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Abstract

In this work | present the result of different investigagoronducted in the last
years in the context of stochastic modeling for decisioningln the areas of traffic
simulation and economics.

Traffic simulation has seen us from the Center for Modelingm@uting and
Statistics involved in a project for the evaluation and piag of two highway stretches
in the area around Ferrara. In particular we conducted théefimg and numerical
simulation of the highway network, in collaboration with dhiael Herty.

Later the study of kinetic analysis and simulation techagjproved useful in an-
other related setting, that is agent based models in ecasomdiscipline of growing
importance in understanding the workings of markets, bg financial or centered
on tangible goods.

Due to my job in the asset management industry some of thandsactivity has
been tilted towards practical methods for financial simateg, and in particular that
of parallel random number generation is a topic that has lgaémng importance
during these last years. While at Eurizon Capital | devedogp@ovel fast algorithm
for moving over certain widely used random number streams,zés NEC Labs Eu-
rope this was further reimplemented as a core block of a psafaal C++ library for
parallel Monte Carlo simulation in finance.

Finally | present a small note on a common numerical artifasing in Monte
Carlo simulations when only a limited number of kinetic paeis are used. Already
with simple kernels the resulting probability distributdiffer significantly from
those predicted by theory and obtained with large partets. s



Abstract

In questo lavoro di tesi sono presentati i risultati ottemutuna serie di studi
condotti negli ultimi anni nell’lambito della modellazios&ocastica nei campi delle
simulazioni sia per il traffico stradale che per 'economia.

Le simulazioni per il traffico hanno visto noi del Centro parModellistica, il
Calcolo e la Statistica (CMCS) coinvolti in un progetto pewvalutazione e la piani-
ficazione di due tratte autostradali intorno a Ferrara. higuare, in questo lavoro
abbiamo effettuato modellazione e simulazioni numericktiadete autostradale, in
collaborazione con Michael Herty.

Pil tardi, lo studio delle tecniche di simulazione e dedlarta cinetica si & di-
mostrato utile anche in un campo affine, come i modelli ageset in economia,
una disciplina la cui importanza & cresciuta per via dedleessita di capire il fun-
zionamento dei mercati, sia finanziari che di beni tangibili

Per via del mio lavoro nel campo della gestione di patrimang parte della at-
tivita di ricerca é stata condotta su metodi pratici perdazioni finanziarie. In par-
ticolare, la generazione parallela di numeri casuali éaftose che sta guadagnando
rapidamente importanza negli ultimi tempi. Durante gli iaimascorsi in Eurizon
Capital abbiamo sviluppato un nuovo algoritmo veloce cheseate di muoversi su
diverse sequenze di numeri pseudocasuali comunementeatd, mentre alla NEC
Labs Europe questo tema é stato ulteriormente sviluppgitaplementandolo quale
funzionalita di base di una libreria professionale in C-et fa simulazione parallela
Monte Carlo in finanza.

Nella parte finale di questo lavoro presentiamo una nota stoarune artefatto
numerico che si presenta nelle simulazioni Monte Carlo solando si utilizza un
numero limitato di particelle. Infatti, anche con sempkiernel, le distribuzioni risul-
tanti differiscono significativamente da quelle predetiketteoria ed ottenute con un
set esteso di particelle.









Chapter 1

Traffic modeling

1.1 Introduction

Research in modeling of traffic flows goes back to 1955 wittpibeeering work
of Lighthill and Whitham (se€[12]). Traffic modeling origites from previous re-
search in different fields especially of physics, and has séen subsequent reuse
of its techniques in other areas such as blood, pedestridmésrmation network
flows.

Nowadays its importance is growing, given the possibilitgangestion forecast-
ing, the developements in traffic control and the usefulireise planning phase for
infrastructures.

Traffic data is usually collected by fixed induction loops aghway toll gates.
Induction loops are devices coming in couples measuringdspevehicles traversing
them in sequence (therefore standing vehicles will not beated).

There are at least three different modes for traffic flow (cag@s when adopting
a statistical mechanics point of view):

1. Free flow- Where distance between vehicles is high enough for intierss
to be negligible. Therefore each car can proceed at theedespeed, which
is often assumed to be tending to the maximum allowed, eadntturther
modulated by road conditions.

2. Wide moving jams Large slowdowns where a high density is reached and a
common velocity is shared.

3. Stop and go wavesThese are a phenomenon arising in the previous context,
they propagate backwards with respect to the traffic doactand are caused
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by the driver behaviour amplifying the braking strengthuoed by the driverin

front. Often more of such waves follow one another, henceémee suggesting
the repeater acceleration and braking. This phenomenam®nwre easily in

situations of dense traffic and accounts for stops on highwagn in apparent
lack of a clear cause.

4. Synchronised flowThis is also a jammed state, where there is no definite ve-
locity/density relationship anymore: here different spgearise in nearby areas
of similar density. The name comes from the synchronizagitect that was
observed between lanes, especially on-ramps influenantpaing influenced
by- the main flow.

Any satisfactory model should at least be able to reprodiddese penomena
when put in the corresponding adequate initial condition.

Modeling of traffic dynamics can be roughly divided into thm@ain categories
according to the different level of detail reached:

e Microscopic modelingThe most natural approach is direct simulation of each
individual car and its response to neighbouring vehicles, is the realm of
microscopic modelingalso sometimes callexhr followingor follow the leader
models.

e Macroscopic modelingThe opposite view operates at the fluid dynamic level
on macroscopic quantities like local densities and avesageds.

¢ Kinetic modelingAn intermediate approach uses Boltzmann-like kinetic equa
tions to reach a good compromise between the computatidingiercy of
macroscopic models and accuracy of description inherematofollowing
methods.

Modeling in these three different worlds must be consistamti many such con-
nections have been worked out, i.e. in the form of hydrodicdimits linking kinetic
models to macroscopic ones.

In mixed modeling these three different approaches ndyueaid themselves to
treat specific areas where different level of detail is regpii macroscopic evolution
can be used for highways and freeways, mesoscopic for aydinads and micro-
scopic for urban areas.

Models of the car-following and kinetic type are usuallyca#ble to handly stocas-
ticity without big efforts.



1.1 Introduction

1.1.1 Characteristics of traffic and the fundamental diagran

Elementary behaviour and constraints for vehicle speed$ealerived from the
car density: clearly speed will be maximum in free roads ailbtend to decrease
at increasing densities, till vanishing at the maximum dgrdetermined by a null
bumper to bumper distance.

The so called fundamental diagram describes the relatistiex between vehicle
densityp (z,t) and flux f(z,t) = p(x,t) v (z,t). In theory only density should be
constrained in0, pmax] While speed could vary (according to the available braking
speed), however empirically in certain cases there is etstrdependence between
the two, with actual speed adjusting towards an optimalficee speed for a certain
given density; in fact such speed is influenced by the brathisignce available which
should match that consented by actual velocity. Conseglyeaiso the flux will be
mostly determined by density only, so that it is common pcadio describe flux by
a fitted relation of the forny = f(p;z,t). Furthermore often the space and time
homogeneous case is considered so that the correspondialglea can be dropped
as in the following.

Such function is usually taken so as to satisfy the followagriteria:

1. f(p< f(o))for p € [0, pmax] o With o € (0, prmax)

N

Fp) = 0forp e [0.0)
3. f'(p) < 0forp € (0, pmax)

4. f(p) is concave

5. f(0) = f(pmax) =0

Clearly the vanishing in (5) is determined by the vanishifglensity at 0 and
speed ap...x. The shape determined by the first four points is relatedgaltsired
behaviour of velocity; these arise both from the observegiaoal distribution and
from theoretical considerations in the conservation laiiene this relationship is
used.

From the shape of (p) one sees that density is a more informative measure than
flux, which cannot discriminate between situations of lifyae flow and heavy con-
gestion. Unfortunately often the flux is the only measuretd da that one is forced
to integrate this information somehow.

The relation between density and flux breaks down in the casgnzhronised
traffic, located in the higher part of the density spectruothat models making use
of a simplifying functional relation like the one above cahfully capture reality.
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Fundamental diagram

Figure 1.1:Three different flux/density relations on the fundamenigdichm

1.2 Microscopic modeling

Microscopic modeling is aimed at explicitely simulatingetdynamics of each
individual vehicle in the system. Here the response of eawerdo its predecessor
enters directly a second order ordinary differential elqumagioverning motion over
time, according to Newton’s law.

Therefore atleast the following quantities are trackecefeh car numbered

z;(t) €R, vi(t) € [0,0ma], tERY

The acceleration;(z., v., t) will thus incorporate all components of driver’s be-
haviour. Often realistic models require a large amount ocapeters (even 50) and
are therefore of difficult calibration, while simpler mogelre easy to setup but can
only reproduce well global phenomena, not the individualdyaamics.

This driver's perspective represents the so callagrangianpoint of view, as
opposed to the somewhat "dudtuleriandynamics: in the former the position and
speed are tracked for each given moving particle, while enaltter it is the position
being fixed while the corresponding speed and particless{tigrare observed.

Note that at variance with gas-dynamics most microscopiticrmodels can be
applied up to the macroscopic scale (on the whole simulatinge) since their com-
putational cost will be high but still affordable (cars omds are of course fewer than
the particles in a gas by several orders of magnitude).
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1.2.1 Bando-Hasebe-Nakayama-Shibata-Sugiyama model

In the BHNSS model (presented in 1995 [2]) the accelenaticts directly ad-
justing velocity towards a desired value depending on hegdlistance:

i)i = Qa; [V(Sl) — Uz‘]

wheres; is the distance to the leading car, and the fixed legal vela¢fs; ) function
is monotone and increasing with(0) = 0 andlimg, .., V' (s;) = V. A suggested
possibility for such a legal velocity function I8(s;) = tanh(s; — 2) + tanh 2.

Clearly to small headway distances must correspond smgdittaelocities, so that
the second part of the expression becomes dominant causikimdp. On the other
hand free space on the road brings target velocities pgdsiltgjer than the current
oneuw;, a difference which will determine a positive acceleration

Itis easy to determine the equilibrium speed at which trafftb a uniform density
(and with cars with the same acceleration coefficient= a) can advance without
changes»® = V(p~!). This immediately gives an explicit solution for uniforneé
flow:

v (t) = v°
{ zi(t) =2 +ip L+ V(p ')t (L1

This is sometimes calledlaminar state because of its parallel bundle appearance
when plotted over time.

Whenever the common initial velocity is different than tlggidibrium speed im-
plied by the given density a similar dynamics will developt hot linear anymore:
all cars will advance at a common time varying velocity aggiiong the implied
equilibrium one.

{ 0i(t) = [a(v® —vi(t))dt (1.2)

zi(t) =2 +ip~t + [udt

Any small deviations from the initial data for such a free flave amplified with
time by the model evolution and lead to the formation of catee areas and more
rarified ones with a corresponding faster free flow, with eatering and exiting from
a small interface area between these two regimes. Furthersuzh congestions
behave "well” by moving backwards with respect to the traffiection, at a speed
of easy calculationfV (s,az ) Smin — V (Smin ) Smaz) / (Smaz — Smin)-

In particular the shape and slope of the functiofs;) determines the the values
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Smin @nd s, Which behave as "attractors” for the car distance in coregeand
flowing clusters, respectively. Whenevef(s;) > a/2 the behaviour is unstable,
stable otherwise. For instance, with the given formlk;) three areas emerges:
two stables for small and large densities, and and intembednstable one.

In this model the fluxes for these two congested and free flownar states are
equal: the slower speed in jams is exactly compensated bpcheased density.

Noteworthy is the fact that no accidents occur, as congestevelopes before
any of them. Moreover no negative velocities ever appean ¢liough no direct
limitation on speed might appear evident at first: this hagpeecause braking is
managed through a decay of velocity, instead of an indepemteeleration term.

1.2.2 Treiber-Helbig model

The following Intelligent Driver Model - presented by Treitand Helbing in[[16]
- takes a compromise in the number of parameters contralieglriver behaviour,
using seven of them for reaching enough flexibility but withosking overfitting of
the empirical traffic features. The acceleration term reads

RN

wheres; is again the distance to the leading eak; 1 (ofteny = 4) and:

vV 4azbl '

with v? as desired speedyv; the relative speed of preceeding vehidgijs the safe
time headway in moving congested traffic (that is, the allbweaction time),a;
maximum acceleratiorh; maximum brakings? minimum jam distance.

Av;
st (vg, Av;) = 8? + v; max <Ti — v 0)

N\
The acceleration termy <1 — U—g) ) represents the acceleration on a free road
v

tending to reach the desired speéd Here the exponent usually lies between 1
and 5, and is used to modulate between a constant acceferatioe desired speed
(for v — o0) and and exponential acceleration dynamic (whea 1).

The terms; models a "desired minimum gap” from the leading car, so that t
S\ 2

deceleration term- ( 2 ) describes braking intensity, which grows in a Coulomb-
SA

repulsion-like fashion zas the actual gapshrinks.
In the case of identical drivers and when traffic is in equilim (so thatAv; =
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©v; = 0) all vehicles assume a corresponding velocity dependeauntil@dum gap

s¢(v;) like:
s(v;) = (v, 0) [1 - (v%ﬂ

Further for the special subcase of homogeneous jams wken v, the equilibrium
gap approaches the desired gafiv) ~ s + 31\/"% + ovT. For some parameter
values it is possible to derive an analytical value for theesponding speed.

This model possesses several advantages compared tottbéthesliterature; in
particular all of its parameters are of practical signifoamand can be easily mea-
sured, while a calibration procedure can fit an empiricatltAmental diagram; fur-
thermore there are corresponding mesoscopic and macios@pion. A very ap-
pealing feature is the realistic flow density relation whigtile well determined
in equilibrium, shows the scattering observed empiricatlynedium densities, even
without the need of mixing vehicles with different charaiscs.

Simulation

To evaluate the behaviour of this model we developed a stdr@amplementa-
tion for handling different types of vehicles on a network diect solver has been
implemented for the two ordinary differential equationsaived; the IDM model
proved to be quite reliable in practice for not too small tisteps.

In figure[L2 results are shown for the different simulatelicle dynamics (here
being speed and acceleration over time), to investigateftbet of varying parameter
values. The red trajectory is the reference one, while therstare for alternative
driver behaviours.

In this case the scenario is that of a vehicle initially stagdstill and having a
free road in front, to observe the acceleration phase Igddithe desired maximum
velocity; this is shown in the left part of the graph. This w®ms expected with
acceleration smoothly decreasing until the desired spgerghched.

On the right part of the graph the driver approaches a stdtaitle and reacts
accordingly with a smooth braking phase until the car isdtaltThis is ofcourse
the case having the biggest influence on the numerical bednavi the discretization
scheme: atoo large timestepping might let the car "jump’t tive obstacle, skipping
the singularity in the braking term when distance tends to.ze

Changing the model parameters shows different behavitlkesgreen trajectory
corresponds to a higher value of the acceleration conatantl clearly provokes a
faster arrival at the desired speed; however it also hasimiel on the braking so that
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Figure 1.2:Speed and acceleration for the IDM model

null speed is reached before. On the other hand the braknagneden (increased in
the blue graph) has a different behaviour: it also makesibhgakore aggressive, but
implicitly allows for it to start later in time, whereas irgasingz: anticipated it.

Figure[L.B shows similar profiles in the case of a preceedargadvancing at
constant velocity, in place of the previous still obstacle.

1.2.3 Nagel-Schreckenberg model

The Nagel-Schreckenberg model is an example of the so cadidlar Automata.
These are update rules operating on a set of connected eatls, having a multi-
valued state; usually each cell state is affected just bpeighbours allowing for
very efficient implementation, and are also related to tatBoltzmann methods in
rarified gas theory. Despite their simplicity they can exalobitrarily complex be-
haviour even for small states (especially famous is thereis®ule 101studied by
Wolfram).

This model was introduced and received significant attartiecause of its high
computational efficiency and its ease of implementatione $wiss road network
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Figure 1.3:Relaxation to constant velocity for the IDM model

was one of the first large scale simulations actually peréatpand was based on
such models.

In the case of the N-S model cells result from a regular disza&on of a road,
with size corresponding to the front-bumper to front-bumglistance between two
cars in the densest jammed state, usually taken, &s:; implicitly this will also
induce a discretization in possible velocities once timgissretized too. A cell can
just contain one single or no cars; each car will posses @nnak state describing
velocity v; in terms of cells traveled per time step. At each time steptipos and
velocities of all cars are updated in four substeps accogmbr acceleration, braking,
randomization and advancing:

1. Acceleration v} (t) = min(v;(t) + 1, Umaz)
2. Braking 3 (t) = min(d;(t) + 1,v; (1))

3. Randomize v;(t + 1) = max(v:(t) — 1,0) with probabilityp

4. Advance carj is movedv;(t + 1) cells forward
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At the beginning acceleration accounts for the desire okdsito reach the maxi-
mum possible speed, thus without exceeding the limit.
In the second step deceleration is introduced wheneveriskended; from the pre-
ceeding vehicle is lower than what would be covered in a titep.sThis guarantees
that collisions cannot occur in the following time step.
Later randomization occurs to account for various impdrpdnrenomena. Asymme-
try is introduced to delay acceleration and enhance brakind the overreaction of
drivers to decelerations of the preceeding vehicle is tlapsured, thus allowing for
stop and go phenomena. Moreover randomized braking acctumtregularities in
driving.
The fourth step finally performs the actual advancing oftadl ¢ars.

This set of four rules is minimal for producing a realistichagiour, and their
order is also crucial in obtaining the desired result.

1.3 Mesoscopic modeling

The mesoscopic level of modeling is intermediate betweergénerating micro-
scopic interaction rules and the macroscopic descriptfdraffic quantities. These
models do not track individual vehicles anymore, howevey ttill model the driver
behaviour, often probabilistically.

In such a setting a kinetic vehicle densjtyr, v, t) is evolved, where: denotes
the position on a highway,a speed in the intervé, v,,,...] that could be normalised,
andt is time. Because of their statistical nature they have bepaaally advocated
for multilane traffic analysis, while macroscopic appraeshbould be enough for the
single lane case. However the case treated in the follovartigat of a single lane,
while the multilane one would be a natural extention withguwlistantial differences.

As usual in kinetic theory it's possible to derive macroscapantities from the
mesoscopic density moments; in particular the vehicleitiens

plx,t) == /0 - f(z,v,t)dv

and the flux;

q(z,t) = /Ovmax vf(z,v,t)dv

and the corresponding average veloaity,t) := u(x,t)/p(x,t). Of interest are
sometimes also higher order moments like average kineéiggrand velocity vari-

10
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ance.

One advantage over the microscopic case is the possibilaglieving analytic
results.

The kinetic approach to traffic modeling has been introdunedrigogine and
Andrews in 1960 (seé [14]). This was later improved by Pasad Fontana[13].
Since then a large number of models has been presented.

Herty et al introduced inJ4] a convenient framework for thexidation of many
kinetic evolution models starting from microscopic intgran models, which will be
described in the following.

1.3.1 Kinetic traffic models

In general the kinetic form for traffic flow models is given byPBE for the evo-
lution of f of the following form:

Of +v0,f =G(f, f2 2,0+ Hg, t,v) — L(f, f*, 2,2 + Hp,t,0)

Herein increases and decreases are given explicitly by the two gain and loss terms
G and L, which usually accound for acceleration and braking. Whearaction
occurs among couples of cars only - as is often the case - tireesterm depends
on f%(z,t, H,v,v"). Additionally for reactions to movements ahead along trelro
one can add non-local terms+ H;, ;. One used simplifyng approximation 8 =
qf(z,v)f(x + H,v") wheregq is a given function.

Such mesoscopic description will be obtained from a gemaiacoscopic model
which we now describe. As in the microscopic examples preshodescribed one
can directly introduce terms for the different componeiftsriver behaviour, namely:

1. an alignment to a desired maximum veloaity,,

2. acceleration coming from two-car interactions, whengbeond one travels
faster

3. braking coming from two-car interactions, when the seoome is slower

All such terms can include stochastic components to acdountriability in the
driver behaviours. Moreover it is also natural to initialgnsider just the space-
homogeneous case. The resulting microscopic interactitenis then the compo-
sition of the following updates, for free flow alignment, algration and braking

11



Chapter 1: Traffic modeling

respectively:
v =w + d(U, Umazx, 5)

vV=v+alv,w,§) v<w
vV'=0v—-bv,w, ) v>w

In this form it is clear how all three rhs terms are relateddoegeration of vehicles,
performed istantaneously. The uniform random varigbéecounts for stochastic-
ity. In such a microscopic formulation the time variablengplicit in the iteration
procedure so does not appear explicitely as a variable. Pptated(v, ) does not
depend on nearby vehicles and simply adjust speed towaedsaximum velocity
characteristic of free flow. The remaining two terms accdoninteraction with the
"preceeding” car having velocity, and thus increase velocityfor a positive differ-
encew — v, and brake lowering in the other case of negative speed difference and
thus of decreasing distance.

Most microscopic models can be written in this form, and a éw@amples will
be detailed in the following with the corresponding macogsc derivations; further-
more this framework also covers the Intelligent Driver Mdale Treiber and Helbing
described earlier, for which an example of kinetic densitseshown in figur&Tl6.

llIner, Klar et al model

This model was studied and presented.in [6] &nd [9]. In thisrgeno two-car
interactions are present and the desired velocity for@rgaorporated into the ac-
celeration term as follows:

1. d(v,&) =0

2. a(v,w, &) = (1 — &) (Vmaz — V)

3. b(v,w, &) =&v

Simplified model by Klar et al

This model, presented inl[3], operates on the relative v#dscamong pairs of
cars:

1. d(v,&) = EVman

2. a(v,w, &) = (1 =&)(w—v)

12
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3. b(v,w, &) =&(v—w)

Also in [3] closures are found to derive macroscopic equeaticorresponding to
this model.

Other than these two presented cases also a Helbing-likelraad other micro-
scopic ones can be restated in a kinetic form.

1.3.2 Derivation of kinetic equations

From the description of driver interactions seen earliergfuations for the evolu-
tion of kinetic density can be derived, which in the space bgemeous case reduces
to:

8tf - G(f7tav) _L(fatvv)

Let's decompose the gain and loss terms in three componentssponding to
each interaction term (while fixingfor shortness):

G(f,v) = Ga(f,v) + Ga(f,v) + Go(f,v)

L(f,l)) = Ld(fav) + La(fav) + Lb(fav)

The loss subterms are of immediate calculation:

La(f.v) = f(v) / B dv = f(v) (1.3)
La(fiv) = / Bt ) () (1.4)
Lo(f,0) = / B 1o (0) () (1.5)

(1.6)

Here the three functions?, 3* and3® are composed by the previously introduced
correlation function; and further parameters describing the strength of the micro
scopic interaction.

13
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The gain term is decomposed as follows:
Gulfv) = [ Jdet Jufad o f()de
Ng(v)
Gulfoo)= [ [ 1At Il sy ) ()
0 Np(v,w)
Giro= [ [ 1y ) S0
0 Ny (v,w

where the integrals are defined over the following sets:

Na(v) = {£: 0 <€ <10 < < vy, v = d(V,€)}
Noy(v,w) :={£:0<¢§ < 1,0 <w,0 <0 < e, v = 0" + a0, w, §) }
Ny(v,w) :={:0<E<T1,0 > w,0 <V < vgax,v =0 — bV, w,§)}

and the Jacobiang are proper of the three respective w) — (v', w) transfor-
mations:v = d(v', &), v = v 4+ a(§, V', w) andv = v — b(€,v', w). Herev, w and
¢ are the parameters implicitly determining Whenever the interactions a andb
are given then the previous formulas get simplified, so th#tns can be expressed
in terms ofv’ andw.

For the previously introduced models this procedure resalthe two following
kinetic equations, with normalized maximum velocity,, = 1.

llIner, Klar et al.

