resultant N (positive sign is assigned to tensile forces). Young’s modulus E, mass 

per unit length m and cross-section second area moment J are assumed to be constant, 

and known as well (Figure 3.1). 

N

K0 K1

L

N N

z

y

N

E,J,m

k1k0

x1

x2

x3

1 2 3

 

Figure 3.1 – Beam with end flexural constraints and location of the instrumented sections 

The model in Figure 3.1 is a particular case of the more general one presented in 

Section 1.3.1, where the contribution of lumped mass in-span and the end forces are not 

considered, and the condensation parameter matrices reduce to the stiffness k0 and k1: 
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Making use of the nondimensional coordinate z = x/L and neglecting both rotary inertia 

and shear deformation, circular frequencies ω and vibration mode v(z) are ruled by the 

eigenvalue problem presented in Eq. (1.33): 

 

 ( ) ( ) ( )4λ 0v z nv z v z′′′′ ′′− − =  (3.2) 

 

with boundary conditions (1.43) that reduce to: 
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where prime means derivation with respect to z and  

  

 
2 4 2

40 1
0 1

ω
β β λ

k L k L NL mL
n

EJ EJ EJ EJ
= = = =                             (3.4) 

 

Solution of Eq. (3.2) was given by Eq. (1.38): 

 

 ( ) 1 1 2 1 3 2 4 2cos sin cosh sinhv z C q z C q z C q z C q z= + + +                                    (3.5) 

 

where  

 

 ( ) ( )2 2 4 2 2 4 2

1 2 1

1 1
4λ 4λ

2 2
q n n q n n q n= + − = + + = +                           (3.6) 

 

Boundary conditions (3.3) furnish integration constants C1 – C4 and q1, respectively.  

 



64  Chapter 3 

 

 

3.2.2 Valuation of parameters 

In order to identify the axial load N and the stiffness k0 and k1 of the end flexural 

constraints, knowledge is required of one vibration frequency and the corresponding 

mode shape at three locations coordinates x1, x2 and x3 (Fig. 3.1). With reference to the 

nondimensional coordinate z = x/L, three displacements are determined and denoted by 

vi = v(xi) for  i = 1,2,3.  Hence, constants C1 –  C4 can be determined to the accuracy of 

a constant and the mode shape (3.5) is finally obtained. In fact, substituting Eq. (3.5) 

into the first boundary condition Eqs. (3.3) yields C3 = – C1 and the same Eq. (3.5) 

reduces to  

 

 ( ) ( )1 1 2 2 1 4 2= cos cosh sin sinhv x C q x q x C q x C q x− + +  (3.7) 

 

Hence, the following linear equation system is obtained: 
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q x q x q x q x C v

−     
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 (3.8) 

 

Coefficient C1, C2 and C4 are linear functions of the three (experimental) amplitudes v1, 

v2, v3, and depend on the unknown parameter n and on constant λ through coefficients 

q1 and q2 reported in Eqs. (3.6). In its turn, λ depends on the experimental circular 

frequency ω. By imposing the third boundary condition Eqs. (3.3), the following 

transcendental equation is obtained, to be solved for the unknown constant n: 

 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1 2 2 1 4 2
, λ cos , λ cosh , λ , λ sin , λ , λ sinh , λ = 0C n q n q n C n q n C n q n− + +

 (3.9) 

 

Finally, the second and the fourth boundary conditions Eq. (3.3) yield coefficients β0 

and β1: 
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The above formulation can be simplified if control points are assumed at sections 

having nondimensional coordinates z1 = 1/4, z2 = 1/2 and z3 = 3/4. In this case, if the 

mid-section does not coincide with a node of the assumed mode shape, i.e. if v2 ≠ 0, 

Eqs. (3.9) - (3.11), respectively, yield  
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where constants a, b, c and d are given by the following relations: 
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 (3.14) 

 

Regardless of any boundary conditions, the transcendental equation (3.12) provides 

values of n corresponding to any (experimental) value of λ . Moreover, if the first mode 

shape gives v1 = v3 or the second mode shape shows v2 = 0, the symmetric boundary 

conditions are ascertained. 

3.2.3 Particular case of end constraint stiffness 

Figure 3.3 shows the plot of ratio (v1 + v3)/2v2 versus λ for both positive and negative 

values of n. In particular, dotted lines represent the graph of Eq. (3.12) for                      

n = – 4π2
, – π2

, 0, 10, 100, 1000, 10000.  
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It is to be noted that the first minimum value for n corresponds to the first Eulerian 

critical load of a fully clamped beam (β0 = β1 = ∞) having nondimensional value           

n = – 4π2
 and mode shape: 

 

 ( ) ( )= 1 cos 2v x C zπ−   (3.15) 

 

In fact, Eq. (3.15) yields (v1 + v3)/2v2 = 0.5 and, consequently, the first vibration 

frequency vanishes for the couple [n,(v1+v3)/2v2] = [0, 0.5]. It is reasonable to assume 

that couples [n, λ] can not exist beyond the curve corresponding to n = – 4π2
 (lower 

solid line in Figure 3.3 for λ < 11). Moreover, all the curve are bonded by the line (v1 + 

v3)/2v2 = 1 (upper solid line in Figure 3.2). Hence, all physical data points must lie 

between these two curves and the envelope curve of the minima of Eq. (3.12) (lower 

solid line in Figure 3.3 for λ > 11.  
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Figure 3.2 – Ratio (v1 + v3)/2v2 versus λ for some given values of n 

In order to find narrow admissible regions in the plane λ – (v1 + v3)/2v2, the limit 

situation of clamped-clamped and simply supported beams are analysed. Rearranging 

Eqs. (3.13), alternative relations for mode shape amplitudes ratio can be obtained: 
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Equating the sum of Eqs. (3.16) to the right-hand side of Eq. (3.12) and making use of 

Eqs. (3.14) yield the frequency characteristic equation, in the form 

 

( ) ( ) ( ) ( )

( ) ( )

2
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+ + + + − +

 + − + − = 

(3.17) 

In clamped-clamped beams (β0 = β1 = ± ∞), Eqs. (3.17) and (3.16) yield 

 

1 2 1 2 1 2 1 2
1 2 1 2cos sinh sin cosh sin cosh cos sinh 0
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 (3.18) 

 1 3

22

v v d

v c

+
=    for odd eigenvalue λ  (3.19) 

For even eigenvalues λ, the constant c given by Eqs. (3.14) is equal to zero.  

For simply supported beams, (β0 = β1 = 0), the eigenfunctions coincide with the 

Eulerian critical shapes: 

 

 ( ) = sin , 1, ,v x C m z mπ = ∞K   (3.20) 

 

In this case, the first vibration frequency vanishes for n = – π2
 corresponding to the first 

Eulerian critical load. In fact the couple [0, √2/2] belongs to the curve for n = – π2
. 

Moreover, for simply supported beam, Eq. (3.17) yields the classical result as 

follows: 
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1 1 1 2

λ
sin 2 cos sin 0 π, for 1, ,
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q
q q q m q m

mπ
= = ⇒ = = = ∞K  (3.21) 

 

Using the first two of Eqs. (3.14) and coefficients q1, q2 reported in Eqs. (3.21), Eq. 

(3.17) can be written in the form  

 

 
( )

1 3 1 3

2 2

1
= = for odd

2 2 2cos π 4

v v v vb
m

v a v m

+ +
⇒  (3.22) 

 

Hence, (v1 + v3)/2v2 = 1/√2 for m = 1,7, 9, 15, 17, etc. and (v1 + v3)/2v2 = - 1/√2 for m = 

3, 5, 11, 13, etc.  
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However, simply supported beam can not define a limit situation because 

condensation parameter may be less than zero, as shown in the examples of previous 

sections.  

Figure 3.3 magnifies the area of Figure 3.2 in a zone related to the first frequency, 

reproducing Eq. (3.12) for some particular values of the nondimensional axial force n, 

Eq. (3.19) corresponding to the clamped-clamped limit situation, and Eq. (3.22) for the 

particular case of simply supported beam (dashed line). Therefore, Figure 3.4 represents 

a plot where the point of experimental coordinates [λ, (v1 + v3)/2v2] can be located; 

hence the curve NL
2
/EJ containing the experimental point yields the unknown value of 

the axial force N. 
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Figure 3.3 – f Ratio (v1 + v3)/2v2 versus λ for the first vibration frequency, for some given values of n 

3.2.4 Laboratory tests  

In civil or mechanical engineering, when a single span of a continuous beam is to be 

analyzed, the adjacent beams behave as elastic constrains with respect to the beam 

under investigation. Therefore, it is usual to idealize the adjacent beams as rotational 

springs and the beam under investigation as if it were constrained by elastic rotational 

springs at one or both ends. This is the reason why a reference model of a beam resting 

on rigid supports and constrained by two end rotational springs is commonly adopted. 

In the laboratory tests reported in the following, the end rotational springs were brought 

back to adjacent spans of a continuous beam and the stiffness values of rotational 
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springs were assumed to coincide with the flexural stiffness of the adjacent beam. In the 

case of vault tie-rod restrained by lateral masonry walls, the masonry behaviour at the 

rod ends is modelled again with elastic rotational springs which reproduce the 

restraining effect of the masonry wall. In fact, as far as vibrations imply very small 

deflections, a purely elastic model can be acceptable.  

In order to apply the analytical procedure derived in the previous section, a set of 

experimental tests have been organized, Figure (3.4-3.8). 
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Figure 3.4 – Experimental frames configuration (units in m) 

A steel rod with 20 mm diameter was adopted and Young’s modulus E = 206 GPa and 

density ρ = 7850 kg/m
3
 were experimentally evaluated. In order to create outer spans 

simulating end constraints of variable stiffness, two additional supports were introduced 

at intermediate section (Figure 3.6a). With the aim of observing the variation of the 

dynamic stiffness of the right span, additional masses were fixed at its middle span, 

having m  = 10 kg for test 3 and m  = 20 kg for test 5, Figure 3.6b. The configurations 
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of test 1A and 1B are the same of test 1, except for the location of the instrumented 

sections. As it will be presented in Section 3.2.5.1, in order to evaluate a variation in the 

identification accuracy, spacing of 1.20 m for test 1A and 0.60 m for test 1B are adopted 

instead of 0.75 m as for the other tests.  

At one end, an hydraulic jack was adopted to assign the axial force and, at the other 

end, two 100 kN load cells were placed, with accuracy of 2 mV/V (Figure 3.8). Steps 

load of about 5 kN for each configuration were assigned to the rod, up to a maximum 

value of 51.13 kN for test 1, 40.81 kN for test 2 and 40.64 kN for test 3.  

 

 

Figures 3.5 – Frame for experimental tests 

 

  

Figures 3.6 – Internal support of the rod and cast iron discs lumped at the middle of right span 
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Figure 3.7 – Accelerometers arrangement and fixing system adopted by metallic wrappers 

  

Figures 3.8 – The rod is pulled by the hydraulic jack and the stress and 2 load cells measure the load 

assigned 

Three piezoelectric accelerometers PCB/353B18, having sensitivity of 10 mV/g and 

weight of 1.8 g, were fastened in the central span, at equal distances, by means of 

metallic wrappers (Figure 3.7). 

Dynamic tests were performed, hitting the instrumented sections with an impact 

hammer PCB/086C04, able to measure a pulse up  to 4.4 kN with sensitivity of 1.2 

mV/N. All the instruments were connected to a signal conditioner and, finally, to a PC 

data acquisition system set with block size (BS) equal to 2
16

 and 5000 Hz as sampling 

rate (SR). For each value of axial load imposed by the actuator, the tests were performed 

hitting, three times, each of the three instrumented sections of the central span. 

Because of the difficulty in evaluating the effective rotational stiffness introduced by 

the experimental equipment, in Figure 3.4 two springs of unknown stiffness are 

idealized at the end of the beam (ks, kd). 
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3.2.5 Experimental modal analysis techniques employed 

Some fundamental topics of signal analysis theory, required for the definition of the 

frequency response function (FRF), are summarized following Bendat and Piersol 

(1993), Piersol and Paez (2009). In fact, many of the methods operating in frequency 

domain make use of FRF to obtain the dynamic characteristics of structures. 

