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Chapter 1 

 

Introduction 

 

Since the genetic information is embedded in the order of nucleotides in the DNA and RNA 

molecules, sequencing technology to determine the order of nucleotides in the DNA or 

RNA has always been one of the most powerful and fundamental tools in molecular 

biology. Determining the sequence of DNA can reveal the secrets contained in the genetic 

code of a person, his susceptibility to diseases and his response to drug treatments.  

The sequencing technology has been evolving and improving during the past a few 

decades, in terms of accuracy and throughput. Recently, several sequencing platforms 

have been developed, which have very high-throughput and low cost comparing to the 

traditional Sanger sequencing technology.  

1.1 Sanger capillary sequencing 
 

Sanger sequencing is a method of DNA sequencing, based on the selective incorporation 

of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication 

[Sanger et al, 1977] (Figure 1.1). Developed by Frederick Sanger in 1977, it was the most 

widely-used sequencing method for approximately 25 years. The sequencing  biochemistry 

takes place in a ‘cycle sequencing’ reaction, in which cycles of template denaturation, 

primer annealing and primer extension are  performed. The primer is complementary to 

known sequence immediately flanking the region of interest. Each round of primer 

extension is stochastically terminated by the incorporation of fluorescently labeled 

dideoxynucleotides (ddNTPs). In the resulting mixture of end-labeled extension products, 

the label on the terminating ddNTP of any given fragment corresponds to the nucleotide 

identity of its terminal position. Sequence is determined by high-resolution electrophoretic 

separation of the single-stranded, end-labeled extension products in a capillarybased 

polymer gel. Laser excitation of fluorescent labels as fragments of discreet lengths exit the 

capillary, coupled to four-color detection of emission spectra, provides the readout that is 

represented in a Sanger sequencing electropherogram, that has been decoded into DNA 
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sequence [Smith et al, 1986; Ansorge et al, 1987]. Simultaneous electrophoresis in 96 or 

384 independent capillaries provides a limited level of parallelization. After three decades 

of gradual improvement, the Sanger biochemistry can be applied to achieve read-lengths of 

up to ~1,000 bp, and  per-base ‘raw’ accuracies as high as 99.999%.  

 

Figure 1.1: Schematic workflow of Sanger sequencing method. Source: http://en.wikipedia.org. 

1.2 Next-generation sequencing 
 

After the completion of the first human genome sequence in 2004 [Lander et al, 2001; 

Venter et al, 2001], the growing need to sequence a large number of individual genomes in 

a fast, low-cost and accurate way has directed a shift from traditional Sanger sequencing 

methods towards new high-throughput genomic technologies. In 2005, the first massively 

parallel DNA sequencing platforms emerged, ushering in a new era of next-generation 

sequencing (NGS) which allows sequencing at unprecedented speed in combination with 

low costs per base (Figure 1.2). As a consequence, the number of sequencing related data 

stored in public available databases has increased significantly (Figure 1.3).  
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Figure 1.2: Reduction of cost per base of DNA sequencing . Source: http://www.synthesis.cc. 

 

 

Figure 1.3: Increase of number of entries in dbSNP (2002-2012). Source: http://massgenomics.org. 

 

By applying genome-wide sequencing with high-throughput platforms the 1000 Genomes 

project (1KGP)  sequenced the complete genome of 185 individuals from four populations, 

and analyze targeted exons of 697 individuals from seven populations within only two years 

[Kaiser et al, 2008; 1000 Genomes Project Consortium et al, 2010]. The aim was not only 
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provide a comprehensive resource on human genetic variation, but also investigate the 

relationship between genotype and phenotype (Figure 1.4).  

 

Figure 1.4: Cover of Nature and Time journals. The impact of 1KGP on scientific community but 
also in the politicl and economic world was enormous. 

 

The variety of NGS features makes it likely that multiple platforms will coexist in the 

marketplace, with some having clear advantages for particular applications over others. In 

general, each platform embodies a complex interplay of enzymology, chemistry, high-

resolution optics, hardware, and software engineering [Shendure et al, 2008; Metzker, 

2010]. By different approaches, each technology seeks to amplify single strands of a 

fragment library and perform sequencing reactions on the amplified strands. The fragment 

libraries are obtained by annealing platform-specific linkers to blunt-ended fragments 

generated directly from a genome or DNA source of interest.  

The main difference respect to traditional DNA sequencing approach is that molecules can 

be selectively amplified by PCR because of the presence of adapter sequences. 

Because the presence of adapter sequences means that the molecules then can be 

selectively amplified by PCR, no bacterial cloning step is required to amplify the genomic 

fragment in a bacterial intermediate as is done in traditional sequencing approaches. 

Specifically, the sequencing process could be grouped into library preparation, 

amplification reaction, sequencing and imaging, and data analysis [Metzker, 2010]. In the 

following sections, the experimental stages will be discussed, while paragraphs 1.3 and 1.4 
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will be dedicated to computational challenges introduces by NGS and data analysis 

procedures.  

 

1.2.1 Library preparation 
 

Library preparation is the step of preparation of DNA templates [Roe, 2004]. This process 

includes the random breaking of DNA sample into smaller fragments, ligating adapter 

sequences to allow the later use of universal primers, and amplifying the produced DNA 

templates. 

Thre are three different protocols:  

 SINGLE-END library (SE) is created by randomly shearing genomic DNA (gDNA) or 

complementary DNA (cDNA) into fragments which are less than 1 kb in size; 

 

 PAIRED-END library (PE) is created as the SE protocol by sequencing primer (SP) 

sites are ligated at each end. After analyzing the first read with SP1 the templates 

are regenerated and the second read is sequenced by the use of SP2 (Figure1.5); 

 

Figure 1.5: Paired-end library. Source: www.illumina.org (adapted). 

 

 MATE-PAIRED library (MP) is created by shearing DNA with 2-5 kb in size labeled 

at the ends, circularized, and again linearized by cutting the cycles. Only fragments 

containing the label and therefore both ends of the original DNA fragment are 

selected and sequenced (Figure 1.6). 
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Figure 1.6: Mate-paired library. Source: www.illumina.org (adapted). 

1.2.2 DNA amplification 
 

After the library preparation, NGS technologies perform DNA amplification to increase the 

signal intensity for nucleotide detection. The most commonly used amplification procedures 

are: 

 Emulsion PCR in which single-stranded DNA (ssDNA) hybridizes onto 

oligonucleotide bound beads, ideally leaving one DNA template per bead (Figure 

1.7). The beads are part of water-inoilmicro-emulsions which additionally contain all 

necessary components for PCR. After PCR amplification within these micro-

reactors, up to thousands of complementary DNA strands are covalently bound to 

the beads. The original DNA template strands are washed away and the beads are 

purified and immobilized for later sequencing [Dressman et al, 2003; Metzker, 

2010]. 

 

 

 Figure 1.7: DNA amplification procedures: emulsion PCR. [Metzker, 2010]. 

 

 Bridge amplification in which the main device is a solid surface which is densely 

coated with forward and reverse primers. ssDNA templates anneal randomly to the 

surface and their complementary strands are built [Metzker, 2010]. After 

denaturation, a washing step removes all original template DNA. The remaining 

covalently bound complementary strands bind over to nearby reverse primers 

enabling the creation of yet another replicated strand. The DNA is denaturated 
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again to yield ssDNA and the next cycle of primer annealing and DNA replication is 

started. Thereby, clusters of DNA are produced all over the solid surface. As a last 

step prior to sequencing the template DNA is cleaved and washed away (Figure 

1.8).  

 

 

Figure 1.8: DNA amplification procedures: bridge amplification [Metzker, 2010]. 

 

1.2.3 Sequencing and imaging 
 

The platforms for massively parallel DNA sequencing read production widely used up to 

today are distributed from Roche/454 (Eurofins MWG Operon; Huntsville, AL, USA), 

Illumina ((San Diego, CA, USA), Life Technologies/Applied Biosystems (Foster City, CA, 

USA) and Life Technologies/Ion Torrent (South San Francisco, CA, USA) (Table 1.1).  

Company Platform Sequencing Throughput 

Roche/454 GS FLX-T-XL Emulsion PCR/ 
Pyrosequencing 

700Mb/23h 

 GS Junior 35Mb/10h 

    

Illumina HiSeq 2000 
 

Bridge PCR/Sequencing-by-
synthesis 

 

105-600Gb/ 
2-11d 

 MiSEQ 
540Mb-7Gb/ 

4-39h 

    

Life Tech/ ABI SOLID
TM

 4 
Emulsion PCR/Sequencing-by-

ligation 
25-100Gb/ 

3.5-16d 
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Life Tech/Ion Torrent Ion PGM
TM

 
Emulsion PCR/Ion 

semiconductor sequencing 
300Mb-1Gb/ 

0.9-4.5h 
 

Table 1.1: Comparison of performance among different NGS platforms. Abbreviations: ABI, Applied 

Biosystems; d, day; h, hours. 

 

All the instruments implement a process in which the synthesis of a complementary DNA 

strand is used to determine the DNA sequence and the use of a template amplification step 

to increase signal intensity for nucleotide identification. 

Recently, three benchtop high-throughput sequencing instruments are become available, 

allowing the implementation of high-throughput sequencing in diagnostic settings. These 

are the 454 GS Junior (Roche/454), MiSeq (Illumina) and Ion Torrent PGM (Life 

Technologies/Ion Torrent) [Loman et al, 2012].  

These platforms are smaller and cheaper that the large instruments and allow the analysis 

of patients in parallel in short time, since they generate a reduced throughput. 

1.2.3.1 Roche/454 
 

The Roche/454 was the first commercially available NGS platform, introduced in 2005. The 

platform analyzes DNA by pyrosequencing technology [Ronaghi et al, 1998; Ronaghi, 

2001] in which nucleotides are detected based on the release of pyrophosphate. After the 

amplification of target DNA with emulsion PCR, beads, pyrosequencing enzymes, and 

pyrosequencing sulfates are loaded into a pico titer plate device, which places each bead 

into an addressable position within the plate. After the sequencing primer has been 

annealed the first sequencing cycle is started. Each cycle, nucleotides of one type (either 

dATP, dCTP, dGTP, or dTTP) are added to the plate. When incorporated, the nucleotide 

releases a pyrophosphate thereby triggering a series of downstream reactions. The use of 

luciferase in these reactions causes emission of a light signal which is proportional to the 

amount of integrated nucleotides. This signal is detected by a CCD camera and image 

information is stored for further processing. The remaining nucleotides are washed away 

and the next type of nucleotides is added to the plate (Figure 1.9) [Ansorge, 2009].  

The latest 454 GS FLX platform with Titanium chemistry can produce approximately one 

million reads with lengths of up to 1000 bp per instrument run. Despite the higher costs, 

this platform for its long reads is best suitable for de novo assembly, metagenomic and 

characterization and analysis of microbiome.  
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Figure 1.9: Roche/454 sequencing workflow [Mardis, 2008].  