For acceleration, fron,( f, v) and:
a(v,w,§) = (1 =&)(1 - )

ﬁa(vl7w) = |Ul - w|Qa(p)/p

wheregq, is a correlation function depending solely on macroscopiangties, one
obtains:

1 ! ! ! 1 /
Galf0) = & / / Ge(PV — W] F (V) () Xy (0) o/
PJo Juv<w,0<o'<1 1—w

Analogously, for braking:

b(v,w,&) = &v

14



1.3 Mesoscopic modeling

B w) = v = wlay(p)/p

Gy(fov) = /,@( B w) () f ()l 1.7)

- /0/ o ,<1JX[O,Q/](’U)ﬁb(U’,w)f(v’)f(w)dv’dw (1.8)

Inserting3° gives the braking gain term. One can proceed similarly ferltss
terms. Assuming furtherp : ¢*(p) # 0 and setting:

one obtains:

e = (o [ W“—thﬂﬂf@%O%xmmhwhﬂw
" /’/ ! — wl 70, 0)F a0, By g ()l
- m[wmwqutvwwd
- [ sl )

= ¢(kGp+Gu—kLp—La (1.9)
< )

Klar

Here, analogously to the previous case, for the accelertgiron one again calcu-

latesG,(f,v) through:
a(v,w,§) = (1 =&)(w —wv)

ﬁa(vl7w) = |Ul - w|Qa(p)/p

while for braking:

b(Ua wvf) = f(U - w)
B w) = [v" — wlg(p)/p

15



Chapter 1: Traffic modeling

Moreover the free acceleration term in this case is:

dv,§) =¢ =1
so that| det J| = 1 andG,(f,v) = [ f(v')dv’. The derivation gives the following
kinetic equation:
1 /!
fot) = / [ =l 058 v )

+ / /v<w|v —w|f(',t)f(w, t) 1 — Xl (V) dv'dw
- k(p) /Dw lw —v|f(w,t)f(v,t)dw
- /U<w|w_v|f(w,t)f(v,t)dw)

= ¢ (ké’b 4 Go—kLy— Lo+ 1/cGy—1 /cid> (1.10)

1.3.3 A Monte Carlo simulation method

Some simplifying assumptions can be used to obtain a Montk Gamulation
algorithm in the previously described framework. The twoederation and braking
kernels are then derived from a common one in the following:wa

0 V> w

Ba(v,w) = { Blo,w) v <w (1.11)
0 v < w
Bolv,w) = { kB(v,w) v>w

One can split the time dependent equation - rewritten to ®xgte common kernel
so that integrals are carried over the whole velocity range:

(1.12)

fi=kGy+ Gy —kLy— L, +Ggq— Ly

to get:
ft :ka—FGa—k’Lb—La

fi =Gq— Lq

16



1.3 Mesoscopic modeling

Then, by rewriting the gain and loss operators:

G, = //ﬁ“ vw) f(0) fw)d(v',w) (1.13)

= //min{E,ﬁ”(v ;) H ) fw)d(v', w), (1.14)

L, = /ﬁ“ v, W) (1.15)
= F0)Zo— f() / (2 - mingS, (0! w))) f(w)dw  (1.16)

= Yo(f(v) —L;>, (1.17)

with a suitable constar > 0 (which in rarefied gas simulations is usually referred
to asdummy cross sectipnThe same procedure is then carried for the braking terms.
Finally, applying an explicit Euler method for advancingime, one obtains:

ko~ - L~ s
= (1 — pAt) 4+ pAt (k—H(Gb + Ly) + k—+1<Ga + La)) ;. (1.18)

whith 1 = Sp(k+1) andG,, = G,,/(Zp). The weighting of the different operators
can be reinterpreted in probabilistic terms, as usual witktic operators:

Probability | Event

1 — pAt | Speed is mantained

A : . _
:thl If v < w with probability 5(v, w) /% acceleration occurs
—Zuff If v > w with probability 3(v, w) /3 braking occurs

Later the explicit Euler method is applied for the remaini@gms:
= (1 - At) + AtGp. (1.19)

In this case forAt < 1 with probability At the speed of a car changes is adjusted

17



Chapter 1: Traffic modeling

towards the desired one.
The corresponding algorithm can be sketched in this way:

e SelectN particles from the initial distributiorf,(v) and a timestep\t

e Divide the particles randomly into two groups, oneNaf = N (1 — At) N non
interacting particles and/, = N — N; interacting ones, and build couples
(v;,v;) out of the latter group.

e Calculatex

e For each interacting pair draw a uniform random nurghen [0, 1] to choose
between acceleration and braking, according tec 1/(k + 1); then calculate
¥;; = min{¥, B(v;, v;)} and draw two further uniforms;, 3

For acceleration if; < v; and{,X < ¥;; update according to:

v, = U; — CL(UL‘, Uja 53)

v, = Uj

For braking, ifv; > v; and&;> < ¥;; update according to:

v = v; — b(vs, v5, &)

/

Yj

= Uj
e Perform the free flow update:
Again subdivide particles amony. := AtN affected ones and/ — N,
unchanged, and perform the updatés- d(v, £) corresponding t@-,

o If stationarity is not reached repeat from the second step

Figure[L.% shows the stationary solution for the lliner et mlodel. for three
different values of the parameter Similarly fig L8 depicts results obtained for the
simplified Klar model, and'i¢ 1.8 for the IDM model by Treiber and Helbing.

1.4 Macroscopic modeling

The macroscopic level of description loses the detailedrmétion available in
the kinetic models but on the other hand is often more coeveni

In the case of classical kinetic theory it is possible to ohitae macroscopic PDEs
of Euler and Navier-Stokes in important situations of higis gensity.

18



1.4 Macroscopic modeling

k=5
- — —k=15
1.8 —k=1 [

Figure 1.4:Equilibrium density for the lliner-Klar model at differeit

35

T
— G,=U(0.1)
/ \ - — = GD=O

Figure 1.5:Simplified Klar et al. model
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Chapter 1: Traffic modeling

T
—&<1.75

Figure 1.6:The more complex IDM model by Treiber and Helbing

A hierarchy of equations involving the different models reated multiplying
the kinetic equation by powers of density thus expressing everything in terms
of moments. However since each moment depends on the higksrto solve the
hierarchy appropriate closures are needed.

This can be done in the following way: considering that théision kernel
Q(f, f) = 0ifand only if f is a Maxwellian, that is a normal distribution. Whenever
at kinetic levelf is a local Maxwellian it is defined by two variables only (meard
variance, the first two moments). So the third level momepedds on the previous
ones, therefore it is possible to close the hierarchy sglfonthe density.

The hypothesis is valid for — 0; € is proportional to the relaxation limit, so if
the gas is dense enough the approximation leading to Nato&eSis reasonable.

The case of traffic is similar but maybe not equally elegaptf, /) = 0 f =
f(p, pu). Only one quantity is conserved.

Of+vdof =Q(f, f)

By the multiplication withv* and integrating over one obtains:

Oy + vuimnss = / FQf, f)dv
0
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1.4 Macroscopic modeling

where

VUmax
my = / v* fdu
0

For example, in the case of the first equation, singe= p andm; = pV one obtains
the standard continuity equation:

Op+ 0.(pV) =0

Here the Lighthill-Whitham equation - described in the daling - can be obtained
settingl’ = V¢(p).

1.4.1 Lighthill-Whitham-Richards model

In the Lighthill-Whitham-Richards model velocity of veles is assumed to be
uniquely determined through density by imposing a localildgium distribution
V(p). So one can solve fgr a hyperbolic equation for the conservation of vehicles:

Op(x,t) + 0, (v(x,t)p(z,t)) =0

with:
v(x,t):=V(p(x,1))

This velocity relationV/ (p) must be nonincreasing and nonnegative in the inter-
val (0, pmaz)- It is often chosen so that the resulting fundamental dragralation

becomes (p) = vmaxp (1 — (pp )n)

Another case sometimes consideredfigp) = vy (p_l -

1

max

The Lighthill-Whitham model is thus described by the foliagg Cauchy problem
on the real line for the previous hyperbolic equation:

{atp +0: (pV (p)) =0 V(x,1) € (a,0) xRY (1.20)

p(x,0) = po (2) Yz € (a,b)

This model can describe wave formation, propagation argbtlison both in the
forward and in the backward direction: advancing fronthimfbormer case and queue
formation in the latter. It is probably the approach reaggvihe most attention, under
all aspects like the modeling perspective, its analyticapprties and the numerical
methods for solution. It has also proven easy to extend works, multilane and
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Chapter 1: Traffic modeling

multiclass driver settings.

However it also possesses various drawbacks; among theskeaformation of
shocks and the lack of stop and go waves.
For the former issue there are common remedies like thedattoon of a dissipative
term to prevent the issue. However there seems to be no wairéauce stop and go
waves without substantially altering the model. Moreovas hoted previously for
microscopic models - imposing a unique relation betweesitieand speed is not in
agreement with experimental data, which shows a range o€iigs for intermediate
densities.

1.4.2 Second order models

The forcing constraint for velocity can be relaxed leadmgiore general models
like that from Payne and Whitham, where treating velocityependently gives an
additional equation (hence the tesmcond order modelsvhich is not to be confused
with any more usual analytical "order”):

Op + O0x(pv) =0

O + v, + p’;p) Dup = (V<(p) — v)/7(p) (1.21)

Here p(p) is the anticipation coefficienta heuristic "density” function slowing
down the traffic; whiler is the relaxation time fovr to reach the free flow velocity
V¢(p). However determining in practice such quantities provdsetoot so straight-
forward. Moreover various requirements are violated, Hgmen-negativity of ve-
locity and speed of information bounded by car velocity. tRemrmore it has been
argued that all second order models could not account feo&py in the informa-
tion flow for traffic dynamics (drivers react mostly to chasgethe situation in front
of them, more than behind).

A better approach has been presented in 2000 by Aw and Rasde(]], and
independently by Zhang@ [17]) which does not suffer of the salrawbacks. They
applied a convective derivative to the pressure term, heptdi:

Op + 0x(pv) =0
{ (0 +v0,) (v +p(p)) =0 (1.22)

Herewv + p(p) can be regarded as a preferred velocity, with) as before. This
function must be smooth, strictly increasing and Lipsclibntinuous and satisfy
p(0) = p'(0) = 0; often it is takerp(p) = p? with v > 0. This implies that the two
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1.4 Macroscopic modeling

eigenvalues ara; = v — pp/(p) and\, = v, so that waves do not move faster than
traffic itself and no vehicle is influenced by what is happgrbehind.

It is also possible to add a relaxation term affecting véioeais seen in the Payne-
Whitham case; this models the attempt from drivers to reackleal speed and the
time lag in the response of each car:

Op + 0y(pv) =0
{ (0 + vd) (v + p(p)) = (V<(p) — v)/7(p) (1.23)

This model is also able to predict instabilities near theuuse, that is for very
light traffic at small values op. The relaxation term is needed on partially empty
roads to prevent maximum speed reached by cars from degpoditne initial data.

The Aw-Rascle model can be derived from a correspondingasoapic car fol-
lowing rule (see i.e[]5] and references therein).
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Chapter 2

Traffic flow on networks

2.1 Network modeling

Conservation laws on networks are useful in a wide variefyrattical fields, and
the methods developed for traffic have been also applied te metworks, supply
chain management, air traffic management, gas pipelimggation channels etc...
(see i.e.[[111] for references).

To extend the standard Lighthill-Whitham-Richards cowagon law on a single
road1.2D to the case of a network we proceeded in the follpwiay:

Definition 2.1.1 : A traffic flow network is a connected and directed graph deffine
by a set of points calledodesor vertices connected in couples larcs Eventually
such arcs can extend indefinitely.

Each arc will represent a corresponding road, and they m#et aodes represent-
ing junctions. To each arc - numbergd 7 := {1, ..., J} - we will then associate
an intervall; := [a;, b;], where any of the;-s orb;-s can be possibly infinite.

On each road the traffic will be described by a macroscopiccleedensity func-
tion, that isp,(x, t) defined on each interval € [a;,b;], Vj € J,t € R,. The
time evolution of each;(x, t) will proceed independently according to the Lighthill-
Whitham-Richards model for a single road, except at the eimipwhere one must
impose some constraints modeling interactions of differeads at the junctions,
that is the so calledoupling conditionsvhich will guarantee coherence among the
partial solutions on each interval.

A general network can have junctions with arbitrary numhsréncoming and
outgoing roads; for simplicity we have reworked the graplola corresponding to
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Chapter 2: Traffic flow on networks

the actual highway network examined, to obtain an equivaietwork including
junctions with only three one-way roads, as those shown und[@.].

Figure 2.1:Sketch of three road one-way junctions

To obtain the desired graph it is necessary to split the nggwel network into
basic elementsi-junctions into 3-junctions, two-way junctions into oneynunc-
tions, two-way roads to couples of one way roads.

Even apparently simple configurations can easily lead tetrigial modeling struc-
tures, as can already be seen in a minimal junction among tiweway roads, which
gives rise to six basic 3-junctions and six additional aassdepicted in figure3.2.
Furthermore any resulting stretches deemed unimportaetlieen selectively omit-
ted.

However determining a solution at such simple junctionsy@salready to be not so
trivial even for stationary boundary conditions: imposihg conservation of mass in
the simple second 3-junction of figureR.2 is not enough, asdagree of freedom is
left open. In the following this issue will be targeted.

2.1.1 Simple junctions

In the following we illustrate some examples of basic jumes to introduce the
more general treatment following. The setting is still tbhthe LWR conservation
equation with the corresponding velocty(p) = Vmaz(Pmaz — p) resulting in the

flux f(p) = Vimazp(Prmaz — p)-
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2.1 Network modeling

Figure 2.2:Three road junction split into one-way junctions

Traffic light

Let's start considering the simplest possible junctiomt ik a traffic light posi-
tioned adr = 0, with the following initial datum:

Pmazx if S 0
po(z) = _ (2.1)
0 ifx >0

This describes a situation where the traffic light is red alhdas are queueing
before it, so that the road ahead is empty. Let’s considgyte furning green at time
t = 0 when cars start passing through: such dynamics will be vestdbed by the
following solution:

pmaz If T < f/(pmaw)t
p(x,t) = < (f) " Na/t)  if f'(pman)t <z < f(0)2 (2.2)
0 if f/(0)t <

In practice this means that on there are two wavefrontsrexitiom the junction,
respectively at speefl(p,....) andf’(0). Outside of this interval the situation remains
the initial datum, while the drivers in the intenvigdl (p,..)t, f'(0)¢] are moving and
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Chapter 2: Traffic flow on networks

there’s a continuous density gradient as vehicles septogecach other, due to the
acceleration at the green light.

A similar situation can be observed when a traffic light tuinesn green to red.
Assume that initially the road is used by cars uniformelyribsited at density,(z) =
o, and that the light turns red at time= 0. The stop can be modeled as a null flux at
x = 0, and the following solution satisfies the problem:

o if 2 < —v0201
Pmaz N — Upaeot <z <0
plz,t) = _ (2.3)
0 if0 <2 < vpaeot
o if Vae0t < @

This corresponds to cars already ahead of the junctionfgatvat speed,,,.c and
leaving an empty stretch back; on the other hand the red t¢igies the formation
of a queue which propagates backwards at the opposite spgedo, while behind
new cars keep arriving at the same density.

Three-junctions

A 3-junction can be more explicative of the problems arisitiggn modeling net-
works. Let’s consider the case of one single incoming rodittisg in two, and with
the following initial datum:

,00,1(55) = Pmaz> pO,Q(:E) = p073(l‘) =0

Assuming that no driver preferences are imposed and roadateastics are homo-
geneous there are two possible extreme solutions, comdsppto all cars taking
each of the two outgoing roads. These are similar to the gstribed traffic light

turning green; the first reads:

() = e if 2 < f'(pmaz)t
T @/t i (pant <2 <0
ool 1) = (f)yNx/t)  if0<z< f(O)
o 0 if f/(0)t <z
p3(x,t) =0
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2.1 Network modeling

The other solution just swaps(z, t) andps(z, t).

Both solutions preserve fluxes: the sum of incoming fluxebésstame as the out-
going ones, but clearly this is not enough for uniquenesghEuconditions will be
presented in the following.

2.1.2 Wave front tracking

Wave front tracking is an efficient and flexible numerical heoet for scalar non-
linear hyperbolic equations that is relatively straightfard to employ on networks.
It can be traced back to the work of Dafermos in the early sie®(seel]l7]), and has
since been improved among others by Holden and Risebrdi€ge

The idea is very simple and is based on the fact that Riemaoiieuns for conser-
vation laws are solved by a time-dependent translationeeoHeaviside functifﬂn
as was shown in the simple cases of traffic lights and 3-jansti In practice when
the initial data to the Cauchy problem is piecewise consthatanalytic solution can
be decomposed in a set of Riemann problems, each corresygandhe dynamics of
each discontinuity owave front Key to such a decomposition is the finite maximal
propagation speed of wavefronts, which keeps the Riemaminiggms on arcs and
junctions independent.

Since the solution of these Riemann problems is much sinopleican then track
each wave front until two of them interact together or onenatts with a junction.
When such interactions occur the solution will stay piesenéonstant and a new
Riemann problem is determined, so that the cycle can staimag

For general initial data then one can start with a corresimgslifficiently "near”
piecewise approximatiop;,, where rarefactions are decomposed into many small
steps. In the following the Riemann problem for junction e covered.

2.1.3 Coupling conditions at a junction

To solve the network problem we first need to be able detengiaiweak solution
of a Riemann problem at the junction. To that aim let’s ifligiantroduce weak
entropic solutions on arcs and at a junction.

Definition 2.1.2 A weak entropic solution on an agg is in our case a density func-
tion p;(x,t) : I; x [0, +00[— R such that for every smooth test functiof, ¢) :

Where the Riemann problem is the Cauchy problem with initzh being a Heaviside function,
that is a step functiony (R-.).
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I; x [0, +o00[— [0, +o0] the following holds:

oo rbj
/ / [0j0b; + f(p;)0ujlda dt =0
0 Ja,

For an initual datunyp;, with bounded total variation the LWR equation admits a
unique entropic weak solution, which depends continuoaslyhe initial datum in
L} .. Furthermore fop,, € L' N L™ it's possible to achieve Lipschitz continuous
dependence if* for ¢ — p;(-, t).

Definition 2.1.3 A weak solution at a junctiofor the LWR conservation laW {1]20)
is a collection of density functions over the roads and weds {p;(x,t) : I; X

0, +oo[— R},1,..»+m Such that the following condition is satisfied for every sthoo

test function on the junction ares= (¢4, ..., dnim):

n+m o b;
; [/0 / 005 + f(p)0ngjlda dt| =0

where the test function is said smooth across junctions if at each of them it satisfies
the following conditions:

¢i(bi) = ¢;(ay)
0:9i(bi) = 0 d;(ay)

with the usual convention @fdenoting incoming roads angdoutgoing roads.

Definition 2.1.4 Theweak solution of a Riemann problem at a junctisra weak
solution for the LWR problem at a junction for an initial datuconstant on each
road: p,o(x) == pjo Yz € I;, 7 =1,...,n+ m, where all arcsl/; extend to infinity.

It is convenient to work with a flux function satisfying theoperties given in
Chapter 1 (namely is smooth, strictly concave,(0) = f(1) =0, |f'(z)] < C < 0
and thus possesses a unique maxinaug]0, 11).

A related necessary condition to be satisfied is clearly fanservation, hence the
following Rankine-Hugoniot conditioas a consequence of the previous constraint
whenever each;(z, t) has bounded variation irx

> hilpe bt = 3 £ (o @3,0)
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However this is just a single one dimensional constrainbab $olution remains
still undetermined.
We will also make use of the following:

Definition 2.1.5 Let7(p) : [0,1] — [0,1], 7(¢0) = o be the map satisfying for any
p # o the following conditions:

We can look at the values a solutipn; (b;|a;) takes at the junction and denote them
in the following way:

p(t) = (py,- - 7ﬁn+m)(t) = (p1(b1), -5 Pn(bn)s Pri1(@ng1)s - o5 Prrm(@ngm))(2)

By imposing appropriate conditions one obtains these gaueindependent of time,
S0 we can writep, ;(t) = p,);. Conversely, setting one can obtain a weak solution
by solving the corresponding Riemann problems on each reagectively for in-
coming and outgoing:

pe+ f(pe=0, zeRt>0
Pi,0 ’lf xr <0 (24)

p(r,0) =

\

pe+ f(p)e=0, z€Rt>0

p(ZL‘,O): .
pjo tf x>0

\
The desired weak solution at a junction will need to have \frane speeds on each
road moving outwards, that is negative for incoming roadbkg@ositive for outgoing.
This imposes constraints on the density as follows:

pi € lo,1] pio>0 i=1,..n
r ’ . (2.6)
Pi € {pi,O} U (T(pi,0>7 1] P40 S g 1= 17 s T

ﬁj < [O, T(pj,O)) U {pJ,O} Pj,O S g j =n-+ 1, ., n +m '
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Holden-Risebro conditions

A first example of Riemann solver for traffic networks has beesented in [10].
In this case to define a solution after €q2[€)](2.7) antamidil constraint is im-
posed at each junction: tlemtropy conditiorconsisting in the maximization of the
following functional:

Jr
E(ﬁl?"'?ﬁner Z p] /f

Hereg(-) is a differentiable and strictly concave function. The grofexistence
and unigueness of the solution of such maximization probéesomewhat construc-
tive: it makes use of the front tracking algorithm for incsegyly better approxima-
tions of the initial data and of the flux function, and obtatins desired result as the
limit solution of this procedure.

This method has a drawback in that it is not possible to maearttie flux, as some
functionsg(-) cannot be treated and f(p;)/ f (o)) in particular.

Coclite-Piccoli conditions

Another Riemann solver was later presentedin [5] &hd [6F fEmges[(2]16) and
@) forp, ; are again considered as a constraint for admissible sokiith waves
exiting from the junction. Furthermore the following otlemstraints are imposed:

e We assign a matrixl of turning coefficients describing the fraction, of ve-
hicles turning at the junction from roati, i € {1,...,n} toroadl;, j €
{n+1,....,n+m}:

Op411 c Ant1n

Ontm,1 *° Ongmn

Such coefficient must satisty < a;; < 1and »  «; = 1 so that the cou-
j€Out
pling condition is split into:

i (pj(a,t)) ZaﬂfZ (pi(b,t) j=n+1,.,n+m (2.8)

This condition is in agreement and subsumes conservatioarsfthrough the
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junction. In fact one can observe the following:

n-+m n+m n n n-+m n
E fi= E E ajifi = E E ajifi = E Ji
Jj=n+1 Jj=n+1 i=1 =1 j=n+1 =1

While the Rankine-Hugoniot condition was not enough to uheiiee a unique
solution, one might hope that now the turning coefficientriratl imposes
enough constraints to reach such a goal. Unfortunatelyighssill not suffi-
cient, in fact a simple counterexample can be shown: letsicker again the
three-junction with a single incoming road. The followirgnity is a solution
satisfying the additional constraint just considered:

pl(l‘,t) = Pmaz, pg(l‘,t) :pg(l‘,t) =0

In fact all derivatives vanish on each road, and car conservéhrough the
junction is also satisfied, as all fluxes also vanish, so this valid solution.
Note that this does not even depend on any particular matrigctually in

this case equatioi (2.8) is trivially satisfied and becorhesidentity0 = 0.

Clearly this is not a desirable property of a model, and istdube fact that
the propensity of drivers to cross the junction is not actedor. Therefore
it can be useful to introduce another condition accountmysiich desired

property.

To determine a unique solution again a maximization of thre passing the
junction is carried out, that is over the cumulative outgdinx function:

n+m
(ﬁla < 7ﬁn+m) = argmazxap, ..., Prtm) LZ f (ﬁj)]

i=n—+1

Actually because of car conservation this also corresptmdsaximizing in-
coming fluxes:)_ f (p;)
i=1

When there is only one incoming road these conditions aré/algmt to maxi-
mizing average incoming velocities.
The solution that is found is a time-linear translation of eavside function (as
seen already in equatiois{R.3) abhdl2.2)), which will ale&agy determination of the
whole solution on the network by immediate determinatioshadck interactions.
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Chapter 2: Traffic flow on networks

For junctions where the number of incoming roads is gre&ten butgoing ones
there need to be further conditions. When not all cars casifp@gunction it has to be
determined which incoming roads will allow cars proceedf th some right of way
parameters are needed to find an unique solution. For examthle case ofi = 2
andm = 1 with equal roads one fixes a paramejatetermining the percentage of
cars (in terms of flux) coming fronk, allowed to enter first, that is having right
of way; the remaining quotél — q) is left for cars froml,, however this can relax
whenever the actual flux fromy is lower than allowed, so that more can come from
I, instead.

The whole discussion can be further extended to deal with tispendent turning
coefficients.

2.1.4 The turning coefficients

This kind of modelling is one of the simplest way to perforraffic flow simu-
lation. The model is justified by the poor information we tgdly have on large
highways. In most circumstances we will have simply dailgrage traffic measure-
ment obtained by averaging on a period of several months.

We will assume that all junctions are constituted by threelent roads each. This
is a usual assumption in traffic flow modelling, but we muserfadw often an even
lower level decomposition is used with one-way roads ttgp(@e’'d need six such
blocks to simulate a single two-way roads triplet, see fifiB9, to obtain directed
graphs. By the sole knowledge of the I/O fluxes at a junctiomaxe infinitely many
solutions for the flows of cars that take a given path at thetjan.

Let us denote by; andO,, i = 1,2, 3 the inflow and outflow of the roads at the
junction. Clearly by cars conservation we havet+ Io, + Is = Oy + Oy + Os3. If
we denote byy;; the fraction of cars turning from directiarto direction; we obtain
readily two valuesy;’ ando; such that each;; € [0}, o}'] is admissible.

These are obtained by solving the linear system

aoly +asls = O
ool +asels = Oy
oasly + agsls = Os,

with the cars conservation constraint ang_; ci;; = 1,Vi, 1 > a;; > 0.
We will assume these intervals to be characteristic of taficrin the network
(i.e. changing thd; values should lead to a change®@f but not of thea's). More
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2.2 The case study

precisely we will assume eaeh; to be a random variable on the interVaf?, o'].
Similarly the stations can be treated by the knowledge ofrtfiew/outflow data.
Let us denote with andO the total inflow and outflow at the station from outside.
We will denote byl; andO;, i = 1, 2 the car flows before and after the station in the
two directions. Clearly we have by cars conservatiocn O = I, — I — Oy + O;.
Simple algebra gives the input/otput flows at the statiorao$ e a given direction.