3.2.5.1  Fourier Transform  

A periodic signal, i.e. x(t) = x(t + T0 ) for all t, where T0 is the period, can be written as 

sum, generally finite, of harmonic functions by mean of Fourier’s series: 
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where the coefficients Xk are given by 
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The Fourier transform is the generalization of the Fourier series for non periodic 

function, i.e. T0 = ∞. The Fourier transform of a function x(t) is given by 
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In order to calculate the corresponding Fourier coefficient to k-th harmonic through 

discrete steps ∆t, an approximation of Eq. (3.24) is required: 
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where N ∆t is the sampling time, (BS-1)/SR, and Ck 
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is the fast Fourier transform (FFT) or discrete transform (DFT). Note that the FFT 

defines N discrete frequency values for N discrete time values with an inherent 

frequency resolution of  

 

 
1

ω =
N t

∆
∆

  (3.28) 

 

As it is known, the Nyquist frequency occurs at m = N/2, hence only the first (N/2 – 1) 

frequency components represent unique values; the last (N/2 – 1) frequency component 

constitute the redundant values representing the negative frequency components in Eq. 

(3.25). 

3.2.5.2  The frequency response function  

The definition of the frequency response function (FRF) is of particular importance for 

the identification techniques in the frequency domain.  

The general mathematical representation of a single degree of freedom (sdof) system 

is expressed by 

 

 ( ) ( ) ( ) ( )=mx t cx t k x t f t+ +&& &   (3.29) 

 

where m is the mass constant, c the damping constant and k the stiffness constant. An 

equivalent equation of motion is determined for the Fourier transform or frequency 

domain (ω). This representation has the advantage of converting a differential equation 

to an algebraic equation. This is accomplished by taking the Fourier transform of Eq. 

(3.29). Thus, Fourier transform solution of Eq. (3.29) becomes: 

 

 ( ) ( ) ( )ω = ω ωX Fα   (3.30) 

 

where 

 

 ( ) 2

1
ω =

ω i ωm c k
α

− + +
  (3.31) 

 

Equation (3.30) states that the system response X(ω) is directly related to the system 

forcing function F(ω) through the quantity α (ω). If the system forcing function F(ω) 

and its response X(ω) are known, α(ω) can be calculated. That is: 
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 ( )
( )
( )
ω

ω =
ω

X

F
α   (3.32) 

 

The quantity α(ω) is known as the frequency response function of the system. The FRF 

relates the Fourier transform of the system input to the Fourier transform of the system 

response.  

The denominator of the FRF in Eq. (3.31) contains the characteristic equation of the 

system. Note that the characteristic values of this complex equation are in general 

complex even though the equation is a function of real-valued independent variable (ω). 

The characteristic values of this equation are known as the complex roots of the 

characteristic equation or the complex poles of the system. In term of modal parameters, 

these characteristic values are also called the modal frequencies. This means that the 

two roots of the characteristic equation of a single dof system are complex conjugates. 

For most real structure the damping ratio is rarely higher than 10 percent.  

More precisely, the FRFs are defined as the ratio between the Fourier transform of 

the generic system response (displacement, acceleration …) and the Fourier transform 

of the modulus of the applied force. The ratio between the Fourier transform of the 

displacement of a point’s system y(t) and the Fourier transform of the applied force is 

called receptance: 

 

 ( )
( )
( )
ω

ω =
ω

Y

F
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Similarly, mobility is the ratio between the Fourier transform of the velocity of a 

point’s system y& (t) and the Fourier transform of the applied force f. Finally the ratio 

between the Fourier transform of the acceleration of a point’s system y&& (t) and the 

Fourier transform of the applied force f is known as inertance: 
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  (3.34) 

 

where A(ω) stands for the Fourier transform of the acceleration. The development of the 

FRF solution for the multi degrees of freedom (mdof) case parallels the sdof case. This 

development relates, mass, damping and stiffness matrices to a matrix frequency 

response function model, involving mdof: 
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Making use of the well known modal matrix Ф, whose column are the eigenvectors, and 

the expressions derived from the orthogonal modes of vibration 
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the following relation is obtained 
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Hence, the frequency response function can be written as 
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or showing the components 
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Makin use of Eq. (3.34), the inertance function can be written as 
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where the residue (Rhk)r is the product of the eigenvectors. Just as in the analytical case 

where the ultimate solution can be described in terms of sdof systems, the FRFs 

between any input and response dof can be represented as a linear superposition of the 

sdof models derived previously.  
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3.2.5.3  Stationary random vibrations  

A random vibration is one whose value at any time can not be predicted from its value 

at any other time. It can be thought of as a single physical realization, x(t), of a random 

process, which theoretically is described by an ensemble of all possible physical 

realizations denoted by {x(t)}. Virtually all stationary random vibrations can be 

represented by an ergodic random process, meaning the properties of the random 

process {x(t)} can be described by time averages over a signal sample record x(t). It 

follows that the sample records of a stationary random vibration collected repeatedly 

under similar conditions will have time histories that differ in detail but have the same 

average properties. When one or more of the average parameters of interest remain 

constant overt time, the phenomenon is called stationary.  

By definition, random vibrations cannot be described by an explicit mathematical 

functions and, hence, must be described in statistical terms. This can be done in the 

amplitude domain by probability functions, in the time domain by correlation functions, 

and, as presented in the follow,  in the frequency domain by spectral density functions. 

Given a stationary random vibration x(t), the autocorrelation function Rxx(τ) of x(t) is 

given by 

 

 ( ) ( ) ( )
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R x t x t
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+∫   (3.41) 

 

where τ is a time delay. The autocorrelation function is essentially a measure of the 

linear relationship between the values of the random vibration at any two instances t and 

t + τ. The Fourier transform of the autocorrelation function yields the power spectral 

density function (also called the autospectral density function, or more simply the power 

spectrum or autospectrum: 
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It my be defined in a manner more relevant to data analysis algorithms by 
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where E[] is the expected value of [], which implies an ensemble average, the hat (^) 

denotes an estimate as opposed to an exact value and nd stands for the number of tests. 

The power spectral density function describes the frequency content of the vibration 

and, hence, is generally the most important and widely used function for engineering 

applications, which are facilitated by three important properties of power spectra, as 

follows: 

 

i) Given two or more statistically independent vibrations, the power spectrum 

for the sum of the vibration is equal to the sum of the power spectra for the 

individual vibrations, that is,  

 

  ( ) ( )ω = ω = 1, 2,3,
xx kk

k
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ii) The area under the power spectrum between any two frequencies, ωa and ωb 

equals the mean square value of the vibration in the frequency range form ωa 

to ωb that is  
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iii) Given an excitation x(t) to a structural system with a frequency response 

function H(ω), the power spectrum of the response y(t) is given by the 

product of the power spectrum of the excitation and the squared magnitude 

of the response function, that is,  
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The digital algorithm to implement the autospectrum can be written as 
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Given two stationary random vibrations, x(t) and y(t), the cross correlation function 

Rxy(τ) between x(t) and y(t) is given by 
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The cross correlation function is a measure of the relationship between two random 

vibrations at any instance t with a time delay τ between two random vibration time 

histories. The Fourier transform of the cross correlation function yields what is 

generally a more important descriptive property of two stationary random vibrations, 

namely, the cross spectral density function (also called the cross spectrum): 
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It is defined by 
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where X
*
(ω,T) is the complex conjugate of the Fourier transform of y(t). The cross 

spectrum is generally a complex number that measures the linear relationship between 

two random vibration as a function of frequency with a possible phase shift between the 

vibration.  Specifically, the cross spectrum can be written as 

 

 ( ) ( ) ( ) ( ) ( )iθ ωω = ω θ ω = 2πωτ ωxy

xy xy xy
W W e

−
 (3.51) 

 

where τ(ω) is the time delay between x(t) and y(t) a the frequency ω. An important 

application of the cross spectrum is as follows. Given a random excitation x(t) to a 

structure with a frequency response function H(ω), the cross spectrum between the 

excitation x(t) and the response y(t) is given by the product of the power spectrum of the 

excitation and the frequency response function, H(ω), that is,  
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where Wxx stands for the autospectrum of the exciting force due to the hammer and Wxy 

the cross spectrum of the instrumented section. 
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The digital algorithm to implement the cross spectrum can be written as 
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2

dn

xy k k

kd

SR N
W m X m Y m m

n BS
∆ ∆ ∆ −∑ K  (3.53) 

 

Even though the correct evaluation of the frequency response function for each 

instrumented section is through Eq. (3.52), it was seen that each hammer hit can be 

considered as an independent phenomenon and the FRF of the generic instrumented 

section can be evaluated, without leakage of information, considering its mean value for 

the set of three hammer hits making use of Eq. (3.34), rewritten here: 

 

 ( ) ( )
( )
( )

3 3
,

,

1 1 ,

ω1 1
ω = ω

3 3 ω
i k

ij ij k

k k j k

A
H H

F= =

=∑ ∑   (3.54) 

 

where i represents the section instrumented position and j the position of the hammer 

hit.  

The following graph shows the comparison between two FRF recorded during the 

experimental tests. The first, in blue line, is evaluated by means of Eq. (3.52), whilst the 

second one, in green line, derives from Eq. (3.54). Obviously, Wxy and Wxx are evaluated 

making use of Eq. (3.53) and (3.47), respectively, in which nd = 3. The two 

experimental functions are strictly close over the whole range of frequency considered. 

Therefore, in the data analysis, the experimental FRFs has been singly evaluated for 

each hammer impact and Eq. (3.54) has been employed. 
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Figure 3.9 – Comparison between Eq. (3.52) and Eq. (3.54) for the evaluation of the experimental FRFs 
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3.2.5.4  Dynamic identification in the frequency domain 

Algorithms in the frequency domain require the acquisition of the accelerations from 

the experimental tests and allow to get information on the dynamic behaviour of a 

structure in terms of natural frequencies, modal damping and mode shapes using the 

features of frequency response.  

The are many methods to identify the modal parameter of a system from FRF, but 

many are based on the same assumptions: in the proximity of the natural frequencies of 

the system, the contribution of the mode that causes the resonance is predominant over 

the others, which are thus negligible. With this assumption, a system with N degrees of 

freedom can be transformed into N sdof systems and thus it’s possible to operate on a 

limited range of frequencies around the r-th natural frequency. 

This section describes the fitting techniques, employed in this work, to extract from 

FRFs the modal characteristics of the structures  

Peak picking method (PPM). 

This method can be successfully applied for systems with low damping ratio and when 

the vibration frequencies are not very close to each other (Ewins, 1984). 

Figure 3.10 shows an example of the times histories and the frequency spectra of the 

impact hammer and of three accelerometers for a given pulse. This kind of graphs are 

typical for test 1, where no masses have been fastened to the structure. It can be noted 

that the natural frequencies of the system correspond to the peaks of the inertance 

functions, which are also well spaced.  

In the neighbourhood of a given natural frequency ωr, Eq. (3.40) admits the 

following approximation 

 ( )
( ) ( ) ( ) 2

2

2 2

ω
ω

ω ω 2iζ ω ω

r r r

h k

hk

r r r

v v v
H

mL
≅ −

− +
  (3.55) 

 

Then, the contributions of modes with different circular frequencies can be neglected, 

and the frequency domain analysis of the vibration beam reduces to that of an 

independent sdof. Consequently, the peak-picking method can usefully be adopted. In 

other words, natural frequencies are located at each peak of inertance moduli (Figure 

3.10) and the damping value can be estimated with the half-power method.  As matter 

of fact, for the first three frequencies of the beam under investigation, damping ratios 

turned out to be less than 5% so as to justify the use of Eq. (3.55). Finally, Eq. (3.55) 

shows that the r-th eigenvalue components are proportional to the inertance modulus 

peaks. Then, hitting the j-th instrumental section, the following ratios are obtained 

(Tullini and Laudiero, 2008): 
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Figure 3.10 – Time history and frequency spectrum for the impact hammer and three instrumented 

sections (from test 1) 
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Pole/Residue Model  Identification (PRMI). 