 

The benchtop sequencer GS Junior System, available since 2010, is based on the 

chemistry of 454 Sequencing technology and was developed to allow the long read 

sequencing in reduced time (10 hours sequencing and 2 hours data processing), with lower 

set-up and running costs scaled for the needs of diagnostic laboratories.  

 

1.2.3.2 Illumina 
 

The Illumina sequencing system employs an array-based DNA sequencing-by-synthesis 

technology with reversible terminator chemistry. This technology analyzes different DNA 

samples in parallel by the use of bridge amplification and dye-terminated nucleotides 

(Figure 1.10).  
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Figure 1.10: Illumina sequencing workflow (adapted from Mardis, 2008).  

 

After primer hybridization, nucleotides which are labeled by different fluorescent dyes are 

added to the slide. In each sequencing cycle, only one nucleotide is incorporated into the 

complementary strand due to its attached terminator group. A washing step removes all 

remaining free nucleotides before the newly added base is identified. Finally, the terminator 

and dye group are cleaved off, and the sequencing cycle is restarted. The first Illumina 

sequencing platform, the Genome Analyzer (GA), originally produced 35-bp reads and 

generate more than 1 Gb of high-quality sequence per run in 2–3 days. Latest platforms, 

GA IIX and HiSeq 2000, allow to increase fragment length up to 150bp and improve the 

throughput.  

Recently, Illumina released a benchtop high-throughput sequencing instrument, MiSeq, 

developed for clinical settings and diagnostics routine. The MiSeq system is based on the 

existing Illumina sequencing-by-synthesis chemistry, but with a drastic reduction run times 

and cost, compared to other platforms. 
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1.2.3.3 Life Technologies/Applied Biosystems 
 

The SOLiDTM system is based on ligating fluorescently labeled dinucleotide probes to the 

DNA template [Tomkinson et al, 2006; McKernan et al, 2009]. After emulsion PCR, beads 

are covalently bound to a glass slide and universal sequencing primers, ligases, and a pool 

of labeled dinucleotide probes are added to the glass slide. The DNA sequence is 

determined by recording the color code, representing the first two bases of the 

dinucleotide, in several cycles of DNA ligation and cycles of primer reset. Each nucleotide 

(color-encoded) in the template is read twice by two fluorescent signals, reducing the error 

rate (Figure 1.11). 

 

Figure 1.11: Life Technologies/Applied Biosystems sequencing workflow. A) The SOLiD
TM

 substrate 

consists of an emulsion PCR bead, its covalently bound primer site (two sites for MP and PE), and 
the DNA template to be sequenced. b) SOLiD

TM
 uses ‘1,2-probes’ (a version of a dinucleotide probe) 

where the first and second nucleotides are analyzed. The remaining six bases consist of either 
degenerated or universal bases [Metzker, 2010]. Each dye represents 4 of 16 possible dinucleotide 
sequences. (adapted from Mardis, 2008).  
 

.  

1.2.3.4 Life Technologies/Ion Torrent 
 

Ion TorrentTM is based on semiconductor sequencing approach, which combines computer 

software with integrated circuits and complementary metal-oxide semiconductors (CMOS). 

The technology also adopts an electrochemical detection system, the ion-sensitive field-

effect transistors (ISFET), which can detect ions as they are released by DNA polymerase 

during sequencing by DNA synthesis. All of these electronics are focused on detecting and 

analyzing the release of a hydrogen ion (or proton) which occurs each time a nucleotide 

triphosphate is added. The proton release causes a slight pH shift which is detected by a 
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CMOS sensor. Each chip has at least 1.2 million sensors. These are composed of a well 

containing the dNTP and an acrylamide bead with a DNA template. Just beneath the well 

lies the metal oxide sensing layer, which itself lies over a sensor plate and floating metal 

“gate” that transmits electronic information (the pH changes) to the semiconductor. This 

technology differs from other sequencing technologies in that no modified nucleotides or 

optics are used. Ion Torrent Personal Genome Machine (PGMTM), available since 2011, is 

benchtop NGS platform from Ion Torrent, which enables fast, affordable, genome-

sequencing with a high throughput (80–100 Mb/h) and with up to 200bp fragment reads.  

 

1.3 Application of next-generation 
sequencing 

 

The combination of different types of sample input and library preparations and the 

production of low cost reads by next-generation sequencing technologies makes them 

useful in a variety of areas, such as whole genome sequencing, ChIP-Seq, metagenomics, 

targeted re-sequencing (e.g. exome sequencing), RNA-Seq, Methyl-Seq, and others [Smith 

et al, 2008; Wold et al, 2008] (Table 1.2).  

 

Application references 

De novo sequencing of genomes 
Velasco et al., 2007; 
Bentley, 2006 

Targeted resequencing (SNP, indels, CNV and structural 
variations) 

Hodges et al., 2007; 
Porreca et al., 2007 

Epigenome 
Johnson et al., 2007; 
Mikkelsen et al., 2007 

DNA Methylation Cokus et al., 2008 

Transcriptome (RNA profiling, gene expression, alternative 
splicing) 

Axtell et al., 2006; 
Berezikov et al., 2006 

Metagenome (human microbiome characterization) 
Turnbaugh et al., 2007; 
Hubert et al., 2007 

Table 1.2: Applications of next-generation sequencing technologies. 

Important applications include: (1) de novo genome sequencing, whole-genome 

resequencing or more targeted sequencing for discovery of mutations or polymorphisms; 

(2) transcriptome analysis for gene expression and RNA profiling; (3) large-scale analysis 
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of DNA methylation; (4) analysis of DNA-protein interactions by chromatin 

immunoprecipitation (ChIP-Seq); (5) characterization of human microbiome (epigenomics). 

A specific application of NGS is the molecular analysis of cancer genome.  

1.3.1 Analysis of cancer genome by NGS 
 

Cancers are caused by the accumulation of genomic alterations. Therefore, analyses of 

cancer genome sequences and structures provide insights for understanding cancer 

biology, diagnosis and therapy [Ross et al, 2011]. NGS technologies have allowed 

substantial advances in cancer genomics, since they have facilitated an increase in the 

efficiency and resolution of detection of each of the principal types of somatic cancer 

genome alterations, including nucleotide substitutions and small insertions and deletions. 

Furthermore, these new sequencing methods make it feasible to discover novel 

intrachromosomal rearrangements, including inversions, tandem duplications and 

deletions, reciprocal and non-reciprocal interchromosomal rearrangements and microbial 

infections, and to resolve copy number alterations at very high resolution.  

Cancer samples have specific features requiring particular consideration in NGS 

processing and analysis. The main characteristic is that cancer samples differ in their 

quantity, quality and purity from the peripheral blood samples, commonly used for germline 

genome analysis. Surgical resection specimens tend to be large and have been the 

mainstay of cancer genome analysis [Meyerson et al, 2010]. However, diagnostic biopsies 

from patients with disseminated disease tend to contain few cells and the quantity of 

nucleic acids available may be limiting. Extracted nucleic acids from cancer are also often 

of lower quality than those purified from peripheral blood. This because most cancer biopsy 

and resection specimens are formalin-fixed and paraffin embedded (FFPE) that makes 

DNA impure. Moreover, cancer specimens often include substantial fractions of necrotic or 

apoptotic cells that reduce the average nucleic acid quality histology. Moreover, a cancer 

specimen contains a mixture of malignant and nonmalignant cells and, therefore, a mixture 

of cancer and normal genomes (and transcriptomes). For all these reasons, FFPE-derived 

nucleic acids can require special experimental protocols and computational approach for 

the processing and analysis.  

Furthermore, the cancers themselves may be highly heterogeneous and composed of 

different clones that have different genomes. Cancer genome analytical models must take 

these two types of heterogeneity (cancer versus normal heterogeneity and within-cancer 
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heterogeneity) into account in their prediction of genome alterations. Specifically, cancer 

genomes vary considerably in their mutation frequency (degree of variation compared to 

the reference sequence), in global copy number or ploidy, and in genome structure.  

Various computational methods have been developed to determine the presence of 

somatic mutations using NGS data. The detection of somatic mutations in cancer requires 

mutation calling in both the tumour DNA and the matched normal DNA, coupled with 

comparison to a reference genome and an assessment of the statistical significance of the 

number of counts of the mutation in the cancer sequence and its absence in the matched 

normal sequence. False positives and errors in variant calls can be due to inaccurate 

detection of mutation in tumor for insufficient coverage or for machine-sequencing biases, 

incorrect local alignment of individual reads and discordant alignment of pairs. 

1.4 Computational challenges 
 

Next-generation sequencing has revolutionized the study of human genetics and has 

immense clinical implications. The possibility to sequence different samples and different 

genomes in parallel has reduced the cost and increased the throughput of genomic 

sequencing and these technologies are still evolving [Metzker, 2010]. Using deep 

sequencing, for example, it is now possible to discover novel disease causing mutations 

[Ley et al, 2008] and detect traces of pathogenic microorganisms [Isakov et al, 2011]. For 

the first time, research fields such as personalized medicine for patient treatment are 

becoming tangible at genomic levels given advances in deep sequencing data integration. 

At the same time, NGS has introduced in the scientific field a computational challenge. In 

fact, the amount of data produced by ultra high throughput sequencing run is often 

tremendous and can reach hundreds of millions of reads in various lengths per experiment 

[Mardis, 2008]. NGS platforms in production are able to produce data of the order of giga or 

terabytes per machine day. The storage, processing, querying, parsing, analyzing and 

interpreting of such an incredible amount of data is a significant task that holds many 

obstacles and challenges. The emergence of NGS platforms imposes increasing demands 

on statistical methods and bioinformatic tools for the analysis and the management of the 

huge amounts of data generated by these technologies. Today a large number of softwares 

already exist for analyzing NGS data. These tools can be fit into many general categories 

including alignment of sequence reads to a reference, base-calling and/or polymorphism 
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detection, de novo assembly from paired or unpaired reads, structural variant detection and 

genome browsing.  

 

1.4.1 IT infrastructure 
 

The high amount of DNA data generated by next-generation sequencing techniques is 

demanding computationally intense hard- and software systems to conquer the 

computationally expensive tasks of NGS data analysis.  

To provide an efficient system for analyzing and visualizing next-generation sequencing 

data, in this thesis a 64 bit computing cluster, consisting of the following components, was 

introduced: two Sun FireTMX4600 M2 Servers each with four Quad-Core AMD 

OpteronTM8356, 2.3 GHz, 80 GB RAM; Serial attached SCSI (SAS) storage of 16 TB 

(extendable up to 256 TB). 

1.5 Bioinformatic analysis 
 

There are three typical analysis stages in NGS processing (Figure 1.12): 

a. Primary analysis (base calling)  

b. Secondary analysis (alignment and variant calling) 

c. Tertiary analysis.  

 

 
Figure 1.12: Workflow of NGS data processing. 
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1.5.1 Primary analysis 
 

Primary analysis can be defined as the machine specific steps needed to call base pairs 

and compute quality scores for those calls from the image detected during the sequencing. 