In fact if we setl = I3 + I, andO = O3 + O, wherel; and, stands for cars
entering and taking directiob and1 respectively (similarlyO; and O, are exiting
form directionl and2 respectively).

The unknown values;, 1,, O3, O, can be computed solving the linear system

Litl, = 1
O;+0, = O

I3 -0y, = IL—1,
Os—1, = O, 0.

Once again we have infinite solutions for the fluxes and undercars conser-
vation constraint and nonnegativity we obtain intervalexistence for the values
I3,14,05,04. Letus sets,;, 1,5 = 1,2,3,4 the fraction of cars that at the station
take direction; coming form direction. Note that3, = (a3 = (40 = (31 = 0. AS
for the o’s the 3's will be assumed as random variables characteristic of tffictr
network.

2.2 The case study

2.2.1 Introduction

The present work describes a study conducted for the locedrgmental author-
ities of the Ferrara province to analyse the impact and pialamsefulness of two
planned new highway stretches. One of them should be cangette north-to-
south A13 highway from Ferrara to the more western A22 dirette other would
be a highway variant of the already existing E55 motorwaydimgpeast to the sea.
These have both the potential to lift traffic away from cutremngested areas open-
ing direct connections to destinations previously needietpurs or reachable with
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Figure 2.3:The highway network studied

ordinary roads only.

The different network scenarios have been evaluated by sn&famumerical sim-
ulation of traffic. We have chosen the Lighthill-Witham-R&ds method because
of its current wide acceptance, versatility and the readyrad simulation methods
on road networks. For evolving the solution in time we usedaaenront tracking
algorithm, because of its adaptivity and readyness initrg@inctions making it the
method of choice in the case of traffic networks.

Aside from the implementation of the numerical simulatiogi@e itself, a certain
effort has been required in treating the available rougtfi¢raaformation to obtain
more useful data for use as input for initial condition, bdary conditions and turn-
ing preferences describing the behaviour of junctions.

2.2.2 Network setting

Our study covered the network visible in figlirel2.3, inclggdinost of the highway
infrastructures available in Emilia Romagna and nearbioregy

In particular the simulation has been conducted with théthgi-Witham-Richards
(LWR) model together with a front tracking method, updatthg vehicle density
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2.3 Simulation scenarios

profile at successive points in time. The front tracking rodtts concentratind cal-
culations in particular over discontiuities areas for upaaposition at each time
step. Moreover the LWR model is able to simulate the birth laackward (with re-
spect to the flux) propagation of high density - and thusaaiti situations.

We considered different possible scenarios, correspgrdidifferent variants for
the stretches Ferrara-A22 and E55. To analyze traffix flows alearer way we
have conducted analyses corresponding to different éoreadtmodes (from north to
south, from east to west and the two opposite directions$gbgcting subsets of en-
trances significant for observing how vehicles redistetmter the highway network.

For interpreting the results one needs to highlight how th#i¢ flux depends
from the numerical density of vehicles, thus clearly reaghhaximum intensity in
an intermediate situation between null and maximum denstich are correspond-
ing to empty and congestioned road. Values shown on graphbase of traffic flux,
so that for a correct reading one needs to keep in mind thavédwes can point to
both light and fluid or congestioned traffic. The relationedetining how the flux
is governed by numerical density is caltethdamental diagrarand depends on the
characteristics of each particular road stretch.

Because simulations are over time we entered constant floi@she network
until a substantially stable situation was reached, and tvephs were obtained.
Because of this it is possible that in a few cases the staii@tate has not been fully
reached. Simulation graphs correspond to different highsteetches; whenever
these enter or exit from the analyzed area we added fixedi@agiding of 5km, and
the label refers to the first toll encountered. The follomthggram shows a sketch
of the simulated highway network and the symbols adoptethfsmain nodes. For
reading keys one can refer to the initial picture in Apperzlend to pictures in the
following.

2.3 Simulation scenarios

Analysed scenarios are ordered over groups according twéfie direction (4
towards South, 2 towards North, 4 towards East and 4 towarlst)\Nand corre-
spondingly the entrances and exit points were establidgbach of these scenarios is
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Figure 2.4:Network and naming

further comprehending four cases: first come the two vagiahthe junction A13-

A22 according to the entrance on A22 (respectively high Meartova or lower near
Reggiolo Rolo) of the highway stretch from Ferrara on A13s@dment on previous
graph) but without the motorway Ferrara-Mare (HG arc in trevjpus graph). Next
both new stretches IK and HG are simultaneously considered.

Scenario | 1|2 [3]4|5|6]7]8]|9]|10]11]12]13]14]
1J higher VAR Vv AR VAR%

IJ lower |/ Vi NARY NARY

v
HG v v VI v v
North-South| / | v | v | V

South-North NARVA

West-East VIiVIVIY
East-West NARVARVARY:

It must be stressed how simulations performed can only geogualitative clues
(due to the geometric structure of the network, to the charestics of toll gates and
of current traffic) but no quantitative results; for theses ihecessary a further more
deep analysis and the solution of various problems (staftom and estimation of
induced traffic).
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In fact if we consider the stretch from Ferrara to A22 traffil se made up of both
traffic diverted from the current highway network - modelethvall data seen so far
- of that moved from the ordinart road network, and of thatgae induced traffic
which is created by the sole construction of the new infracstire. Results presented
here refer to the diverted highway traffic alone. In this adiserted traffic could be
estimated as ad daily flux of 1700 vehicles. A more accurdtmason can clearly
only be obtained in a more advanced phase of the projectédrifhway stretch and
its precise position.

In the different scenarios of these simulations we kept taonisall coefficients
for crossings and junction points already existing; sughatlyesis should surely be
abandoned when performing a quantitative analysis, whmhldwequire an evalua-
tion of influence of different driving paths over the turnicggfficients (an illustrative
case in this direction is given by the Ravenna junction ove4 &vhich would reach
high importance in case of realization of the 4F highwaytskecorresponding to
the current Romea). Furthermore an accurate simulatiomdfake into account in-
trinsic charachteristics of the stretches which influeihegaehaviour in the so called
fundamental diagram which is charachterising traffic inrttethematical model.

2.3.1 Network data

Let's first review major data types that were obtained andyaed during the
course of this inquiry:

e distribution of vehicle matriculations over the regioratdritory

e daily origin/destination matrices for provinces and cguwsgats in Emilia Ro-
magna

¢ highway traffic fluxes over the highway nat of Emilia Romagna

e entry/leave fluxes at toll gates of such network

¢ turn coefficients estimated at toll gates and splittingfyimey crossings
e hourly course of highway traffic

o fluxes on provincial roads and freeways on the area of corfoee55
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The two former points pertained to the first part of the redeawhile the others
have been treated in the second part.

A first facet that has been noticed over data of all tipologi¢lse large preponder-
ance of short range movements with respect to longer ones,legher than initially
expected. From this follows that the studien infrastruesuwill be - as detailed be-
low - more useful as local support than capable of divertomgldistance movements
by the creation of new alternatives.

This partly circular issue is obviously also a limit in thedy of new configurations
starting from the sole current data, as clearly the E55 NiRm@aea would create a
significant change in the geometry of north Italy transpamt) the new possibilities
would induce the birth of different activities. However @esns reasonable to deem
such new activities mostly laying outside of the Ferrarattay, an area suffering
mainly from a certain lack of infrastracture which is dispd in the current satura-
tion conditions.

The highway route from Ferrara to A22 could in theory serfied#nt user groups:

¢ those passing from the Ferrara area towards the ModenadReigyrict, both
in local short range moves and in longer ones

¢ highway heavy traffic from Ferrara towards Reggio Emilia bagond

e (in the higher scenario) traffic coming from A22 and headegbhd Bologna
south-eastwards

¢ similar transits headed towards the Appennini

e partial rerouting of traffic towards the coastline throulgé Cispadana - Ferrara
Mare

e traffic generated by the sole presence of the infrastructure

Necessarily the a) users typology would constitute the ésgkolume, and to-
gether with b) would be the most affected by the new infrastme. The component
currently making use of ordinary road network can be idesttifas being of about
1700 vehicles per day.

According to the extrapolations done through the data &btmths, typology b) of
traffic seems to be currently constituting 8.39% of heavijitréhrough Ferrara nord,
and 4.99% from Ferrara Sud (with roughly exchanged pergestane obtains the
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2.3 Simulation scenarios

highway component for light traffic of type a) ). This doestaanly lead to an under-
estimation of the actual value but it can nevertheless bé&rowed in two ways: on
the one hand it appears anyway coherent in order of magmtittiehe analogous
estimates which where obtained with regard to vehicles ngrfitom beyond Verona
and to actual values obtained, on the other hand the figureS/i routes in the
regional researches are already very low.

With respect to c) we inferred from the data that these woeladry low fluxes,
in particular taking in consideration the precision of oauices, and anyway they
wouldnt help much in easying the difficult situation on tha #etween Modena and
Bologna. Moreover fluxes of type d) are only slightly highedawhile they do
lighten the most congestioned stretch of the Al they als@ lgravitating in the
Bologna area.

Also the users of e) type routes seem to be of little impagtaiticular in the variant
without help from E55 where such value can then be neglected.

Up to here the analysis concerned already existing traffichvivould be "di-
verted” on the new infrastructures, which thus functionra#fit lighteners. It's a
whole other matter with regard to traffic induced by the pneseof the infrastruc-
tures, an additional load that will weigh on both these ardpieexisting network,
adding to the current traffic with an effect that might everdbeisive in nearly criti-
cal situations.

However induced traffic f) can hardly be estimated with gomtsion, also because
of its dependance on economical factors. Anyway it is coragas a local part aris-

ing from activities growing in the neighborhood and a glopait related to all new

activities coming from distance (also thanks to a stretkd E55) and insisting on

this area.

To evaluate the size off all such flow tipologies one also bahsider in paral-
lel the effect of the Cispadana motorway - currently understaiction - which by
serving a similar route would also already function for $anflows. In particular
such infrastructure is suitable for supporting all sma#itaince movements, which
in undergone research also resulted being those most lyeafigtting the highway
variant. Therefore this would only be interesting if paivgith the E55, for an inte-
gration of the respective functionalities.
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2.3.2 Simulation setting

The research part concerning the simulation of traffic flux@s been conducted
in collaboration with Kaiserslautern University in Gerngan
Performed simulations concerned the highway road netwoitkg two areas divided
by the A13 from Ferrara to Bologna as sketched.2, thus including:

e the A22 stretch from the junction to Al (near Campogalliamp}o Mantova

¢ the A13 highway from Occhiobello to Bologna

e the motorway Ferrara-Mare

¢ the Al stretch from Reggio Emilia to Bologna

¢ the continuation of A1 from Bologna to Sasso Marconi

e Al4from the startin Bolognatill Faenza, that is beyond threefion to Ravenna
¢ the junction to Ravenna from the A14 highway

¢ the triangle at Bologna knot, comprising the junction betw@1 and A4 from
Firenze to the Adriatic sea and backwards

¢ a hypotetical highway stretch from Ferrara to A22, in twdet#nt configura-
tions

e the adriatic highway stretch E55 corresponding to Romea

Several among these stretches do currently suffer heawyestion in different
and specific occasions connected to the respective pdsi@mvithin the network
and with respect to the surrounding urban territory beingised.

Simulations have shown part of the phenomenons known ta @ecthe current net-
work, as well as suggested possible changes in the way obdishg fluxes arising
from the examined configurations.

The fluxes were defined with attention to data on turns whictewbetained from
current highway flows and from those induced by the creationew stretches.
Fluxes themselves have been set at entrances into the Ret@godescribed in the
previous relation; they are mean daily fluxes because Auatdstper L'ltalia was
only able to provide the cumulative yearly data, in this gagerring to year 2003. In
correspondence to toll gates there are incoming and exgdglaxbstantially equal to
the daily average, thus the contribution to the respectiatch turns out negligible:
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the network behaviour is then mainly due from feedings ankissivithin it, and from
interactions among these, which also can cause unexpdutedmena.

The considered graphs show together the fluxes of heavy ghttiaffic, together
with the sum. However this is only a hint for the overall sttoa, since simulations
for the different vehicle categories have been conductpdragely from each other
by changing the respective parameters.

The scenarios we've gone through represent particulaatgtus and aspects of
vehicular fluxes, and do not intend to constitute an exhaeistse study as rather
an illustrative one. Exhaustiveness and perfect adheramclbowever hardly reach-
able, given both the current incompleteness of availabla dad the arbitraryness
of analysis choices which were selected within a very widsspm. Therefore we
opted for highlighting the most significant scenarios wiigting their number to
the minimum necessary for achieving at a time clarity, derad significativeness.

2.4 Scenario analysis

Performed simulations cover altogether 35 different saeagwhile separately
handling heavy and light traffic). In the previous relatiorlyothose showing results
of some interest were shown, and they’re analysed and disdua more detail in
the following.

Given the peculiar geometry of the examined network, it wassible to split the
overall traffic according to four different movement modas;responding to differ-
ent destination directions (thereby excluding improbaoié in any case neglectable
U-shaped routes): in order they are from north to south, fsooth to north, from
west to east and finally from east to west. In the cases of +sartith axis the Cis-
padana has been modeled as bidirectional since it is inipeamthogonal and lacks
a preferential directionality. On the other hand the diewl selection was used in
the cases of traffic on the west-east axis.

These four cases have themselves been further split in mmenasos each, accordint
to the realization of the Ferrara-A22 connection in the tanants (near Mantova or
near Reggiolo) and further according to the inclusion of&@r Mare and E55.
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Direction | Scenario§ Numbering| Directions | Inflows
on Cispadana
North = South 4 #1-4 2 45,6
South=- North 2 #5,6 2 2,3
West=- East 4 #7-10 1 1,2,6
East= West 4 #11-14 1 3,4,5
2.4.1 Results

In the following we describe the results of simulations parfed. In appendix
for each scenario a set of graphs is shown, each one showirgpalsot of the fluxes
on one of the highway stretches involved. Both light and hieesffic are depicted,
as well as the total flux. The time point is usually after ormsanvergence of the
solution, so that mainly one can study the effect of the ndtwgtructure on fluxes;
we're not considering here the specific dynamic details bsedhat would require
much more detailed data for model calibration, however te¢hods applied could
in theory be reused in that case. Junctions are visible bdththve indication of
their position and the changes in flux as traffic is divertaddms) to (from) other
roads. In the following a detailed description of resultstfte various scenarios is
presented.

North to south direction

Scenarios 1 and 2

The first two scenarios, both involving traffic directed $gure essentially simi-
lar in the critical issues highlighted, which thereforentout to be independent from
the position of the junction Ferrara-A22 over this latteheTalready intense fluxes
coming from Reggio Emilia get increased by the influx of A22tlsat a critical situ-
ation arises from here to the next junction with A14 in Bolag®n this highway the
traffic is lower over the first stretch, but grows significgnth the stretch between
the junction with A1 and the entrance of A13; on the other hiaegbnd this latter
highway the traffic movement is eased.

In both cases the traffic over the junction Ferrara-A22 tuumisto be higher in the
west-east direction.

Scenarios 3 and 4
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In these scenarios in comparison with the previous onestiwitcthes were added:
Ferrara Mare and E55; this reflects in the fluxes on A13 whiehl@awvering from
25000 vehicles to 20000. However this proves not enough poawe the congestion
situation located at the junction with A14 on the west strietan the contrary this
turns out slightly worsened; while in east direction theaiton is more fluid. This
apparently counterintuitive consequence is due to the evhetwork behaviour, and
one must note how fluxes are not to be added or subtractedigiteecause - even
without changing the amount of vehicles entering in eacle timit - the congestion
situations cause changes in speed and consequently alsmflildensity in the inte-
rior parts.

The already critical situation already seen on Al beforeoBo& does not show any
substantial difference in these scenarios.

The two added arterial roads (with respect to the two pre/gmenarios) would still

not carry high fluxes.

Finally, again it can be seen that the two locations for timefion Ferrara-A22 dont

provoke any big changes in the global traffic distribution.

South to north direction

Scenarios 5 and 6

For the South-North direction we've considered the cask thi highway version
of Cispadana only, which shows more traffic in the first scenaCritical situations
arise on the stretch of the Bologna triangle from the engarid13 and Al west, as
previously already seen but in the opposite direction
However - differently from what already seen in the oppoditection - traffic on
A13 reaches 30000 vehicles per day, which can be considedatinger level that
sometimes is already causing slowdowns.

Scenarios 7 and 8

On this direction one starts to notice differences betwé&enwo configurations
for the junction Ferrara-A22. In particular, besides thghhwolumes seen already
over Al, one finds again the characteristic congestion od\flZebolognese stretch
between the A14-Al junction and the attachment of A13. Tlilerdint behaviour
between the two geometries shows up in the faster saturatisach stretch which
arises in scenario 7.
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It is noteworthy how fluxes over A22 seem to be relatively leigthan the effect
they are inducing over Al, even though this is only considéoe a single direction
(thatis, itis not about a split of the vehicles among the twedions), but especially
how the light traffic fluxes become lower (from about 34000 déavwroughly 31000).
This probably could hint to the change from high traffic gtdlwing to a slowdown.
Therefore the graphs of Al - even though apparently sinoléhose seen for North-
South moves - are essentially different from these, anddtdsie to changes in the
ratios between heavy and light traffic.

Scenarios 9 and 10

The following two scenarios, where Ferrara Mare and E55 dded, show some
effects which were missing in the cases 7 and 8.
First of all the fluxes on Al after the A22 entrance are evemdng@56000 for just
the light traffic and 20000 for the heavy one).
With regard to the A14 stretch before the A13 entrance tlhiasdn stays unchanged,
and the new stretches do not seem to be helpful. Here agaiavieowongestions
show up faster in the second variant.
On the additional E55 stretch a different behaviour of haaargus light traffic shows
up: the former reach immediately a stationary regime (ofuald®000 vehicles),
while the latter show more instabilities and the creatiomedfexed waves coming
from the junction to ravenna from Al4.

East to west direction

Scenarios 11 and 12

In these two scenarios the connection A22-Ferrara showsdlaka maximum
level among those found in this research, of about 2100Cie=hper day. The only
relevant effect differentiating the two variants seemsd@bBologna a decrease in
light traffic fluxes on the Al from fork with A14 and the junatio
The situations of highest traffic affect A1 beyond the Bolagnangle towards the
Appennino, and on the Al4 - beyond Bologna again - while gygthecreasing at
the fork to Ravenna.

Scenarios 13 and 14
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The addition - with respect to the two previous scenariosheftretches beyond
Ferrara is determining a drain of E55 traffic on the Ferraragywahich seems to en-
ter the A13 without incurring slowdowns (with respect to grevious two scenarios
there is in fact a direct link between the flux diverted fronbHfy the Ferrara Mare
and that added by this to A13) and without the formation okiaard moving waves.
The connection Ferrara-A22 is subject to a flux decrease mita26% (and its ge-
ometry seems to be only small influence over the Al on the Badgangle); while
on the Al4 there are increases from 40.000 to 50.000 velpeleday on the stretch
between the merging from Ravenna and the fork with A13.

2.5 Concluding remarks

The undergone study has shown how the construction of ewritja highway
variant of Cispadana - also because of this very same existietch - might have
little efefct, while its realization in the context of E55 uld be able to significantly
help in lowering traffic by offering a different route for waus transport needs.
However the critical areas around the Bologna subnetwaglcarrently already at
such a saturation level that the situation there would no$glestantially better, even
after a lightening of the estimated flows; on the contraryva dases have emerged
where the new network configuration would worsen situatmmnsently almost crit-
ical like the Ferrara-Bologna stretch. In this context itikcbbe useful a joint study
including also the new infrastructures which are beingisaifbr the Bologna area.
These remarks are even more significant when consideringetli¢raffic induced by
the added infrastructures, a component which will courtiarice part of the traffic
relief obtained through them: here again it will be impotttrat its effect dont get
concentrated in the areas now already near to a criticatgtu

The applicability of developed software, thanks to its éficy, still allows the
handling of more complex scenarios than those analyzedsistiidy, be they with or
without urban additions. In parallel also the amount of it data would become
more massive so that - to focus on the most interesting ortegould come handy
also the developement of a more user friendly interface hadlirect use by those
involved in planning.

Among possible variations that could extend the develogstém is the addition
of hourly fluxes entering into the network, so to be able talgtine emergence and
vanishing of critical situation in intense traffic moments.
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Chapter 3

Kinetic models for economics

3.1 Introduction

Economic activity is naturally composed of the set of binexghanges of goods
within varying couples of subjects in a society or even betwdifferent countries.
Even though it would not be feasible to model each of thenviddally - both for the
large numbers involved and the amount of different parareetach trade arguably
depends on - it has been noted that some of their aggregdtetsefan be observed
more or less repeating among time and space, and thus leaddhes to modeling.
In particular the income and wealth distribution show reentinequalities favouring
a small minorance of extremely rich people, regardlesseftthtial structure in the
situations considered.

This raises the question of whether said invariants can lket@gommon prop-
erties of all market economies once certain base critedssatisfied. The italian
economist Vilfredo Pareto in_[22] already noted that suaicde seem to be acting
similarly in different situations:

It has been noticed long ago that it would be useless to opexrafoods subdivi-
sion aiming at an evenly distributed wealth. After a while trestroyed unevenness
would appear restoredor also in [23]:La tendenza che ha la popolazione a disporsi
secondo una certa forma riguardo alle entrate ha per coneaega che le modifi-
cazioni recate a certe parti della curva delle entrate setipuotono sulle altre; onde,
in ultimo, la socieh riprende l'usata formﬂ.

A kinetic description for market economies seems to be arabpath to follow,

1The tendency for population to adjust towards a certainrmedistribution implies that changes
to a part of the income curve are reflected on the remaining,@tethat ultimately society recovers
the usual shape.

53



Chapter 3: Kinetic models for economics

because it directly mimics the dynamics analysed. By saglitie minimal and com-

peting conditions required to reproduce the aimed invawamcomes it is possible

to develope insight into the actual phenomenon and disaagdaential prerequisites
or overfitting ad-hoc theories.

In this context many techniques initially developed witktatistical physics can
prove useful. As noted above:

Statistical physicists have determined that physicalesgstwhich consist of a
large number of interacting particles obey laws that areapdndent of the micro-
scopic details. This progress was mainly due to the devedoporf scaling theory.
Since economic systems also consist of a large number cdatiteg units, it is plau-
sible that scaling theory can be applied to economics (8taet al., 1996).

Many microscopic models have been presented over the las$ ye particular
with the emergence of the so calledonophysicstudies, for some overviews see

[25], [14], [20] and [24].

3.1.1 The mesoscopic approach to wealth distribution

In kinetic modeling for economics it is possible to proceedlagously to the case
of traffic flow and to the theory of rarified gases. The kinegnsity f (v, w, t) de-
scribes the distribution of economic agents and is thusyawan-negative. Here
represents wealth,is time as usual, while is a third parameter measuring i.e. the
trading or investment propensity, or social class. JustViglocity in traffic model-
ing here wealth is a non negative quantity; moreover it islisea single unifying
measure of all different assets owned and exchenged by edividual.

A mesoscopic description seems to be much better justifiecrfg non-local
economy than in the case of traffic flow, due to the signifigalatfger number of
interacting agents actually involved in the real phenomede reproduced: more
orders of magnitude separate the few hundred vehicles oadavay from the hun-
dreds of thausands or more individuals who are partecigabi®conomic activities.

Sometimes even a simpler kinetic density in fte, t) form will suffice, as even
basic models are able to fit the empirical data showing Paad®for agents with
large wealth, that is an inverse power law decay. In padicohe hasF.(w) :=
PriX > z] ~w™?, as detailed in the next section.

Data fitting for the tails of such distributions must be haadlith care: it has
been pointed out (cfr[[19]) how easy it is to fit power lawsétatively small lognor-
mal data sets. This is where kinetic derivations from sinmpieroscopic generative
models prove useful by pointing to the effects of basic andespread underlying
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mechanisms and thus providing grounds for confidence in taeitself.
In the following the derivation of kinetic description ang properties will be
obtained starting from various models of the microscopitahyics.

3.1.2 Power laws and scaling

The distribution of income and wealth in various countried imes shares simi-
larities in the higher tail behaviour with many other realrldajistributiong.
The common phenomenon of wealth condensation - by which 8 simerity of in-
dividuals controls the mayority of the resources - was gidor income already by
the economist Vilfredo Pareto, who proposed as model thewolg inverse power
law, which thereafter took his name:

f(z) = abz !

for z > b. The corresponding cumulative density function is thuspyynf'(z) =
1 — b*x~*, from which the complementary CDF immediately follows:

F.(z) := Pr|X > z] =b%~“

This representation makes the scale invariance propeidg e
Pr(X > fz] = (b/3)%x~* « Pr|X > z]

Such decay is slower than that of a normal distribution, aritieérefore said to be
proper offat or heavy tails The parametet is often within the rang€0, 2]. On a
log-log scale a power law shows up as a straight line.

A Pareto distribution is only a good fit for large incomes, Mtihe lower majority
shows up a lognormal behaviour. This combination of logradrend power law
turns out to be a good model for wealth distribution in mostdieped countries and
across time, from ancient Egypt to Europe, Japan and US/Aglhawin developing
nations. Empirically the exponent for wealth is often measured to be about 2 in
western countries, while for financial returns it is aroun@f [17]).