It is known that the response of a linear system with N degrees of freedom can be 

represented by the sum of the responses of individual modes of vibration. In the 

frequency domain expression of receptance, i.e. the ratio of Fourier transform and the 

displacement of the driving force Eq. (3.39), can be written as (Ewins, 1984) 

 

 ( )
( )

2 2
1

ω
ω,

ω ω 2iξ ω ω

N
j

r r r r=

=
− +

∑
R

α p   (3.57) 

 

where R is the matrix of the residue, i.e. the product of the eigenvectors Ф(ωr) Ф(ωr)
T
, 

normalized respect to the mass matrix. The linear system is completely identified if the 

modal parameters p  = { ωr, ξr, Ф(ωr)}r = 1,…N are known. If only M parameters are 

known, Eq. (3.57) can be approximated by 
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where E is a constant matrix. The fitting algorithm PRMI (Pole/Residue Model 

Identification, Balmés, 1997) optimizes the modal parameters minimizing the cost 

function J, for each vibration mode and for each instrumented section: 

 

 ( ) ( )
{ }
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2
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, ,X

ij k ij k

i

j

k

J α ω α ω
∈
∈
∈

= −∑ p p  (3.59) 

 

The method is used to evaluate the modal parameters for tests 3 and 5, in which the 

presence of the lumped mass in the middle of the side beam span produces two 

frequency peaks too close to use the peak picking method. Figure 3.11 shows a fitting of 

an experimental FRF of test 3 (blue line) by mean of PRMI (green line), in the 

amplitude – frequency plane and Bode plot. Figure 3.12 shows the fitting in the 

Nyquist’s plot. 
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Figure 3.11 – Experimental FRF of a instrumented section and its numerical fitting by means of PRMI. 

Modulus versus frequency and Bode diagram 
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Figure 3.12 – Experimental FRF of two instrumented sections and their numerical fitting by means of 

PRMI in the Nyquist plane 

3.2.6 Results 

Making use of the experiment modal analysis introduced in the previous section, 

average of the experimental and estimated parameters are presented.  

3.2.6.1  Experimental data 

As described in Section 3.2.5, PPM is applied to test 1 where frequencies are not very 

close to each other, whereas PRMI is used for test 3 and 5, where lumped mass carried 

by right span of the frames produces inertance peaks too close to apply PPM. In 

particular, modal vibration frequencies and amplitudes of the corresponding mode shape 

at the three instrumented section have been identified for each impact’s hammer and for 

each load step. Since 9 pulses (3 for each instrumented section) have been given for 

each load step, there are a total of 27 experimental FRFs for each step of axial load. 

From this data set, only the FRF corresponding to the best measures have been 

considered, in order not to affect the optimization procedure of the PRMI.  

The Tables 3.1 - 3.6 show the average modal parameters for each imposed axial load 

NX and for the five configurations tested. On the other hand, the identified couple [λ, 
(v1+v3)/2v2] for test 1, 3 and 5 are plotted in Figure 3.13. For test 1A and 1B, the 

instrumented section is not at quarters of the beam span, it then has not been located in 

the plot.  

As described in Section 3.2.3, the identified couples [λ, (v1+v3)/2v2] lie within the 

area defined by the limit situation (v1+v3)/2v2 = 1 and the curve corresponding to n = - 

4π2
, Eulerian critical load for a double clamped beam (dotted lines). 
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TEST 1 

Na [kN] f  [Hz] v1 v2 v3 λ (v1+v3)/2v2 

5.662 11.520 0.6226 1.0000 0.6477 5.043 0.6352 

10.524 13.894 0.6302 1.0000 0.6544 5.538 0.6423 

14.978 15.734 0.6399 1.0000 0.6528 5.894 0.6464 

20.692 17.785 0.6464 1.0000 0.6572 6.266 0.6518 

24.876 19.150 0.6511 1.0000 0.6593 6.502 0.6552 

30.712 20.930 0.6546 1.0000 0.6630 6.798 0.6588 

35.640 22.295 0.6582 1.0000 0.6659 7.016 0.6621 

40.366 23.516 0.6600 1.0000 0.6687 7.205 0.6643 

45.577 24.804 0.6613 1.0000 0.6702 7.400 0.6657 

50.873 26.084 0.6648 1.0000 0.6722 7.589 0.6685 

Table 3.1 – Average of the experimental parameters at the first modal frequency, Test 1 

TEST 1A 

Na [kN] f  [Hz] v1 v2 v3 λ (v1+v3)/2v2 

4.502 10.834 0.7371 1.0000 0.7684 3.913 0.7527 

10.945 14.049 0.7496 1.0000 0.7730 4.455 0.7613 

15.108 15.747 0.7541 1.0000 0.7737 4.717 0.7639 

20.077 17.563 0.7576 1.0000 0.7770 4.982 0.7673 

24.749 19.109 0.7632 1.0000 0.7790 5.196 0.7711 

30.385 20.833 0.7678 1.0000 0.7803 5.426 0.7741 

34.871 22.069 0.7693 1.0000 0.7821 5.584 0.7757 

40.181 23.453 0.7714 1.0000 0.7840 5.757 0.7777 

45.696 24.811 0.7733 1.0000 0.7851 5.921 0.7792 

49.771 25.787 0.7758 1.0000 0.7856 6.036 0.7807 

Table 3.2 – Average of the experimental parameters at the first modal frequency, Test 1A 

TEST 1B 

Na [kN] f  [Hz] v1 v2 v3 λ (v1+v3)/2v2 

4.502 10.834 0.2138 1.0000 0.2268 5.043 0.2203 

10.945 14.049 0.2216 1.0000 0.2310 5.538 0.2263 

15.108 15.747 0.2220 1.0000 0.2351 5.894 0.2285 

20.077 17.563 0.2268 1.0000 0.2384 6.266 0.2326 

24.749 19.109 0.2300 1.0000 0.2412 6.502 0.2356 

30.385 20.833 0.2348 1.0000 0.2420 6.798 0.2384 

34.871 22.069 0.2370 1.0000 0.2446 7.016 0.2408 

40.181 23.453 0.2397 1.0000 0.2471 7.205 0.2434 

45.696 24.811 0.2425 1.0000 0.2489 7.400 0.2457 

49.771 25.787 0.2453 1.0000 0.2493 7.589 0.2473 

Table 3.3 – Average of the experimental parameters at the first modal frequency, Test 1B 
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TEST 3 

Na [kN] f   [Hz] v1 v2 v3 λ (v1+v3)/2v2 

4.476 10.068 0.5765 1.0000 0.7522 4.715 0.6644 

11.371 12.289 0.5629 1.0000 0.8444 5.209 0.7036 

15.610 13.203 0.5574 1.0000 0.8982 5.399 0.7278 

21.049 14.155 0.5507 1.0000 0.9638 5.590 0.7572 

26.220 15.253 0.5595 1.0000 0.9661 5.803 0.7628 

29.704 15.701 0.4405 0.9459 1.0000 5.888 0.7615 

34.645 16.345 0.5402 0.9741 1.0000 6.007 0.7906 

41.226 17.156 0.4673 0.9426 1.0000 6.154 0.7780 

Table 3.4 – Average of the experimental parameters at the first modal frequency, Test 3 

 

TEST 3 – Second mode shape 

Na [kN] f 
(II)

  [Hz] v1
(II)

 v2
(II)

 v3
(II)

 λ(II)
 

(v1
(II)

 + v3
(II)

) 

/2v2
(II)

  

4.476 12.420 0.6907 1.0000 0.4663 5.236 0.5785 

11.371 15.139 0.6671 1.0000 0.5643 5.781 0.6157 

15.610 16.561 0.6592 1.0000 0.6009 6.047 0.6300 

21.049 18.358 0.6573 1.0000 0.6223 6.366 0.6398 

26.220 19.932 0.6599 1.0000 0.6341 6.634 0.6470 

29.704 20.966 0.6604 1.0000 0.6399 6.804 0.6501 

34.645 22.295 0.6640 1.0000 0.6461 7.016 0.6550 

41.226 23.982 0.6658 1.0000 0.6529 7.277 0.6593 

Table 3.5 – Average of the experimental parameters at the second modal frequency, Test 3 

TEST 5 

Na [kN] f   [Hz] v1 v2 v3 λ (v1+v3)/2v2 

4.427 10.605 0.6049 1.0000 0.6718 4.839 0.6384 

10.312 13.459 0.6187 1.0000 0.6836 5.451 0.6511 

15.170 15.344 0.6227 1.0000 0.6975 5.820 0.6601 

20.162 17.207 0.6313 1.0000 0.6963 6.164 0.6638 

25.558 18.814 0.6348 1.0000 0.7083 6.445 0.6716 

30.960 20.249 0.6348 1.0000 0.7226 6.686 0.6787 

36.735 21.618 0.6340 1.0000 0.7364 6.909 0.6852 

41.016 22.551 0.6342 1.0000 0.7483 7.056 0.6913 

Table 3.6 – Average of the experimental parameters at the first modal frequency, Test 5 
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Figure 3.13 – Location of the experimental couples [λ, (v1+v3)/2v2] 

The experimental points are very accurate, but for high value of axial load the circles of 

test 5 are scattered. This is because the mass placed in the middle of the side beam 

imposes its translational motion to the whole system, so the central beam undergoes its 

motion (Figure 3.16b). High values of axial load involve an increase in the stiffness of 

the side beam and the global vibration motion is governed by the translational motion of 

the lumped mass. Consequently, the amplitudes of the first modal shape become smaller 

and much more subjected to measurement errors. Moreover, Table 3.4 shows that, for 

axial load greater than about 26 kN, the highest first modal shape amplitude is recorded 

at the section v3 near the right span, instead of section v2 as in other tests. The scattering 

observed in Figure 3.13 starts precisely at this value of axial force. Furthermore, as it 

will be presented in Section 3.2.5.4, the right end stiffness coefficient β1 takes negative 

value at the first vibration frequency for high axial load values. Therefore the data 

points corresponding to the first mode shape are above the line of the simply supported 

beam case (β0 = β1 = 0) 

Figures 3.14 and 3.15 show a comparison between two typical FRF of v1 for test 3 

and test 5, respectively. It can be noted from Figure 3.14 that the inertance at the first 

peak (v1 in Figure 3.16b), corresponding to the translational vibration motion of the 

mass (v1 in Figure 3.16b), is much lower than the second one, which corresponds to the 

flexural vibration of the central span (v1 n Figure 3.16a). For lumped mass equal to 10 

kg (test 5), the flexural vibration mode of the central span remains the first vibration 
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mode of the frame (Figure 3.16a), so Figure 3.15 shows a well defined peak at the first 

vibration frequency and measurement errors are smaller. 
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Figure 3.14 – Test 3 (m = 20 kg): experimental FRF for an high value of axial force and its numerical 

fitting  
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Figure 3.15 – Test 5 (m = 10 kg): typical experimental FRF and its numerical fitting 

a) Flexural mode of the central span

b) Translational mode of the lumped mass

v2

v1 v3

v1 v3v2

 

Figure 3.16 – First two mode shapes of the system: a) First mode shape recorded for tests 1 and 5, 

0,10 kgm =  respectively; b) First mode shape recorded for test 3, 20 kgm = and for high value of N 

Therefore, in order to overcome errors in the axial load identification using the first 

mode shape, the second mode shape has been also identified for test 3. Table 3.5 shows 

the average modal parameters for each imposed axial load NX, which are plotted in 
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(2) 

v1
 (I) 

 

v1
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                      v1
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Figure 3.13 by cross-symbols. It can be seen that, as expected, the second mode shape 

corresponds to the flexural vibration of the central span. In fact the modal shape 

amplitude v2 recorded in the middle section is the greater for each load step and the 

experimental points are much closer. Moreover, it should be noted that this data are 

under the line of the simply supported beam case (β0 = β1 = 0).  

3.2.6.2 Axial load identification 

Estimated axial load Na may be found by solving Eq. (3.12) for each couple of 

experimental data [λ, (v1+v3)/2v2] of test 1,3,5 and solving numerically Eq. (3.9) for tests 

1A and 1B, for which the control points are not located at the quarter of beam span.  

Figure 3.17-3.22 compare measured NX and estimated Na axial force for each 

configuration tested. Results for test 3 reported in Figure 3.21 derives from the use of 

the second flexural mode of the frame. 

The graphs show excellent agreement between measured and estimated mean 

parameters, except for the test 3, where the first mode shape has been used. The scatter 

of the experimental points for axial load greater than about 26 kN, observed in Figure 

3.13, is also evident in the axial load identification at the same load level (Figure 3.20).  

Nevertheless, using the second mode shape the average percent errors ∆ is about 1%. 