This results in a FASTQ file, the format of raw data, which is just a combination of the 

sequence data, the so called read, as a string of A, C, G and T characters and an 

associated Phred quality score for each of those bases (Figure 1.13). This output is ready 

for processing in a secondary analysis pipeline. 

 

 

Figure 1.13: FASTQ format of raw data. 

 

All current commercial next-generation instruments first capture images of many parallel 

reactions. Analysis software is then applied to locate sequencing reactions and extract 

information about each reaction. Each platform analysis process is unique and proprietary 

and may involve several sub-steps. Data filtering may be done subsequent to or during 

primary analysis. Each platform applies specific rules to eliminate sets of reads and/or 

images that may have gross artifacts, eliminate individual reads or duplicate sequences. 

The user may or may not have the ability to view or change these rules.  

 

As quality parameter, the Phred score has become the standard to characterize the quality 

of DNA sequences and the goodness of sequencing [Ewing et al, 1998; Ewing et al, 1998]. 

Phred quality score Q is defined as logarithmically related to the base-calling error 

probabilities P: 

Q=-10log10P      (1) 

 

This means that with a Phred of 30 assigned to a base, the chances that this base is called 

incorrectly are 1 in 1000 (Table 1.3). 
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Phred Quality Score Probability of incorrect base call Base call accuracy 

10 1 in 10 90% 
20 1 in 100 99% 
30 1 in 1,000 99.9% 
40 1 in 10,000 99.99% 
50 1 in 100,000 99.999% 

 

Table 1.3: Phred quality scores are logarithmically linked to error probabilities 

 

1.5.2 Secondary analysis 

 
1.5.2.1 Alignment 

 
The step conducted after base calling is alignment of the reads to a reference sequence 

(also called “mapping”) or, if a reference sequence does not exist, for example in the case 

of microbiology analysis, assembly de novo of the sequence reads into contigs and 

scaffolds.  

Alignment of next-generation reads to a reference sequence may be conducted by a 

variety of different algorithms and may or may not use quality values or intensity values. 

Mappers such as MAQ [Li et al, 2008] (developed specifically for the Illumina platform) 

used a hash/seed approach, wherein the reference genome was indexed by k-mers of a 

given size and the first k-mer of each read was searched for a near-exact match. This 

approach was well-suited for near-exact matches (i.e. 0-3 single base differences between 

read and genome) but does not treat small insertions or deletions. It also tends to be both 

processor and memory intensive. Another algorithms are based on the Burrows-Wheeler 

transform [Li et al, 2009], for example BWA,  which demonstrated significant (>10-fold) 

improvement in mapping speed. Some mappers are platform-specific features, such as 

BFAST [Homer et al, 2009] for the Life Technologies/Applied Biosystems which takes 

advantage of the SOLiD two-base encoding scheme (color base space), and the gsMapper 

[Shearer et al, 2010] for the Roche/454 platform which uses full flowgram information for 

alignment. Due to their central role in almost all next-generation applications, mappers 

remain under active development. 

An important feature to be considered in this step is the quality assessment of the data that 

can improve the mapping performance [Li et al, 2010]. The alignment output contain a 

Phred based quality score for each of the aligned reads, describing the probability of per-

base false alignment. Combination of this quality score together with other alignment 
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parameters such as mismatches could and should be further assessed using specialized 

tools [Lassmann et al, 2011] in order to characterize mapped and unmapped reads for 

potential alignment improvement. These alignment quality scores can be re-assessed and 

recalibrate  taking into account the given base and its quality score, the position within the 

read and the adjacent nucleotides to account for sequencing chemistry biases. This 

procedure reduces the effect of sequencing technology derived biases and improve overall 

variant detection accuracy [DePristo et al, 2011]. 

Another feature to consider is that most alignment tools allow the user to set the number of 

allowed mismatches between the read and a reference location and the scoring scale for 

gap opening and extension. Allowing more mismatches results in a higher portion of 

mapped reads but at the cost of increased ambiguity and reduced confidence of these 

alignments. Mismatch allowance should be set while considering the specific experiment at 

hand. For example, when undergoing microRNA expression profiling, one will want an 

accurate estimate of the abundance of each microRNA , and should not allow a high 

mismatch rate if any. On variant calling experiments however, the user should consider the 

possible expected size range of the variants before setting the allowed mismatch and gap 

penalty parameters (e.g, if one aims to find a >5nt long deletion, the mismatch limitation 

should allow it). 

To ensure the accuracy of alignment and of the variant detection, during alignment step it is 

important to considered the multiple mapping. This means that a read could be mapped to 

multiple loci on the reference genome for sequence homology and repetitiveness. Different 

alignment tools flag these multiply mapped reads, and provide the user with the option to 

either randomly assign them to one loci. Discarding multiply mapped reads results in loss 

of a substantial portion of the data, with potential crucial effects on the following analysis. 

An important concept in NGS is depth of coverage. This is a measure of how many reads 

cover a given locus of the genome (Figure 1.14). After the sequencing process is complete, 

upper and lower depth thresholds should be applied on the sequencing data before variant 

calling is performed. Setting a lower coverage limit removes erroneous mismatches caused 

by sequencing errors and thus supported by very few reads [1000 Genomes Project 

Consortium et al, 2010; Li, et al, 2009]. Setting a lower limit has been shown to reduce 

sensitivity without increasing specificity in some tools [Goya et al, 2010] and therefore 

should be considered in the context of the utilized tool. Setting an upper limit removes 
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mismatches caused by copy number variations, PCR duplicates introduced by library 

preparation and reads mapping to paralogous sequences. 

 

Figure 1.14: Graphical representation of alignment. Visualization by Integrative Genomics Viewer 
(IGV) [Robinson et al, 2011; Thorvaldsdóttir et al, 2012].  

 

In secondary analysis, according to the specific application, the choice of appropriate 

reference sequence in genome re-sequencing is also critical. The University of California 

Santa Cruz (UCSC) Genome Browser [Kent et al, 2002] provide in FASTA format genome 

assembly released from Genome Sequence Consortium (the most recent release is 

GRCh37/hg19 assembly). Projects such as the 1KGP, the Cancer Genome Atlas (TCGA) 

(http://cancergenome.nih.gov/), the 10,000 genomes project (http://www.genome10k.org/), 

as well as the ongoing NGS of DNA and RNA populations from human tissues may serve 

to enrich and expand the concept of “reference.” 

 

1.5.2.2 Sequence Alignment/Map format 
 

The standard output data file is in SAM (Sequence Alignment/Map) format [Li et al, 2009], 

which contains several information regarding the the original sequence, or the matching 

sequence of the reference as well as information about the match (e.g. sample name, SNP 

calls, or mapping quality value). Most common alignment software generate the alignment 

output in SAM format, with a multitude of supporting downstream analysis tools. 
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The SAM format was designed to store nucleotide alignments in a generic way and with the 

aims to support several sequencing platforms, allowing short and long reads up to 128 Mb, 

saving SE as well as PE information, and including various types of alignments (Figure 

1.15).  

 

 

Figure 1.15: Alignment file in SAM format. 

 

The tab delimited text format can be divided into a header and an alignment section. 

Header lines can be identified by the ‘@’ character at the start of each line and contain, 

among others, information about the reference against the reads have been aligned, and 

read groups. In the alignment section, a tab delimited line describes a read alignment and 

contains required information about read name, read flags, reference sequence, alignment 

position, mapping quality, extended CIGAR, reference sequence of the paired read, 

position of the paired read, inferred insert size within the read pair, read sequence, and 

read quality. The extended CIGAR string characterizes the type of alignment operation 

including clipped, spliced, multi-part, and padded alignment. Allowed operations are 

match/mismatch (M), insertion (I), deletion (D), skipped base (N), soft clipping (S), hard 

clipping (H), and padding (P). Additional optional fields allow the documentation of less 

important or program specific data. Color space read information is also described in the 

optional fields. To accelerate parsing and ease data processing, the binary file format 

Binary Alignment/Map (BAM) equivalent to SAM was introduced [Li et al, 2009]. 

 
1.5.2.3 Variant calling 
 

The secondary analysis includes after alignment the variant calling procedure [DePristo et 

al, 2011]. Variant calling is the process of accurately determining the variations between a 

sample and the reference genome. These may be in the form of single nucleotide variants, 

smaller insertions or deletions (indels), or larger structural variants of categorizations such 

as transversions, trans-locations, and copy number variants (CNV). 
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The process is subject to biases for low coverage, sequencing errors, misalignment caused 

by either low complexity and repeat regions or adjacent variants and library preparation 

biases. Variant calling depends on an efficient combination between an accurate alignment 

and sophisticated inference of variance from it.  

After aligning deep sequencing reads against a reference genome, SNPs can be inferred 

from the results by simply denoting each base that is inconsistent between reference and 

read as a SNP. This straightforward inference of mismatches results in a massive amount 

of alleged SNPs, many of which suffer from some sort of inaccuracy such as: calling a 

mismatch in the wrong location, homozygousity and heterozygousity discrepancies and 

even calling a mismatch in the correct location but with the wrong base. Currently most 

SNP calling tools [Koboldt et al, 2009; Li et al, 2009; McKenna et al, 2010] apply different 

probabilistic based considerations and heuristics such as quality assessment and 

recalibration, SNP filtration, local realignment, coverage assessment, prior probability 

based on known SNPs, genotype based likelihood and even cancer genomics to elucidate 

SNPs from alignment results. 

Some features, such as local realignment, base quality and transition/transversion ratio 

have to be considered critically to improve the goodness of variant calling step. Local 

alignment considers reads that support the presence of an indel in the vicinity of either 

detected SNPs or known SNP sites retrieved from dbSNP, results in a significant reduction 

in false positive SNPs [McKenna et al,2010].  

The expected ratio between transitions (e.g purine-purine substitutions) and transversions 

(e.g purine-pyrimidine substitutions) (Ti/Tv ratio) is ~2.3 for whole-genome sequencing and 

around 3.3 for whole-exome sequencing (coding regions only) [1000 Genomes Project 

Consortium et al, 2010; DePristo et al, 2011].  

After producing a list of detected SNPs, it is highly recommended to compare it against 

dbSNP, to rescue the number of false positives. The portion of novel SNPs detected in a 

deep sequencing experiment should range between 1 and 10 percent [DePristo et al., 

2011].  

 

1.5.3 Tertiary analysis 
 

Variant calling in secondary analysis allows the detection of an extensive catalogues of 

human genetic variation in the samples. However, pinpointing the few phenotypically 
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causal variants among the many variants present in human genomes remains a major 

challenge, particularly for rare and complex traits wherein genetic information alone is often 

insufficient. Tertiary analysis includes all the approaches to estimate the deleteriousness of 

single nucleotide variants, which can be used to prioritize disease-causal variants in the 

context of a specific study [DePristo et al, 2011; paper VI].  

Specifically, experimental or computational approaches that provide assessments of 

variant function can be used to better estimate the prior probability that any given variant is 

phenotypically important.  