2In particular power laws have been observed in distribstamdiverse as that of book sales, stock
returns, lunar craters, telephone calls, scientific ctetj earthquake severity, sand grain sizes, city
sizes, web sites accesses, solar flares, word frequenciedrefact it has been stated (Levy-Solomon
1996) that also in multiplicative processg®wer-like systems are expected to arise as naturally as
the Boltzmann distribution”
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3.2 Conservative wealth exchanges

We first review the most fundamental models for wealth exglbamnd the corre-
sponding resulting distributions, upon wich more elab®cases are later built. The
transaction rules considered here are initially consemaso that a certain amount
of moneys;, » will change hands passing from an agent with weailttio another one
with wealthws:

/ /
w; — W; =w; — 019 Wp — Wy = Wy + 012 (3.1)

Such prototype transaction will be called admissible and #ffectively occur pro-
vided that botho; > 0. This accounts for prohibiting debt and short selling.

The exchanged amoudit; can be of various type, i.e. of the following form:
(5172 - 90

with C' > 0 and# a random variate uniformly distributed on the intergall, 1). As
an example one can set:

91,2 = O(wy + wy)
Local conservation of money for the couple of agents is asagyaranteed, being
explicit in equatiol-3]1 where only a transfer occurs withdigsipation or gains, so
that:

w1+w2—>w'1+w§:w1—5172+w2+5172:w1+w2 (32)

Making also use of local wealth conservation in fiterm one can verify reversibility
of the interaction in this particular case:

(wy, wa)
\
(w1 — 91(101 + ’wz), Wy + (91(’(1]1 -+ UJQ))

4

(3.3)
(w1 — 01 (w1 + wa) + O2(wy + ws), we + 01 (w1 + we) — Oo(wy + w2))

(w1, w2)

The last equality is always possible with := —6,, because the corresponding
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"backward” tentative interaction is always defined and aibie by construction.
From this microscopic interaction rule it is possible taaatuce a Boltzmann-like
kinetic evolution equation for the wealth densjty

1 oo
atf = //ﬁ(w,w*)w(w’,wi)[f(w/)f<w>/k) - f(w)f(w*)] dw, d97 (34)
-1 0
In the case considered the money transfer fate,,)..r..,) iS defined as follows,

to simply select admissible transactions through the atdicfunctionV:

Baosyesturaury = (' = 0¥ (uf, > 0),

*

Figure 3.1: The stationary Boltzmann-Gibbs money distribution foretimversible models
in linear (left) and log-log scale (right) witl» = 1 and various values afi = 0.5, 1, 1.5, 2.

We can define the first two moments of the wealth distributisrfadlows, the
agent density and total money amoufat:

pzfooof(w)dw,

w = %/OOO f(w)w dw,

This model converges to a stable and unique stationaryfetit@ing a Boltzmann-
Gibbs distribution, that is an inverse exponential decaygheown i.e. in[B]:

Foo(w) = Lemv/m, (3.5)
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Time reversible interactions

By loosening the reversibility requirement we can allow fioore versatile and
interesting models. The simplest possibility has beenrisest in [15] and [15],
where the following microscopic money transfer is consader

YWy, 0 <0

51a = (3.6)

—ywy, 6 > 0.

That s, in practice a constant wealth portion of an ageméarssferred to a random
other one. This form makes the agent simmetry explicit, inaesit is already present
in the random choice of agents for interaction it could beugytato set simply; , =
yws.

A slightly more complex model is the following, presentedBh and including a
marginal saving component:

5172 = ’y[ewl — (1 — 6)’(1]2] (37)

Heree is an uniform random variate over the interyél 1) and controls a convex
combination of the two transfers in ef._13.6, that is a gaifmwitighte and a loss

with the complementary weight. The expected value of theeydransfef3]7 is then
comparable to that of ed_(3.6):

E[612] = v{Elew:] — E[(1 — €)ws]} = (w1 — w2)v/2
The money transfer can be rewritten as follows:
012 = ywi — (1 — €)y(wr + wz) = —yws + ey(wi + w2) (3.8)
corresponding to the interaction:
(wi, w2) = (1 = y)wr + (1 = €)y(wr +wa), (1 = V)wz + ey(wi + w2))  (3.9)

This formulation clarifies the roles of ande: the former controls the amount of
money each agent is willing to invest in the trade, savingrémaining(l — )
guota, while the latter introduces randomness in the titsed ivhere each agent can
gain a portiore of the jointly invested amount. This model has also the athgm
that by construction both proposed wealths are positivéhabeach interaction is
always admissible. Foy = 1 this marginal saving propensitis absent and the
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3.2 Conservative wealth exchanges

model reduces to that of Angle (sée [Z]] [1]] [3]] [4]), whiakimptotycally leads
again to a Boltzmann-Gibbs distribution.
The interaction rul&Z3]9 leads to the following correspogdiinetic equation:

of = / / B T [(10.) — e f(0) [ (w,)) dun de, (3.10)
0 0

with 'w := (‘w,/w,) being the agent wealths before the trade which results in the
wealthsw := (w, w,), and clearly with the post trade money couple:= (w', w.,).
The Jacobiary for this model isJ = 1/(1 — ~), while the pre-trading wealths are
given by:

, w—(1=éey(w+w,) wy — ey(w + wy)

w = T+ , Wy = T

The transition rates are the following:
5’w—>w - \I[(,w Z O)\I/(/w* Z O), ﬁw_,w/ =1.

This kinetic evolution leads in the time limit to a definedt&taary state. The first
three moments of can be simply calculated directly: the first two are consérve
while the second converges exponentially towards a constdne. Higher order
moments also converge to those of the stationary state. I8nittdistribution has

1

09

0.8

0.7F

0.6
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0.3F

0.2f

0.1f

Figure 3.2: The stationary money distribution for model{3.7) in linsaale (left) and log-log
scale (right) withp = 1, w = 1 anda = 0.2,0.4. The large time behavior fat = 0.6,0.8
is also shown.

been empirically well fitted by a gamma distribution, and aeucal evaluation of
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its shape is depicted in FigureB.2. In this case for smallasbfw the distribution
starts asv”* with A = —1 — In2/In(1 — v), and the higher follows an exponential
decay of Boltzmann-Gibbs type. As anticipated for= 1 the whole distribution
reduces to a Boltzmann-Gibbs law. On the other hand for srahles ofy the shape
of f is similar to a log-normal distribution with the followingifm:

fw) = —— exp (—M) | (3.11)

wV2mo? 202

with o2 being the variance of.

Inhomogeneous transactions

0.4

0.3
Boltzmann-Gibbs

0.25+
0.2

0.15F
Pareto

0.1
~X—(1+u)

0.05

Figure 3.3: The expected wealth/income distribution behavior. Norseale (left) and log-
log scale (right).

A natural extension of{(37) would allow trading propensjtyo vary and be for
example agent dependent (while constant in time). Thetregutrading rule, ana-
lyzed in [8], would then read:

010 = Yi€w; — Yol — €)ws (3.12)

The corresponding trading propensitigsvould in this case be set initially according
to a given distribution and kept unchanged; for this the $astpoption would be
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clearly a uniform distribution on an interval contained(in 1). Another possible
choice is a power law restricted to the same intervat ~ € (0,1). In the case
positive values ofv the model keeps the decribed behaviour, with an asymptotic
distribution decaying as a Pareto power law?, while for a negatives parameter a
Boltzmann-Gibbs like component appears at modearatalues (while higher areas
mantain their Pareto decay). This kind of "phase” transiseems to be originated
by the relative preponderance of agents with low saving gmejty.

The form of the kinetic equation when inhomogenegts are introduced does
not change apart from the Jacobian and pre-trading wedéttiame.

3.2.1 A kinetic model

All previous models analysed in their microscopic tradiogv can be restated
within a unique kinetic form. To this aim we first introduce angralized micro-
scopic interaction rule subsuming them, and then pass todiresponding Boltz-
mann equation. As we are considering conservative modetsawsatill concentrate
on the amount of money transfered at each trade betweensaggring wealthso
andw,, this time in a more generic form{w, w,; v, ). The corresponding interac-
tion rule then reads:

w'=w - S(w, wy; 7y, 9), w, = Wy + d(w, wy; 7y, J) (3.13)

The trade functiord(w, w,;y,v) could also depend on further parameters, as i.e.
w. Here the trade coefficient is restricted to the intefvat v(w,w,) < 1, while
¥ € R is a parameter controlling the risk of the trade. We recalt the interaction
takes place only when both new wealths are non-negativejdid #he presence of
debts. Such a generic trade function comprehends all prelyidescribed models as
special cases.

Since no particular money unit was fixed, all equations diesq the evolution
of wealth should then be invariant to homogeneous scalihgedwidual holdings,
which means for the trade function to be scale invariant:

0. (AW, Awy; 7, 9) = A6, . (w, w,; 7, D).

We can state a corresponding Boltzmann model for the dyrsaofithe wealth den-
sity function f (w, t):

Ouf (w,t) = G(f,w;7) = L(f, w;v) = Qe(f, [)(w), (3.14)
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Clearly hereGG( f, w; ) represents a gain term for money exchanges ending with an
agent having money, while the loss terni.( f, w;~) accounts for trades starting
from an agent with money. These two terms can be explicitly stated by the usual
parametrization of the remaining variables as follows:

G(f7 w; 7) = /R /0 B(/w/w;)ﬂ(w,w*)Jf(/w)f</w*> dw, dv (315)
L(f,wiy) = /R/O Blww)—(wwr) f (W) f (wy) dw, di) (3.16)

with ("w," w.) being the pre-trade wealth pair aridhe Jacobian of the transforma-
tion from (w, w,) into (w’, w’,), which explicitely reads:

- 00 (w, wy;y,v) 00 (w, wy; 7y, V)
1+
ow ow,

At this point it’s possible and convenient (i.e. to avoid flazobian) to study the
weak formulation, as in the following

Lemma 3.2.1 Given an arbitrary test function(w) a weak solutiory (w, t) to (313)
satisfies the following identity

/ Qulf. f)(w // [ Btanrcsumo f ) w2

(3.17)

o) + o(w)) = p(w) = P(w,)] dw, dw do.

Furthermore the following reversibility assumptions oe thade function
i) 0w, ey, V) = 0w, w; vy, 9), (3.18)
i) 35(10,;012; ) 5‘5(wg;**; Vs 19), (3.19)

lead to the identity

/ Qu(f. f)(w :——//W [ Bty () () 0

—f(w) f(w)] [p(w') + d(w)) — d(w) — ¢(w.)] dw. dw d.

62
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It turns out that there are two only trade invariant funcsiathat is for which

[ Qelf Pw)ow) dw =0,

namelyy(w) = 1 and¢(w) = w, corresponding to conservations of total agent
number and of wealth respectively.

Asymptotics for reversible models

Whenever the two conditionE(3118) alld (3.19) are satisfielyweak evolution
equation [[320) with test function(w) = log f(w) gives the following entropy
inequality, analogous to the Boltzmann inequality in theoity of dilute gases:

T Qe(f. f)(w)log fw) dw = —// [ Bty F(0) ()

0 (3.21)

fw') f (wy ))
—f(w) f(w, log | %——"~ ) dw,dwdv <0,
Flonfw] o (H
because due to the monotonicity of logarittira-y) log(z/y) > 0 always holds, with
equality satisfied iff: = y. Moreover this equality is satisfied whenewet f(w) is
an invariant, that is if:
log f(w) = ¢1 — cow

wherec; andc, are nonnegative constants determined by normalizatiterierj such
thatc; = log(p/w) andey, = —1/w. Therefore wealth follows a Boltzmann-Gibbs
distribution as in[(315). This result is robust being indegent from both the specific
initial wealth distribution and from the trading kerngl, .. _,(w ws)-

We can also introduce the entropy functiéf) = — [, f(w)log f(w)dw, for
which the following inequality holds:

) / Qu(f. f)(w) log f(w) dw > 0.

Therefore entropy also keeps growing independently of pleeific wealth distribu-
tion, until this reaches the stationary state, in which ¢hseentropy is given by:

1= (e (2) 1)

63



Chapter 3: Kinetic models for economics

Non reversible markets and risk

Wheneverl(318) an@{3119) are not satisfied - so that the trdd is not reversible
- it's no longer possible to obtain the previous entropy @pte for gaining insight
in long time asymptotics. However we can still obtain a baftederstanding of the
trade dynamic in a conservative setting.[Inl[20] the follogvgeneralized splitting of
the trade rule is suggested:

w =1 —y(w,w,))w+ F(w,w)w, +0r(w, w,). (3.22)
- ~~ g A ~~ o A ~~ o
saving propensity potential transaction risk

This marginal saving propensity is however different thaf3I8) and[[b]. As ex-
amples the previously seen trading rulesl(3.7) (3.9)tresthe following terms:

U}/ = (1 — l)wz —+ le + Hz(wz + U}j)
T (3.23)
w’ = (1 — é)wl -+ ijj + Qé(yzwz + ’Yjwj)

This splitting of microscopic interactions results in tedas symmetric with respect
to the two individual wealths, with the exception of the riskm which changes sign
upon swapping of the agents.

The risk term is controlled by a random variable, nantely 1.(¢), characterized
by the first two moment8 ando?; the variance determines an average size for the
random transaction component which on the other hand idiaksed (and possibly
proportional) to the starting wealths involved in the exalp@ Examples of risk
functions are for example the average money used in [5]:

r(w,w,) = (w+ w,)/2 (3.24)
and the minimun money used i.e. In]26]:
r(w, w,) = min{w, w, }

In [26] also a money dependent trade coefficient is consillere

min{w, w,}

V(w,w.) =0 W+ Wy

which further suggests adopting the following general amavenient form for the
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risk term:
W + Wy

T(wv w*) = /7(w7 w*)

Here a higher saving propensity(w, w,) ~ 0) will correspond to a lower amount
of risk, and viceversa. Setting a constant transition fate 5/2 we get again the
risk function [322H) which is used in interaction rile{3.7)

The transition rate in the kinetic formulation will cleaityherit the characteristics
of such formulation. It can be expressed as:

ﬁ(w,w*)ﬂ(w/,wi) = B(w7 Wi w/7 wfk) ,LL(Q)

Here B(w, w., w', w’,) represents the probability of interaction for a given ceup
agents.

Linear trading asymptotycs
Some further analysis can be carried out for trading rulekefollowing form:
wh = (1= y)wy + 7w, + 0wy + (1= Aw,) (3.25)

with A € [0, 1] defining the risk. The target wealths produced are alwaysssilole
iff 0 € [max{y/(A —1),(y — 1)/A}, min{(1 — v)/(1 — X),v/A},] For the case
i.e. of A\ = 1/2 andy < 1/2 this results ind € [-2v,2v]. In the following a
simplified transition rate will be considered which inclsdeich positivity constraint
but is independent of agent wealth;, ...\ (v w,) = t4,2(0).

One can then study the dynamics of the moments for the weltibdition:

my(t) = /000 flw, Hyw*dw, keN

Conservation of the first two moments, and m; (number of agents and mean
wealth) is guaranteed by construction, so that through malization we can write
mo = 1 andm; = w without losing in generality. The higher moments can be
obtained recursively through 3117 and the derived relation

dm — [k
k
W + Apmy, = E <]) Am,jmjmk,j, k> 2

j=1
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withp=1—~v4+ XM, ¢=~v+6(1 — ) and

A - ;/Ru(e)(z—pk—qk—<1—p>'f—<1—q>’“>dﬁ,
Ay = 5 [ O + (=P (=), =1 k1

In the particular cas&[d] = 0 andV[§] = o? (the variance) we get fom, the
following:

Ay =20°A(1 = \) — 0% +29(1 — v),
A =M1 =A) + (1 — ),

, (3.26)
mz(t) = €7A2tm2(0) —+ (1 — eiAgt) (1 —+ U—) wz.

Therefore wheneved, is positive this moment approaches at an exponential rate a

constant value. In the same way all finite higher moments exgevexponentially

towards a definite value whenevér > 0, reaching thus a stationary state.

All this depends on the aforementioned valueswhich in turn are determined
by A,y andy(0). In particular forA = 1/2 and@ uniform over(—2+, 2) (thus with
variances? = 4~2/3), the binary interactiod (3 7) is again recovered (wit — )
whose moments converge for:

Ay (27(1 +k)+(1-29) =1 (27)'““) >0,

R
with v € [0,1/2], k& > 2. Furthermore, fory = 1/2 this reduces to4;, = (k —
1)/(k+1) so that the stationary state for the system follows againi@®ann-Gibbs
distribution.

Inthe case\ = 1/2 andy < 1/2 the requirementl, > 0 impliesc? < 4v(1—7);
such condition is luckily satisfied by any probability degpsiver [—2~, 2] having
zero mean. Similar conditions also lead to such convergenadifferent values of
A
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3.3 Wealth distribution in an open economy

3.3.1 The microscopic interaction

In the following | describe the Cordier-Pareschi-Toscanekic model for an open
market economy (introduced in 2005 [n [6], in short "CPT"rfrdnere on) and some
of its asymptotics. This is also related to the results of@@awd and Mezard inJ1].

A very simple rule for binary interactions is already ableatttount for various
aspects of economic activity and wealth distribution.

wy = (1 —y)wy + ywz + mw;

wh = (1 — y)wz + yw; + Nows

Here0 < v < 1/2is a fixed constant determining the wealth quota exchanged,
while n;-s are random variables from a common distributifn) with null mean and
varianceos?. No debts will be allowed, so that this proposal mapping epted if
the resulting new wealths, are both positive, otherwise further tentatives are drawn
(since this depends on the outcomes;ainly, for suitable choices @ this condition
can always be satisfied).

The first two r.h.s. terms tend to redistribute wealth amdhggents, leading in
the limit to a stationary uniform state: in fact with:= w, — w; the microscopic
interaction reads); = w; + vé + n;w; so that differences are spread around and thus
eliminated, whenevey < 1. Moreover the dynamics embodied in these two terms
would also be conservative of wealth.

The third term involves a risk and models a speculative fagtbere gains and
losses are proportional to the starting wealth; therefoeeslystem will be an open
economy with exogenous factors. Because of the discarditgabconfigurations
with negative values the total amount of money will be insreg@. This asymmetry
is what will cause difficulties in the kinetic analysis.
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3.3.2 Kinetic analysis

The kinetic distribution of wealtli(w, t) evolves according to the following Boltzmann-
like integro-differential equation:

of = / / (BT F (1) £ (02) = By F01) f ()] dwsdiydi— (3.27)
R2 0

with the couplew = (‘w;,” wy) representing interacting money which leads to the
new quantitiesv = (wy, w,), while J = (1—~+n;)(1—v+n)—~?* is the Jacobian of
the transformation fromw to w’. The Jacobian in the gain term is needed to guarantee
conservation of mass (in this case being the number of agemiependently from
the choice ofs.

In the following the case of a transition rate of the form

Bw—w = O(n1)O(m) ¥ (w) > 0)¥(wy > 0)

will be considered, with'(A) being the indicator function of the sét Thus here
the rate functiors,,_..» embodies the effects of the opennes of the modeled econ-
omy described by the random variates, and handles the aonstf trading to pos-
itive arrival wealths. However in general the trade ruleldaalso include further
components, like risks, taxes and subsidies.

In general the rate kernél,_..,» depends ow’, but whenever the random vari-
ablesy; have density limited to the intervah (1—7), (1—~)] thenw; > 0 will always
hold so that’,, .. becomes independent frow1. In this case many simplifications
are then possible.

Studying the weak solution to the initial value problem esponding to the previ-
ous equation one can see how the total amount of money isasiageexponentially.
In particular, if X is a random variable of density(r), taking values on a interval
(—a,a), witha > 1,

/77@(77)\1/ (n>1)dn=A>0, (3.28)
R
one can prove the following:

Theorem 3.3.1Let the probability density, € M,, wherep = 2 + ¢ for some
0 > 0, and let the symmetric random variafewhich characterizes the kernel have
a density® in My, witha > 4. Then, if© has unbounded support, the average
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3.3 Wealth distribution in an open economy

wealth is increasing with time at least exponentially

/ wf(w,t)dw > exp{%t}/ w fo(w) dw, (3.29)

where the constant is given by [[(3228). Moreover, the average wealth does not
increase more than exponentially in time

0,2+a
wf(w,t dwgexp{it}/ w fo(w) dw. (3.30)
, witw A=y ' Jo, o)
Similarly, higher order moments does not increase more thgonentially, and the
bound

2+«

/ W (w,£) du (PP VAN P ) / W fo(w)dw,  (3.31)
Ry Ry
holds forg < p.

Further bounds can be derived for the remaining momentgthet results prove
difficult to obtain.

3.3.3 A solvable limit case

To gain more information on this model one can take an alteneoute and look
for asymptotics leading to simplified models, for which stgatates are easier to
find as in the following case. However any asymptotics cabedtrictly stationary,
as we've seen thati.e. average wealth is increasing expiattgrhowever one might
look for a proper scaling factoring out such changes, i.earslyzing the behaviour
of f(w,t) :== m(t)f(m(t)w,t) with m(t) being the average amount of money in the
modeled economy. Furthermore particular asymptotics baw or simpler models
(often Fokker-Plank) with easier determination of stagignstates.

For ease of calculation it is possible to restridb have supportincluded ip-(1—
v), (1 — ~)], which forces admissibility of the new wealthg > 0; this allows for
simple calculation of the following expected values :

E[w] 4+ wy] = wy + wo

E[w] —wy] = (1 = 27) (w1 — wa)
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Chapter 3: Kinetic models for economics

The former equation is again the conservation of wealth arttlis form shows
that the introduction of the stochastic terms); does not affect such property. The
second equation describes a tendency for wealth diffesetaceanish and holds for
any assigned distributio®; it corresponds to the energy dissipation found in theory
of granular cases. However for genegathe first equation weakens to an inequality
allowing for increase of wealth.

We want to study the limit of small exchanges— 0 while mantaining the pre-
vious two properties at the macroscopic level: mass coasiervand the variability
in time of mean square differencé;(¢), with a decay in absence of the exogenous
factor (as witho = 0). The first quantity is given in a kinetic form simply as:

J

andm(t) = m(0) V¢t > 0 is satisfied as soon as the kerpas independent of wealth
variables. The second kinetic quantity reads:

(w + w,) f(w) f(ws)dwdw, = 2/ wf(w)dw = 2m(t) (3.32)

2
+ R4

As(t) == / (w — w,)? f(w) f(w,) dwdw, (3.33)
R%
However the limit of interest is that of continuous tradinghwanishingo, but in

this case the dynamics of;(¢) cannot be studied in general. Fortunately one can
use a proper scaling(w, 7) = f(w,t) with 7 = 4¢ and equivalently analyzd,(t),

so that through\ = o2/~ the following relation is obtained:

dAg(T)
dr

=—(4-2)N) A, (1) + 2Am?. (3.34)

Here~ ando can be made disappear, but in a controlled way. It result$ahsalues
of A < 2 afinite limit value ofAm?/(2— X holds forA,(7), while divergence appears
for larger\ values.

In the limit the kinetic equation turns into a much simplekker-Planck equation:

dg X 9* 0
9 = 5@(10 9) + 8_w<(w —m)g)
or equivalently
dg 0 A A0
5 = B {((1 + §)w - m) g+ iw%(wg)] . (3.35)
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3.3 Wealth distribution in an open economy

The corresponding steady state can be shown to be:

(pn— 1)~ e~ (b=1)/w
I(p)  whte

Joo(w) =

with © = 1 + 2/ > 1, therefore the power law decay of such distribution depends
on~ andc?. This limit is justified with the observation that individyaractical eco-
nomic activity is composed of many transactions of smak sedative to personal
wealth.

In [12Z] the CPT model has been recently brought to the hydradvyic limit with
the usual techniques borrowed from kinetic theory of ratijases, through a closure
conducted with the analytic solution of the stationaryestat

3.3.4 Numerical simulations

To verify the goodness of the Fokker-Planck model it comeéarahto compare
the results it provides with those coming from a direct Mo@talo simulation of
the original kinetic model. This latter simulation is perfeed on a pool ofV =
2000 agents, initially having all the same amount of money; theaby interaction
rule is then applied iteratively to randomly selected cespf agents (provided that
the resulting wealth pairs are admissible), until the stery state is reached. At
that point the wealth distribution is saved and averageti wihers coming from
further interactions to limit the Monte Carlo error. Thissaaged distribution is then
normalized and shown in figurEsB.4 3.5 for differenteslof the parameters
ando?: the couple(y, o?) is set to(0.1, 0.2) in the former case, t(0.01, 0.02) in the
latter.

Thus in both examples the ratioremains 2, and corresponds to an also constant
coefficient;, = 2, a value chosen to fit well to empirical income distributiais
served in real economies. The numerical results confirmhberetical analysis, in
that keeping a constant parameter ratione can observe a corresponding conver-
gence of the Fokker-Plank model to the "reference” Boltzmble one.