Finally, from tables beside Figures 3.18-19, it is clear how the percent errors of test 

1A with more spaced control point (1.20 m) are much lower than those in test 1B    

(0.75 m). As expected, for test 1B with less spaced (0.60 m) control points the 

identification quality gets worse.  
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Figure 3.17 – Comparison between measured (Nx) and estimated (Na) forces, Test 1 
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Figure 3.18 – Comparison between measured (Nx) and estimated (Na) forces, Test 1 
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Figure 3.19 – Comparison between measured (Nx) and estimated (Na) forces, Test 1 
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∆ 
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Figure 3.20 – Comparison between measured (Nx) and estimated (Na) forces, Test 3 
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Figure 3.21 – Comparison between measured (Nx) and estimated (Na) forces using the second mode shape, 

Test 3 
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Figure 3.22 – Comparison between measured (Nx) and estimated (Na) forces, Test 5 

3.2.6.3  End stiffness identification 

For each couple of experimental data [λ ,(v1+v3)/2v2] Eq. (3.13) gives estimation of the 

dynamic condensation parameters β0 and β1 for test 1,3 and 5; otherwise for test with 

control points at generic position, test 1A and 1B, Eqs. (3.10)-(3.11) have been used. 

The analytical investigation considered the limit cases ks = kd = 0 and ks = kd = ∞ 

only because of the difficulty of evaluating the rotational stiffness introduced by the 

experimental equipment. For the limit cases considered, the condensation parameters β0 

and β1 of the central beam, Figure 3.23, derive form the application of exact dynamic 

condensation method and takes the expressions obtained in Section 1.5.2 and 1.5.3, see 

Eq. (3.60), (3.61), (3.62) and (3.63) 
 

NmN kdks

N N
β0 β1

LL0 L1

 

Figure 3.23 – Reference model for the analytical evaluation of the end stiffness coefficients 

For supported ends and mass-in-span:   , = 0
s d

k  and > 0m   
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For supported ends and without mass in span:  , = 0
s d

k  and = 0m   
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For clamped ends and without mass-in-span:   , =
s d

k ∞  and > 0m   
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For clamped ends and without mass-in-span:  , =
s d

k ∞  and = 0m   
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It can be noted that Eq. (3.62) has already been analyzed in the Example 2 of Section 

2.6.3.2, where its trend versus axial load for the first two modal frequencies has been 

plotted (Figure 2.15 and 2.16 respectively). Indeed, Example 2 considers the dynamic 

condensation of a clamped side beam carrying a mass in span in order to evaluate its 

rotational dynamic stiffness. It corresponds to the analytical evaluation of β1 in the limit 

situation kd = ∞ with > 0m . 

Tables 3.7-3.11 and Figures 3.24-3.28 show, for each test, the comparison between 

the experimental estimation of β0 and β1 and their limit values derived from application 

of Eqs. (3.60)-(3.63). In particular, in order to obtain a region which confines the 

experimental estimate of β0 and β1, Eqs.(3.60)-(3.63) have been plotted versus axial 

force by means of dotted line. Symbols correspond to single test evaluations and solid 

lines represent the average of the experimental data.  
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TEST 1 

β0 β1 Nx 

[kN] Test 1. ks,d = 0 ks,d = ∞ Test 1 ks,d = 0 ks,d = ∞ 

5.662 13.892 9.382 11.564 10.021 9.7868 12.101 

10.524 16.036 10.797 12.661 11.091 11.169 13.162 

14.978 16.810 11.956 13.601 13.493 12.307 14.076 

20.692 18.425 13.299 14.732 14.985 13.632 15.180 

24.876 19.157 14.203 15.514 16.177 14.526 15.946 

30.712 21.182 15.373 16.550 17.503 15.686 16.962 

35.640 21.931 16.295 17.379 18.181 16.601 17.778 

40.366 23.395 17.131 18.142 18.733 17.431 18.530 

45.577 25.847 18.006 18.949 20.241 18.302 19.326 

50.873 25.856 18.853 19.736 20.858 19.144 20.104 

Table 3.7 – Average of the experimental parameters and analytical end stiffness, Test 1 
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Figure 3.24 – End constraint stiffness of the central span vs tensile force N 
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TEST 1A – B  

β0 β1 Nx 

[kN] 
Test 1A Test 1B ks,d = 0 ks,d = ∞ Test 1A Test 1B ks,d = 0 ks,d = ∞ 

4.502 11.728 15.897 9.015 11.290 4.502 9.585 10.242 9.430 

10.945 13.558 18.175 10.912 12.752 10.945 11.475 11.998 11.281 

15.108 15.702 20.620 11.988 13.628 15.108 12.251 13.957 12.339 

20.077 16.689 23.849 13.161 14.614 20.077 13.217 15.291 13.496 

24.749 17.866 23.658 14.176 15.491 24.749 14.065 16.111 14.499 

30.385 18.588 25.005 15.310 16.493 30.385 15.810 17.861 15.623 

34.871 19.561 27.209 16.155 17.252 34.871 16.400 18.864 16.461 

40.181 20.466 29.071 17.099 18.112 40.181 17.121 19.790 17.400 

45.696 21.276 31.491 18.026 18.967 45.696 18.062 21.309 18.321 

49.771 21.314 31.007 18.680 19.575 49.771 19.185 22.152 18.972 

Table 3.8 – Average of the experimental parameters and analytical end stiffness, Test 1 
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Figure 3.25 – End constraint stiffness of the central span vs tensile force N 
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TEST 3  

β0 β1 Nx 

[kN] 
Test 3. ks,d = 0 ks,d = ∞ Test 3 ks,d = 0 ks,d = ∞ 

4.476 15.693 9.106 11.298 0.771 0.384 7.442 

11.371 20.552 11.225 12.874 -3.649 -3.916 4.574 

15.610 22.005 12.366 13.776 -5.851 -5.894 2.171 

21.049 24.138 13.691 14.873 -8.290 -7.925 -1.256 

26.220 37.313 14.840 15.864 -9.207 -9.517 -4.282 

29.704 -60.143 15.563 16.504 -10.118 -10.463 -6.023 

34.645 55.230 16.531 17.377 -11.730 -11.678 -8.099 

41.226 6.257 17.732 18.480 -11.897 -13.123 -10.328 

Table 3.9 – Average of the experimental parameters and analytical end stiffness, Test 3 first mode shape 
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Figure 3.26 – End constraint stiffness of the central span vs tensile force N. Test 3 first mode shape 
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TEST 3 – Second mode shape 

β0
(II)

 β1
(II)

. Nx 

[kN] 
Test 3. ks,d = 0 ks,d = ∞ Test 3 ks,d = 0 ks,d = ∞ 

4.476 13.186 8.826 10.999 -41.777 -34.108 -12.334 

11.371 14.978 10.931 12.669 334.931 803.960 -21.514 

15.610 16.767 12.039 13.605 58.182 93.681 -32.520 

21.049 19.144 13.323 14.718 41.146 56.403 -73.342 

26.220 20.000 14.437 15.701 36.198 46.244 -843.960 

29.704 21.498 15.139 16.328 35.241 42.819 200.280 

34.645 21.600 16.080 17.178 33.892 39.940 88.355 

41.226 23.384 17.251 18.249 33.246 37.896 59.873 

Table 3.10 –Average of the experimental parameters and analytical end stiffness, Test 3 2nd mode shape 
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Figure 3.27 – End constraint stiffness of the central span vs tensile force N. Test 3 second mode shape  
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TEST 5 

β0 β1 Nx 

[kN] 
Test 5. ks,d = 0 ks,d = ∞ Test 5 ks,d = 0 ks,d = ∞ 

4.427 14.943 9.019 11.277 6.524 5.529 10.039 

10.312 16.278 10.778 12.622 6.024 4.956 10.305 

15.170 18.177 12.049 13.649 4.755 4.411 10.480 

20.162 19.428 13.231 14.641 5.322 3.784 10.616 

25.558 20.445 14.400 15.650 3.636 3.031 10.715 

30.960 22.483 15.482 16.605 1.564 2.205 10.764 

36.735 25.195 16.559 17.573 -0.463 1.251 10.761 

41.016 25.398 17.313 18.259 -2.243 0.504 10,721 

Table 3.11 – Average of the experimental parameters and analytical end stiffness, Test 5 
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Figure 3.28 – End constraint stiffness of the central span vs tensile force N. Test 5 
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It can be noted that for each test, at the beam end in front of the hydraulic jack, the 

estimation of the elastic parameter β1 is quite reasonable. Vice versa, at the opposite end 

in front of the load cells, β0 estimation is not satisfactory at all. Yet, if β0 is calculated 

with the arbitrary values of 0.98 v1/v2 and 1.02 v3/v2, the corresponding line is obtained, 

which is much closer to the limit (dotted lines). Hence, identification of boundary 

conditions is clearly ill conditioned.  

Moreover, it should be noted that the dotted line, corresponding to β1 with                  

ks = kd = ∞ for configuration 3 and calculated with the second modal frequency (Figure 

3.27), has the same trend of β1 obtained in the Example 2 in Section 2.6.3.2, (Figure 

2.16). The vertical asymptote occurs 3 kN less than the asymptote observed in the 

example because of the presence of the left beam. However, the limit case of simply 

supported beam ks = kd = 0 has a similar trend, even if the vertical asymptote occurs for 

a lower value of axial force. It is amazing how the data points follow this trend also near 

the asymptote.  

Analogously to the axial load identification, the condensation parameter estimated by 

means of test 1A is closer to the analytical curves than the parameters which derive 

from test 1B. Figures 3.26-3.27 clearly shows that the farthest boundary conditions of 

the beam tend to simple supports.  

Finally, it can be noted that the region between the dotted lines, corresponding to the 

two limit conditions, is considerably wider for the frames with the lumped mass in span. 

Hence, it provides a better identification of the end stiffness of the central beam than the 

identification made for the other tests.  

3.2.6.4 Comparison between PPM and PRMI for the experimental modal analysis 

With the aim of making a comparison between the dynamic identifications by means of 

PPM and PRMI, dynamic parameters and identified mechanical quantities for 

configuration 5 have been analyze with both methods. In particular tests for axial load 

about 5 kN, 10 kN, 20 kN and 35 kN have been considered, (Table 3.12). It can be 

noted that the difference between the two methods is absolutely negligible, and the 

simpler peak picking method can be adopted. 

3.3 Axial load identification by means of static tests 

Adopting Euler-Bernoulli beam model, this section shows that, if bending stiffness and 

mass per unit length of a beam with constant cross section are known, the axial force 

and the flexural stiffness of the end constraints can be deduced by three displacements 

recorded at three instrumented sections along the beam length, after the application of a 

transversal static force. 
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Nx [kN] 4.427 10.312 20.177 36.691 

Method PPM PRMI PPM PRMI PPM PRMI PPM PRMI 

f  [Hz] 10.605 10.605 13.453 13.459 17.214 17.207 21.616 21.618 

v1 0.6049 0.6049 0.6166 0.6187 0.6301 0.6313 0.6337 0.6340 

v2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

v3 0.6718 0.6718 0.6841 0.6836 0.6974 0.6963 0.7364 0.7364 

λ 4.839 4.839 5.450 5.451 6.165 6.164 6.908 6.909 

(v1+v3)/2v2 0.6384 0.6384 0.6504 0.6511 0.6638 0.6638 0.6850 0.6852 

Na  [kN] 4.380 4.380 10.167 10.229 20.062 20.045 36.279 36.307 

β0 14.943 14.943 16.997 16.278 19.889 19.428 25.326 25.195 

β1 6.524 6.524 6.054 6.024 5.187 5.322 -0.442 -0.463 

Table 3.12 – Comparison between the parameters identified by mean of PPM and PRMI for some axial 

load imposed in Test 5 

3.3.1 Governing equations 

The reference model is constituted by a simply supported prismatic beam of length L, 

constrained by two end elastic-springs having k0 and k1 flexural stiffness, subjected to 

an axial force N (positive sign is assigned to tensile forces) and to a vertical force P at x 

= a. Young’s modulus E, mass per unit length m and cross-section second area moment 

J are assumed to be constant, and known as well (Figure 3.29). 