1.5.3.1 Annotation 
 

Calling variants using deep sequencing data often results in a multitude of detected 

variations, even after strict and effective quality filtration as denoted earlier, deep 

sequencing data reveals thousands to millions of different variations. These ones can result 

in biological effects through introduction of different amino acids into protein sequences, 

early termination of coding sequences and alteration of regulatory elements and splice 

sites. The following process after variant calling is annotating the detected variants and 

elucidating their effect and biological significance, separating clinically, scientifically and 

medically relevant variations from neutral, non functional ones. In a large list spanning this 

many variants, manual annotation of each variant effect is neither feasible or accurate. For 

annotation, public databases can flexibly use, such as RefSeq, UCSC, ENSEMBL, 

GENCODE or many other gene definition systems. All these information can be used to 

determine the position of the mismatch in the gene and whether it is in a coding/non-

coding, exon, intron, UTR or intron/exon junction region (intronic regions contiguous to 

exon starts and exon ends that are important to evaluate splice-site mutations). 

To give biological context to NGS data could be useful to query public or commercial 

databases containing biological/functional annotation. For example OMIM (Online 

Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, 

Johns Hopkins University (Baltimore, MD), {February, 2012}. URL: http://omim.org/), which 

catalogues genetic disorders and traits, Human Gene Mutation Database (HGMD) 

[Stenson et al, 2009], which reports validate gene mutations, and COSMIC, a large 

repository of somatic mutations in cancer [Forbes et al, 2009].  

Moreover, large projects such as 1KGP, Exome Sequencing Project (ESP) (Exome Variant 

Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (URL: 
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http://evs.gs.washington.edu/EVS/) [February 2012]) allow for studies to be able to 

determine the relative frequencies of variants in their samples compared to common 

populations (MAF, minor allele frequency). 

A MAF of 1% is used as cutoff to define a variants as rare [Frazer et al, 2009; paper I]. The 

rarity of a variant or the absence in a healthy control population is classically one of the 

criteria for evaluating the pathogenicity both in research and in clinical settings. Although 

there is need of caution in considering this parameter as prediction of deleteriousness. In 

fact, MAF ≥1% implies that the variant is sufficiently common in the population to be not 

tremendously deleterious, the opposite is not generally true. 

 

1.5.3.2 Prioritization and interpretation 
 

The development of methods to assess the effect of variants has been a major subject of 

research in the field of bioinformatics during the past decade. Currently, there are several 

tools available which can predict the disease-causing potential of mismatches for protein 

structure and function. These programs can predict the effects on the basis of different 

features, including evolutionary conservation, changes in the physico-chemical 

characteristics of the aminoacids, the sequence environment of the affected amino acid 

alteration in structural properties of proteins.  

This “tolerance” predictors, which evaluate in silico the effect of mutations on the 

phenotype at protein level include Polymorphism Phenotyping 2 (PolyPhen-2) [Adzhubei et 

al, 2010], Align-GVGD [Tavtigian et al, 2006], SIFT [Kumar et al, 2009] and MutationTaster 

[Schwarz et al, 2010]. 

The Grantham Score, which categorizes the differences of physicochemical properties for 

codon replacements, , including polarity and molecular volume, can be also retrieved from 

the original Grantham Score Matrix [Grantham, 1974].  

Moreover, the evolutionary nucleotide conservation score in vertebrates (phyloP) or in 

different species is a reliable method for predicting possible pathogenicity of a missense 

variant [Flanagan et al., 2010; Siepel et al, 2005].  
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Chapter 2 

 

Genomic analysis in complex disease 

 

The advent of NGS technologies has revolutionized the field of genomics, enabling fast and 

cost-effective generation of genome-scale sequence data with exquisite resolution and 

accuracy. To date, NGS technologies have been widely used for many applications, such 

as rare variant discovery by whole genome resequencing or targeted requencing, 

transcriptome profiling of cells, tissues and organisms, and identification of epigenetic 

markers for disease diagnosis. Studies using massive parallel sequencing have yielded 

surprising and important discoveries regarding the genetic bases of Mendelian and 

complex diseases, particularly cancer. The identification of molecular mechanism 

underlying tumorigenesis enables molecular diagnosis and carrier testing in the patient and 

his or her family. This is of great importance for patient management and family counseling, 

and serves as a starting point for therapeutic interventions. Furthermore, the identification 

of Mendelian disease genes contributes to our understanding of gene functions and 

biological pathways underlying health and disease in general [paper II].  

In the following paragraphs, some examples of application of NGS technologies in clinical 

and diagnostic context will be presented.  

 

2.1 Ras/MAPK pathway 
 

The Ras/MAPK (mitogen-activated protein kinases) pathway is one of the most important 

signaling network inmplicated in growth-factor mediated cell proliferation, differentiation and 

death [Molina et al, 2006]. It is a chain of proteins in the cell that communicates a signal 

from a receptor on the surface of the cell to the DNA in the nucleus of the cell. The signal 

starts when a signaling molecule binds to the receptor on the cell surface and ends when 

the DNA in the nucleus expresses a protein and produces some change in the cell, such as 

cell division. The pathway includes many proteins, including MAPK, originally called ERK 
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(extracellular signal-regulated kinases), which communicate by adding phosphate groups 

to a neighboring protein, which acts as an "on" or "off" switch (Figure 2.1). 

 

 

Figure 2.1: Ras//MAPK pathway. Source: http://journals.cambridge.org 

 

The cascade of activation of this pathway starts when receptor-linked tyrosine kinases such 

as the epidermal growth factor receptor (EGFR) are activated by extracellular ligands. 

Binding of epidermal growth factor (EGF) to the EGFR activates the tyrosine kinase activity 

of the cytoplasmic domain of the receptor. The EGFR becomes phosphorylated on tyrosine 

residues. Docking proteins such as GRB2 contain an SH2 domain that binds to the 

phosphotyrosine residues of the activated receptor. GRB2 binds to the guanine nucleotide 

exchange factor SOS (son of sevenless) to the plasma membrane by way of the two SH3 

domains of GRB2. When the GRB2-SOS complex docks to phosphorylated EGFR, SOS 

becomes activated. Activated SOS displaces GDP from a member of the Ras subfamily 

(i.e. HRas, KRas), subsequently allowing the binding between Ras and GTP [Molina et al, 

2006]. Ras are membrane-associated guanine nucleotide-binding proteins which affect 

many cellular functions, including cell proliferation, apoptosis, migration, fate specification, 

and differentiation. In the GTP-bound form, Ras interacts specifically with so-called effector 

proteins, thereby initiating cascades of protein-protein interactions that may finally lead to 
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cell proliferation and activates a number of signaling pathways, including the Raf/MEK/ERK 

pathway. The activity of Ras is limited by the hydrolysis of GTP back to GDP by GTPase 

activating proteins (GAP) in an enzymatic process. Reactivation of Ras requires the 

removal of GDP by SOS. Activated Ras activates the protein kinase activity of RAF kinase. 

RAF kinase phosphorylates and activates MEK (MEK1 and MEK2). MEK phosphorylates 

and activates a mitogen-activated protein kinase (MAPK).Raf, and MAPK are both 

serine/threonine-selective protein kinases. MEK (also known as MAPKK) is a 

tyrosine/threonine kinase. In the technical sense, Raf, MEK, and MAPK are all mitogen-

activated kinases.  

The Ras/MAPK pathway is probably the best characterized signal transduction pathway in 

cell biology. The function of this pathway is to transduce signals from the extracellular 

milieu to the cell nucleus where specific genes are activated for cell growth, division and 

differentiation. MAPK regulates the activities of several transcription factors. MAPK can 

phosphorylate C-myc. MAPK phosphorylates and activates MNK, which, in turn, 

phosphorylates CREB. MAPK also regulates the transcription of the C-Fos gene. By 

altering the levels and activities of transcription factors, MAPK leads to altered transcription 

of genes that are important for the cell cycle. The Ras/MAPK pathway is also involved in 

cell cycle regulation, wound healing and tissue repair, integrin signaling and cell migration. 

Finally, the Ras/MAPK pathway is able to stimulate angiogenesis through changes in 

expression of genes directly involved in the formation of new blood vessels. Thus, signaling 

through the Ras/Raf/MAPK regulates a variety of cellular functions that are important for 

tumorigenesis. Dysregulation of this pathway is a common event in cancer as Ras proteins 

are the most frequently mutated oncogenes in human cancer [Malumbres et al, 2003]. 

Mutations in the Kras oncogene have been localized in codons 12, 13, 59 and 61 with 

those at codons 12 and 61 occurring most frequently. Kras mutations are present in 15-

50% of lung cancers and in 72-90% of pancreatic cancers  

Historically, the rat sarcoma (RAS) virus homologue was the first oncogene to be described 

in human cancer (Der et al 1982). In cancer, the most commonly mutated members of the 

RAS superfamily include HRAS, KRAS and NRAS, highly conserved proteins . The RAS 

proteins are small (21 kilodalton) G-proteins that are active with bound GTP and inactive 

with bound GDP. Although the GTP can self-hydrolyze, there is a class of enzymes termed 

GAPs (GTPase activating proteins) that facilitate this hydrolysis and terminate RAS activity. 
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The name 'Ras' is an abbreviation of 'Rat sarcoma', reflecting the way the first members of 

the protein family were discovered. When Ras is 'switched on' by incoming signals, it 

subsequently switches on other proteins, which ultimately turn on genes involved incell 

growth, differentiation and survival. As a result, mutations in ras genes can lead to the 

production of permanently activated Ras proteins. This can cause unintended and 

overactive signalling inside the cell, even in the absence of incoming signals. Because 

these signals result in cell growth and division, overactive Ras signaling can ultimately lead 

to cancer.Ras is the most common oncogene in human cancer - mutations that 

permanently activate Ras are found in 20-25% of all human tumors and up to 90% in 

certain types of cancer (e.g. pancreatic cancer).[2] For this reason, Ras inhibitors are being 

studied as a treatment for cancer, and other diseases with Ras overexpression 

[Fernández-Medarde et al, 2011]. 

All Ras protein family members belong to a class of protein called small GTPase, and are 

involved in transmitting signals within cells (cellular signal transduction). Ras is the 

prototypical member of the Ras superfamily of proteins, which are all related in 3D 

structure and regulate diverse cell behaviours  (Figure 2.2) [Malumbres et al, 2003; 

Karnoub et al, 2008]. 

 

Figure 2.2: Multiple alignment between human RAS proteins. The amino acid sequences are highly 

conserved. The alignment was performed using Clustal algorithm [Larkin et al, 2007] 
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Figure 2.3: Key events in the field of Ras research [Malumbres et al, 2003]. 

. 

Oncogenic lesions introduce changes in the primary sequence of RAS so that the protein is 

constitutively active. RAS pathway still remains one of the most investigated pathways in 

human cancer (Solit et al 2006), including melanoma, and our current understanding 

suggests that several possible mutations along this cascade lead to tumor-promoting 

physiology. 

Although RAS proteins are frequently mutated in cancer, there is preferential targeting of 

specific family members in different tumor types.  