Finally the simulated behaviour of mean wealth is also dcknd compared to
the expected theorical dynamics: this can be seen in figredresponding to the
same parameters of the previous one. As expected the stiocsiasulated increase
in average wealth is following an exponential growth.
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¥=0.10=0.2
T

—— Bolizmann
—— Fokker—Planck

V=0.10=0.2
—— Boltzmann
— Fokker-Planck
. . .
10 10° 10'
w

Figure 3.4: Boltzmann and Fokker-Planck models in the asymptotic dinfdr 1 = 2.0,

v=0.1ando = 0.2

Y=0.01 0=0.02
T
—— Boltzmann
—— Fokker-Planck
12} B
1t 4
08 4
g
>
0.6 B
0.4 B
0.2 N
o . n
0 1 2 3 5 6
w

Y=0.01 0=0.02
—— Boltzmann
— Fokker-Planck
. .
10™ 10° 10!
w

Figure 3.5:The same as in figufe=3.4 with= 0.01 ando = 0.02
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3.3 Wealth distribution in an open economy

y=0.1 0=0.2 y=0.01 0=0.02
T T

Figure 3.6:Average amount of money growth as in figuré 3.5
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Chapter 4

Modeling financial markets

4.1 A financial market model

4.1.1 Trading at the microscopic level

Here we analyze a different market model, namely a variaiiothe Levy-Levy-
Solomon first presented in 1994 (séé [2], [4] and [5]). Thisas based on binary
interactions anymore, but the whole set of agents contggbotd a process of price
formation which in turn influences wealth of each individual

At each time step the economic agent will have a choice on looalbcate his
wealth among two specific different assets: one risklessiat@nd a risky asset, i.e.
bonds and company stocks; no liquid cash deposits are alloWee riskless accout
grows at a constant ratewhile the risky asset has price
Thus one can writev; = (1 — v;)w; + yw; = (1 — v)w; + n;S wheren; is the
number of shares bought with the risky part of allocatior. stmplicity - and unlike
in actual markets - the quantity of stocks bought can be aw@aber, so there is no
restriction to integers. However there are restrictiondorrowing and short sales,
so that all quantities start non negative and must not becmgative after any event;
this implies that the allocation tuning parameter is lirdite the intervaly,; € [0, 1].
Bonds are exhogenous and unlimited quantities thereof edrobght, while stock
shares are provided to the market in a certain volumeept fixed over time for
simplicity.

After a time step the updated stock prigewill determine the new wealth of all
agents:

w; = (1= y)wi(l+7) +ywi(l+z)
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Chapter 4: Modeling financial markets

with z = (5" — 5)/S, whereS’ is however initially unknown. The only other
factor influencing each individual wealth is the constatgiiest rate, but clearly this
is known in advance so all uncertainty is limited to the stpoke (because in this
case we have not introduced any exhogenous source of stachase yet). To
highlight the different contributions of interest rateslatock appreciation one could
rewrite the new wealth as follows:

/

w; = w; + (1 — y)wir + yw; ; = w; + (w; — niS)r + ny(§" = 5)

The behaviour of each agent will also be affected by an ytilinction U (w),
which can also be used to describe his propensity to risk#fefent sizes as a func-
tion of his starting wealth. Such utility function can be sea among many differ-
ent possibilities provided that some basic criteria arsfadl: it is a non decreasing
function ofw starting at the origi/(0) = 0, possibly also convex (that{g'(w) > 0
andU"”(w) < 0); a positive first derivative implies that a larger wealthhalways
be preferred to a smaller one, but less strongly even whem yuse¢ therelative dif-
ference gets smaller (because of the decreasing monotdriyfof). Two common
choices are a logarithmic utility (w) = log(w) and the von Neumann-Morgenstern
utility function:

Uw) :==w*/(1 - a)

For any hypotetical pric&” each agent will follow a certain allocation strategy
v4(S™) trying to maximize his expected utilif§[U (w)]. The strategy will be a mono-
tone and non increasing function such thdb) = 1 andlim,_..7.(s) = 0. In the
original LLS model such strategy was changing with time adicwy to the evolving
price history, however in the CPP setting it can be consdaigreen "a priori” and
time-homogeneo

The dynamics for the stock will be affected by the strategieall players in the
market: at each iteration the new price is determined bylibguim of offer and
demand. This mechanism is shown in the following, throughttital number of
stocks traded on the market:

n = an = Z%wi/s

1n the LLS model the strategy works in the following way: atemerk is fixed, then the future
stock return probabilities are taken fas! for each of the last observed returns, 0 otherwise. In turn
this induces an equal probability distribution on the cepending: possible wealths, which together
with the chosen utility function defines an expected utilin optimization is then run to find the
optimal allocation, something that in the case of logarithatility can easily be done analytically.
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4.1 A financial market model

The number of shares owned by each individual is a functich@hypothetical
price through bothy; andw;; furthermore it is monotone decreasing because of the
same monotonicity of both these components anbéf .

Recalling that the total shares supply on the market is kepstant, at the next
time step it must hold the following:

n= ("7 Y A(Swi(s")

Thanks to monotonicity of each termj this fixed point equation has one and only
one solutions® := S’ (see figurd—Z4l1). This equilibrium price matches offer and
demand, so that trading can occur and the whole process @tarthe next time
step:w;(S’) will be determined by such value and from the new wealth agaiaw
allocation can follow.

SnAw(Y)

equilibrium
price

S

Figure 4.1:Equilibrium of offer and demand

All this was in the case of a simple stock return of the farm= (S’ — S)/S, but
the same procedure can be followed for a more realisticnetatuding further com-
ponents, namely dividends and a stochastic component i@ adnsidered, leading
© S'"—=S+D+n
z(S'n) =

S

Here the dividendD > 0 is a constant amount paid at each iteration, while the
random variable) ~ ©(n) is distributed with zero mean ard variance.

For a more realistic description it's also possible to idtroe further stochastic
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Chapter 4: Modeling financial markets

terms, i.e. accounting for practical deviations of agerdaftheir optimal strategy,
or for describing stochastic interest rate dynamics. Thislve done in the next
section for the mesoscopic approach.

4.1.2 Kinetic formulation

As in the previous section we can describe the time disiobhubf agents with
different wealthw, ¢ € R, through a kinetic density (w, t).
The invested wealth quotawill now be of the formy (¢, S, &) = u(S) + & with p(S)
being the optimal choice arfda random variable with compact support such that no
negative allocation quota can ever occur. Therefore ®(u(5), &).

Price formation

In analogy with the microscopic case, whére- n=! >~ ~,w;, an integral relation
holds for the price:

St) =n""E[yw] =n"" / fw, t)w P(v)y dy dw

Howevery andw are independent, so this becomes

w(t) ;== Elw] = /OOO f(w, t)w dw
B0 = [ @) dy= [ @(u($). )€ d = u(s)

S(t) = nE[]E[w] = n~ ' u(S)w

For the equilibrium price one can write:

SinceE[w' (5, v,n)] = E[w](1 + r) + E[yw](E[x(S’,n)] — r) we get:

E[w (S, v,1)] = (1 + r) + ()@ (m - T)

S

and:

S = n= (S Y (¢) {(1 +7) 4+ u(S) (S/_# h T)]
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4.1 A financial market model

This can be further manipulated to eliminate dependence obtaining the follow-
ing implicit expression fo5”:

sty = 510 (sS4 1) + u(S)(S' + D)

(S)
(1— (S )M(S’)S 1(S")
L —u(S")p(S) 1 —pu(S")

=

(4.1)

(1+7r)+

—~

Uniqueness of the solutiof’” for such an implicit relation can be verified as
follows, by writing ¢(S) := (1 — u(S))S/u(S) the future price satisfieg(S’) =
g(S)(1+r)+ D, which gives:

dg(S) _ _du(S) S | 1-—pS)
ds ds u(S)* ()

so thatg(.S) is monotonically increasing, and thus the solution is uaigd’ =
g 'g(S)(1+r)+ D] > S. Furthermore whenever= D = 0 then the solution is
S’ = S so that the price does not change over time, independentlyec$hape of

u(-)-

One can also study the behaviour of stock returns with reéspéee bond; through
the average stock return:

(S') =E[z(8',n)] = (W - T)

one gets:

e (u(5") — p(S))(1 +7) p(s")D

TS T ) S0 ()
Noting thatu(S") < w(S), the sign of the right hand side of such equation - and
thus the relative performance of the stock - will depend anrtite of variation of
investments being above a constant threshold or not:

u(S) — u(S) D
WSS 0 T

(4.2)
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Kinetic analysis

The linear kinetic equation corresponding to the previpuldscribed "micro-
scopic” evolution is:

d =z
o f = / / B ™ (w0, 8) — Bu f(w, 8)] dedy 4.3)

—d —z

where the Jacobiari(§,n,t) = 1+ r + v(£)(X(S’,n) — r) is needed for con-
servation of the number of agents. The first term is a gain egrfrom pre trading
wealth’'w = w/J (&, n,t), while the second is a loss term. In this case the interaction
kernel is of the form:

By = ©(u(5), £)O(n)

As usual in kinetic analysis we can take the weak form of tra@ugion equation
#@.3) to gain information on the dynamics of the differentments:

% /0 " flw, )6 (w)dw = (4.4)
:/OOO /_D /_z O(u(S),)On) f(w, t)(Pp(w) — ¢(w))dE dn dw. 4.5)

with ¢(w) = 1 gives the conservation of the total number of agents, whilefw) =
w it returns the average wealth dynamics, which in turn infb@snprice behaviour.
Thus one obtains the following bounds:

w(t) < W(0) exp (Mt) (4.6)
S(t) < S(0) exp (Mt). (4.7)

Again one sees that the average wealth increases expdlyeniid time, and
the price is bounded from above by an exponential. For thaenignhoments the
following bound holds:

d oo

G| e < as) [ e o (4.8)
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4.1 A financial market model

with
— & /
A4(8) = 26,1 + 177 (1+ (S = )2 + D* + S E(Y[?) )

Cp—2
Sp—2
whereC,, c,_, andc, are suitable constants.

2 (14+ 25 ((5 = 82+ D2 4 0P 2E(|Y 772)))

Fokker-Planck asymptotics

Analogously to the CPT model one can derive a Fokker-Plaintik &s stated in
the following theorem:

Theorem 4.1.1Let the probability density, € M,, wherep = 2 4 ¢ for some

§ > 0. Then, as» — 0,0 — 0, andD — 0 in such a way that* = vr and

D = M\r, the weak solution to the Boltzmann equatibnl(4.5) for thedestdensity
fr(w,T) = f(v,t) with 7 = rt converges, up to extraction of a subsequence, to a
probability densityf(w, 7). This density is a weak solution of the following Fokker-
Planck equation{419).

8%’ f= 3% l—A(T)wf—F %B(T)a%w%ﬂ , (4.9)
where
Ar) = 1+(S) <(/{(S)—1)+’1(S)(f(_52(_§)1)“%> (4.10)

By = O+,

= (4.11)

Also in the case of the Fokker-Planck limit the mean wealtiieases over time,
according to the rates(7) = A(7)w(r), which gives the following bound:
~ 7 N — - _ TLA
(1 —=a(S)w(r)+nA <w(r) <w(r) + ———=. (4.12)
1= p(S)
A self similar solution can be found through an adequatdrsgaihe transformation
x = log(w) implies
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which can be plugged back intio{#.9). It turns then out thatevolution ofg(x, )
itself is governed by a corresponding linear equation ofreotion-diffusion type:

B(r) 0% .

o ([ B(7) 0 _
EQ(X,T) N (T - A(T)) @Q(Xﬁ) + Ta—xgg(X77—)7

which is satisfied by the following solution:

1 kN2
007 = e (2 g ) a9

having set

al(r) = /OTA(S) ds + C,
b(r) = /OTB(S) ds + .

Reexpressing this back in the previous variahleand 7 one finally obtains the
following lognormal solution in the asymptotic limit:
~ _ 7 2
1 <_<log<w> + b(r) /2 — log((7))) ) @1

T = it 20(7)

- o (0.

ande(7) being the second order moment, governed by the followinguéen:

e(r) = (2A(7) + B(1))eé(7).

4.1.3 Numerical examples

In the following numerical simulation results are showntfoee different settings.
In all cases 1000 agents are participating in a market wi@®@&hares. The starting
wealth for each investor equals 1000, initially split edyiaketween shares (valued at
50 each) and bonds. The two random varialjlasdn are set being distributed with
a truncated normal distribution, to avoid negative wealttugs. The first two cases
show a comparison between the Monte Carlo simulation of thetic model and
the direct solution for price. The third example comparestiine averaged Monte
Carlo asymptotic behaviour to the explicit descriptionagivby the Fokker-Planck
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4.1 A financial market model

evolution.

Test 1

In this test case the specific parameters are set as follbwsnterest rate is de-
terministic and constamt= 0.01, the dividend yield i$).015; furthermore all agents
share a common constant investment yuleé = C € (0, 1), which is determined by
the other parameters so that= 0.5, and the evolutions of both the mean wealth and
of the stock price are explicitely known. Results are showrdDO0 iterations of the
price formation process, with the distributions of the ramdvariateg andn having
variances 0f).2 and0.3 respectively.

Figure[42 shows the dynamics of the simulated pf¢g (in blue) and the di-
rect solution (in red). Clearly the Monte Carlo behaviourtchas the exponential
dynamics of the analytical solution. Later the correspngdillocatiory.(t) between
assets is also shown over time, oscillating around the @btieference value in red.

2500

2000

< os l\ LI HH\ |1| ﬂm\“nl HLI H\L \n“lm{“l“l
\" mlw ”qu e Wil W ‘W"”W

& 1500

L L L L L L L L L L L L L L
o 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
t t

Figure 4.2:Test 1 - The numerical kinetic simulation shows an expoalegitbwth over time
for price (left). Fluctuations for the fraction of investnteare depicted on the right.

Test 2

In this test case the investment quota is varying detertigalsy according to an
exponential decay as stock price grows:

w(S) =02 +0.8e>*

whereC, = log(0.8/0.3)/S5, ~ 0.02; with these values, = 50 satisfies the price
equation, angk(.S) remains in the intervgD.2, 0.5].
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Figure[43B shows again the exponential price evolution, thednvestment be-
haviour. However in this case the price growth is much slalvan in the previous
constant investment case.

Next in figuredlLH the mean wealth growth of both test casesrigpared to the risk-

Figure 4.3:Test 2 - Again the price dynamics and investment fractiomsthis time for a non
constant investment quotg.S).

less bond investment growing exponentially at the interatstr, drawn in dashed
red. The upper curve corresponding to Test 1 dominates thestiment in bonds,
while in the other case performance is lower because of the tiecay in risky in-
vestments.

In the following figure the two averaged final wealth disttibas (att = 400)
are shown in double logarithmic scale, with a lognormal fitad for reference. This
highlights how even for the Boltzmann model the tails belHagaormally. The same
also holds for the number of stocks owned by agents, due id&méty v;w; = n;S;.

Test 3

The last numerical test focuses on the asymptotic limitfierBoltzmann model,
comparing it to the explicit solution of the Fokker-Planclodel. In this case the
kinetic particle simulation is run with parameters= 0.001, D = 0.0015, 4 = 0.5
and where andn/S(0) are distributed with standard deviation 0.05. Figurd 4.5
show the resulting wealth distributions at the differemdipointst = 50,200 and
500; here a good fit of the Fokker-Planck solutions to the ZBo#tnn results can be
seen.
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400

Figure 4.4:Tests 1 and 2 - The exponential growths of mean wealth in theases, versus a
bond investment: upper line with constant investment aweiavith the decreasing invested
qguota (left). Also a lognormal fit to the empirical distributs is shown in log-log scale

(right).

fw)

Figure 4.5: Test 3 - Wealth distribution in the Boltzmann (dotted blued &okker-Planck
(continuous red) models

4.2 A multiclass financial market model

In the following we improve upon the CPP model by allowingifdttomogeneous
investment propensity. To more realistically model a mavke can introduce a set
of kinetic densitiesfy(w,t) k = 1,..., K corresponding to economic agents with
different characteristics. For example one could Havelamentalistand chartists
agents interacting on the market, where chartists follovelguguantitative analysis
of historical behaviours of assets, while fundamentadikss take into account further
information. The following analysis will not include opom formation, in that after
a binary interaction the two traders will remain in the sa@ss, so that the classes
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are somewhat separated and evolve in parallel.

Analogously to the homogeneous case we can define the aweeadh for each
agent class, by implicitly fixing a certan tinie

1
Wy = — fr(w)w dw
Pk Jry

where

Pk = fr(w)dw
Ry

One could further assumye p,, = 1. Moreover we can similarly define a different
investor preference function for each agent clags:)

The whole procedure of price formation follows closely time @xposed already
in the case of homogeneous investing behaviour.

Again we can write an equality on the total wealth investedhastock market:
ns = Z E[ywy]

:;A+A¢(€)fk(w)(uk(5)+€>’wd5dw (4.15)

= (S) pu
k=1

K
Here eachu,(.S) is monotone non increasing, so that the same holds fqr. (S) prwy
k=1

and equatior{Z-15) is satisfied by an unique solufioAt the next time step the in-
divitual wealth evolves as:

wy, = (1 — ye)we(1 4+ 1) + ywe(l + )
coming from the usual trivial identity showing the investrhdecomposition:
wy = (1 — ) we + Yrwy

and withz = (S’ — S + D 4+ n)/S. Againx is subject to restrictions guaranteeing
w’ > 0 so that for simplicity no debts are allowed; for~ ©(n) it follows n €
[—d,d], 0 <d< S + D. Sointhe end the future price will satisfy an equation

similar to [£15):
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4.2 A multiclass financial market model

§'= 3" Ebjut] = - 3 ER{IEMw]
k=1 k=1
1 & ,
= () L[ eoe@sw w16

(1 —v)we(1 +7) + ywe (1l + x)] dw d€ dn

s Zﬂk )0k [(1 = pi(9)) (1 +1)S + pe(S)(S" + D)

We can group th&’ terms, thereby obtaining:

<1 -3 Z S") P i ( )) =

) k=1 (4.17)
= LS PeWk([(1 — pi(S)) (1 +7)S + p(S) D]

k=1

From here we finally reach an implicit relation f6f through [£.15).

S ()Pl (1 — () (1 +1)S + pu(S) D)
S/ _ k=1

ns — f: 11 (S") Pk i (S)
N =t (4.18)
;Mk(s')/)k@k[(l = we(8)) (L +1)S + m(S) D]

S o1 — u(S))al)

k=1

Again in the Monte Carlo simulation we have used numericat fimding methods
to solve forS’ the discrete version of this identity.

In the special homogeneous case with= 1 so thatp; = 1, equation[4.18)
becomes:

o _ (ST (1 = pu(S)(A +7)S + m(5) D]
w1 (1 = pa(5"))pa (S)
This is actually just equatiof{4.1) as one would expect.

(4.19)
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On the other hand, in the scaling limit— 0 andD — 0 we get

K

S k(1 = (S) = 8 (S )orTk(1 — p1i(S)) (4.20)
h=1

k=1

In the multiclass case the Boltzmann equatlonl (4.3) doesh@tge significantly:
the integration extreme for n does not depend on the claiss On the other hand
each investor will be subject to different errors, definedpwhich are functions of
wg. This could be unified by using = min{z;} so that all investors would behave
in the same way.

Ofs _

d 2z
e [ [ ot w0 = it ) ety a2)

—d —zg
Here the pre-trading wealths are given through the classip Jacobian’/w =

4.2.1 Numerical simulation

For the Monte Carlo simulation of the multiclass model wesidered the spe-
cial case of two agent classes with constant investmentiturgs; (S) = 0.1 and
u2(S) = 0.9. The total wealth was unchanged from previous examplesOQ@D)
while the number of agents in this case is 50000, so that eaeindially starts with
a wealth of 20. The standard deviations for random varialie® set td).03 for
¢ and0.22 for /5(0) respectively. We ran a simulation obtaining a well definied
bimodal distribution for wealth already after 50 time stephere each peak corre-
sponds to one of the two investment propensities; this mdrsgibution is depicted
in Figure [ZZ1).

This behaviour is to be expected because even though tleeediff..(-) concur
in determining the common share price, each individual dyinas mostly governed
by its own investment propension, which dominates overriieence of share price
(in fact this was noted in the homogeneous case already).cAssequence different
classes of agents remain somewhat separated.
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Wealth distribution
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Figure 4.6: Wealth distribution for a multiclass model witfo constant investment propen-
sities

93



Chapter 4: Modeling financial markets

94



Bibliography

[1]

[2]

[3]

[4]

[5]

J. P. Bouchaud, M. Mézar#f\ealth condensation in a simple model of economy
Physica A, 282, (2000), pp. 536-545

M. Levy, H. Levy and S. SolomorA Microscopic Model of the Stock Market:
Cycles, Booms, and Crash&sconomics Letters, 45, (1994), 103-111

M. Levy, H. Levy and S. SolomomMicroscopic Simulation of the Stock Market:
The Effects of Microscopic Diversjtyournal de Physique I, 5, (1995), pp. 1087-
1107.

H. Levy, S. Solomon and M. LevWilicroscopic Simulation of Financial Mar-
kets: From Investor Behavior to Market Phenomefaademic Press, Inc., Or-
lando, FL, USA (2000).

S. Solomon and M. LevyMarket Ecology, Pareto Wealth Distribution and Lep-
tokurtic Returns in Microscopic Simulation of the LLS Stbtkrket Modelin
New Directions in Statistical Physics, ed. Luc Wille, Sgen-Verlag (2004),
p69

95






Chapter 5

Fast skip ahead for linear recursive
pseudorandom generators

Recently linear random number generators based on recur-
rences modulo 2 have gained wide acceptance in the sim-
ulation community thanks to their good statistical proper-
ties and computational speed. However sometimes, espe-
cially in parallel applications, a skip ahead algorithm is
needed to move freely the generator state on the random
stream; the usual straightforward matrix multiplicaticat b
comes impractical for large state and jump sizes like in the
common Mersenne twisters. This work introduces a faster
method, practical for the most used generators, exploiting
the recursive structure of the iteration matrix.

5.1 Setting

In scientific computing the motivations for jumping aheathwvi a long sequence
of pseudorandom numbers can be quite diverse, but the meshoa is the need of
guaranteeing lack of overlap between subchunks by largeragpn of their starting
points, with the aim of independent initialization.

This is also related to the increasing success of parali#litectures, which is
pushing strongly for a wider use of concurrent simulatiaed#ds, each needing one
or more separate pseudorandom streams.

Other uses for skip ahead include improving the quality oeaegator by deci-
mation (seel]2]) or just plain investigation of the sequeitaf and of its statistical
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Chapter 5: Fast skip ahead for linear recursive pseudorandom generators

properties.

There are at least three approaches to providing multigeg®sandom streams
for parallel simulations; one is seen e.g. in the dynamiatove of Mersenne Twisters
[6], where different generator parameters are dedicatesth stream (so that the
same generator state will often be mapped to different galutnother option is to
build PRNGs with a single transition function that direqpligrtitions the state space
into multiple disjoint closed orbits: for stream initiadizon it will suffice being able
to pick one (and only one) arbitrary element out of each olBdth such methods
involve generators that are naturally parallel, but th&ahzation can be less than
trivial and sometimes requires ad-hoc analysis.

The third possibility involves the above mentioned spigtiof a single major
stream (often o2¢ — 1 length wherel is the state bit size), so in theory parallelization
cannot ever extract nonoverlapping substreams, but fge lstate sizes the starting
seeds can nevertheless be chosen "far enough” for prapticpbses (as in a real-
world setting imposing computational constraints). Sumigljumps are the subject
of this work.

The focus will be on the class of linear PRNGs o#érbecause of their many
advantages; among them is the availability of an exteng®meture spanning in par-
ticular the last 15 years, which provides a well developediti as opposed to many
other good random generatos. They enjoy a fairly easy statfisnalysis together
with good equidistribution and independence, very largeogs, often a simple im-
plementation and high generation speed, because of thehbgtiware requirements
(in fact they only use bit shifts and bitwise logical opevali.

Parallelization is also simple, while the only missing idjent was the availabil-
ity of fast methods, allowing the practical creation of maiteam packages, some-
thing that motivated this research.

All these points have madg]-linear PRNGs one of the most popular classes of
generators used in the simulation community.

Let thenS be the set of PRNG states of difrover[F,, that isS = F4.
Let’s consider linear generators whose transition fumcfio S — .S can be encoded
inad x d matrix A, driving the succession:

Sit1 = As;

o, — OSz‘
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5.1 Setting

To actually draw random numbers the output transformatigti @ssociatea x d
matrix O) extracts the desired part of the state and might eventaksityprovide tem-
pering.

This structure encompasses many well studied and used PRING&inear Feed-
back Shift Register (LFSR), polynomial LCG, the Generali#SR (GFSR), the
Twisted GFSR (TGFSR), xorshift, the Mersenne Twister (VRANROT, WELL,
pulmonary MTs, xorgens (see i.€] [€]] [&]] [9])...

5.1.1 Skipping ahead

The task of skipping ahead to obtaip. ; from s; is clearly linked to the powers
of A, since by inductiors,;, ; = f7(s;) = A’s;. Without loss of generality will be
0 in the following.

The straightforward approach of iteratively calculatitigtse explicit matrix pow-
ers {A’}1;<; costsO(d*J) , which can be lowered t®(d*log(.J)) with basic
square-and-multiply exponentiation rearrangemehig {6 still remains impracti-
cal for large state sizes. The issue can be tackled by impgaither the complexity
of the matrix multiplication (at the root of the cubic ternt)tbat of the exponentia-
tion procedure based on it (the logarithmic term); howevénatime of writing the
former still cannot reach a quadratic groﬂ/mhile the latter techniques can still be
applied to the present work.