N
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a L-a

EJ,m
P k1N

v
x 1 2 3

x1

x2

x3

 

Figure 3.29 – Beam with end flexural constraints and location of the instrumented sections 

As well as the previous section, the condensation parameters of boundary conditions 

reduce to the static contribute of D(ω): 

 

0 1

0 1

0 0 0 0

0 0k k

   
= =   
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K K   (3.64) 
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Making use of the nondimensional coordinate z = x/L and neglecting shear deformation, 

Eq. (1.33) reduces to  

 

 ( ) ( ) 0v z nv z′′′′ ′′− =   (3.65) 

 

To solve Eq. (3.65) is necessary to subdivide the beam length in two subintervals, one 

before the vertical force and an another after it. Consequently the two solutions of the 

field equation are  
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Boundary and internal conditions, respectively (1.43) and (1.74), reduce to 

 

Boundary conditions 

( )

( ) ( )

( )

( ) ( )

I 0 I

II

II 1 II

0 0

0 β 0 0

1 0

1 β 1 0

v

v v

v

v v

 =


′′ ′− =


=
 ′′ ′+ =

 (3.67) 

Internal conditions    
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where prime means derivation with respect to z and  

 

 
2 3

0 1
0 1β β α ψ

k L k L NL a PL
n

EJ EJ EJ L EJ
= = = = =    (3.69) 

 

It is worth noting that the load parameter Ψ has the dimension of a length. 

3.3.2 Valuation of parameters 

In order to identify the axial load N and the stiffness k0 and k1 of the end flexural 

constraints, knowledge is required of three transversal displacements recorded at three 

location coordinates x1, x2 and x3 (Figure 3.29), due to the application of the static force 
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P. With reference to the nondimensional coordinate z = x/L, three displacements are 

determined and denoted by vi = v(xi) for  i = 1,2,3.  

Hence, the constants C1 – C8 can be determined from the solution of the system 

(3.70), constituted by the five boundary and internal conditions which do not depend on 

the stiffness parameters (first and third equations in (3.67) and Eqs.(3.68) except the 

third), together with the three experimental records of transversal displacements.  
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 (3.70) 

 

Substituting Eqs. (3.66) in (3.70), an homogeneous linear system in the eight unknowns 

C1-C8 is obtained: 
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 (3.71) 

 

Coefficient C1, C2 and C8 are linear functions of the three (experimental) displacements 

v1, v2, v3, and depend on the unknown parameter n. Once the constants C1-C8 have been 

determined, by imposing the third internal condition Eqs. (3.68), the following equation 

is obtained, to be solved for the unknown constant n: 
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Therefore, regardless of any boundary conditions as well as dynamic procedure of 

Section 3.2.2, the axial force identification is obtained.  

Finally, the second and the fourth boundary conditions Eq. (3.67) yields coefficients 

β0 and β1. 
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The above formulation can be simplified if control points and the transversal load are 

assumed at sections having nondimensional coordinates z1 = 1/4, z2 = 1/2 and z3 = 3/4. 

In the next section, the solving equations for load position at α = 1/4 and α = 1/2 are 

derived. 

3.3.2.1 Vertical load in the midspan 

The vertical load and the instrumented section assume the position depicted in Figure 

3.30.  

Nβ0
P

N

v

z

1/4

1/2

3/4

β1

v1 v2
v3

 

Figure 3.30 – Reference beam with instrumented sections at the quarter of the span and P at α = 1/2  

For z1 = 1/4, z2 = 1/2, z3 = 3/4 and α = 1/2, Eqs. (3.72) and (3.73) yield 
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where constants a, b, c, d are given by the following relations: 
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(3.76)   

 

It can be noted that, except for the term corresponding to the vertical load, Eq. (3.74) 

and (3.75) have the same forms of the equation obtained in Section 3.2.2 for the axial 

load identification by means of dynamic test, Eqs. (3.12) and (3.13). Indeed, when the 

circular frequency goes to zero, Eq. (3.12) reduce to Eq. (3.74) with Ψ = 0.  

Moreover, Eq. (3.74) seems to contain the paradox that the displacements amplitude 

(v1+v3)/v2 ratio is a function of the axial force n also with null vertical load. In seek of 

convenience, a pinned-pinned beam without axial force and subjected to a transversal 

load in the midspan is now considered (Figure 3.31).  

 

Figure 3.31 – Pinned-pined beam subjected to a transversal load in the middle of the span 

The corresponding displacements at the marked sections are the following: 

 

 1 2 3

11 1 11
= ψ = ψ = ψ

768 48 768
v v v    (3.77) 
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Hence, the displacement ratio becomes 

 

 1 3

2

+ 11
=

8

v v

v
  (3.78) 

 

Taking the limit for n tending to zero, Eq. (3.74) reduces to: 
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Eqs. (3.78) and (3.79) are equivalent; indeed, substituting the expression of v2, Eqs. 

(3.77)b, in Eq. (3.79), Eqs. (3.78) is obtained. Hence, Eq. (3.74) does not describe the 

relationship between the displacements at the quarters of the beam span versus the 

vertical load applied, but it only evaluates the transversal stiffness in these sections. 

3.3.2.2  Transversal load in the middle of the span 

In this section the transversal load and the instrumented section assume the position 

depicted in Figure 3.32. 
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Figure 3.32 – Reference beam with instrumented sections in the quarter of the span and P at α = 1/4 

For z1 = 1/4, z2 = 1/2, z3 = 3/4 and α = 1/4, Eqs. (3.72) and (3.73) yield 
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where constants a1, b1,…, d3 are given by the following relations: 
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  (3.82) 

It can be noted that, despite of the increased complexity of the parameters, the structure 

of the equations is preserved. Moreover, it can be proved that, if the vertical load is 

applied at section z = 3/4, the same results are obtained and the expressions of β0 and β1 

are switched.  
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3.3.3 Laboratory tests  

In order to apply the analytical procedure derived in the previous section, a set of 

experimental tests have been organized. The specimen and the configuration adopted 

are the same of the test 1 of Section 3.2.4 (Figure 3.33). 

NΦ20N kdks

TEST 7

1 2 3

NΦ20N kdks
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E = 206 GPa
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Figure 3.33 – Experimental frame configuration 

The vertical load was applied by means of cast iron discs fastened at the middle of the 

central span of the frame (test 7) and at its first quarter (test 8), as depicted in Figure 

3.34. The displacements were measured making use of three centesimal comparators 

with accuracy of 0.01 mm. The end supports were realized by means of the connection 

with hydraulic jack (right side) and load cells (left side), see Figure 3.5, 3.6 and 3.8. 

  

Figure 3.34 – Cast iron discs fastened to the beam and arrangement of the comparators 

For each axial load, the transversal force was increased adding iron discs and reaching a 

mass of 6, 14, and 22 kg, corresponding to vertical loads of about 59 N, 137 N and 216 

N respectively. Then, the corresponding displacements at the instrumented sections 

were recorded. Hence, for each axial load imposed, three terns of displacements have 

been recorded, so three experimental estimates of the axial force and the stiffness end 
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constraints are made possible. It is worth specifying that the maximum axial force and 

the greater mass placed, 40 kN and 22 kg respectively, do not yield the beam.  

3.3.4 Results 

3.3.4.1  Experimental data 

Tables 3.13-3.20 show the experimental data corresponding to transversal load applied 

in the midspan (test 7) and at the first quarter of the span (test 8), for each value of axial 

load imposed NX. The two last lines in the tables represent the displacements for the 

unloading path. 

Tables clearly show that in the unloading path the displacements recorded at each 

instrumented section reach the same value reached in the loading path. Moreover, in 

order to confirm the elastic behaviour of the specimen, the ratio between the vertical 

load ∆P and the corresponding displacements ∆v has been plotted versus the vertical 

load for each value of NX. Since the ratio represents the transversal stiffness of the 

beam, the experimental data show almost constant lines with greater values as the axial 

load increases. For instance, Figure 3.35 shows the case for displacement v1 of test 7.  

 

NX  = 4.15 kN Test 7 Test 8 

P Ψ v1 v2 v3 v1 v2 v3 

[N] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

59 981.86 2.43 4.24 2.40 2.24 2.44 1.13 

137 2291.00 5.66 9.83 5.49 5.46 5.82 2.69 

216 3600.20 8.67 14.94 8.38 8.64 9.07 4.22 

137 2291.00 5.66 9.81 5.50 5.60 5.83 2.68 

59 981.86 2.42 4.21 2.39 2.39 2.48 1.13 

Table 3.13 – Displacements recorded for test 7 and 8, NX = 4.15 kN 

 

NX  = 10.42 kN Test 7 Test 8 

P Ψ v1 v2 v3 v1 v2 v3 

[N] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

59 981.86 1.34 2.43 1.31 1.46 1.38 0.61 

137 2291.00 3.18 5.68 3.09 3.42 3.23 1.44 

216 3600.20 5.01 8.89 4.87 5.40 5.10 2.29 

137 2291.00 3.19 5.7 3.08 3.42 3.24 1.44 

59 981.86 1.35 2.44 1.30 1.46 1.38 0.62 

Table 3.14 – Displacements recorded for test 7 and 8, NX = 10.42 kN 
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NX  = 14.90 kN Test 7 Test 8 

P Ψ v1 v2 v3 v1 v2 v3 

[N] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

59 981.86 1.06 1.94 1.04 1.19 1.09 0.50 

137 2291.00 2.51 4.54 2.44 2.79 2.53 1.14 

216 3600.20 3.93 7.09 3.74 4.41 4.00 1.81 

137 2291.00 2.51 4.53 2.46 2.80 2.54 1.14 

59 981.86 1.06 1.94 1.05 1.19 1.07 0.49 

Table 3.15 – Displacements recorded for test 7 and 8, NX = 14.90 kN 

 

 

NX  = 20.10 kN Test 7 Test 8 

P Ψ v1 v2 v3 v1 v2 v3 

[N] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

59 981.86 0.84 1.53 0.81 0.97 0.86 0.40 

137 2291.00 1.98 3.57 1.92 2.28 1.99 0.91 

216 3600.20 3.11 5.63 3.02 3.60 3.15 1.44 

137 2291.00 1.99 3.62 1.92 2.30 1.99 0.90 

59 981.86 0.85 1.53 0.82 0.98 0.85 0.40 

Table 3.16 – Displacements recorded for test 7 and 8, NX = 20.10 kN 

 

 

NX  = 25.30 kN Test 7 Test 8 

P Ψ v1 v2 v3 v1 v2 v3 

[N] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

59 981.86 0.70 1.29 0.69 0.83 0.70 0.32 

137 2291.00 1.64 3.00 1.59 1.94 1.65 0.75 

216 3600.20 2.58 4.73 2.51 3.05 2.59 1.19 

137 2291.00 1.65 3.02 1.60 1.95 1.69 0.75 

59 981.86 0.71 1.30 0.69 0.84 0.72 0.33 

Table 3.17 – Displacements recorded for test 7 and 8, NX = 25.30 kN 
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NX  = 30.20 kN Test 7 Test 8 

P Ψ v1 v2 v3 v1 v2 v3 

[N] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

59 981.86 0.59 1.11 0.58 0.73 0.61 0.28 

137 2291.00 1.39 2.61 1.36 1.7 1.42 0.65 

216 3600.20 2.19 4.08 2.14 2.69 2.24 1.03 

137 2291.00 1.4 2.6 1.36 1.71 1.43 0.64 

59 981.86 0.6 1.11 0.58 0.74 0.61 0.27 

Table 3.18 – Displacements recorded for test 7 and 8, NX = 30.20 kN 

 

 

NX  = 35.00 kN Test 7 Test 8 

P Ψ v1 v2 v3 v1 v2 v3 

[N] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

59 981.86 0.53 0.98 0.51 0.65 0.53 0.24 

137 2291.00 1.24 2.29 1.2 1.51 1.24 0.56 

216 3600.20 1.94 3.61 1.88 2.39 1.97 0.9 

137 2291.00 1.24 2.31 1.22 1.52 1.25 0.56 

59 981.86 0.54 0.99 0.51 0.64 0.53 0.25 

Table 3.19 – Displacements recorded for test 7 and 8, NX = 35.00 kN 

 

 

NX  = 40.00 kN Test 7 Test 8 

P Ψ v1 v2 v3 v1 v2 v3 

[N] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

59 981.86 0.46 0.86 0.45 0.58 0.47 0.22 

137 2291.00 1.09 2.03 1.06 1.36 1.1 0.51 

216 3600.20 1.71 3.19 1.67 2.15 1.73 0.81 

137 2291.00 1.09 2.04 1.07 1.36 1.12 0.5 

59 981.86 0.46 1.86 0.45 0.58 0.48 0.22 

Table 3.20 – Displacements recorded for test 7 and 8, NX = 40.00 kN 

 

 



110  Chapter 3 

 

 

59 137 216

Load step P [N]

20

40

60

80

100

120
/
D

v 1
D

P
[N

/m
m

]

TEST 8

NX = 10.75 kN

NX = 14.90 kN

N
X

= 20.10 kN

NX = 25.30 kN

NX = 30.20 kN

NX = 35.00 kN

NX = 40.00 kN

NX = 4.15 kN

 

Figure 3.35 – ∆P/ ∆v vs. load step, for transversal force at the first quarter of the span 

3.3.4.2  Axial load identification 

Estimated axial load Na may be found by solving Eqs. (3.74) and (3.80) for the 

experimental data [ψ, v1, v2, v3] collected in Tables 3.13-3.20 for test 7 and 8 

respectively. 