 

2.1.1 Colorectal cancer 
 

Colorectal cancer (CRC) is the second most common cancer in the world, accounting for 

approximately one million new cases each year [Markowitz et al, 2009] (Figure 2.4). The 

overall mortality is approximately 50%. The surgical stage at diagnosis is the most 

important factor for predicting patient outcome, with five year survival rates of more than 

90% for stage I disease and less than 10% for stage IV disease.  
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Figura 2.4: Colorectal cancer. A) biopsy B) histological section 

The surgical stage represents a classification system based on the extent and depth of 

tumor growth. The system most commonly used in describing CRC is the Tumor, Nodes, 

Metastasis (TNM) system of the American Joint Committee on Cancer (AJCC) provided in 

2002.  

In Stage I CRC shows invasive grown into the anatomical layers of the colon, but the tumor 

is not spread outside the colon wall or into regional lymph nodes. During Stage II there is 

tumor penetration through the bowel wall involving the serosa; however, there is no 

involvement of regional lymph nodes or distant metastases. In Stage III CRC have spread 

to nearby lymph nodes but not yet metastasized to distant sites in the body. Finally, in 

Stage IV the tumor has spread to distant organs such as the liver, lungs, or other sites.  

CRC is considered to develop through a multi-step process, originating from normal colon 

epithelium that develops into precursor lesions termed adenomas. Adenomas can 

subsequently further progress into invasive CRC with metastatic potential. Spread of CRC 

occurs by direct growth through the bowel wall and through invasion of lymphatic and 

venous channels. The most common sites for metastases are regional lymph nodes and 

the number of lymph node metastases influences prognosis. The liver is the most common 

distant site for CRC metastases. The vast majority of CRC are adenocarcinomas, with less 

than 10% of the cancers being distinguished by an abundant secretion of mucin. The 

tumors are classified according to the degree of morphological differentiation into well, 

moderately and poorly differentiated. About 80% are well or moderately differentiated with 

a growth pattern consisting of tumor cells that form irregular glandular structures present at 

different layers of the bowel wall. Poorly differentiated CRC show no, or only hinted, 

glandular formation. Overall poor differentiation with a diffuse infiltrative growth pattern is 
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associated with poor prognosis, although stringent classification systems based on 

morphological features are lacking 

 

2.1.1.1 CRC treatment 

 
Treatment decisions are thus based on the surgical stage and morphological 

characteristics.  

At stage 0, in which the cancer has not grown beyond the inner lining of the rectum, the 

strategy consist in removing or destroying the cancer by polypectomy, local excision, or 

transanal resection. For stage I, during which cancer has grown through the first layer of 

the rectum into deeper layers but has not spread outside the wall of the rectum itself, 

surgery is usually the main treatment: a low anterior resection, colo-anal anastomosis, or 

an abdominoperineal resection may be done, depending on exactly where the cancer is 

found within the rectum  

In some cases, adjuvant chemoradiation (treatment with radiation and chemo together) is 

advised for patients having such surgery. 5-Fluorouracil (5-FU) is the chemo drug most 

often used. 

Stage II in which the cancer have grown through the wall of the rectum and may extend 

into nearby tissues is treated by low anterior resection, colo-anal anastomosis, or 

abdominoperineal resection (depending on where the cancer is in the rectum), along with 

both chemotherapy and radiation therapy. Most doctors now favor giving the radiation 

therapy along with the chemo drug 5-FU before surgery (neoadjuvant treatment), and then 

giving adjuvant chemo after surgery, usually for a total of 6 months of treatment (including 

the time getting chemo and radiation together). The chemo after surgery may be the 

FOLFOX regimen (oxaliplatin, 5-FU, and leucovorin), 5-FU and leucovorin, CapeOx 

(capecitabine plus oxaliplatin) or capecitabine alone, based on what's best suited to your 

health needs. Treatment for stage III cancers that have spread to nearby lymph nodes 

includes radiation therapy, given along with 5-FU chemo before surgery (called 

chemoradiation). This may shrink the cancer, often making surgery more effective for larger 

tumors. It also lowers the chance that the cancer will come back in the pelvis. Giving 

radiation before surgery also tends to lead to fewer problems than giving it after surgery. 

The rectal tumor and nearby lymph nodes are then removed, usually by low anterior 

resection, colo-anal anastomosis, or abdominoperineal resection, depending on where the 
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cancer is in the rectum. After surgery, chemo is given, usually for about 6 months. The 

most common regimens include FOLFOX, 5-FU and leucovorin, or capecitabine alone. 

Finally, in stage IV cancer has spread to distant organs and tissues such as the liver or 

lungs. and the Treatment options disease depend to the extension of metastasis. 

Treatment options include surgery to remove the rectal lesion and distant tumors, followed 

by chemo (and radiation therapy in some cases) with combination of chemo and radiation 

therapy before and after the surgery.  

 

2.1.1.2 anti-EGFR monoclonal antibodies 
 

Recently new targeted drugs have been implemented into the treatment of patients with 

advanced colorectal cancer. Epidermal growth factor receptor is commonly expressed in 

colorectal tumors and monoclonal antibodies (mAbs) inhibiting EGFR demonstrate clinical 

efficacy in patients with mCRC. This anti-EGFR monoclonal antibodies, cetuximab and 

panitumumab, were designed as effective inhibitors of the EGFR (Figure 2.5). 

 

Figure 2.5: Mechanism of anti-EGFR monoclonal antibodies. A) EGFR binding to ligand activates 

the Ras/MAPK cascade. B) monoclonal antibodies anti-EGFR inhibits the EGFR activity. 
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Cetuximab (Erbitux®, Merck KgaA, Darmstadt, Germany) is a chimeric mouse/human 

antibody targeted against the extracellular domain of the EGFR. Binding of cetuximab to 

the receptor prevents ligand binding, induces receptor internalization and causes a direct 

inhibition of the receptor tyrosine kinase activity.This in turn blocks downstream signal 

transduction via the PI3K/Akt and Ras/MAPK pathways inducing pro-apoptotic 

mechanisms and inhibiting cellular proliferation, angiogenesis and metastasis. Cetuximab 

is indicated for the treatment of patients with epidermal growth factor receptor (EGFR)-

expressing, Kras wild-type metastatic colorectal cancer, in combination with chemotherapy, 

and as a single agent in patients who have failed oxaliplatin- and irinotecan-based therapy 

and who are intolerant to irinotecan. As an IgG1 antibody cetuximab may also induce 

antibody-dependent cell-mediated cytotoxicity (ADCC). The side effects include acne-like 

rash, and dermathological reactions (urticaria, pruritis), hypotension, bronchospasm, 

dyspnea, wheezing, angioedema, dizziness, anaphylaxis, and cardiac arrest. 

Photosensitivity and hypomagnesemia have been also observed in some patients. This 

drug is given by intravenous therapy and costs up to $30,000 for eight weeks of treatment 

per patient.  

Panitumumab (Vectibix®, Amgen Thousand Oaks, CA, USA), by contrast, is a fully human 

antibody which is also directed against the EGFR but being an IgG2 MoAb lacks ADCC 

activity.  

 

2.1.1.3 Kras mutation in colorectal cancer 

 
Oncogenic mutations of the Kras genes are observed in about 40% (20–50%) of sporadic 

colorectal cancers [Lievre et al, 2006; Heinemann et al, 2009]. These are point mutations 

and are generally observed as somatic mutations. Up to 90% of activating mutations of the 

Ras gene are detected in codons 12 and 13, but less frequently also in codons 61 and 63. 

The most frequent types of KRAS mutations in colorectal cancers are G>A transitions and 

G>T transversions. The codons 12 and 13 code for two adjacent glycine residues located 

in the proximity of the catalytic site of RAS. In particular codon 12 mutations of the Kras 

gene were associated with a mucinous phenotype of colorectal cancer, while codon 13 

mutations were rather non-mucinous, but were characterized as more aggressive tumors 

with a greater metastatic potential. 
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Different KRAS mutations result in an exchange of different amino acids at these catalytic 

sites, and therefore, may be responsible for the different levels of intrinsic GTPase activity 

reduction. As a consequence, variable RAS mutations may imply variable effects on the 

biology of disease.  

For this reason, several studies support the importance of mutational activation of KRAS in 

the progression of CRC [Amado et al, 2008; Souliers et al, 2010].  

For the detection of KRAS mutations several methods are known. The hotspots and thus 

the most frequent mutations g.34G>C (p.Gly12Arg), g.35G>C (p.Gly12Cys), g.34G>A 

(p.Gly12Ser), g.35G>A (p.Gly12Asp), g.35G>C (p.Gly12Ala), g.35G>T (p.Gly12Val), 

g.38G>A (p.Gly13 Asp) and rarely g.183G>T (p.Gln13His). Moreover, as the detection of 

KRAS mutations has become a routine diagnostic method, the protocols in use are 

selected on the basis of velocity, robustness and easiness. The main problems in detection 

of KRAS mutations involve the low quality of the DNA that often causes error in specificity 

and sensitivity of the analysis.  

 

2.1.1.4 Effect of Kras mutations on response to anti-EGFR therapy 
 

The reports on the prognostic relevance of KRAS mutations are inconsistent. While some 

studies have indicated a negative impact of KRAS mutations on survival (ref) others did not 

[Lievre et al, 2006; Souliers et al, 2010]. 

The KRAS mutation status has been identified as a strong predictor of response to anti-

EGFR antibodies. In fact, mutations of the KRAS gene may activate downstream signal 

transduction and confer resistance to upstream inhibition of the EGFR by monoclonal 

antibodies. For this reason, EGFR directed therapy is not only not effective in KRAS mutant 

mCRC patients. Moreover, it may also induce unnecessary toxicity and has been 

associated with an inferior outcome in some clinical trials. In fact, determination of the 

KRAS mutation status is required in all mCRC patients who may receive anti-EGFR 

directed antibody therapy. Studies using cetuximab plus chemotherapy for first-line 

treatment of mCRC could detect an improvement of treatment efficacy only in KRAS wild-

type patients. By contrast, KRAS mutant patients either had no benefit from the addition of 

cetuximab or even showed a worse outcome than their comparators. At present, it is not 

clear if additional toxicity impairs treatment intensity in KRAS mutant patients or if negative 

interactions between cetuximab and chemotherapy take place.  
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2.1.2 RASopathies 
 

The Ras/MAPK pathway is critical to normal development and essential in the regulation of 

the cell cycle, differentiation, growth and cell senescence (Figure 2.6). A class of 

developmental disorders, the so called RASopathies, is caused by germline mutations in 

genes that encode protein components of the Ras/MAPK pathway resulting in increased 

signal transduction down the Ras/MAPK pathway [Tidyman et al, 2008]. The term 

RASopathies includes different diseases, such as capillary malformation-AV malformation 

syndrome, autoimmune lymphoproliferative syndrome, Costello syndrome (CS), Leopard 

syndrome (LS), Noonan syndrome, (NS), neurofibromatosis type 1 etc.. Each syndrome 

exhibits unique phenotypic features, however, since they all cause dysregulation of the 

Ras/MAPK pathway, there are numerous overlapping phenotypic characteristics between 

the syndromes, including craniofacial dysmorphisms, cardiac malformations and 

cutaneous, musculoskeletal and ocular abnormalities, varying degrees of neurocognitive 

impairment and an increased risk of developing cancer.  