Precomputations however can spare matrix multiplicatfonghe actual jump,
leading to just matrix-vector multiplications 6f(d?log(.J)) complexity for arbitrary
jumps at the cost of a storage on the same order, or even do@fdfo when the
jump size is known in advance.

With d = 19937 it still means for the popular Mersenne Twister about 47.4,MB
which is not an easy task for the cache memories of most contynacessors to
handle. For state sizes of 1024 diBit83tarts being reasonable (128 KB) but re-
mains still too slow for applications requiring frequentnipgl; a major example are

1 The complexity of matrix multiplication i€)(d*) only in the naive direct metod following the
definition. More efficient algorithms have been devisedssithe seminal work of Strassen in 1969,
who lowered the exponenttog,7 ~ 2.807. Currently the best value is (to the best of my knowledge)
~ 2.376. However all these ingenious methods come at some costhiereitimerical stability, ease
of implementation or in the magnitude of the implicit comdtanaking the actual implementation less
viable.

2representing a good practical compromise between peredsid fast bit mixing

3Such size often exceeds already the L1 cache
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e.g. certain particle physics simulations requiring amnbius spawning of new pseu-
dorandom sequences. For these reasons matrix multiplicestinot the best choice
since better algorithms have been developed, these wikwiewed and compared
after having described the proposed method.

This work exploits the characteristics of a relatively sinbalt important class of
RNGs with sparse matrix. The Feedback Shift Register renggs alter only one
(or two) words at a time, while shifting out the remaining sne
With T € M,,»4(F,), whered = w - r the transition matrix has the following form:

Such generators can also be seen as just pushing at eationtenr@e new word
onto a stack and correspondingly moving over it a window franthe state (as in
Fig/5.7); this accounts for a much better performance as no daiasneed to be
carried out anymoﬂe

Application of the transitiory is fast by construction, however even for a sparse
matrix A its higher powersd’ soon become dense so that the straightforward jump
by matrix multiplication here bears no advantage compar@dmhore general transi-
tion. Still A7 obviously inherits fromA some structure, regardless of the jumps size
and even though such structure remains hidden and canngplegted directly. The
main point of this work is devising a way to expose it, as tolble & take advantage
in lowering the algorithm complexity.

5.2 Linear feedback shift register generators

5.2.1 Characteristic basis and a fast skip ahead algorithm

For the special case with = 1 (and thus- = d) the PRNG is a standard LFSR,
where we use the notation := (s; 41, Si4-2, .-, Si0)’ for the state and its compo-

4To limit memory consumption this further prompts the ob@aound-robin implementation
where the window doesnt move over an infinite stack anymorewer a toroidal fixed height pseu-
dostack having the same size as the state.
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5.2 Linear feedback shift register generators

Figure 5.1: Binary depiction of the transitions for a Feedback Shift iRieg, showing the
sliding state window adding three new words

nents.

In such setting the main skip-ahead idea is very simple aptbes both linear-
ity of the generators and the feedback shifting structuresakity implies that any
stream starting a¢; can be seen as the componentwise sum of (at mcstteams,
whenever the state generating the former is the sum of thesstam the latter. On
the other hand the FSR structure will allow one to choose @ genvenient basis
for the generator state, such that jumping on only one strezads to be performed
and that it can be done easily. It will be shown how all thisuhessin a procedure
requiring just a polynomial multiplication which actualyimplemented as a binary
convolution.

d
LetthenP(t) = 3 a;t%"" € TFy[t] be the characteristic polynomial of the recur-
=0

rence, and?(t) = i si—1,0t”" € Fof[t™1]]

its generating fulnctioﬁs note here that for a LFSR the last bit of the state se-
quences;_; o subsequently receives the shifted values of the precediag €, ; for
i < d), so that the state already shows the first coefficients geiterating function;
such property will be essential for the efficiency of the regd algorithm.

The notation{ H (¢)} will refer to the "fractional part” of the formal Laurent ser
H(t) € Fy[[t~']], and{H(t)} , to the truncation of H (t)} at then-th term.

Because for a LFSR the firgtcoefficients of a generating function édly deter-
mine it - givenP(t) - there is an "identical” bijection between the generatatest
and the corresponding generating functions, so that it $sipte to use each one in

5See Appendix A for a brief review of the required terminology
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place of the other.

Advancing of the generator state by one iteration is thenvatgnt to multiplica-
tion of the generating function biyand subsequent extraction of the fractional part.
In this setting the skip ahead task can be expressed as thlata'mhing{tJ : G(t)},d
from {G(t)} ;-

In a jump it is easy to decouple the initialization from theusture of the recur-
rence itself and from the start position on the stream:

G'(t):={t"-Gt)} ={t/- (G)P(t)- P(t)"'} = {g(t)- P(t)~" - t'}.

The termP(¢)~! will be central in the jumping procedure: it embodies the RFS
core transform applied to a "basic” elenénhat is a state of the forif1, 0, ..., 0, 0)7.
It will be used as a building block for the characteristicibastroduced below.

The coefficientsy; of the termg(t) = G(¢)P(t) explicit the components of the

tJ
projection ofG(¢) onto the sel{—} :
( ) P(t) JEL

G()P(t) = G(t)/P(t)~

G(t) = g(t)/P(t) = (Z gjtj> [P(t) =3 g;(t/P(1)).
JEZ JEZ
In generalg(t) € F[[t~']] since by construction necessarily = 0 for j > d, but
it is known that the primitivity ofP(¢) also impliesg; = 0 for j < 0, leading to

d—1
g(t) = > git’/P(t). Thus it suffices the finite setr; := /P (t)},;_, to form
=0 -

a basis f_or the space of generating functions corresportdifg¢), which will be
calledcharacteristicbasis (se&'ig 5.3 for the equivalent truncated bagis; } ).

Having isolated the three components leading to the targeemting function
G (t) itis now possible to precalculate - for a fixdd the part that does not depend
on the initial generator state: the det; := ¢/+//P(t)} ied

At this point the actual precalculation process could béyegsessed but it will
only be detailed after the jumping procedure, since thedattll be used as the main
building block, despite the apparent circularity of sucpeledencies.

GThUSP(t)_l = t_d+a1t_d_1+(a1+a2)t_d_2+(a1+a3)t_d_3+(a1+a2+a1a2+a4)t_d_4....
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1¢¢ . Td—1,d—1 (Z 7TO,2d72)

0 t*i | Ti—1,2 (= To,d4+1)

0 t; || Td—1,1 (: 7To,d)

0t ] Td—1,0 (I 7T0,d71)
{WO}A.” {WQ}A.” {Wd—l}d

Figure 5.2: Thed coefficient vectors of the (truncated) characteristic bgsi;} , for the
space of LFSR generator states

Summing everything up, thanks to linearity of the generatamsform the jump
procedure can be expressed compactly as a simple isotrapaférmation:

d—1 d—1
(67} ={t -G} = {t'gt)/P(1)} = {H 9 gm} = {z gﬁj}

Jj= Jj=
The following part of the section will detail the two steps dg#composition onto
{m;}o<j<a (leading to the coefficientg;) and reconstruction through the new basis

{7 }o<j<a-

Handling generating functions

For handling the basis vectofs;} ,_ ; in practice only the fractional parts will be
needed, and more importantly it suffices to obtain and stokgtbe first one, since
the others follow immediately by simply skipping its leaglinfractional digits.

When implementing this with finite length vectors - reprdsenthe generating
functions - these will not just require the firgbits of {¢//P(t)}, but the following
d — 1 as well; these are again easily recovered by simple direettibns through.

In the end the precalculation needed for skip ahead withrtreghod leads to
substantial space (and computational) savings, beinglgf3ahdigits, compared to
ad x d bits matrix;2d — 1 are needed for the arrival basis;+ 1 for the start basis.

Decomposition

ProjectingGG(t) onto an arbitrary basis would require solving a dense lisgar
tem of d equations inl unknowns, thus a slow(d?) task, which luckily lowers to
O(d?) in the considered triangular case. Now let’s recall how eghrticular case of
m; it can be carried out as a polynomial multiplication o¥gr which is essentially a
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:

Figure 5.3: Depiction of a generator state as a linear combinatii,. ; g;m; = so on
the characteristic basis and with coefficients= {1,1,0,0,1,1,1}. Clearly visible is the
triangular structure of the associated linear system fa fhojection.

convolution that can be calculated i.e. by FFTOd log(d)) operatiorﬂ(P(t) has
d + 1 terms, while only the first coefficients ofG(¢) end up ing(t); these must be
padded with zeros to avoid overlapping in the result, so B#&t is applied to two
2d + 2 bit vectors).

This procedure could even be enough for most practical mpegdout it is possi-
ble to improve even further bringing complexity downddd) as will be shown in
Appendix B.

Reconstruction

Just like decomposition was equivalent to polynomial nplittation by the inverse
of my, in the same way the reconstruction step requires in pegist the multipli-
cationg(t)mo, wherew, is considered given. Here again the naive direct approach
requires computations on the order@fd?), but the use of FFT allows an improve-
ment down ta0(d log(d)).
Despite its lower asymptotic performance the direct retanson has the major
advantage of being so simple that it can even be implememtédeofly during de-
composition, as will be shown later.
In the end the two phases of projection and reconstructiovigee together a jump in
O(d log(d)) time, since the latter clearly dominates over decompasitio

Precomputation

The previous steps required the calculation of the targeshahich, even when
precalculation is admitted, should not be too slow, unlikeatvhappens in the ma-
trix multiplication case. Be it through matrices, throughlymomials (as detailed

“Actually this is the standard complexity which assumes itgfiprecision operands; the bit com-
plexity relevant to practical implementationsi%d log(d)log log(d)).
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in the following subsection), or by reprojections as in thetimod just presented, it
is possible to obtain longer jumps from smaller ones reealgi regardless of the
actual algebraic group used the same addition-chain tgabaiwellknown in the ex-
ponentiation literature (sekl[5]) can be exploited. Her#l yust just see the simplest
method.

The goal of precomputation is obtainifig relative to an arbitrary and an initial
g(t) = 1, so let's denote it byr]. AssumingJ even andﬁ;)’/2 as given we can
obtain7; by skippingJ/2 ahead ofr;*, that is decomposing;’> onto ther;-s and
reconstructing with &/2 jump. In this way by induction frond = 1 (corresponding
to plain application off) we can precalculate the data needed for all jumps with
being a power of.

Moreover through this it is also possible to precalculaterging needed for an
arbitrary jump, through the binary representation of thenbar.J and composition
of the jumps corresponding to unit digits. Such procedugeires in the worst case
2 log(J) jumps, and thug)(d*log(J) or O(d log(d)log(j)) operations depending
on the method of choice.

Previous approaches

Recall that were willing to obtair{t’ - G(t)} , from {G(t)} ,. This cannot be
calculated explicitly as even just enumeratihderms would be too slow, but since
all arithmetic is done on polynomials modulyxz) one can take some shortcuts. As
will become clearer in the following, a simple path for théps&thead could be just
direct polynomial multiplication as iriI3l{¢" - G(t)} , = {[t’ mod P(t)]G(t)}d.
The factor[t” mod P(t)] itself can be precalculated i(log(.J)) steps by repeated
squaring, multiply and polynomial modulo reductions. Heetethe CBR method
takes a different route.

5.3 The general case - wide word shift registers

For the less restrictive case of a generator making use ofl wperations with
nonunitary word sizey > 1) the approach used for LFSR does not hold anymore:
apparently there is no stagg that together with its subsequent iterages, ..., Sx1q-1
allows for fast decomposition and reconstruction. In jgatér no triangular iterated
basis is necessarily present, sisge; might always differ froms;, by more than two
digits. Here there is a less strong structure than for a LE®BRdepending om/w
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(like for relatively smallerv as happens i.e. in MT19937) it can still be significant.
In the following two complementary ways of exploiting it Wie presented, focusing
on either jJump speed or ease of implementation.

In both cases the precalculation stage will follow the veayne logic as with
LFSR building jumps from shorter ones.

5.3.1 Multiple LFSR

An efficient approach involves splitting the generatoratnantow different sub-
streamss; = (Sg_1.i, -+, 1.4, 50.4) " for (i = 0,...,w — 1), which are known to
share the common characteristic polynonitalt). Applying A” to the state is thus
equivalent to advancing separately eachs a simpler LFSR through, (¢) and then
composing back the relevant bits into the "full” state geer.

S7 = (Tuo1,r—1y s 0001y coos Twr—1,15 s 00,1, Ow—1,05 -+, 00,0)-

The resulting computational complexity can then be tracacklio that of LFSR
jumps, and is therefore on the orderwad log(d).

A more efficient variant on this would be advancing only oneoagthew sub-
streams, and instead of truncating itstdbits using alld of them to recover the
full state S;; such a transform is guaranteed to exist lowering compledatvn to
O(dlog(d)).

5.3.2 Pseudocharacteristic basis transform

A slower but much simpler method is perfectly analogous édiRSR case, using
decomposition and reconstruction for the full state; thiy assue to be solved is
finding the right basig; };c .

However here ndP(t) will be used, and we wont work with proper generating
functions. Let’s consider instead tli¢(¢)-s corresponding to the;-s introduced
earlier, now the generalized generating function wilbbe= (Gy(t), ..., G, _1(¢))".

Where for a LFSR we constructed a basifor the space of generating functions
throughd — 1 repeated advancings of, here we will do the same fdt only » — 1
times onw different elements such that decomposition is still tliviBuch a set can
be in example that corresponding to thetates null everywhere except at one of the
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5.4 Generalising further: pulmonary generators

Figure 5.4:Reconstruction by additive composition of three basis efem

topw bits, {ey, ..., e, }.

The resulting linear system will still be triangular allowi fast decomposition.
However while for a LFSR just a single "jumped” element wasuwgh for deriving
easily the othed — 1 ones, here we’ll need to keepdifferent pairs (and obviously
also precalculate them).

Reconstruction needs to be carried out directly since datieo is not applicable
here. A jump will thus be more memory intensive, udtad bits instead of jusdw,
but not slower in the direct method (except for what inducgthie larger amount of
memory used).

5.4 Generalising further: pulmonary generators

So calledpulmonarygenerators []8].19]) achieve better efficiency using a more
general transition matrid, in particular a second shorter feedback [bigpadded to
provide continuously changing new inputs to the main one.

The skip ahead for such generators can often be traced b#uk tase treated in the
previous section.

With 7} € M,,«q4(F2), andT, aswell, the generator matrix has now the following
form:

8often referred to as the respiratory circulation, as opgasehe normal blood circulation of a
normal FSR; accordingly the state word implementing it itecHung
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Figure 5.5:Transitions for a pulmonary FSR

In the practical round-robin implementation two contiguwesds are updated in
the state instead of just one, $eplB.3. This means that the top word will be changed
twice in subsequent iterations, so that its first value is only temporary. Thedfin
values produced bY; grow in a stream for which the previous algorithms still work

All we need to apply the previous method to such setting isthléy to transform
back and forth the top word between its two values. In thisrgg{A has full rank
and is invertible) it must always be possible, however itasalways a fast task, but
such is the case i.e. for WELL1024a.

In fact this generator has another good property: transfagrthe basis "seeds”
el, ..., e, does only add new words without modifying

5.5 Implementation

One major point of characteristic basis skip ahead is theatezh in memory us-
age (it grows only likelw, that is linearly in the state size), which even in the slower
O(d?) direct algorithm allows in practice for faster executioathmatrix multiplica-
tion.

A significant advantage is that in the actual implementatiwre is no need to
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5.5 Implementation

obtain explicitely the characteristic polynomial of thengeator recurrence, although
throughout the analysis it appeared often and at key polihiis. is possible because
all PRNG specific calculations are done directly throughttaesition function itself,
which is given. Other skip ahead methods might instead regesorting to more in-
volved number theoretic operations,

Here is shown the extreme simplicity of the relevant skipaaheode, in the gen-
eralw case, for a simpl&(d?) jump with direct decomposition and reconstruction:

for (i=0; i<r; i++)
for (j=0; j<w; j++)
if (src.statew[i] & (1<<j)))
for (k=0; k<r; k++)
{
src.statew[k] "= pi_src[j].statew[r-1+k-i];
dst.statew[k] "= pi_dst[j].statew[r-1+k-i];
}

In the inner loop the first binary subtraction solves thengislar system for the
source projection by straightforward gaussian elimimgtwhile the following addi-
tion updates the target state reconstruction.

The code in the LFSR case would be even simpler due to thepsellaf the second
loop overj whenw = 1.

Results The implementation focused on WELL1024a for its good compse be-
tween state/stream size and fast bit mixing leading to queckovery from almost
null states.
The state size is 128 bytes, a start or arrival basis 4 Kb] afetalculation for alk’/
jumps 16 Mb.
In many consumer processors currently the L1 cache is 16Kthet the procedure
fits within, without incurring in large penalties.

On an AMD Turion64 1.6Ghz the rate was of ab80®0 jumps per second versus
3200 As matrix multiplications per second, a factor of 2,5.
This translates in a speedup for precalculations of at &dst = 80z, making it
nearly transparent (1-4 secs) on consumer PCs.
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Chapter 5: Fast skip ahead for linear recursive pseudorandom generators

It is also possible to get some further speed gains by a aunfstetor through
grouping of calculations in a similar way tol [3], however anght consider this an
implementational finesse of limited theorical interestitswon’t be treated here.

5.6 Comparisons

As already anticipated this is not the only algorithm présérso far for skip
ahead.
Brent recently ([2]) mentioned one making use of generdiimgtions and polyno-
mial multiplication, but the actual referendd [1] does rexlly explain it in much
greater detail. Furthermore this would only work for a LF&Rd for a more general
setting the computational cost would rise again, expsgcwahen ignoring any FSR
structure.

Haramoto et al extended the polynomial method (§ée [3]) ¢ontlore general

class of linear PRNGS with arbitrary matrix A; their appro@based on the precal-
culation oft’modP(t) (an O(d?* log(J)) task) which is then used to independently
advance the successions of each state bit and also gives atrapgost 0O (d?), with
precalculations at onlg (d?* log(.J). On top of such framework they can improve by
a constant the algorithm efficiency through careful ternegigimng.
Thus the theoric complexity of the jump is not better tharsthof the approaches
presented in this work, but the special structure expldie@ allows for much eas-
ier implementation, and performance for small state sigeemparable even in the
O(d) case.

Obviously the polynomial and CBR approaches must be eqnvalt some level,
since they represent different viewpoints for the sameutations. This becomes
evident in the simpler LFSR case as both methods amount titcmmal summation
of consecutive generator states; however while the polyalomethod uses precal-
culation to embody the jump into the coefficients of such sathon, CBR keeps it
into the summed states already. This latter approach isfisigmtly more intuitive
and does not rely explicitely on any underlying algebra ef BRNG other than its
linearity, in particular the characteristic polynomialtbe recurrence needs not be
derived.
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5.7 Conclusions

| have shown a simple setting comprising different algonghfor stream move-
ments appropriate for use with many of the most common psandom generators.

Even the more memory intensive versions have a reasonatjwifat (much lower
than that required by the standard matrix multiplicatidmgttmakes them already
competitive.

Within the proposed setting it is possible to choose betweetihods with either
simple implementation or high performance:

Prec. memory Prec. complexity | Jump complexity
Matrix iz O(d®log(J)) O(d?)
Polynomial methog d O(d?log(J)) O(d?)
CBR direct 3d O(d*1og(J)) O(d?)
CBR FFT 3d O(d log(d) log(J)) O(d log(d))
w > 1 direct 3wd O(d? log(J)) O(d?)
w > 1 parallel FFT 3d O(d log(d)log(J)) | O(w d log(d))

They all work easily as black boxes requiring in input just ttart generator state
and the function providing the transitios;; = F'(so, f), SO no generator-specific
inner working details are needed.

Although the current direct implementation proved itséléady fast enough for
most practical needs it will be interesting to test the fdgb@thm with an FFT
specifically tuned for th&, setting. Furhermore a direct empirical comparison with
the polynomial method will be useful in assessing the negatnerits of the two ap-
proaches.

Finally | hope that the characteristic basis will be usetul dnalysis and devel-
opement of new pseudorandom generators, beyond the scekip @head.

Aknowledgements | would like to thank Prof. Matsumoto for the comments at
MCQMC 2006 that significantly influenced exposition in thisafi paper, and Prof.
Mascagni for originally suggesting the task as requiringegtigation.
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Chapter 5: Fast skip ahead for linear recursive pseudorandom generators

5.8 Appendix A - Brief review on finite field arith-
metic

A polynomial P(t) € Fy[t] overF, := Z/27Z having trivial factors only is called
irreducible reducibleotherwise. An irreduciblé’(t) of degreel is alsoprimitive if
t'—1#0modP(t) Vi< 2?— 1;in this case the multiplicative group of the field
Fy[t]/(P(t)) is cyclic and generated by otherwise the order dfis a proper divisor
of 2¢ — 1. Thus primality of2¢ — 1 implies primitivity of P(¢).

The characteristic polynomial of is defined as:
Pa(t) = det(A —tI) =t — at™ ! — .. —ag_1t — aq.
Componentwise holds; = a;s;_1 + ... + ags;_q4.

The setF,[[t!]] of formal Laurent series comprises formal power seriesrtavi
a finite number of terms of positive degree and infinite terrnaegative degree.
Operations between elementsHg|[t~!]] are defined in the natural way but -unlike
polynomials- these cannot be evaluated at a specific point

It is possible to associate to each output stream (that iadb eouple ofP(¢) and
initial state) a formal power series (the generating fuoroti

G(t) = Sot L4 st 2 F st 4L = > siqt™t € FQ[[fl”
i=1

d—1d—1—j ‘
It is easy to verify that formally=(t) P(t) = g(t) := — > Ag—i—j—15;t € Fylt]
7j=0 =0

So we get a correspondence between the series initializadiod they(t)-s.
For a generator with statg the series spanned by the various digits are all cy-
cling on the same repeating stream (defined by the commoadeaistic polynomial
P4(t)) but starting from different points. Accordingly it is palsie to define the vec-

tOr (G1(t), oo Ga(t)) = (91(£), s galt))/ Pa(t).

5.9 Appendix B - A faster decomposition procedure

Here anO(d) algorithm for projection will be presented in the LFSR case.

d—1
Let’s first recall the standard triangular systesn = > g,m;,; with solution:
j=d—1—i
Jd—1 = 50,0
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5.9 Appendix B - A faster decomposition procedure

d—1
Ja-1-i = S0 — > 9iTji
j=d—i
The summations in the second term don'’t really need to béedaout explicitely
each time: thanks again to the structure of thes (sharing the same ordered coor-
dinates in shifted positions) it is possible to evaluatséhexpressions in a recursive

way. For this we grow aside a stream representing the rursoingof the components
of G(t) calculated so far.

dda—1 = 50,0 Y1 = Gd—17T1
gd—2 = S0,1 — V1,d—1 Y2 = Ga—2™1 + Ay,

gd—3 = S0,2 — V2,d—1 Y3 = Ga—3T1 + A7y

Jo = So0,d—1 — Yd—1,d—1

In the end we have traded cacomplexity factor with a bit summatiory ;)
plus the application of the transition function, which is@sed built for maximum
efficiency and can therefore be considered constant timis.tfEémslates in a resulting
complexity for the projection of onlg)(d).
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Appendix A

On finite number of particles in
Monte Carlo kinetic simulations

Monte Carlo methods are the most popular methods for sojwiob-

lems in kinetic theory(]Z,15]. In this short remark we emphasiome
of the side effects due to the use of conservative methodsadvaite

number of statistical samples (particles) in the simufatibhe most
relevant aspect is that the steady states of the system amgactly

supported and thus they cannot be Maxwellian (or any othecom-

pactly supported statistics) unless the number of pastigtees to in-
finity. These aspects are studied numerically with the hegpsample
one-dimensional space homogeneous kinetic model.

A.1 Introduction

The numerical solution of kinetic equations is usually perfed through statisti-
cal simulation methods such as Monte Callo [3]. The reaspthfs is twofold, on
the one hand probabilistic techniques provide an efficieoibiox for the simulation
due to the reduced computational cost when compared widrrdetistic schemes,
on the other hand the evolution of the statistical samplésvis the microscopic bi-
nary interaction dynamics thus providing all the relevamygical properties of the
system. Traditionally the methods are considered extreeiéicient when dealing
with stationary problems. In such case, in fact, fluctuaticen be eliminated by tak-
ing subsequent averages of the solution after then a céstaionary time” has been
reached. Here we show, with the help of a simple one-dimeasgystem, that this
averaging procedure does not guarantee convergence tothardorrect steady state
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Chapter A: On finite number of particles in Monte Carlo kinetic simulations

due to finite number of particles correlations introducedh®s/microscopic conser-
vation laws. Similar analysis for rarefied gas dynamics hmen done in]9,16].

A.1.1 The model equation

We will consider a simple one—dimensional kinetic modelevéthe binary inter-
action between particles obey to the law

v/ =wvcosf —wsinb, w' = wvsinf + wcosb, (A.1)

wheref € [—m, ] is a collision parameter. The microscopic energy after thary
interaction rule is conserved

(V)2 + (w')? = v + w?, (A.2)

whereas momentum is not.