Figures 3.36-3.37 compare measured NX and estimated Na axial force for each test. 

The graphs show excellent agreement only for test 7 (vertical load in the beam 

midspan), with an average error less than 3%, whereas an average error of about 9% has 

been observed for test 8. Probably, a vertical load close to a support makes the beam 

deflection more subjected to measurement errors. Nonetheless, the percent errors 

decreases significantly for high values of NX.  

Hence, the procedure can be safely adopted if the vertical load is applied at the beam 

midspan. 
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[%] 
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Figure 3.36 – Displacements recorded for test 7 and 8, NX = 40.00 kN 
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Figure 3.37 – Displacements recorded for test 7 and 8, NX = 40.00 kN 
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3.3.4.3  End stiffness identification 

As for the end stiffness identification, Eqs. (3.75) and (3.81) give estimation of the 

static flexural stiffness β0 and β1 for test 7 and 8 respectively. 

As in Section 3.2.6.3, the analytical investigation considered the limit cases              

ks = kd = 0 and ks = kd = ∞ only, because of the difficulty of evaluating the rotational 

stiffness introduced by the experimental equipment. For the limit cases considered, the 

stiffness coefficients β0 and β1 of the central beam (Figure 3.38) take the values (Bazant 

and Cedolin 1991): 
 

NN kdks

N N
β0 β1

LL0 L1

 

Figure 3.38 – Reference model for the analytical evaluation of the end stiffness coefficients 
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where α0 = L1/L√n, α1 = L1/L√n and  
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 (3.85) 

 

It is worth noting that, considering the equation of the dynamic condensation parameter 

of Section 1.5.4 and Section 1.5.2 and taking the limit for ω tending to zero, Eq. (1.88) 

and Eq. (1.82) reduce to Eq. (3.83) and (3.84).  

Tables 3.21-3.22 and Figures 3.39-3.40 show, for each test, the comparison between 

the experimental estimation of β0 and β1 and their limit values derived from application 

of Eqs. (3.83) and (3.84). It can be noted that the experimental estimates of β0 and β1 are 

very scattered and do not match the expected region at all. Therefore, identification of 

boundary conditions are clearly ill conditioned.  
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TEST 7 

β0 β1 Nx 

[kN] Test 7. ks,d = 0 ks,d = ∞ Test 7 ks,d = 0 ks,d = ∞ 

4.15 9.181 9.283 11.328 11.920 9.743 11.995 

10.75 12.040 11.443 12.987 17.275 11.820 13.569 

14.90 13.715 12.604 13.939 23.087 12.951 14.481 

20.10 11.339 13.912 15.052 20.555 14.233 15.553 

25.30 13.395 15.096 16.091 21.925 15.398 16.560 

30.20 20.962 16.122 17.013 33.594 16.412 17.456 

35.00 14.478 17.061 17.870 33.250 17.342 18.293 

40.00 15.994 17.981 18.720 30.249 18.253 19.124 

Table 3.21 – Average of the experimental parameters and analytical end stiffness, Test 7 

0 5 10 15 20 25 30 35 40 45

Nx [kN]

0

5

10

15

20

25

30

β
0

=
k

0
L

/E
J

TEST 7 - β0

 

0 5 10 15 20 25 30 35 40 45

Nx [kN]

0

5

10

15

20

25

30

35

40

β
1

=
k 1

L
/E

J

Experimental data

ks = kd = 0

ks = kd = ∞

TEST 7 - β1

 

Figures 3.39 – End constraint stiffness of the central span vs. tensile force N. Test 7 
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TEST 8 

β0 β1 Nx 

[kN] Test 8. ks,d = 0 ks,d = ∞ Test 8 ks,d = 0 ks,d = ∞ 

4.15 17.183 9.283 11.328 13.712 9.743 11.995 

10.75 15.267 11.443 12.987 19.654 11.820 13.569 

14.90 15.701 12.604 13.939 15.951 12.951 14.481 

20.10 16.359 13.912 15.052 14.360 14.233 15.553 

25.30 14.272 15.096 16.091 18.432 15.398 16.560 

30.20 16.680 16.122 17.013 19.258 16.412 17.456 

35.00 19.751 17.061 17.870 29.073 17.342 18.293 

40.00 15.102 17.981 18.720 17.420 18.253 19.124 

Table 3.22 – Average of the experimental parameters and analytical end stiffness, Test 8 
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Figures 3.40 – End constraint stiffness of the central span vs. tensile force N. Test 8 
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3.4 Conclusions 

A static and dynamic procedure were presented, which allows experimental procedures 

to evaluate the axial force in structural members which do not experiment translational 

displacements at the end sections. 

The dynamic procedure follows the method outlined by Tullini and Laudiero (2008). 

Adopting Euler–Bernoulli beam model, if bending stiffness and mass per unit length of 

a beam with constant cross-section are known, the axial force and the flexural stiffness 

of the end constraints can be deduced by one vibration frequency and three amplitudes 

of corresponding modal shape. Indeed, analytical investigation showed that a 

transcendental equation, irrespective of boundary conditions, between mode shape 

displacements and axial force can be formulated.  

The equipment of the dynamic procedure is constituted by an impact hammer, three 

piezoelectric accelerometers, a signal conditioner, and a PC for data acquisition. The 

inertance function evaluated at three instrumented sections allow to reduce the search of 

the modal parameters to the analysis of a single dof. In fact, it has been shown that peak 

pick method can be successfully adopted.  

Laboratory tests showed excellent agreement between the estimated forces and the 

assigned values measured by load cells, with errors of about 1%. As for the end stiffness 

identification, comparisons between the experimental results and their theoretical 

values, obtained by means of exact dynamic condensation, as shown in Chapter 2, were 

performed. It was noted that at the beam end in front of the hydraulic jack, the 

estimation of the elastic parameter is quite reasonable. Vice versa, at the opposite end in 

front of the load cells, the estimation of the end stiffness is not satisfactory at all. Hence, 

identification of boundary conditions is clearly ill conditioned. Moreover, it was noted 

that the identification accuracy also depends on the distance between control points. 

Indeed, with greater distances between the control points the identification of axial 

loads and the end stiffness become more accurate.  

A lot of in situ application to estimate axial force in tie beams of arches and vaults 

have already been successfully realized, as shown in Candela et al. (2004) and Bruschi 

et al. (2004). 

As for static tests, a new procedure for the axial load identification of simply 

supported beam is presented. Adopting Euler-Bernoulli beam model, and knowing 

bending stiffness and mass per unit length, the axial force can be deduced by three 

displacements recorded at three instrumented section along the beam length, after the 

application of a vertical force. Experimental tests showed excellent agreement between 

the estimated forces and the assigned values measured by load cells, with errors of 
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about 3% if the vertical load is applied in the beam midspan. Otherwise, if the vertical 

load is applied close to a support, the errors increase up to 9%.  

As for the end stiffness identification, despite of the good results in the 

identification of axial load, scattered and unreliable results have been obtained. 

 



 

4 

Dynamic algorithms for axial load identification 

of frames on elastic supports 

4.1 Introduction 

The algorithms presented in Section 3.2 have shown that, if bending stiffness and mass 

per unit length of a beam with constant cross-section are known, the axial force and the 

flexural stiffness of the end constraints can be deduced by one vibration frequency and 

three components of the corresponding mode shape (Tullini and Laudiero, 2008). The 

method can be applied only to structures without transversal displacements at end 

sections. For generic structures, such as truss structures or beams whose length is 

unknown, the assumption of fix supports fails. Moreover, the knowledge of the effective 

length in exam is essential to correctly estimate the axial load. 

The identification method proposed hereafter extends the algorithm presented in 

Chapter 3 to the more general problem of slender beam with elastic supports. Indeed, 

the dynamic behaviour of any structure can be represented by some substructure, 

provided that exact boundary conditions are assigned. In order to describe, the dynamic 

behaviour of a global structure with a substructure, by means of a finite element 

formulation, in Chapter 2 it has been shown how the boundary conditions are to be 

assigned in terms of exact dynamic stiffness matrix. For a typical beam the 

condensation parameter involves both translational and rotational end dofs and, as 

derived in Example 3 of Section 2.7, can be represented by means of a full 2x2 matrix. 

This condensation parameter matrix can be seen as a set of purely translational and 

rotational springs (diagonal elements), and two mixed springs (out-of-diagonal 

elements), which simulate coupling between vertical displacement and bending moment 

or rotation and shear force.  
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In this chapter it will be shown that axial force can be identified using one vibration 

frequency and five components of the corresponding mode shape. Moreover, if the 

modal shape is recorded at the quarter sections of the beam span, an explicit 

transcendental equation depending on axial force is obtained.  

As for the end stiffness parameters, the method does not give a real estimation of the 

full condensation parameter matrix, but an estimate of diagonal terms only. The 

identification of the two mixed springs needs the use of two additional dynamic 

parameters, which have to be evaluated by experimental tests. Nonetheless, an 

algorithm based on 8 experimental measures could be significantly ill conditioned. 

Indeed, as shown in this chapter, the use of 5 modal shape records provides a decrease 

of the accuracy with respect to the axial load identification method of beam on rigid 

supports. 

4.2 Identification of axial force 

The beam governing equations have been presented in Section 1.3.1; the contribution of 

lumped mass-in-span and the end forces are neglected (Figure 4.1). Young’s modulus E, 

mass per unit length m and cross-section second area moment J are assumed to be 

constant, and known as well. 

In order to identify the axial load N, one vibration frequency and the corresponding 

mode shape at five locations coordinates x0, x1, x2, x3 and x4 is required. In the 

following, the mode shape amplitudes at these points are indicate with the notation vi = 

v(xi) for x = 0,…,4.  

1 2 30 4y
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x3

x4

K0 K1
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N N
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Figure 4.1 - Beam with location of the instrumented sections 

With reference to Figure 4.1 and the non dimensional coordinate z = x/L, the constants 

C1 – C4 of the shape function in Eq. (1.38) can be determined considering the following 

system, which collects the five equations of the modal shape records: 
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Coefficients C1-C4 are linear functions of the five (experimental) amplitudes v0, v1, v2, 

v3, v4, and depend on the unknown parameter n and on constant λ through coefficient q1 

and q2 reported in Eqs. (1.39). In its turn, λ depends on the experimental circular 

frequency ω. The system (4.1) is overdetermined, but for assigned value of n and 

considering only the first four equations 
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it can be seen as a liner system in the unknown C1-C4, which has an unique solution. 

Hence, the sought parameter n is such that the constants C1-C4, derived from the 

solution of system (4.2), satisfy the last equation of the system (4.1), neglected by the 

system (4.2): 

 

( ) ( ) ( ) ( )1 1 4 2 1 4 3 2 4 4 2 4 4,λ cos ,λ sin ,λ cosh ,λ sinh =C n q z C n q z C n q z C n q z v+ + +   

   (4.3) 

 

Once n and the constants C1-C4 are known, the modal shape function Eq. (1.38) is 

completely defined., 

The above formulation can be simplified if control points are assumed at sections 

having nondimensional coordinates x0 = 0, x1 = 1/4, x2 = 1/2, x3 = 3/4 and x4 = 1., i.e. at 

the end sections of the beam and the other three at the quarters of the span. In this case, 

if the mid-section does not coincide with a node of the assumed mode shape, i.e.. if       

v2 = 0, Eqs. (4.3) yields 
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Equation (4.4) is similar to Eq. (3.12), deduced for the problem of a beam on rigid 

supports. Indeed, by setting v0 = v4 = 0 in Eq. (4.4), Eq. (3.12) is recovered. 