 

 

Figure 2.6: Ras/MAKP signalling pathway and related genetic syndromes. RASopathies are caused 

by mutations in the genes which control the production of certain signal proteins.Source: 
http://www.socialstyrelsen.se/ 
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The severity of symptoms will depend on which part of the signalling pathway is impaired. 

Several types of cardiac anomalies are associated with RASopathies, for example a 

defective pulmonary valve that obstructs the blood flow from the lungs (pulmonary valve 

stenosis), or atrial septal defect resulting in abnormal opening in the wall separating the left 

and right upper heart chambers of the heart, or a thickening of the muscular wall of the 

right ventricle and of the diving muscle between the right and left ventricles (hypertrophic 

cardiomyopathy, HCM) which may be progressive. The syndromes are also associated 

with characteristic facial features. The head is relatively large in relation to the body, and 

the forehead is wide, narrowing at the temples. The jaws are often small and the palate 

may be high and narrow. Down-slanting eyes with increased space between them 

(hypertelorism) and drooping eyelids (ptosis) are common. Impaired vision, i.e myopia, or 

eyes problem (strabismus, nystagmus) also occur. The ears are low set and some of these 

children have impaired hearing. 

Some patients may have skin disorders, eczema or ichthyosis or hyperkeratosis (abnormal 

dry skin). Some children have lymphoedema, a tissue swelling caused by a compromised 

lymphatic system and accumulation of lymphatic fluid in the pleural cavity. Hypotonus can 

cause delayed motor development. Many have intellectual disabilities with varying degrees 

of severityThey may also have difficulties organising new information, adapting to new 

situations, and learning new skills. Language development is delayed in approximately half 

of these children. Some children have epilepsy and hydrocephalus may also occur.  

2.1.2.1 Noonan syndrome 

 
Noonan syndrome is an autosomal dominant disorder that affects approximately 1/1000 to 

1/2500 newborns [van der Burgt, 2007, Tidyman, 2008]. Diagnosis of Noonan syndrome is 

primarily dependent on clinical features, including short stature, typical face 

dysmorphology, and congenital heart defects. Diagnosis can be difficult due to the wide 

spectrum of clinical features, not all of which need to be present for diagnosis [Razzaque et 

al, 2007]. 

Phenotypic features of Noonan syndrome include hypertelorism, ptosis, and low-set, 

posteriorly rotated ears with a thickened helix. Cardiac abnormalities most commonly 

associated with Noonan syndrome include pulmonary stenosis and hypertrophic 

cardiomyopathy [Schubbert et al, 2006]. Other associated features include the presence of 
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a webbed neck, chest deformity, mild intellectual deficit, cryptorchidism, poor feeding in 

infancy, bleeding tendencies, and lymphatic issues (Figure 2.6). 

Short stature is one of the main characteristics of the condition, affecting more than 80% of 

children diagnosed.6 There could be also a variable degree neurocognitive delay [van der 

Burgt, 2007; Roberts et al, 2007].  

 

 

 

Figure 2.7: Clinical features in Noonan syndrome. (A) nuchal cystic hygroma in echography; (B) 
facial dysmorphisms; (C) pectus deformities; (D) webbed neck; (E) schematic representation of 
major cardiac defects: 1, pulmonic stenosis; 2, hypertrophic cardiomyopathy; 3, atrial septal defects; 
4, ventricular septal defects; 5, patent ductus arteriosus. Source: http://atlasgeneticsoncology.org. 

 

Individuals with NS have an increased risk of cancer. Children with Noonan syndrome are 

predisposed to malignancies, juvenile myelomonocytic leukemia (JMML) most commonly. 
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JMML, formerly termed juvenile chronic myeloid leukemia or chronic myelomonocytic 

leukemia, is a myeloproliferative/myelodysplastic disorder of childhood characterized by 

excessive proliferation of immature and mature myelomonocytic cells that originate from a 

pluripotent stem cell. In childhood, JMML accounts for approximately 30% of cases of 

myelodysplastic and myeloproliferative syndromes and 2% of leukemias. It typically 

presents in infancy and early childhood, and is often lethal. Recent studies have provided 

strong evidence that hypersensitivity to granulocyte-macrophage colony-stimulating factor 

(GM-CSF), due to a selective inability to down-regulate the Ras/MAPK cascade, plays a 

central role in the clonal cell growth characteristic of JMML. In approximately 15-30% of 

JMML cases, the pathological activation of the Ras/MAPK cascade results from oncogenic 

NRAS or KRAS2 mutations that specifically affect GTP hydrolysis, leading to the 

accumulation of RAS in the GTP-bound active conformation .  

It is known that four genes, PTPN11, KRAS, SOS1 and RAF1 cause NS with all genes 

encoding various components of the Ras/MAPK pathway. The most common gene 

associated with NS is PTPN11 which accounts for approximately half of all cases. SHP2, 

the protein product of PTPN11, is a non-receptor protein tyrosine phosphatase composed 

of N-terminal and C-terminal SH2 domains and a catalytic protein tyrosine phosphatase 

(PTP) domain. Shp2 plays an important role in mediating multiple downstream biological 

responses, such as proliferation and/or survival, adhesion, and migration. 

The catalytic function of the protein is auto-inhibited through a blocking interaction between 

the N-SH2 and PTP domains. The majority of NS-causing missense mutations in PTPN11 

cluster in residues involved with the interaction between the N-SH2 and PTP domains. 

Mutations in this region interfere with the stability of the catalytically inactive form of SHP2 

resulting in impairment of the protein’s ability to switch from the active to the inactive 

protein conformation causing increased signaling down the Ras/MAPK pathway. SOS1 

missense mutations are the second most common cause of NS and account for 

approximately 13% of cases. SOS1 encodes the Ras-GEF protein, SOS1, which is 

responsible for stimulating the conversion of Ras from the inactive GDP-bound form to the 

active GTP-bound form. The majority of SOS1 missense mutations are located in codons 

encoding residues that are responsible for stabilizing the protein in an inhibited 

conformation [Razzaque et al, 2007]. 

These mutations disrupt the auto-inhibition of SOS1 Ras-GEF activity resulting in a gain-of-

function of SOS1 and a subsequent increase in the active form of Ras and increased 

Ras/MAPK pathway signaling. 
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KRAS mutations are associated with a small percentage (<2%) of individuals with NS and 

result in increasing signaling down the Ras/MAPK pathway through two distinct 

mechanisms: either by mutations that reduce the intrinsic and GAP stimulated GTPase 

activity or by mutations that interfere with the binding of KRAS and guanine nucleotides. 

Both result in a net increase in the active GTP-bound form of KRAS. Mutations in Raf1 also 

causes NS. Raf1 encodes the protein RAF1, a serine/ threonine kinase that is one of the 

direct downstream effectors of Ras.  

 

2.1.2.2 Leopard syndrome 
 

Leopard syndrome is a rare autosomal dominant disorder characterized by Lentigines, 

Electrocardiogram abnormalities, Ocular hypertelorism, Pulmonic valvular stenosis, 

Abnormalities of genitalia, Retardation of growth, and Deafness (Figure 2.8).  

The disease is a complex of features, mostly involving the skin, skeletal and cardiovascular 

systems, which may or may not be present in all patients.  

Cafè-au-lait spots occurr in a high number (10,000+) over a large portion of the skin, at 

times higher than 80% coverage. These can even appear inside the mouth, or on the 

surface of the eye. These have irregular borders and range in size from 1 mm in diameter 

to several centimetres in diameter. Also, some areas of vitiligo-like hypopigmentation may 

be observed. Electrocardiographic conduction abnormalities: Ocular defects are frequent, 

like hypertelorism. Facial abnormalities are the second highest occurring symptom after the 

lentigines and include broad nasal root, prognathism or low-set, possibly rotated, ears. 

Cardiac abnormalities may be present, including aortic stenosis, or mitral valve prolapsed 

or hypertrophic cardiomyopathy. 

Abnormal genitalia: (usually cryptorchidism (retention of testicles in body) or monorchism 

(single testicle). In female patients, this presents as missing or single ovaries. Most 

newborns with this syndrome are of normal birth weight and length, but will often slow 

within the first year. 

The presence of all of these hallmarks is not needed for a diagnosis. A clinical diagnosis is 

considered made when, with lentigines present there are 2 other symptoms observed, such 

as ECG abnormalities and ocular hypertelorism, or without lentigines, 3 of the above 

conditions are present, with a first-degree relative (i.e. parent, child, sibling) with a clinical 

diagnosis. 
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Mild mental retardation is observed in about 30% of those affected with the syndrome 

Nystagmus (involuntary eye movements), seizures, or hyposmia (reduced ability to smell) 

has been documented in a few patients 

In 2006, a patient affected by Leopard syndrome was reported with acute myelogenous 

leukemia. The nature of how the mutation causes each of the condition's symptoms is not 

well known; however, research is ongoing. As Noonan syndrome, LS is caused by germ 

line missense mutations in PTPN11, encoding the protein-tyrosine phosphatase Shp2. The 

most common LS associated PTPN11 mutations affect amino acids in the catalytic PTP 

domain which result in reduced SHP2 catalytic activity. In contrast, PTPN11 mutations 

associated with NS all produce SHP2 gain-of-function. It has recently been proposed that 

the residual catalytic activity in the LS mutant SHP2 protein is sufficient to produce a gain-

of function-like phenotype due to dysregulation of the protein causing continuous MAPK 

pathway activity during development . LS is associated with increased risk of malignancy, 

in particular to acute myelogenous leukemia and neuroblastoma. 

 

Figure 2.8: Phenotypic features in Leopard syndrome. 

In itself, LEOPARD syndrome is not a life threatening diagnosis, most people diagnosed 

with the condition live normal lives. Obstructive cardiomyopathy and other pathologic 

findings involving the cardiovascular system may be a cause of death in those whose 

cardiac deformities are profound. Mild mental retardation is observed in about 30% of those 

affected with the syndrome 
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2.1.2.3 Costello syndrome 

 
Costello syndrome is a rare developmental disorder with multiple anomalies, including 

characteristic dysmorphic craniofacial features (Figure 2.9), failure to thrive, cardiac, 

musculoskeletal and ectodermal abnormalities and neurocognitive delay (for review see 

[29]). Individuals with CS are at increased risk of developing neoplasms, both benign and 

malignant. Heterozygous germline mutations in H-ras cause CS. The distribution frequency 

of mutations reveals that more than 80% of individuals have a Gly12Ser substitution, 

followed by the second most common, Gly12Ala. These substitutions disrupt guanine 

nucleotide binding and cause a reduction in intrinsic and GAP induced GTPase activity 

resulting in Ras remaining in the active state. In addition, less frequently observed 

mutations, such as K117R and A146T may result in an atypical phenotype [33,34]. 