Let f(v,t) denote the distribution of particles with velocitye R at timet >
0. The kinetic model can be easily derived by standard metbbésetic theory,
considering that the change in time 6fv,t) depends on a balance between the
gain and loss of particles with velocitydue to binary collisions. This leads to the
following integro-differential equation of Boltzmann tyj],

5= ] 5 @)~ £ w) ds . (A3)

As a consequence of the binary interaction the second mammeat the solution
is conserved in time, whereas the first momentum is preseymbdif initially it is
equal to zero. For this model one can show that the staticgauyion f..(v) is the
Maxwell density

Foolv) = ——e /2, (A.4)

A standard Monte Carlo method for this equation can be edsilived using either
Bird’s or Nanbu’s algorithm for Maxwell molecules |2, 5]. @lwo algorithms differ

mainly in the way the time discretization is treated, but imothe way collisions

(sampling from the collision integral operator) are peried. Our results do not
differ for the two methods.
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Figure A.1: Equilibrium states for different finite sets @rpicles vs Maxwellian (left) and
equilibrium value of the fourth order moment for the diffietdinite sets of particles.

A.2 Numerical results

The problem we consider here is related to the effect of thie firumber of parti-
cles in Monte Carlo simulations. Note that given a set ofipi@g v, , vo, . . ., vy With

energyE = £ 3" 2, we have the inequality

lvi| < Ry = V2EN. (A.5)

As a consequence of this, any particle dynamic, namely amstormation of the

type
vi = ¢i(v, .., on), i=1,...,N, (A.6)



Chapter A: On finite number of particles in Monte Carlo kinetic simulations

that preserves exactly energy is such that the particleisnluemains compactly
supported iM— Ry, Ry| at any time. This implies that the distribution of such par-
ticles cannot be Maxwellian (or any other non compactly sufgal statistics) unless
the particles number goes to infinity. This is exactly whapgens if we use the
so-called Nanbu-Babovskyl[1] strategy of performing sidins by pairs so that the
Monte Carlo methods are exactly conservative and not ceatee in the mean. We
report in Figure 1 (left) the numerical distribution of theife sets of particles in the
case of the one-dimensional Maxwell model{A.3). The rashiétve been obtained
taking initially Maxwellian samples with zero mean and gyet and then averag-
ing in time over the Monte Carlo solutions to the equationt ey small numbers
of particles it is remarkable that the computed distributiiffer considerably from
the expected Maxwellian. The different fourth order morsesftthe corresponding
steady solutions are then plotted in Figure 1 (right) addims exact fourth order
moment of the Maxwellian. We point out that such small p&timumbers can be
present is some cells when one consider fully non homogeneoafied gas flow
simulations and thus, even if the transport part can affextature of these corre-
lations, a particular care has to be taken when averagingsaxa small numbers.
Similar conclusion are valid also for different kinetic nedslwhere the steady state
statistics is not compactly supported like in granular gapasma physics, quantum
kinetic theory, traffic flows and economic models.
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Appendix B

Simulation graphs

Performed simulations cover altogether 35 different saeagwhile separately
handling heavy and light traffic). In the previous relatioyothose showing results
of some interest were shown, and they’re analysed and disdua more detail in
the following.

Given the peculiar geometry of the examined network, it wassible to split the
overall traffic according to four different movement modasresponding to differ-
ent destination directions (thereby excluding improbaoié in any case neglectable
U-shaped routes): in order they are from north to south, fsonth to north, from
west to east and finally from east to west. In the cases of fsartith axis the Cis-
padana has been modeled as bidirectional since it is inipeamthogonal and lacks
a preferential directionality. On the other hand the dietl selection was used in
the cases of traffic on the west-east axis.

These four cases have themselves been further split in menasgos each, accordint
to the realization of the Ferrara-A22 connection in the tanants (near Mantova or
near Reggiolo) and further according to the inclusion of&®@rMare and E55.
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Figure B.1: Scenario 1
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Figure B.2: Scenario 2
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Figure B.3: Scenario 3
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Figure B.4: Scenario 4
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Figure B.5: Scenario 5
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Figure B.6: Scenario 6
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Scenario 7 - A1
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Figure B.9: Scenario 9
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Figure B.10: Scenario 10
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Figure B.11: Scenario 11
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Figure B.12: Scenario 12
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Figure B.13: Scenario 13
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Figure B.14: Scenario 14
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Appendix C

General traffic dataset used for
simulations

C.1 Province data

The data for provinces (which we obtained in a more detaibech fthan that on
regional scale) have been obtained through a series of measats on particularly
important road points of the Ferrara area, which have besieddhrough the period
from 1992 and 2003.

From such data we are able to estimate various further paeasnsuch as days
with the most pronounced traffic, the distribution of rushlufsoduring the week and
the corresponding ratios relative to mean traffic flows, Thesineritical days turn
out being friday and thursday, while the worst hour seem tthbéefrom 18 to 19,
followed by the preceding hour.

The heavy transport percentage stays most of the time urgder garticular at
friday) decreasing to a range from 1.5high on a few roads).

C.2 Regions data

The datas for regions shown in the following have been safeatcording to
relevance in the studies and simulations of an alternatgleday route for Cispadana
and E55, which means data for Ferrara, Ravenna, Modena aggidREmilia are
included. We also grouped the Modena and Reggio Emilia po@& into a single
area, as the Cispadana starts inbetween the two.

Maps are depicting data in a normalized way, so that darkngrel®ur will always
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Chapter C: General traffic dataset used for simulations

be referring to the maximum vehicle quantity for each datasesidered; therefore
the different distribution of relationships between fluaes shown, independently of
global variations in the traffic volume which would make iaspon less comfortable.
Therefore any comparison of absolute volumes in differené tslots must be done
through the tables exclusively.

[l 9983 - 282067
[l 6204 - 9983
Il 4063 - 6204
W 2753 - 4063
W 1639-2753
Il 92-1639

Il 231.99-2846.26
[l 147.22-231.99
Bl 89.79-147.22
Il 57.96-89.79
W 27.79-57.96
W 368-27.79
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C.2 Regions data

Table C.1: Movements in time zone 7-9

toFE| toFE| from| from| toRA | toRA | from | from
city | prov.| FEc.| FEp. city | prov.| RAc. | RAp.
Piacenza province 1 3 0 2 0 4 1 3
Piacenza city 0 0 0 1 0 1 0 2
Parma province 1 2 0 1 0 2 0 1
Parma city 0 0 1 2 0 1 1 2
Reggio province 2 11 1 1 0 3 1 1
Reggio city 0 0 2 0 0 1 2 0
Modena province 97| 348 180 456 1 11 4 9
Modena city 5 10 7 8 0 2 0 0
Bologna province 236 | 415 700 | 1011 52 713 92| 1001
Bologna city 587 | 237 161 435 21 188 22 153
Ferrara province 2508 | 7894 | 1970| 7894 220 219 182 163
Ferrara city 5169 | 1970| 5169| 2508 0 40 9 79
Ravenna province 79 163 40 219| 1198| 7812| 665| 7812
Ravenna city 9 182 0 220 | 6812 665| 6812 1198
Forli province 0 1 0 0 62 227 75 287
Cesena 0 1 0 5 35 181 67 283
Forli city 0 3 0 15 326 555| 282 | 496
Rimini province 0 2 0 1 25 54 15 81
Rimini city 0 1 0 1 6 34 14 76
RE+MO prov. 99| 359 181 457 1 14 5 10
to MO | to RE to| from| from | from
city city | prov.| MOc. | MOp. | prov.
Piacenza province 13 15 6 4 3 40
Piacenza city 16 12 9 1 1 25
Parma province 47 176 510 27 154 495
Parma city 77| 223 738 40 272 | 1011
Reggio province 486 | 3903 | 13646 412 | 2309| 13125
Reggio city 330 | 5971| 2720 205| 5971| 4188
Modena province| 4642| 285 | 24536| 3800 411 | 25057
Modena city 8518 | 205| 4212| 8518 330 | 5128
Bologna province 252 9| 1083 229 13| 1293
Bologna city 234 42 437 160 34 421
Ferrara province 8 0 457 10 0 359
Ferrara city 7 2 181 5 0 99
Ravenna province 0 0 10 2 1 14
Ravenna city 0 2 5 0 0 1
Forli province 0 0 4 0 0 4
Cesena 0 0 3 0 0 3
Forli city 1 0 12 1 0 12
Rimini province 0 0 8 1 0 7
Rimini city 0 2 5 1 0 5
RE+MO prov. 5128 | 4188| 38182| 4212| 2720| 38182
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Table C.2: Movements in time zone 9-13

to FE| to FE from | from | to RA toRA | from | from
city | prov. FEc.| FEp. city prov. | RAc. | RAp.
Piacenza province 2 6 1 4 0 8 1 6
Piacenza city 0 0 0 3 0 2 0 3
Parma province 2 4 1 2 0 5 1 2
Parma city 0 0 1 3 0 1 1 3
Reggio province 3 20 2 1 0 6 2 1
Reggio city 0 0 4 1 0 1 4 1
Modena province 64 111 69 107 1 22 8 18
Modena city 7 3 7 0 0 5 1 0
Bologna province 174 179 184 179 16 277 23 276
Bologna city 164 | 151 155 146 2 69 2 57
Ferrara province 889 | 3170 905| 3170 76 59 88 63
Ferrara city 2142 | 905 2142 889 4 21 5 26
Ravenna province 26 63 21 59 375 3368 | 417| 3368
Ravenna city 5 88 4 76| 2387 417 | 2387 375
Forli province 0 1 0 0 27 79 30 78
Cesena 0 1 0 0 8 71 15 66
Forli city 1 5 1 6 112 219| 116 201
Rimini province 0 3 1 2 6 19 6 22
Rimini city 0 2 1 2 6 16 9 17
RE+MO prov. 67| 131 71 108 1 28 10 19
to MO | to RE to| from | from from
city city | provinces| MO c. | MO P. | provinces
Piacenza province 24 29 11 7 6 76
Piacenza city 30 23 17 2 2 47
Parma province 3 63 58 5 66 63
Parma city 6 117 333 7 116 312
Reggio province 119 1175 4629 131| 1206 4646
Reggio city 105| 2481 1336 105| 2481 1302
Modena province| 1466 | 127 8829 | 1513 130 8812
Modena city 2461 | 105 1644| 2461 105 1585
Bologna province 68 17 308 72 25 367
Bologna city 82 80 49 78 65 173
Ferrara province 0 1 108 3 0 131
Ferrara city 7 4 71 7 0 67
Ravenna province 0 1 19 5 1 28
Ravenna city 1 4 10 0 0 1
Forli province 0 0 7 0 0 7
Cesena 1 0 5 1 0 4
Forli city 2 1 24 2 1 24
Rimini province 0 1 15 2 1 13
Rimini city 0 4 9 2 1 11
RE+MO prov. 1585 | 1302 13458 | 1644 | 1336 13458
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Table C.3: Movements in time zone 13-16

toFE | to FE from | from | to RA toRA | from | from
city | prov. FEc.| FEp. city prov. | RAc. | RAp.
Piacenza province 2 4 0 3 0 5 1 4
Piacenza city 0 0 0 2 0 1 0 2
Parma province 1 3 0 1 0 3 0 1
Parma city 0 0 1 2 0 1 1 2
Reggio province 2 13 1 1 0 4 1 1
Reggio city 0 0 3 1 0 1 3 1
Modena province 55 139 70 140 1 14 5 12
Modena city 4 3 5 0 0 3 0 0
Bologna province 183 | 212 211 236 15 332 32 336
Bologna city 196 | 171 161 140 2 73 3 49
Ferrara province 1026 | 3632 1060 | 3632 75 64 115 63
Ferrara city 2506 | 1060 2506 | 1026 1 23 5 30
Ravenna province 30 63 23 64 390 3874| 523 | 3874
Ravenna city 5 115 1 75| 3019 523 | 3019| 390
Forli province 0 1 0 0 17 85 37 93
Cesena 0 1 0 0 9 89 19 77
Forli city 0 3 0 3 127 261 | 149 215
Rimini province 0 2 0 2 3 23 6 23
Rimini city 0 1 0 1 1 19 8 20
RE+MO prov. 57| 152 71 141 1 18 6 13
to MO | to RE to| from| from from
city city | provinces| MO c. | MO P. | provinces
Piacenza province 16 19 7 5 4 50
Piacenza city 20 15 11 1 1 30
Parma province 0 a7 81 6 67 88
Parma city 10| 137 400 14 124 333
Reggio province 135| 1386 5609 176 | 1475 5628
Reggio city 121 | 2909 1619 1241 2909 1517
Modena province| 1798 | 131 10713| 1915 144 10694
Modena city 4113 124 2091 | 4113 121 1933
Bologna province 71 11 338 92 16 421
Bologna city 93 52 204 85 43 164
Ferrara province 0 1 141 3 0 152
Ferrara city 5 3 71 4 0 57
Ravenna province 0 1 13 3 1 18
Ravenna city 0 3 6 0 0 1
Forli province 0 0 4 0 0 4
Cesena 0 0 3 1 0 3
Forli city 1 0 15 1 0 16
Rimini province 0 1 10 2 0 9
Rimini city 0 3 5 2 0 7
RE+MO prov. 1933 | 1517 16322 2091| 1619 16322
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Table C.4: Movements in time zone 16-18

toFE | to FE from | from | to RA toRA | from | from
city | prov. FEc.| FEp. city prov. | RAc. | RAp.
Piacenza province 2 4 1 3 0 6 1 4
Piacenza city 0 0 0 2 0 1 0 2
Parma province 1 3 0 1 0 3 0 1
Parma city 0 0 1 2 0 1 1 2
Reggio province 2 15 1 1 0 4 1 1
Reggio city 0 0 3 1 0 1 3 1
Modena province 106 | 209 79 175 1 16 6 13
Modena city 7 0 7 2 0 3 0 0
Bologna province 361 | 407 193 227 39 527 24 396
Bologna city 160 | 262 324 176 4 91 5 96
Ferrara province 1284 | 4910 1481 | 4910 108 80 131 104
Ferrara city 3289 | 1481 3289 | 1284 6 44 5 33
Ravenna province 33 104 44 80 503 5189| 694 | 5189
Ravenna city 5 131 6 108 | 3908 694 | 3908| 503
Forli province 0 1 0 0 41 131 38 111
Cesena 0 1 0 0 29 130 17 95
Forli city 0 4 1 11 172 314| 187| 333
Rimini province 0 2 0 2 7 39 9 28
Rimini city 0 1 0 1 9 34 5 16
RE+MO prov. 108 | 224 80 176 1 20 7 14
to MO | to RE to| from| from from
city city | provinces| MO c. | MO P. | provinces
Piacenza province 17 20 8 5 5 55
Piacenza city 22 17 13 1 1 34
Parma province 5 89 130 6 89 127
Parma city 10| 183 553 29 165 452
Reggio province 199 | 1606 7539 224 | 2167 7733
Reggio city 139 | 3821 2335 189 | 3821 1824
Modena province| 2278| 218 14508 | 2574 168 14314
Modena city 5419| 189 2798 | 5419 139 2477
Bologna province 111 12 552 124 188 531
Bologna city 115 57 271 136 a7 259
Ferrara province 2 1 176 0 0 224
Ferrara city 7 3 80 7 0 108
Ravenna province 0 1 14 3 1 20
Ravenna city 0 3 7 0 0 1
Forli province 0 0 4 0 0 5
Cesena 1 0 4 1 0 3
Forli city 1 0 17 1 0 17
Rimini province 0 1 11 2 1 9
Rimini city 0 3 6 2 1 8
RE+MO prov. 2477| 1824 22047 2798| 2335 22047
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Table C.5: Movements in time zone 18-22

toFE| toFE| from| from| toRA | toRA | from | from
city | prov.| FEc.| FEp. city | prov.| RAc. | RAp.
Piacenza province 2 5 1 3 0 7 1 5
Piacenza city 0 0 0 2 0 1 0 3
Parma province 1 3 0 1 0 4 0 1
Parma city 0 0 1 3 0 1 1 3
Reggio province 2 17 1 1 0 5 1 1
Reggio city 0 0 3 1 0 1 3 1
Modena province 130 | 255 111 217 1 18 7 15
Modena city 9 7 10 5 0 4 0 0
Bologna province 426 | 501 265 300 44 648 48 494
Bologna city 216 | 318 383 240 5 120 8 114
Ferrara province 1561 | 5950| 1825| 5950 130 100 171 127
Ferrara city 4055| 1825| 4055| 1561 6 55 6 41
Ravenna province 41 127 55 100 615| 6291| 863| 6291
Ravenna city 6 171 6 130 | 4819 863 | 4819| 615
Forli province 0 1 0 0 49 168 57 147
Cesena 0 1 0 0 31 162 26 118
Forli city 0 3 1 13 205 413| 235| 403
Rimini province 0 3 0 2 9 43 13 34
Rimini city 0 1 0 2 9 42 10 25
RE+MO prov. 132 272 112 218 1 23 8 16
to MO | to RE to| from| from | from
city city | prov.| MOc. | MOp. | prov.
Piacenza province 20 24 9 6 5 64
Piacenza city 25 19 14 2 1 39
Parma province 7 113 200 14 130 205
Parma city 19 227 714 35 202 563
Reggio province 256 | 1983| 9336 298| 2686| 9581
Reggio city 178 | 4744| 2916 228 | 4744 2252
Modena province| 2786| 269 | 17888| 3206 230 | 17643
Modena city 6748 | 228 | 3504| 6748 178 | 3042
Bologna province 138 14 700 174 21 704
Bologna city 145 67 352 165 54 320
Ferrara province 5 1 218 7 0 272
Ferrara city 10 3 112 9 0 132
Ravenna province 0 1 16 4 1 23
Ravenna city 0 3 8 0 0 1
Forli province 0 0 5 0 0 5
Cesena 1 0 4 1 0 4
Forli city 2 0 20 2 1 20
Rimini province 0 1 13 2 1 12
Rimini city 0 3 7 2 1 9
RE+MO prov. 3042 | 2252 | 27224| 3504 | 2916| 27224
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Table C.6: Movements in time zone 22-7

toFE| toFE| from| from| toRA | toRA | from | from
city | prov.| FEc.| FEp. city | prov.| RAc. | RAp.
Piacenza province 1 3 0 2 0 5 1 3
Piacenza city 0 0 0 1 0 1 0 2
Parma province 1 2 0 1 0 3 0 1
Parma city 0 0 1 2 0 1 1 2
Reggio province 2 12 1 1 0 4 1 1
Reggio city 0 0 2 0 0 1 2 1
Modena province 30 75 34 83 1 13 5 10
Modena city 0 0 2 0 0 3 0 0
Bologna province 106 114 109 134 15 190 6 201
Bologna city 101 84 116 98 1 25 2 38
Ferrara province 672 | 2181 606 | 2181 73 36 31 25
Ferrara city 1613| 606 | 1613 672 2 16 1 10
Ravenna province 10 25 16 36 359 | 2357 201| 2357
Ravenna city 1 31 2 73| 1927 201 | 1927| 359
Forli province 0 1 0 0 23 47 3 45
Cesena 0 1 0 0 8 41 7 55
Forli city 0 3 1 4 99 108 70 154
Rimini province 0 2 0 1 4 11 0 14
Rimini city 0 1 0 1 2 11 0 10
RE+MO prov. 32 87 35 84 1 17 6 11
to MO | to RE to| from| from | from
city city | prov.| MOc. | MOp. | prov.
Piacenza province 14 16 6 4 4 44
Piacenza city 18 14 10 1 1 27
Parma province 1 32 47 0 20 37
Parma city 10 77 152 3 92 235
Reggio province 93| 982 | 3408 65 824 | 3364
Reggio city 79| 1916 906 70| 1916| 1067
Modena province| 1267 85| 6811| 1099 82| 6855
Modena city 2718 70| 1164 | 2718 79| 1360
Bologna province 44 10 221 33 14 190
Bologna city 47 46 92 48 38 95
Ferrara province 0 0 84 0 0 87
Ferrara city 2 2 35 0 0 32
Ravenna province 0 1 11 3 1 17
Ravenna city 0 2 6 0 0 1
Forli province 0 0 4 0 0 4
Cesena 0 0 3 1 0 3
Forli city 1 0 13 1 0 13
Rimini province 0 0 9 1 0 8
Rimini city 0 2 5 1 0 6
RE+MO prov. 1360| 1067 | 10219| 1164 906 | 10219
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Appendix D

Highway dataset used for simulation

Societa’ Autostrade per I'ltalia provided the daily meax@s for the areas touched
by the simulation, with the exception of A22 Modena Brenndioe whole data rel-
ative to A22 has been provided by Aiscat. In the graph degibielow the base
scenario covering the interested region is shown. All vahader to each stretch in-
between two nearby entrances or crossings, and have beettatadl over the yearly
data for year 2003.

These informations potentially allow for extrapolationepthe following years by

exploiting both the earlier historical trend as well asesias for logistic change, en-
compassing growth and saturation.

Moreover the usage of further aggregated data regardingdbay fluxes - shown

later on - can help obtaining an approximation of mean howalyes on each partic-
ular stretch.

147



Chapter D: Highway dataset used for simulation

Light | Heavy| Total

Al - Milano Napoli

All. A1/A15 Parma 27.160| 11.268| 38.427
Parma - Reggio Emilia 25.397| 10.670| 36.067
Reggio Emilia All. A1/A22 26.866| 11.053| 37.919
All. A1/A22 - Modena Nord 36.688| 15.205| 51.893
Modena Nord - Modena Sud 33.037| 13.659| 46.697
Modena Sud - All. A1/A14 N. 36.017| 14.133| 50.150
All. A1/A14 N. - All. Al/Rac.Cas. 11.285| 4.876| 16.161
All. Al/Rac.Cas. - Sasso Marconi 21.043| 8.723| 29.766
Sasso Marconi Rioveggio 17.472| 7.972| 25.444

Al3 - Bologna Padova

All. A14/A13 - Bologna Arcoveggio 14.569| 5.697| 20.266
Bologna Arcoveggio Bologna Interporto | 18.259| 6.457| 24.716
Bologna Interporto Altedo 17.407| 5.913]| 23.320
Altedo - Ferrara Sud 16.664| 5.816| 22.480
Ferrara Sud - Ferrara Nord 13.726| 6.004| 19.730
Ferrara Nord Occhiobello 14.118| 6.029]| 20.147
Occhiobello Rovigo 12.123| 4.929| 17.052
Rovigo Boara 12.131| 5.027|17.158

A 14 - Bologna Taranto

All. A1/A14 N. - Bologna Borgo Panigale | 24.777| 9.273| 34.050

Bologna Borgo Panigale All. A14/Rac.Cas18.642| 7.874| 26.516

All. Al/Rac.Cas. Bologna Casalecchio | 14.128| 4.453| 18.581

Bologna Casalecchio All. A14/Rac.Cas. | 8.657| 3.233| 11.890

All. Al4/Rac.Cas. - All. A14/A13 27.300| 11.107| 38.406
All. A14/A13 - Bologna S.Lazzaro 22.907| 9.192| 32.100
Bologna S.Lazzaro - Castel S.Pietro 33.927| 10.786| 44.712
Castel S.Pietro - Imola 32.826| 10.647| 43.473
Imola - All. A14/Diram. Ravenna 32.055| 10.166| 42.222
All. A14/Diram. Ravenna - Lugo Cotignola 6.458| 1.731| 8.189
Lugo Cotignola - Ravenna 6.207| 1.501| 7.707
All. A14/Diram. Ravenna - Faenza 26.537| 8.751| 35.287
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Light | Heavy| Total
Al - Milano Napoli
All. A1/A15 Parma 26.936| 10.932| 37.869
Parma - Reggio Emilia 25.171| 10.419| 35.590
Reggio Emilia All. A1/A22 26.849| 10.841| 37.690
All. A1/A22 - Modena Nord 36.909| 14.881| 51.790
Modena Nord - Modena Sud 33.574| 13.711| 47.285
Modena Sud - All. A1/A14 N. 36.605| 14.250| 50.855
All. A1/A14 N. - All. Al/Rac.Cas. 11.459| 4.641| 16.101
All. Al/Rac.Cas. - Sasso Marconi 21.172| 8.388]| 29.561
Sasso Marconi Rioveggio 17.442| 7.697| 25.139
Al3 - Bologna Padova
All. A14/A13 - Bologna Arcoveggio 13.251] 5.708| 18.959
Bologna Arcoveggio Bologna Interporto | 18.405| 6.574| 24.979
Bologna Interporto Altedo 17.406| 6.010| 23.415
Altedo - Ferrara Sud 16.765| 5.957| 22.722
Ferrara Sud - Ferrara Nord 13.641| 6.150| 19.791
Ferrara Nord Occhiobello 13.987| 6.131| 20.118
Occhiobello Rovigo 11.968| 4.839| 16.807
Rovigo Boara 12.232| 5.015| 17.247
A 14 - Bologna Taranto
All. A1/A14 N. - Bologna Borgo Panigale | 25.191| 9.624| 34.815
Bologna Borgo Panigale All. A14/Rac.Cgs19.045| 8.194| 27.239
All. Al/Rac.Cas. Bologna Casalecchio | 14.173| 4.553| 18.726
Bologna Casalecchio All. Al14/Rac.Cas. | 7.729| 3.101| 10.830
All. Al4/Rac.Cas - All. A14/A13 26.774| 11.295| 38.069
All. A14/A13 - Bologna S.Lazzaro 23.700| 9.369| 33.070
Bologna S.Lazzaro - Castel S.Pietro 33.295| 10.810| 44.105
Castel S.Pietro - Imola 32.678| 10.762| 43.441
Imola - All. A14/Diram. Ravenna 31.900| 10.336| 42.236
All. A14/Diram. Ravenna - Lugo Cotignola 6.387| 1.985| 8.372
Lugo Cotignola - Ravenna 6.370| 1.806| 8.176
All. A14/Diram. Ravenna - Faenza 26.452| 8.667| 35.119
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D.1 Increments 2002-2003
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D.2 Modena-Brennero

D.2 Modena-Brennero

For the A22 Modena-Brennero highway (in particular thei@hiVerona-Modena
stretch) we have used the aggregate values provided bytAish&ch are available
every three months and here shown merged over the year 2003.