The most important application of Eq. (4.4) or Eq. (4.3) is the axial load 

identification of a beam belonging to a complex structure, where its end sections can 

rotate or translate and its structural length is uncertain (Figure 4.2). Indeed, the 

connecting devices of the beam under investigation with the other structural members 

have a finite length that made the vibration length of the substructure indeterminate. 

Since the identification algorithms depends crucially on this parameter, it is possible to 

overcome the problem by assuming as substructure a portion of the beam. If the 

progressive numbers 0,..,4 indicate the location of the instrumented sections along the 

beam, the length of the beam considered is simply the distance between the first 

position (No. 0) and the last one (No. 4).  
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Figure 4.2 – Application of the procedure to a member of a truss structure 

4.3 Governing equations with the reduced boundary 

conditions 

In this section, the reference model is constituted by a prismatic beam of length L, 

constrained by four end elastic-springs with k0 and k1 flexural stiffness, h0 and h1 

translational stiffness, and subjected to an axial resultant N (positive sign is assigned to 

tensile forces), Figure 4.3.  
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Figure 4.3 – Beam with flexural and translation constraints 

The model is a particular case of the more general problem presented in Section 1.3.1: 

the contribution of lumped mass in-span and of end forces are not considered, and the 

condensation parameter matrices reduce to diagonal: 

 

 

0 0 1 1

0 1

0 10 0 1 1

0 1

0 0

0 0

v v v v

v v

k k k kh h

k k k kk k

ϕ ϕ

ϕ ϕ ϕ ϕ

      
= = = =      

     
K K  (4.5) 

 

Making use of the non dimensional coordinate z = x/L and neglecting both rotary inertia 

and shear deformation, circular frequencies ω and mode shape v(z) are ruled by the 

eigenvalue problem just presented in Eq. (1.33) with the boundary conditions (1.43) 

specified for this model ( 0,1

vk ϕ = ς0,1 = 0)  (Maurizi and Bellés, 1991) 
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where prime mean derivation with respect to z and  
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Solution of Eqs. (4.6)  and (4.7) are given by Eq. (1.38).  

Application of boundary conditions leads to a system of homogeneous algebraic 

equations in the in unknowns C1-C4. Since the solution must be non-trivial, the 

vanishing of the determinant of the coefficient matrix gives the following frequency 

equation (Maurizi and Bellés, 1991) 



122  Chapter 4 

 

 

 

( ) ( ){
( ) ( ) }

( ) ( ) ( ){
( ) ( ) }

5 5 3 5 5 3 2 3 3

0 0 1 1

4 6 6 4 4 4 2 4 2 2 4

5 4 3 6 5 2 3 4

0 0 1 1 0 1

4 5 6 3 2 5 4 3

0 1

6 2 2 6

α τ α τ cos cosh 1 2 4 8

sin sinh 8 4

α τ τ α τ τ sin cosh 2

cos sinh 2 τ τ sin sinh

2

R M M R U M R M R U M R

R M M R M R UM R U M R M R

R M M R M R U M R M R

R M M R M R U M R M R R M

M q M R

 − + − − 

 + − − + − 

 + + + − + 

 + + + + + 

× + +( ) ( ) ( ){
( ) ( ) ( ) }

( ) ( ) ( ) ( )

( ) ( )

4 4 5 2 3 4

0 1 0 0 1 1

3 2 4 2 5 4 3 2 3 4

5 5 3 3 5 5

0 1 1 0 0 0 1 1

3 3 3 3

4 2 2 4 2

α α τ α α τ sin cosh

2 cos sinh 2

α τ α τ cos cosh 2 α τ α τ

2 cos cosh 2 1 cos cosh

sin sinh 4

M R R M M R M R

U M R MR R M M R M R U M R M R

R M M R MR M R MR M R

M R R M U MR M R R M

R M M R M R UM

+ + +

  + + − + − +  

  − + + + − + +  

+ − − −

− − +( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2 3 2 4

0 1

2 3 4 4 4 2 2

0 1

3 2 3 2

0 1

2 2

τ τ sin cosh

cos sinh α α sin sinh 2

α α sin cosh cos sinh

2 cos cosh 1 sin sinh 0

R M R MR R M

M R M R R M R M M R M R

M MR R M R M R R M

MR R M R M M R

 − + + 

+ + − + +

 − + + − + 

 + − − − = 

  (4.9) 

 

with the following notation: 
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For each particular set of value of the parameters n, β0, η0, β1 and η1 the  equation gives 

infinite number of roots. 

Once n and the constants C1 – C4 are known through Eqs. (4.4) and (4.2), the mode 

shape (1.38) is completely defined, and the end stiffness parameters are immediately 

derived from Eq. (4.7) 
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The above formulation can be simplified if control points are assumed at sections 

having nondimensional coordinates x0 = 0, x1 = 1/4, x2 = 1/2, x3 = 3/4 and x4 = 1., i.e. at 

the end sections of the beam and the other three at the quarters of the span. In this case, 

Eqs. (4.11) yield 
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where constants a, b, c, d are the same derived in Eqs. (3.14), and e, f, g, h, i, c’, h’, d’, 

i‘,  are given by the following relations: 
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It is worth noting that amplitudes at the end sections, i.e. v0 = v4 = 0, Eqs. (4.12)c and 

(4.12)d yield to η0 = η1 = ∞ and Eqs. (3.13) are obtained.  

4.4 Laboratory tests 

In order to apply the analytical procedure derived in the previous section and to 

ascertain its accuracy, experimental tensile and tests have been performed, Figure 4.4. 

For tensile test, the same configurations of the laboratory tests of Section 3.2.4 were 

adopted, as well as the instrumentation used. In seek of convenience, few details are 

here recalled. The test specimen was a steel rod with 20 mm diameter, for which 

Young’s modulus E = 206 GPa and density ρ = 7850 kg/m
3
 were experimentally 

evaluated. The end supports were realized by means of the connection with hydraulic 

jack (right side) and load cells (left side), see Figures 3.5 - 3.8. 
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Figure 4.4 – Application of the procedure to a member continuous beam 

Five piezoelectric accelerometers PCB/353B18, having sensitivity of 10 mV/g and 

weight of 1.8 g, were fastened in the central span, at equal distances, by means of 

metallic wrappers Figure 3.8a). In particular, the accelerometers were located at the 

quarter sections of a portion of the central beam, which was obtained neglecting the end 

pieces of length L0 and L1 (both 0.30 m). Hence, the instrumented sections define the 

model length of the beam L as the distance between the first accelerometer (Position 

No. 0) and the last one (Position No. 4). Therefore the beam length adopted in the 

analysis was 0.60 m less than that used in tests of Section 3, where L  = 3 m.  

Dynamic tests were performed, hitting the instrumented sections with an impact 

hammer PCB/086C04, able to measure a pulse up to 4.4 kN with sensitivity of 1.2 

mV/N. All the instruments were connected to a signal conditioner and, finally, to a PC 

data acquisition system set with block size (BS) equal to 2
16

 and 5000 Hz as sampling 

rate (SR). For each value of axial load imposed by the actuator, the tests were performed 

hitting, three times, each of the five instrumented sections of the central span.  
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4.5 Results 

4.5.1 Experimental data 

Experimental modal analysis technique used in this section are those described in 

Section 3.2.5.  

Figure 4.5 shows an example of experimental FRFs related to configuration No. 4 

( m  = 20 kg) for about 20 kN of axial load. It is worth noting that, analogously to tests 

described in Section 3.2.6.1, the first pick is detectable with trouble. Indeed, the 

presence of the lumped mass in the middle of the right span produces pick amplitudes 

too small for a good fit of the first modal frequency. Moreover, with increasing axial 

force, the phenomenon of switch between the first flexural vibration mode of the beam 

and the first translational vibration mode of the lumped mass, observed in Section 

3.2.6.1, still occurs. All the observation made in Section 3.2.6.1 are still valid. 

Therefore, in order to overcome errors in the axial load identification using the first 

mode shape, the second vibration mode has been also used for test 4.  
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Figure 4.5 – Time history and frequency spectrum for the impact hammer and five instrumented sections 

(from test 4) 
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Notwithstanding the conclusion of Section 3.2.6.4, where the comparison between the 

two identification methods PPM and PRMI showed that PPM should be adopted for all 

tests realized, both methods have been employed again, in seek of a better accuracy: 

PPM for test 2 (configuration without lumped mass) and PRMI for tests 4 and 6. 

Tables 4.1-4.4 show the average modal parameters for each axial load and for the three 

configurations tested. 

Table 4.3 shows that, as expected, the second vibration mode of configuration with a 

20 kg lumped mass (test No. 4) corresponds to the flexural vibration of the central span. 

Indeed the modal shape amplitude recorded at the middle section (v2) is the greater for 

each load step, whereas for the first frequency the greater modal shape amplitude may 

be in section v3 (Table 4.2). 

 

TEST 2 

Na 

[kN] 

f 

[Hz] 
v0 v1 v2 v3 v4 λ 

(v1+v3)

/2v2 

(v0+v4)

/2v2 

4.502 10.834 0.2138 0.7371 1.0000 0.7684 0.2268 3.913 0.7527 0.2203 

10.945 14.049 0.2216 0.7496 1.0000 0.7730 0.2310 4.455 0.7613 0.2263 

15.108 15.747 0.2220 0.7541 1.0000 0.7737 0.2351 4.717 0.7639 0.2285 

20.077 17.563 0.2268 0.7576 1.0000 0.7770 0.2384 4.982 0.7673 0.2326 

24.749 19.109 0.2300 0.7632 1.0000 0.7790 0.2412 5.196 0.7711 0.2356 

30.385 20.833 0.2348 0.7678 1.0000 0.7803 0.2420 5.426 0.7741 0.2384 

34.871 22.069 0.2370 0.7693 1.0000 0.7821 0.2446 5.584 0.7757 0.2408 

40.181 23.453 0.2397 0.7714 1.0000 0.7840 0.2471 5.757 0.7777 0.2434 

45.696 24.811 0.2425 0.7733 1.0000 0.7851 0.2489 5.921 0.7792 0.2457 

49.771 25.787 0.2453 0.7758 1.0000 0.7856 0.2493 6.036 0.7807 0.2473 

Table 4.1 – Average of the experimental parameters at the first modal frequency, Test 2 

 

TEST 4 

Na 

[kN] 

f 

[Hz] 
v0 v1 v2 v3 v4 λ 

(v1+v3)

/2v2 

(v0+v4)

/2v2 

4.879 10.224 0.1943 0.6967 1.0000 0.8561 0.3287 3.801 0.7764 0.2615 

11.121 12.250 0.1814 0.6896 1.0000 0.9276 0.4268 4.160 0.8086 0.3041 

16.192 13.331 0.1882 0.6679 1.0000 0.9775 0.5179 4.340 0.8227 0.3530 

21.137 14.183 0.1798 0.6479 0.9784 1.0000 0.5846 4.477 0.8422 0.3907 

25.632 15.209 0.1781 0.6624 0.9617 1.0000 0.6128 4.636 0.8641 0.4116 

30.605 15.812 0.1844 0.6411 0.9594 1.0000 0.6447 4.727 0.8553 0.4321 

36.189 16.549 0.1771 0.5814 0.9320 1.0000 0.6818 4.836 0.8485 0.4608 

40.974 17.158 0.1799 0.5444 0.9353 1.0000 0.7109 4.924 0.8256 0.4763 

Table 4.2 – Average of the experimental parameters at the first modal frequency, Test 4 
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TEST 4 – Second normal mode 

Na 

[kN] 

f 

[Hz] 
v0 v1 v2 v3 v4 λ 

(v1+v3)

/2v2 

(v0+v4)