Biochemical investigation of the novel HRAS mutant protein, K117R, has demonstrated 

normal intrinsic GTP hydrolysis and responsiveness to GTPase-activating proteins; 

however, the nucleotide dissociation rate is increased. The increase in the guanine 

nucleotide exchange rate results in a net increase in the active GTP bound form of Ras due 

to the higher concentration of GTP in the cell. It is interesting that amino acid positions 12 

and 13, the two most common positions mutated in CS, are also the most frequently 

mutated positions in oncogenic Ras in approximately 20% of all tumors.  

 

Figure 2.9: Dysmorphic craniofacial features in Costello syndrome. 
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There is no cure for cardiofaciocutaneous, but a great deal can be done to relieve 

symptoms and prevent complications. In particular, being able to diagnose precocemente 

congenital heart defects may allow to treat, depending on the type and the severity, the 

heart defect. Severe narrowing of the pulmonary artery owing to a defective pulmonary 

valve (pulmonary valve stenosis) may require immediate intervention, either using balloon 

dilation or surgery. When balloon dilation is used, a plastic catheter with a deflated 

miniature balloon is inserted in a major blood vessel in the groin and is guided through the 

bloodstream into the narrowed pulmonary valve. When the balloon is inflated, the narrowed 

pulmonary valve widens. In less acute cases, surgery or other treatment may be carried out 

some time during the first few years of the child’s life. When the muscular wall of the 

ventricle is thickened (hypertrophic cardiomyopathy), medical treatment may improve 

cardiac function, although surgical intervention is sometimes required.  
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Chapter 3 

 

Aims of the present study 
 

The aim of this thesis has been to develop and evaluate pipeline for the analysis of next-

generation sequencing data. This for the detection of SNPs and indel within DNA 

sequences obtained by targeted re-sequencing of a genome’s entire set of protein coding 

regions. 

In this manuscript, I have provided an insight into sequencing technologies, allowing the 

comprehension of their fundamental principles and highlighting their impact on biomedical 

field, from genomic research to cancer medicine.  

I have presented several examples reporting how massive parallel sequencing could be 

translated into clinical diagnostics for Mendelian and complex diseases, particularly cancer, 

enabling fast and cost-effective generation of genome-scale sequence data with exquisite 

resolution and accuracy.  

I have been investigate by NGS the role of Ras/MAPK pathway mutations in colorectal 

cancer and in genetic syndromes, to underline the role of this cascade for morphological 

changes,gene induction and growth control.  

Furthermore, I have discussed about the deep sequencing data analysis and computational 

and bioinformatic challenges. This overview about NGS technologies has the objective to 

underlined the progress and advantages in diagnostics and therapeutic management, 

considering at the same time the limitations. These are represented from the difficulty to 

find genotype-phenotype correlation and the computational demand for managing the data 

or interpretation. 
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Chapter 4 

 

Materials and Methods  
 

4.1 Patients 
 

4.1.1 Colorectal cancer patients  
 

Three patients (mean age: 67years) underwent surgery due to aggressive colorectal 

carcinoma upon informed consent. A total of eighty six specimens of colorectal carcinoma 

tissues, containing at least 70% of tumor cells, were obtained from Department of 

Pathology of Hospital Papa Giovanni XXIII (Bergamo, Italy) as FFPE blocks. Tumors were 

staged and graded according to criteria of system classification. DNA sample from blood 

was also collected for comparison. Patient’s clinical information about age at diagnosis, 

gender and family history of colorectal cancer (at baseline) was retrieved. Information 

about tumour sub-localization, tumor stage and differentiation of the tumour was also 

retrieved.  

 

4.1.2 RASopathies patients 
 

The Cardiovascular Department of Hospital Papa Giovanni XXIII is the leading Italian 

centre for the surgical treatment of hypertrophic cardiomyopathy (HCM) in severely 

symptomatic patients. More than 200 patients have been successfully treated by miectomy 

and the number of patients is increasing each year. After surgery, patients and family are 

followed in a dedicated outpatient clinic. The Molecular Genetics Laboratory is dedicated to 

cardiac disease and more than 300 HCM patients/families have been investigated.  

The diagnosis of HCM was based on criteria recommended by the criteria proposed by 

McKenna et al. [McKenna et al, 1997]. 
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A clinical diagnosis of HCM was confirmed when 1) maximal wall thickness is two standard 

deviations above the mean for age and body surface area; 2) when septal thickness is > 

15mm or posterior wall thickness is > 13 mm or 3) electrocardiographic abnormalities and a 

septal thickness > 14 mm or posterior thickness > 12 mm are present.  

All the patients’ relatives signed a written informed consent. Available family members were 

enrolled and evaluated by recording medical history and performing transthoracic 

echocardiography.  

 

4.1.2.1  Patient 1 
 

Patient 1 was a newborn male, referred at 10 months to our hospital because of respiratory 

distress. The suspected diagnosis was obstructive hypertrophic cardiomyopathy. He 

presented an hypertrophy of left ventricle mainly at level of interventricular septum (15mm). 

Familial anamnesis was negative for cardiovascular diseases. 

 

4.1.2.2  Patient 2 
 

A 7 months male was the first child of healthy, nonconsanguineous parents. Family history 

was unremarkable. Weight, length and occipital-frontal circumference were within normal 

limits and no facial dysmorphisms were observed. A few café-au-lait spots were noted. The 

echocardiogram was consistent with massive left ventricular hypertrophy. No sensorineural 

hearing loss, ophthalmological alterations or delayed psychomotor development were 

observed.  

 

4.1.2.3  Patient 3 
 

Patient 3 was a 57 years old man, affected by a severely obstructive form of hypertrophic 

cardiomyopathy underwent septal miectomy. He presented left ventricular outflow tract 

gradient 105 mmHg, an interventricular septum of 28 mm and according the NYHA 

classification, he was declared as IV stage of HCM. Family history was positive with 

cardiovascular disease (Figure 4.1). 
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Figure 4.1: Pedigree of family of Patient 3. Square male, circle female, solid symbols HCM affected 
and grey symbols HCM mild affected. The arrow indicates Patient 3. 

 

As shown in family pedigree, the sister of Patient 3 presented clinical findings of severe 

HCM, while the brother was mild affected. The brother’s son, living in France, at 

cardiological examination presented obstructive HCM. 

Interestingly, the daughter of Patient 3 presented a mild hypertrophic interventricular 

septum and left ventricle.  

 

4.2 Samples sequencing 
 

4.2.1 Colorectal cancer sequencing 
 

Genomic DNA was extracted from seven manually microdissected 5μm sections of FFPE 

tissue. Two sections of the frozen specimens were prepared and stained with hematoxylin 

and eosin for pathological analysis and exact localization of the tumors. Deparaffination of 

the sections was performed by xylene. 

The DNA concentration and purity was measured at 260 and 280 nm. Exon 2 of the Kras 

gene was amplified from isolated genomic DNA. The mRNA sequence of reference is 

NM_004985 with the codon 1 which corresponds to the start codon ATG and the nucleotide 

1 that corresponds to the first A (van Krieken et al, 2008). The following primers were used 

for KRAS amplification:  



 

46 

 

5′-TGTAAAACGACGGCCAGTGGTACTGGTGGAGTATTTGATAGTG-3′ (forward) and 5′-

CAGGAAACAGCTATGACCTGGATCATATTCGTCCACAAAA-3′ (reverse).  

The annealing temperature was 58°C. PCR products were checked for purity and size by 

electrophoresis on a 2% agarose gel and subsequently used for direct sequencing. Nextera 

XT DNA Sample Preparation kit (Illumina) was used for the preparation of sequencing-

ready libraries for small PCR amplicons that was sequenced on MiSeq platform by 

2x100bp read length. 

4.2.2 RASopathies sequencing 
 

The genes included in targeted resequencing panel have been selected using 

“cardiomyopathy” as keyword in OMIM database and HGMDTM Professional database 

(Release 2012.2). Genomic coordinates of exons belonging to all Reference Sequence 

(RefSeq) isoforms of the 159 genes were collected using the UCSC table browser 

assembly hg19 (February 2009). An additional 30 bp of flanking intronic sequence were 

added to each region of interest (ROI). Genomic intervals were merged using custom script 

to have each region represented only once. ROI included  3,015 regions encompassing 

1,037,636 bp. These regions were submitted to eArray tool (Agilent Technologies, Santa 

Clara, CA, USA) with Repeat Masker function activated. After a visual review of designed 

baits, the panel was submitted to Agilent (Agilent Technologies, Santa Clara, CA, USA) for 

manifacturing. After removing repeat regions, the total target was 939,470 bp. 

The genomic DNA was extracted from peripheral blood cells using standard procedures. In 

solution hybridization capture was carried out using SureSelect kit (Agilent Technologies, 

Santa Clara, CA, USA) according to manufacturers’ protocols. Enriched fragment library 

were sequenced by 2x100bp sequencing protocol on Illumina HiSeq 2000 (San Diego, CA, 

USA), following manufacturer procedure instructions.  

 

4.3 Bioinformatic analysis 
 

Image acquisition, image processing and signal processing have been performed using the 

Illumina pipeline with default parameters. Sequences were aligned to the human genome 

reference (GRCh37/hg19 assembly) sequence using the Burrows-Wheeler Alignment tool 

(BWA 0.6.2) with default parameters. PCR duplicates were removed using the Samtools 
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package, and base quality score recalibration, local realignment, and variant calling were 

performed with the Genome Analysis Toolkit (GATK v2.1.8). Variants with coverage less 

than 8X, with variant allele frequencies of less than 0.25, or with overall quality scores of 

less than 20 were discarded. NGSrich tool were used to assess the target enrichment 

performance, including coverage and quality of sequencing on each region of interest 

(Frommolt et al.,2012).  

The variant calling and annotation of identified mismatches were performed by GAMES 

(paper VI). For copy number variants, a statistical model developed in our Laboratory 

(paper in preparation) was used to detect large deletions and duplications on the basis of 

read depth, using as control the pool of population reference samples [paper III].  

4.5 Prioritization and interpretation 
 

Several publicly available computational tools were used to evaluate the functional 

significance of  variants  and to assess the effect of amino acid substitution on the structure 

and function of the protein protein. The Grantham Score, which categorizes the differences 

of physicochemical properties for codon replacements, was retrieved from the original 

Grantham Score Matrix. The evolutionary nucleotide conservation PhyloP score in 46 

vertebrates was retrieved from UCSC Genome Browser. 

In silico predictive algorithms were applied: PolyPhen-2, Align-GVGD, SIFT and 

MutationTaster. Using dbSNP Release 137, ESP ( 1000 Genomes Project (1KGP) and 

HGMDTM Professional (Release 2012.3) , the identified variants were prioritized, 

according also to minor allele frequency (MAF), when available. Variants were classified 

as: ‘novel’, if only a single allele was present in a parent and none were seen in 

dbSNPv137, ESP or 1KGP; ‘rare’, if they did not meet the criteria for novel and were 

present in ,1% of controls; and ‘common’, if they were present in >1% of controls.  