/2v2 

4.879 12.560 0.2437 0.8129 1.0000 0.6210 0.0667 4.213 0.7170 0.1552 

11.121 14.796 0.2343 0.7679 1.0000 0.7200 0.1658 4.572 0.7439 0.2001 

16.192 16.757 0.2327 0.7763 1.0000 0.7299 0.1780 4.866 0.7531 0.2053 

21.137 18.370 0.2348 0.7759 1.0000 0.7449 0.1954 5.095 0.7604 0.2151 

25.632 19.741 0.2369 0.7755 1.0000 0.7538 0.2063 5.282 0.7646 0.2216 

30.678 21.172 0.2390 0.7771 1.0000 0.7605 0.2148 5.470 0.7688 0.2269 

36.204 22.670 0.2414 0.7782 1.0000 0.7659 0.2222 5.660 0.7720 0.2318 

40.974 23.890 0.2438 0.7780 1.0000 0.7690 0.2262 5.810 0.7735 0.2350 

Table 4.3 – Average of the experimental parameters at the second modal frequency, Test 4 

 

TEST 6 

Na 

[kN] 

f 

[Hz] 
v0 v1 v2 v3 v4 λ 

(v1+v3)

/2v2 

(v0+v4)

/2v2 

4.229 10.545 0.2097 0.7265 1.0000 0.7941 0.2518 3.860 0.7603 0.2308 

9.972 13.337 0.2157 0.7340 1.0000 0.8001 0.2629 4.341 0.7671 0.2393 

14.710 15.195 0.2188 0.7394 1.0000 0.8095 0.2775 4.634 0.7745 0.2481 

19.876 17.096 0.2227 0.7461 1.0000 0.8082 0.2791 4.915 0.7772 0.2509 

25.094 18.675 0.2254 0.7472 1.0000 0.8170 0.2931 5.137 0.7821 0.2592 

30.057 19.987 0.2278 0.7490 1.0000 0.8245 0.3064 5.314 0.7867 0.2671 

34.753 21.178 0.2288 0.7482 1.0000 0.8340 0.3227 5.470 0.7911 0.2758 

40.071 22.361 0.2305 0.7465 1.0000 0.8437 0.3402 5.621 0.7951 0.2853 

Table 4.4  – Average of the experimental parameters at the first modal frequency, Test 6 

The experimental terns [λ, (v1+v3)/2v2, (v0+v4)/2v2] stay in a 3D region between the 

limit curve for n tending to infinity and the curve corresponding to n =–4π2
, Eulerian 

critical load for a double clamped beam. The surface and the contour plot of Eq. (4.4) 

has been plotted for  n = –4π2
 in Figure 4.6 and 4.7. Figure 4.8 shows the whole set of 

experimental couple [λ, (v1+v3)/2v2], Eq. (4.4) has been represented for different values 

of (v0+v4)/2v2 = 0.20, 0.25, 0.35.  

As expected, from the scatter of the experimental points it can be noted that the 

identification of the modal parameters is very accurate, except for test No. 4, like test 

No. 3 of Section 3.2.6.1. Since the second mode shape is well identified for each axial 

load (Table 4.3), the experimental points (cross-symbol) are much more regular and the 

scatter vanishes. 
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Figure 4.6 – Surface of Eq. (4.4), for n  =  – 4π2
  

-1

-1

-1

-1

-0
.7

0
7

-0
.7

0
7

-0
.7

0
7

-0
. 7

0
7

-0
.7

0
7

-0
.5

-0
.5

-0
.5 - 0

. 5
-0

.5
- 0

. 5

0

0

0

0
0

0

0
.5

0.5

0
.5

0
.5

0
.5

0
.7

0
7

0.707

0
.7

0
7

0
.7

0
7

0
.7

0
7

1

1

1

1.
21.
31.4

(v
0
+

v
4
)/

2
v
2

l
0 5 10 15 20 25

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 

Figure 4.7 – Contour of Eq. (4.4), for n  =  – 4π2
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Figure 4.8 – Location of the experimental terns  [λ, (v0+v4)/2v2, (v1+v3)/2v2] 

4.5.2 Axial load identification 

Estimated axial load Na may be found by solving Eq. (3.12) for each couple of 

experimental data [λ, (v1+v3)/2v2, (v0+v4)/2v2] collected in Tables 4.1-4.4. 

Figures 4.9-4.12 compare measured NX and estimated Na axial force for each 

configuration tested. Results for test 4 reported in Figure 4.10 derives from the use of 

the second flexural mode of the frame. 

The graphs show very good agreement between measured and estimated mean 

parameters except for the test 4, where the first mode shape has been used. The scatter 

of the experimental points for axial load greater than about 20 kN, observed in Figure 

4.8, is also evident in the axial load identification at the same load level (Figure 4.10). 

Nevertheless, using the second mode shape, the average percent errors ∆ is about 2.5%. 

It is worth noting that the relative errors of the identification is greater than that 

observed for the algorithm for axial load identification of beam on rigid supports,  

Section 3.2.6.2 (∆ ≈ 1%). The difference in the identification accuracy of the two 

algorithms is due to the different number of control points, which have a crucial 

importance in the identification procedure. The use of multiple experimental 

measurements inevitably leads to more inaccuracies in the identification process. 

Nevertheless, the experimental tests show that the evaluation of the axial load with 5 

control points is very good and the procedure can be safely adopted.  
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Figure 4.9 – Comparison between measured (NX) and estimated (Na) forces, Test 2 
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Figure 4.10 – Comparison between measured (NX) and estimated (Na) forces, Test 4 
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Figure 4.11 – Comparison between measured (Nx) and estimated (Na) forces using the second mode shape, 

Test 4 
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Figure 4.12 – Comparison between measured (NX) and estimated (Na) forces, Test 6 



Dynamic algorithm for axial load identification of frames on elastic supports  133 

 

 

4.5.3 End stiffness identification 

As for the end stiffness parameters, the method does not give a real estimation of the 

full condensation parameter matrix, but an estimate of diagonal terms only. In order to 

make a comparison between the stiffness parameter experimentally evaluated and the 

exact condensation parameter matrices, finite element analysis of the global structure 

are needed. With reference to Figure 4.13, for the limit situation of end sections simply 

supported (ks = kd = 0), a model with 5 finite element and 8 dofs is considered. The limit 

situation of clamped end sections (ks = kd = ∞) is obtained by placing θ1 = θ6 = 0.  
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Figure 4.13 – Finite element model for the evaluation of the condensation parameter matrices (K0,K1) and 

visualization of the master dof in the substructure model 

For each load step of test 2, the vanishing of the determinant of the dynamic stiffness 

matrix D(ω) gives the first vibration frequency of the global structure: 

  

 ( ) mm ms

sm ss

ω
 

=  
  

D D
D

D D
  (4.15) 

 

where m = [u3, θ3, u4, θ4,] states for the dofs of substructure (master dofs) and s = [θ1, 

θ2, θ5, θ6], slave dofs. As introduced in Example 3 in Section 2.7, the exact condensation 

parameter matrices K0
ex

 and K1
ex

, which simulate the stiffness and mass of the part of 

structure neglected by the substructure, are given by 
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where Dsub is the dynamic stiffness matrix of the substructure obtained by condensing 

into the master dofs the dynamic stiffness matrix of the global structure, and D0 is the 

dynamic stiffness matrix of the simple beam. Making use of positions (1.45)a-b-c, the 

nondimensional elements of K0
ex

, K1
ex

 has been considered: 

 

 0 0 1 1

0 1

0 0 1 1

η ς η ς
= =
ς β ς β

ex ex ex ex

ex ex

ex ex ex ex

   
   

  
K K   (4.18) 

 

Eqs. (4.12) give diagonal condensation parameters, which are obtained by ignoring off-

diagonal terms, and the corresponding condensation matrices reduce to: 

 

 
0 1

0 1

0 1

η 0 η 0
= =

0 β 0 β
   
   

  
K K   (4.19) 

 

An average of experimental evaluations of parameters and the exact condensation 

matrices for each limit situation and for each load step is presented in Tables 4.5 and 

4.6. 

It is worth noting that, as expected, the experimental results do not match the exact 

parameters at all. For the other tests, similar results are obtained. Hence, the diagonal 

condensation parameters evaluated by means of the present method do not represent a 

good estimate of the exact parameters. Consequently, they can not be used for any 

analysis of the end stiffness of the substructure. 

 

Nx 

[kN] 
0K  

0

ex
K  

, = 0
s d

k  

0

ex
K  

, =
s d

k ∞  

4.502 
391.15 0

0 3.03

 
 
 

 
2518.57 229.70

229.70 25.83

− 
 − 

 
2684.08 236.55

236.55 26.11

− 
 − 

 

10.945 
636.95 0

0 2.77

 
 
 

 
2859.49 238.92

238.92 26.57

− 
 − 

 
2984.11 244.01

244.01 26.78

− 
 − 

 

15.108 
798.39 0

0 2.67

 
 
 

 
3063.51 244.12

244.12 27.01

− 
 − 

 
3170.14 248.45

248.45 27.18

− 
 − 

 

20.077 
975.70 0

0 2.85

 
 
 

 
3295.24 249.79

249.79 27.51

− 
 − 

 
3385.72 253.43

253.43 27.65

− 
 − 
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Nx 

[kN] 0K  
0

ex
K  

, = 0
s d

k  

0
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, =
s d

k ∞  
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Table 4.5 –Average of experimental end stiffness and exact condensation parameter matrices for each 

axial load of Test 2 

Nx 

[kN] 1K  
1

ex
K  

, = 0
s d

k  

1

ex
K  

, =
s d

k ∞  

4.502 
357.46 0

0 1.80

 
 
 

 
2550.02 230.99

230.99 25.88

 
 
 

 
2721.80 238.10

238.10 26.18

 
 
 

 

10.945 
599.49 0

0 1.59

 
 
 

 
2855.33 239.97

239.97 26.61

 
 
 

 
3016.55 245.34

245.34 26.83

 
 
 

 

15.108 
744.90 0

0 1.79

 
 
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3086.97 245.07

245.07 27.05

 
 
 

 
3199.95 249.66

249.66 27.23

 
 
 

 

20.077 
917.35 0

0 1.73

 
 
 

 
3316.59 250.64

250.64 27.54

 
 
 

 
3412.95 254.52

254.52 27.70

 
 
 

 

24.749 
1079.65 0

0 1.60

 
 
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 
 
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 
 
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30.385 
1284.21 0

0 1.50

 
 
 

 
3765.47 260.88

260.88 28.50

 
 
 
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263.77 28.61

 
 
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Nx 

[kN] 1K  
1
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, = 0
s d

k  

1

ex
K  

, =
s d

k ∞  

34.871 
1429.29 0

0 1.48

 
 
 

 
3952.26 264.92

264.92 28.89

 
 
 

 
4018.08 267.50

267.50 28.99

 
 
 

 

40.181 
1601.82 0

0 1.41

 
 
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4168.25 269.45

269.45 29.34

 
 
 

 
4227.10 271.73

271.73 29.43

 
 
 

 

45.696 
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0 1.42

 
 
 

 
4387.67 273.90

273.90 29.80

 
 
 

 
4440.62 275.94

275.94 29.88

 
 
 

 

49.771 
1927.37 0

0 1.30

 
 
 

 
4547.07 277.05

277.05 30.13

 
 
 

 
4596.32 278.94

278.94 30.20

 
 
 

 

Table 4.6 –Average of experimental end stiffness and exact condensation parameter matrices for each 

axial load of Test 2 

4.6 Conclusions 

An algorithm for axial load identification of beam on elastic supports has been derived. 

It represents the extension of the procedure for beam on rigid supports, proposed by 

Tullini and Laudiero (2008), to the more general problem of slender beam. In fact, the 

algorithm here derived allows to identify the axial force irrespective of boundary 

conditions and its effective length. The input parameters are a vibration frequency and 

five components of the corresponding mode shape. Moreover, the algorithm gives an 

estimation of the diagonal terms of the condensation parameter matrices, which 

represent the full boundary conditions matrices of the substructure model. 

In order to ascertain the accuracy of the analytical procedure, experimental tensile 

tests configurations have been performed. The elaboration of data analysis showed very 

good agreement between measured and estimated mean parameters, with an average 

error of about 2.5%. Hence, the identification accuracy is lower than that observed for 

the tests for beam on rigid support, which was about 1% (Section 3.2). Nonetheless, the 

results are very close to each other, giving a highly reliable average value for the axial 

force. 

As for the end stiffness identification, as expected, the experimental results do not 

match the exact parameters at all. In fact, the method does not give a real estimation of 

the full condensation parameter matrix, but an estimate of diagonal terms only. 

Consequently, the experimental results can not be used for any analysis of the end 

stiffness of the substructure. 
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