 



 

48 

 

 

Chapter 5 

 

Results 

 

5.1 Colorectal cancer 
 

Using targeted NGS sequencing, we obtained a total of 1,981,308 high-quality reads 

encompassing exon 2 of Kras gene. After mapping to the reference human genome 

(GRCh37/hg19), 83.74% of the yielded clean reads could be uniquely matched to target 

regions, and 99.54% of the targeted region was covered in at least a 30-fold depth in each 

sample. The average coverage depth for exon was 250X. Thus, the coverage should have 

been adequate to reliably detect DNA variants within the ROI. 

In exon 2 of the Kras oncogene, a mutation was observed in codon 12. It was a G>A 

transition in position chr12:g.25398284C>T (NM_033360.2:c.35G>A)  that lead at protein 

level an aminoacid change Gly12Asp (Figure 5.1 and 5.2). KRAS proteins in which the 

wild-type glycine residue is replaced by an aspartate represent approximately 50% of 

tumors of colon.  

 

Figure 5.1: Structural modeling of amino acid change Gly12Val in KRAS protein. 

 

It is known that the amino acid change position plays a fundamental role in definition of 

aggressiveness in CRC. For example, CRC carrying Kras codon 12 mutation may increase 
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aggressiveness not by altering proliferative pathways, but by the differential regulation of 

Kras downstream pathways that lead to inhibition of apoptosis, enhanced loss of contact 

inhibition, and increased predisposition to anchorage-independent growth. These results 

offer a molecular explanation for the increased aggressiveness of the tumors with Kras 

codon 12 mutations observed in the clinical setting. 

For what concerns the type of amino acid change, KRAS Gly12Asp activates 

phosphatidylinositol 3-kinase and MEK signaling, whereas those with mutant Gly12Cys or 

mutant Gly12Val had activated Raf signaling and decreased growth factor–dependent Akt 

activation and are associated were associated with decreased progression-free survival. 

Molecular modeling studies showed that different conformations imposed by mutant KRas 

may lead to altered association with downstream signaling transducers.Since this missense 

mutation abolishes GTPase activity resulting in constitutively activated Ras signaling, 

patients who carry this amino acid change are unlikely to benefit from the anti-EGFR 

treatments because their tumors express a protein that signals cell proliferation without the 

activation of EGFR. 

This implicates that therapeutic interventions may need to take into account the specific 

mutant KRas protein expressed by the tumor 
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Figure 5.2: Visualization of KRAS-mutant SNV using IGV Browser. Coverage file and bam files are 
shown in the top part of the IGV Browser output. The bottom part of the picture consist of Refseq 
gene with nucleotides visualized in UCSC Genome Browser. It is shown also the conservation of 
aminoacid Gly12 in different species.  

 

5.2 RASopathies 
 

5.2.1 Patient 1 
 

The sequencing run produced 7,871,442 100-bp long sequence reads. The number of 

mappable reads to the region of interest was 5,002,724. Mean depth of coverage was 

419X with  95.52% of target region covered >30X, demonstrating the high performance of 

the sequence capture approach. All successfully mapped sequence reads were analyzed 
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to detect sequence variants, including insertions and deletions. Variants were called 

automatically, generating a list of sequence variants compared with the reference 

sequence (hg19), which we had annotated with NCBI dbSNP build 135, HGMD, ESP and 

an internal database comprising disease mutations derived from HCM molecular 

characterization databases (http://genepath.med.harvard.edu/_seidman/cg3/index.html and 

http://angis.org.au/Databases/Heart/).  

Additionally, all novel nonsynonymous variants were filtered against the 6500 exomes 

released from the Exome Sequencing project. All together, 3,004 known or novel variants 

were detected in Patient 1. Of these variants, 387 (19.3%) are in coding regions or exon-

intron junction, 265 (71,1%) are predicted to be noncoding or synonymous, whereas the 

remaining are nonsynonymous, leading to the exchange of 1 or more amino acids.  

Using our mutation detection workflow, we identified in Patient 1 a heterozygous missense 

mutation, in position chr12(GRCh37/hg19):g.112915494 (NM_002834.3:c.893A>G) 

resulting in an aminoacid change p.Asn298Ser within exon 8 of PTPN11 gene (Figure 5.3).  

The substituted nucleotide was moderately conserved (phyloP=3.19 [-14.1;6.4]). The 

aminoacid change caused small physicochemical difference (Grantham dist:46 [0-215]). In 

silico disease-causing potential prediction considered the missense mutation as 

deleterious. The mutation is not reported in dbSNP 

We did not identified mutations in sarcomeric genes. The results were validated 

independently by Sanger sequencing.  

The identification of this mutation supplied the indication for diagnosis of Noonan 

syndrome. It is known in literature that this complex genetic disease is characterized by 

cardiovascular defects as phenotypic features. Patient 1 was affected by hypertrophic 

cardiomyopathy, but the genetic findings by NGS underlined that this defects is secondary 

to Noonan syndrome.  
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Figure 5.3: PTPN11 mutation in Patient 1. Identification of (NM_002834.3:c.893A>G) by NGS, as 
visualized in IGV in Patient 1. In the bottom part of the figure the Sanger sequencing validation has 
been reported.  

 

5.2.2 Patient 2 
 

We obtained 2,547,492 mapped reads, with 396X as mean coverage. The 93.26% of the 

target regions was covered more than 30X. By GAMES (Sana et al., 2011) we have 

identified 2617 variants, of which 287 falling in coding regions and intron-exon junctions. 

Using dbSNP Release 135, ESP and HGMD™ Professional (Release 2011.4) , we have 
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filtered out those variants with minor allele frequency (MAF) >0.05%. To evaluate the 

pathogenic potential of detected variants, we have applied in silico predictive algorithms.  

By this approach, we detected a homozygous mutation, in position 

chr12(GRCh37/hg19):g.112910827 (NM_002834.3:c.836A>G) leading to the exchange of 

tyrosine with cysteine at position 279 in PTPN11 protein (Figure 5.4). Both nucleotide and 

amino acid resulted as highly conserved. Grantham score for amino acid change was high, 

revealing high phycochemical difference (Grantham dist: 194). The mutation was reported 

in dbSNP v135. 

Sanger sequencing confirmed the identified mutation (Figure 5.5).  

 

Figure 5.4: Patient 2 sequencing reads overlapping the missense mutation. It is display the 

homozygous mutation c.836A>G. 

 

The identified mutation was previously associated to Leopard syndrome. The diagnosis 

agrees with the clinical features of patient 2, characterized by hypertrophic cardiomyopathy 

and café-au-lait spots.  
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Figure 5.5: Sanger sequencing validation. 

5.2.3 Patient 3 
 

Sequencing of Patient 3 and relative produced on average 15,582,644reads, 69.6% in 

target regions. Mean coverage was 745X.  

Brother and sister of Patient 3 carry a mutation p.Met932Lys in exon 23 of MYH7 gene, 

known to be associated with HCM (Figure 5.6). Retrospective genetic analysis of nephew 

detected the same missense mutation. Interestingly, MYH7 was wild-type in Patient 3 and 

in his daughter (Figure 5.6). 

 

 

Figure 5.6: Mutation in MYH7 gene in brother and sister of Patient 1.  
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However, the processing of data detected another heterozygous mutation in Patient 3 and 

his daughter within exon 3 of HRAS gene (GRCh37/hg19, chr11:533854; NM_005343.2:c-

202C>T) (Figure 5.7). This nucleotide substitution leads to aminoacid change (p.Arg68Trp), 

predicted to be deleterious by SIFT, AGVGD and Mutation Taster. It’s known that is 

mutation is associated to Costello syndrome.  

The phenotypic features of this disease include hypertrophic cardiomyopathy and mental 

retardation. A more accurate clinical evaluation of daughter of Patient 3 confirmed the 

diagnosis of Costello syndrome (Figure 5.8).  

 

 

Figure 5.7: Identification of HRAS mutation mutation (NM_002834.3:c.893A>G) by NGS, as 
visualized in IGV in Patient 1.  
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Figure 5.8: Pedigrees in which the MYH7 (green) and HRAS (red) mutations segregated. The 

genotypic and phenotypic status of subjects are also indicated.  
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Chapter 6 

 

Conclusions 

 

Ultra high-throughput sequencing is revolutionizing the study of human genetics and has 

immense clinical implications. It has reduced the cost and increased the throughput of 

genomic sequencing. NGS instruments make possible to rapidly generate large amounts of 

sequence data at substantially lower cost respect to the traditional sequencing approaches. 

These high-throughput sequencing technologies (e.g. Roche/454, Life Technology SOLiD, 

Ion Torrent and Illumina) make whole genome sequencing and resequencing, transcript 

sequencing as well as gene expression, DNA-protein interactions and DNA methylation 

feasible at an unanticipated scale. Furthermore, NGS enable scientist for the first time to 

analyze millions of DNA sequences in a single run.  

At the same time, massive parallel sequencing is a growing field with many computational 

challenges. A normal deep sequencing run outputs a massive amount of data which 

require complex computational processing and interpretation. The overflow of available 

bioinformatic tools and software for each of the optional analysis steps presents a 

challenge for the researcher aiming to evaluate and interpret deep sequencing data. This 

the reason for which currently, new efficient and well designed bioinformatics tools are 

emerging, which are addressing different tasks in the downstream analysis of NGS data.  

During the course of my PhD, I have analyzed and improved current protocols and 

algorithms for next generation sequencing data, taking into account the specific 

characteristics of these new sequencing technologies. Combining these tools into an 

integrated analysis pipeline greatly facilitates the interpretation of NGS results and could 

help the life science investigator in comprehension of molecular mechanisms.  

The presented approaches and algorithms were applied in different projects and are widely 

used within the diagnostics in Laboratory of Molecular Genetics at Hospital Papa Giovanni 

XXIII in Bergamo.  

Since two years, NGS is becoming a powerful method in clinical setting. With the release of 

benchtop sequencers and improvements in other platforms, the turnaround time for 

sequencing is getting quicker. Although, today there are a number of steps in the process - 
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sample prep, time on the sequencer, Sanger confirmation, interpretation, alignment, and 

variant calling - that make NGS not yet compatible with diagnostics. The speed of 

computational analyses and algorithms will get faster, and the instruments are already 

getting faster. The need to develop confirmation assays will diminish, so the interpretive 

process will get quicker, and there are a lot of pieces of the process that are all on their 

own path to improved efficiency. Furthermore, there is considerable interest in the use of 

next-generation sequencing to help diagnose unidentified genetic conditions, but it is 

difficult to predict the success rate in a clinical setting that includes patients with a broad 

range of phenotypic presentations. However, recent studies provide evidence that next-

generation sequencing can have high success rates in a clinical setting, for the 

identification of potential therapeutic targets, for insight into the heterogeneity of cancer and 

for differential diagnosis in complex diseases.  

In conclusion my PhD thesis highlights both the challenges and opportunities in the 

application of NGS to clinical diagnosis in patients with complex diseases, such as tumors, 

and heterogeneous genetic syndromes. This study focuses also on the computational 

challenges introduced by these new technologies.  
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