Daily vehicles mean Theorical daily| Vehicles-Km
vehicles mean| in millions
2003 2002| 2003| 2002| 2003| 2002| Percent
variation
Light | 49789 47320| 28038 26426| 921.1| 868.1 6,1
Heavy | 21595 20694| 12369| 11694| 406.4| 384.2 5,78
Total | 71384 68014 | 40407 | 38120| 1327.4| 1252.3 6

Entrance and exit fluxes at the A22 toll gates of Pegognagatdva Sud and
Mantova Nord have been extrapolated through environmstaastics from the Man-
tova province over years 1991-1999 by a linear growth model.

Values at toll gates over the lower stretch (Modena Camgiagal Carpi and Reggiolo-
Rolo, from south to north) can be estimated through thessieeai informations for
the surrounding areas, which has similar characteristitisat of Pegognaga.
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Chapter D: Highway dataset used for simulation

D.3 Traffic fluxes at toll gates

Gate| Label| Lightin | Heavy in| Light out | Heavy out

Modena Northf AB1 | 10011 4000 10326 4375
Modena Southh AB2 6790 2167 6842 2231
Sasso Marcon] 2C1 4933 963 4773 1023
Bologna B. Panigale¢ BD1 8207 2281 8195 2250
Bologna Casalecchip CD1| 12152 2581 11178 2348
Bologna S. Lazzaro EF1| 15883 2640 14458 2488
Bologna Arcoveggiq EH1 7753 1425 9217 1530
Bologna Interportq EH2 4194 1969 4046 1949
Altedo | EH3 2465 632 2568 677

Ferrara South H 7391 1877 7205 1882
Ferrara North, 5H1 3243 1134 3197 1090
Castel S. Pietro EF2 3949 1114 4433 1204
Imola| EF3 7057 2141 7049 2196

Lugo Cotignola] FG1 2497 602 2730 653
Ravenna FG2 6376 1808 6212 1503
Pegognaga 6A4 1828 729 1840 734
Mantova Southh 6A5 2011 749 1922 715
Mantova North| 6A6 4935 2059 4893 2042

D.4 Hourly graphs

Here we show some data pertaining the evolution of highwafficrintensity at
different times of the day; from the graph the different batars of heavy and light
traffic are clearly visible. Values refer to the stretchethm Bologna Area as identi-
fied in the feasibility study "Riorganizzazione del sisteawdiostradale - tangenziale
del nodo di Bologna”.
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D.5 Junction points analysis

Time | Light | Heavy| Total | Equivalent vehicles
0|1,73%| 2,29%| 1,86% 1,97%
1|1,19%| 2,06% | 1,39% 1,57%
210,80%| 2,08%]| 1,10% 1,35%
310,61%| 2,12%| 0,96% 1,26%
410,61%| 3,03%| 1,18% 1,66%
511,12%| 4,13%| 1,82% 2,42%
6| 2,29%)| 5,71%| 3,09% 3,76%
715,64%)| 5,35%| 5,57% 5,52%
8| 7,28%| 4,62%| 6,66% 6,14%
9| 6,28% 6% | 6,22% 6,16%
10 | 5,29%| 7,10%| 5,72% 6,07%
11| 5,08%| 6,73%| 5,46% 5,79%
12 | 4,99%| 5,46%| 5,10% 5,19%
13| 4,93%| 5,31%| 5,02% 5,09%
14 | 5,33%| 5,86%| 5,45% 5,56%
15| 5,80% | 5,54%/| 5,74% 5,69%
16 | 6,07%| 5,59%/| 5,96% 5,86%
17 7% | 4,81%| 6,49% 6,06%
18 | 7,57%| 3,75%| 6,68% 5,92%
19| 6,96%| 2,85%| 6,01% 5,19%
20| 5,12%| 2,46% | 4,50% 3,97%
21| 3,45%| 2,30%| 3,18% 2,95%
22| 2,60%| 2,57%| 2,59% 2,59%
23| 2,26%| 2,29% | 2,27% 2,28%

D.5 Junction points analysis

The data for highway fluxes that were given with respect tdesuetch can be
reorganized according to junctions (in the table "I” refémsentrance fluxes, "O”
to exiting fluxes). Then with these one can obtain the turmioefficients for each
direction pair, that is the percentages in which traffic freach source direction
splits.
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Chapter D: Highway dataset used for simulation

| - Light | I-Heavy | |- Total | O - Light | O - Heavy| O - Total

A - A1/A22
Reggio Emilia| 26.866| 11.053| 37.919| 26.849 10.841| 37.690
Mantova| 13.900 6.240| 20.140| 14.138 6.128| 20.266
Modena Nord| 36.909| 14.881| 51.790| 36.688 15.205| 51.893
77.675| 32.174| 109.849| 77.675 32.174| 109.849

B-Al-Al4
Modena Sud 36.017 14.133| 50.150| 36.605 14.250| 50.855
Al4 - Borgo Panigalg 25.191 9.624 | 34.815| 24.777 9.273| 34.050
Raccordo Casalecchip 11.459 4.641| 16.100| 11.285 4876 16.161
72.667| 28.398| 101.065| 72.667 28.399| 101.066

C - Al-Raccordo

Casalecchio
Modena Sud| 11.285 4.876| 16.161| 11.459 4.641| 16.100
Bologna Casalecchip 14.173 4553 | 18.726 14.128 4.453| 18.581
Sasso Marcon| 21.172 8.388| 29.560| 21.043 8.723| 29.766
46.630| 17.817| 64.447| 46.630 17.817| 64.447

D - Al4-Raccordo

Casalecchio
Bologna Borgo Panigale 18.642 7.874| 26.516 19.045 8.194| 27.239
Bologna Casalecchip  8.657 3.233| 11.890 7.729 3.101| 10.830
Raccordo A13-A14 26.774| 11.295| 38.069| 27.300 11.107| 38.407
54.073| 22.402| 76.475| 54.074 22.402| 76.476

E-Al13-Al4
Bologna Arcoveggio, 13.251 5.708| 18.959| 14.569 5.697| 20.266
BO Raccordo Casal. 27.300 11.107| 38.406 26.774 11.295| 38.069
Bologna S.Lazzaro 23.700 9.369| 33.069| 22.907 9.192| 32.100
64.251| 26.184| 90.434| 64.250 26.184| 90.435

F - Al4-Ravenna

branching
Imola | 32.055| 10.166| 42.221| 31.900 10.336| 42.236
Ravenna| 6.387 1.985 8.372 6.458 1.731 8.189
Faenza| 26.452 8.667| 35.119| 26.537 8.751| 35.288
64.894| 20.818| 85.712| 64.895 20.818| 85.713
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D.6 Distribution of traffic fluxes around Ferrara

D.6 Distribution of traffic fluxes around Ferrara

Through the coefficients describind turning shares at eatensection (given in
Appendix A) it is possible to obtain statistical data forumdtcomposite paths, thus
combining on the way effects of the different junctions aksby. This technique
allows to obtain clues on the absolute and relative impogarof each destination,
and here the analysis is performed considering pathsrejatiFerrara and ending in
the highway network considered.

Since the available data amounts to daily averages the nuofivehicle entrances
and exits balance each other, so with the same coefficieatsaonobtain percentages
showing not only importance of path starting at Ferraraghad of the corresponding
opposite paths with Ferrara as final destination.

In all calculations the mean values for coefficient inteswakre used as representa-
tive.
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Chapter D: Highway dataset used for simulation

Light traffic from Ferrara Sud

O Occhiobello and
beyond:
M@ Bo Arcoveggio:

[ Cesena:

O Reggio Emilia and
beyond:

B Bo Interporto:

O Ferrara Nord:

B Sasso Marconi:

[ Altedo:

Bl Bologna Casa-
lecchio:

B Modena Sud:
O Pegognaga:

O Lugo Cotignola:
B Bologna S.Lazzaro:
B Other destinations:

Light traffic from Ferrara Nord

O Occhiobello and
beyond:
@ Bo Arcoveggio:

O Cesena:

O Reggio Emilia and
beyond:

H Bo Interporto:

O Ferrara Nord:

B Sasso Marconi:

O Atedo:

B Bologna Casa-
lecchio:

@ Modena Sud:

O Pegognaga:

O Lugo Cotignola:
M Bologna S.Lazzaro:
B Other destinations:
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D.6 Distribution of traffic fluxes around Ferrara

Heavy traffic from Ferrara Sud

O Occhiobello and
beyond:

B Reggio Emilia and
beyond:

O Bo Arcoveggio:

O Ferrara Nord:

M Bo Interporto:

O sasso Marconi:

B Imola:

O cesena:
H Altedo:

@ Pegognaga:
O Modena Sud:
O Modena Nord:

M Bologna Casa-
lecchio:

B Other destinations:

Heavy traffic from Ferrara Nord

O Occhiobello and
beyond:

B Reggio Emilia and
beyond:

O Bo Arcoveggio:

O Ferrara Nord:

B Bo Interporto:

O sasso Marconi:

M Imola:

O Cesena:
H Altedo:

@ Pegognaga:
O Modena Sud:
O Modena Nord:

M Bologna Casa-
lecchio:

B Other destinations:

157




Chapter D: Highway dataset used for simulation

D.7 Traffic over the Romea/E55 attraction area

Within a study of Romea and E55 carried out by Regione EmibanRgna - in
2001 traffic measurements were performed over the affectaaln the following
we list all studied sites and the corresponding data, heaendgese are daily vol-
umes.

The "right” direction refers to that given in the first tabbd clearly the "left” one

refers to the opposite. The numbered section points canumelfon the map. Such
data, together with those previously shown, allow for ameion of possible traffic

shifts towards the new highway stretches referred by sinamacenarios.
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D.7 Traffic over the Romea/E55 attraction area

Measurement Road| Position
point
1 S.S5.495di Codigoro Km 10
between Portomaggiore and Ostellato
2 S.S.16 between Argenta and Alfonsin&m 129.5
3 S.S.16 between Alfonsine and RaverjnakKm 145
4| S.S.309 Romea between Ravenna and Comagchian 12.5
5 S.S.16 adriatica between Polesella and Royigkm 50.5
6 S.S. 495 between Ariano and Adria Km 64.6
7| S.S.309 Romea between Mesola and Taglio d| PE&m 55.2
8 S.S.16 adriatica between Rovigo and Stanghellgm 35.8
9 S.S.516 between Adria and CavarzereKm38.8
10 S.S.309 Romea between Rosolina and S.Annidm 74.3
11 S.S.309 between Chioggia and VenegieKm 94.2
12 S.P. between Comacchio and Ostellato
13 Autostrada dei lidi Ferraresi
between Comacchio and Ostellgto
14 S.P. between Tresigallo and Massa Fiscaglia
15| S.P. between lolanda di Savoia and S.S.309 Romea
16 S.P. between Crespino and Villanoya
17 S.S.443 between Rovigo and Adtia
18 S.P. between Agna and Cona
19 S.P. between Arre and Candiana
20 S.S.516 between Piove di Sacco and Padova
21 S.S.11 between Dolo and Mira
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Chapter D: Highway dataset used for simulation

Measurement point A - Light | A - Heavy | B - Light | B - Heavy
1 2020 191 1814 150
2 5443 844 5594 819
3 7074 968 7374 820
4 3611 2327 4140 2237
5 8385 1051 8023 918
6 2265 347 2262 305
7 3263 2443 3251 1907
8 6516 1012 6639 835
9 4110 529 3990 471

10 6029 2631 6148 2132
11 7049 3007 6642 2912
12 2042 101 2072 72
13 2675 474 2813 457
14 2177 95 2278 92
15 1733 272 1581 256
16 1950 314 1870 331
17 3564 366 3553 397
18 1178 75 1178 73
19 2093 165 1940 154
20 8602 934 9229 1128
21 9962 666 9665 601
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Appendix E

Turning coefficient

From inflow and outflow fluxes at a crossing it’s possible ted®ine how traffic
coming from each direction partitions. Turning fractioegen in the case of simple
ternary junction, are not uniquely determined but theranigterval of possibilities;
for these we’ll give in the following both the extremes and gair mean/width.

Each coefficient value - named; - corresponds to the share of vehicles coming
from direction 7" and turning towards direction;”, so that all combinations with
"¢ different from ”;” are shown.

Calculations were performed both at actual junctions anaollagates, which were
renamed like this:

e AB1: Modena Nord

e AB2: Modena Sud

e BD1: Bologna Borgo Panigale
e 2C1: Sasso Marconi

e CD1: Bologna Casalecchio

e EF1: Bologna S. Lazzaro

e EH1: Bologna Arcoveggio

e EH2: Bologna Interporto

e EH3: Altedo
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Chapter E: Turning coefficient

H: Ferrara Sud

e 5H1: Ferrara Nord

e EF2: Castel S. Pietro
e EF3: Imola

e FGL1: Lugo Cotignola
e 6A4: Pegognaga

e 6A5: Mantova Sud

e 6A6: Mantova Nord

The three directions corresponding to thidices refer to those two of the stretch
determined by the first two letters plus the third at the exteeof the toll gate itself.
Letters point to the nodes in the first table, and furthermore

1: Al direction Milan

2: Al direction Florence
e 3: A13 direction Taranto

4: SS. 309 direction Venice

5: A13 direction Padova

6: A44 direction Brennero
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Table E.1: Turn coefficients for light traffic

A | alpha 12| alpha 23| alpha 31 alpha 21 alpha 32| alpha 13

1. Extr. 0.1518 1| 0.72744| 5.9684E-06 0.27256| 0.84821
2. Extr 3E-07 | 0.70662| 0.61695 0.29338 0.38305 1
mean| 0.0759| 0.85331| 0.672195| 0.14669298  0.327805| 0.924105
width/2 0.0759| 0.14669| 0.055245| 0.14668702] 0.055245| 0.075895
B | alpha 12| alpha 23| alpha 31 alpha 21 alpha 32| alpha 13

1. Extr.| 0.68793| 0.00178 1 0.99821 0| 0.31207
2. Extr | 0.68668 0| 0.99607 1 0.003927| 0.31332
mean| 0.687305| 0.00089| 0.998035| 0.999105| 0.0019635| 0.312695
width/2 | 0.000625| 0.00089| 0.001965| 0.000895| 0.0019635| 0.000625
C | alpha 12| alpha 23| alpha 31 alpha 21 alpha 32| alpha 13

1. Extr. 0.3912 1| 0.54123 0 0.45877| 0.60877
2. Extr 0| 0.68849| 0.3327 0.31151 0.6673 1
mean| 0.1956| 0.84425| 0.436965| 0.155755| 0.563035| 0.804385
width/2 0.1956| 0.15576| 0.104265| 0.155755| 0.104265| 0.195615
D | alpha 12| alpha 23| alpha 31 alpha 21 alpha 32| alpha 13

1. Extr. 0 1| 0.71132 0 0.28868 1
2. Extr 0 1| 0.71132 0 0.28868 1
mean 0 1| 0.71132 0 0.28868 1
width/2 0 0 0 0 0 0
E | alpha 12| alpha 23| alpha 31 alpha 21 alpha 32| alpha 13

1. Extr. 0.2321| 0.46634 0 0.53366 1| 0.76794
2. Extr 1| 0.83908| 0.42939 0.16092 0.57061 0
mean 0.616| 0.65271| 0.214695 0.34729| 0.785305| 0.38397
width/2 0.384| 0.18637| 0.214695 0.18637| 0.214695| 0.38397
F | alpha 12| alpha 23| alpha 31 alpha 21 alpha 32| alpha 13

1. Extr. 0.2015| 0.14717 1 0.85283 0| 0.79853
2. Extr 0.1721| 0.13982| 0.99822 0.86018| 0.0017767| 0.82786
mean| 0.1868| 0.1435| 0.99911| 0.856505| 0.00088835| 0.813195
width/2 0.0147| 0.00367| 0.00089| 0.003675| 0.00088835| 0.014665
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Chapter E: Turning coefficient

Table E.2: This table refers to heavy traffic

A alpha 12 alpha 23| alpha 31 alpha 21 alpha 32| alpha 13
1. Extr. 0.1889 0.99999| 0.72851| 6.8414E-06 0.27149| 0.8111
2. Extr | 3.799E-07 0.66539| 0.5882 0.33461 0.4118 1
mean| 0.09445019 0.83269| 0.658355| 0.16730842] 0.341645| 0.90555
width/2 | 0.09444981 0.1673| 0.070155| 0.16730158 0.070155| 0.09445
B alpha 12 alpha 23| alpha 31 alpha 21 alpha 32| alpha 13
1. Extr. 0.65502| 5.4736E-06] 0.99678 1| 0.0032207| 0.34498
2. Extr 0.65608| 0.0015622 1 0.99844 0| 0.34392
mean 0.65555| 0.00078384| 0.99839 0.99922| 0.00161035| 0.34445
width/2 0.00053| 0.00077836| 0.00161 0.00078| 0.00161035| 0.00053
C alpha 12 alpha 23| alpha 31 alpha 21 alpha 32| alpha 13
1. Extr. 0 0.84492| 0.46912 0.15507 0.53088 1
2. Extr 0.14479 1| 0.55329 0 0.44671| 0.85521
mean| 0.072395 0.92246| 0.511205| 0.077535| 0.488795| 0.927605
width/2 0.072395 0.07754| 0.042085| 0.077535| 0.042085| 0.072395
D alpha 12 alpha 23| alpha 31 alpha 21 alpha 32| alpha 13
1. Extr. 0 1| 0.72545 0 0.27455 1
2. Extr 0 1| 0.72545 0 0.27455 1
mean 0 1| 0.72545 0 0.27455 1
width/2 0 0 0 0 0 0
E alpha 12 alpha 23| alpha 31 alpha 21 alpha 32| alpha 13
1. Extr. 0.33182 0.4856 0 0.5144 1| 0.66818
2. Extr 1 0.82998| 0.40709 0.17002 0.59291 0
mean 0.66591 0.65779| 0.203545 0.34221| 0.796455| 0.33409
width/2 0.33409 0.17219| 0.203545 0.17219| 0.203545| 0.33409
F alpha 12 alpha 23| alpha 31 alpha 21 alpha 32| alpha 13
1. Extr. 0.17027 0.15918 1 0.84082 0| 0.82973
2. Extr 0.13919 0| 0.96354 1 0.036459| 0.86081
mean 0.15473 0.07959| 0.98177 0.92041| 0.0182295| 0.84527
width/2 0.01554 0.07959| 0.01823 0.07959| 0.0182295| 0.01554
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Table E.3: Turning coefficients;; at toll gates for light traffic

AB1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.7186 0| 0.33325 1| 0.66675| 0.28145
2. Extr 0.9 | 0.19882 1| 0.80118 0| 0.09951
mean| 0.8093| 0.09941| 0.666625| 0.90059| 0.333375| 0.19048
width/2 | 0.0907| 0.09941| 0.333375| 0.09941| 0.333375| 0.09097
AB2 | alpha 12| alpha 23| alpha 31| alpha2l| alpha 32| alpha 13

1. Extr. 1| 0.18691| 0.56112| 0.81309| 0.43888 0
2. Extr | 0.8847| 0.08283 0| 0.91717 1| 0.11532
mean| 0.9423| 0.13487| 0.28056| 0.86513| 0.71944| 0.05766
width/2 | 0.0577| 0.05204| 0.28056| 0.05204| 0.28056| 0.05766
2C1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.7732 0| 0.75634 1| 0.24366| 0.22682
2. Extr | 0.8303| 0.06891 1| 0.93109 0| 0.1697
mean| 0.8017| 0.03446| 0.87817| 0.965545| 0.12183| 0.19826
width/2 | 0.0286| 0.03446| 0.12183| 0.034455| 0.12183| 0.02856
BD1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.6693 0 0.749 1 0.251| 0.33075
2. Extr | 0.7524| 0.10816 1| 0.89184 0| 0.24761
mean| 0.7108| 0.05408| 0.8745| 0.94592| 0.1255| 0.28918
width/2 | 0.0416| 0.05408| 0.1255| 0.05408| 0.1255| 0.04157
CD1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.2088 0| 0.53037 1| 0.46963| 0.38725
2. Extr | 0.6128| 0.73838 1| 0.26162 0| 0.79119
mean| 0.4108| 0.36919| 0.765185| 0.63081| 0.234815| 0.58922
width/2 0.202| 0.36919| 0.234815| 0.36919| 0.234815| 0.20197
EF1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr. 1| 0.43424| 0.30618| 0.56576| 0.69382 0
2. Extr| 0.7877| 0.28818 0| 0.71182 1| 0.2123
mean| 0.8939| 0.36121| 0.15309| 0.63879| 0.84691| 0.10615
width/2 | 0.1062| 0.07303| 0.15309| 0.07303| 0.15309| 0.10615
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EH1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr. 1| 0.50079| 0.52406| 0.49921| 0.47594 0
2. Extr | 0.7211| 0.28003 0| 0.71997 1| 0.27888
mean| 0.8606| 0.39041| 0.26203| 0.60959| 0.73797| 0.13944
width/2 | 0.1394| 0.11038| 0.26203| 0.11038| 0.26203| 0.13944
EH2 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.7784 0| 0.23843 1| 0.76157| 0.22159
2. Extr | 0.9533| 0.1835 1 0.8165 0 | 0.04666
mean| 0.8659| 0.09175| 0.619215| 0.90825| 0.380785| 0.13413
width/2 | 0.0875| 0.09175| 0.380785| 0.09175| 0.380785| 0.08747
EH3 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.8525 0| 0.26003 1| 0.73997| 0.14752
2. Extr | 0.9573| 0.1088 1 0.8912 0| 0.04274
mean| 0.9049| 0.0544| 0.630015| 0.9456| 0.369985| 0.09513
width/2 | 0.0524| 0.0544| 0.369985| 0.0544| 0.369985| 0.05239
H | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.5676 0| 0.42267 1| 0.57733| 0.43237
2. Extr | 0.8237| 0.3128 1 0.6872 0| 0.17631
mean| 0.6957| 0.1564| 0.711335| 0.8436| 0.288665| 0.30434
width/2 0.128| 0.1564| 0.288665| 0.1564| 0.288665| 0.12803
5H1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.7934| 0.02474 0| 0.97526 1| 0.20771
2. Extr 1| 0.22857| 0.87913| 0.77143| 0.12087 0
mean| 0.8967| 0.12665| 0.439565| 0.873345| 0.560435| 0.10386
width/2 | 0.1033| 0.10192| 0.439565| 0.101915| 0.439565| 0.10386
EF1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13

1. Extr.| 0.7877| 0.28818 0| 0.71182 1| 0.2123
2. Extr 1| 0.43424| 0.30618| 0.56576| 0.69382 0
mean| 0.8939| 0.36121| 0.15309| 0.63879| 0.84691| 0.10615
width/2 | 0.1062| 0.07303| 0.15309| 0.07303| 0.15309| 0.10615
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EF2 | alpha 12| alpha 23 alpha 31| alpha 21| alpha 32| alpha 13
1. Extr. 0.8693 0 0.15627 1| 0.84373| 0.13066
2. Extr | 0.96755| 0.10197 1| 0.89803 0 | 0.03245
mean| 0.918445| 0.05099| 0.578135| 0.949015| 0.421865| 0.08156
width/2 | 0.049105| 0.05099| 0.421865| 0.050985| 0.421865| 0.04911
EF3 | alpha 12| alpha 23 alpha 31| alpha 21| alpha 32| alpha 13
1. Extr. 0.9765| 0.1968 1 0.8032 0 | 0.02349
2. Extr 0.7853 0 0.11038 1| 0.88962| 0.21474
mean| 0.8809| 0.0984 0.55519| 0.9016| 0.44481| 0.11911
width/2 0.0956| 0.0984 0.44481| 0.0984| 0.44481| 0.09563
FG1 | alpha 12| alpha 23 alpha 31| alpha 21| alpha 32| alpha 13
1. Extr. 0.5773 0| 0.0072125 1| 0.99279| 0.42273
2. Extr 0.9611| 0.38916 1| 0.61084 0| 0.03887
mean| 0.7692| 0.19458| 0.50360625 0.80542| 0.496395| 0.2308
width/2 0.1919| 0.19458| 0.49639375| 0.19458| 0.496395| 0.19193
Table E.4: Turning coefficients;; at toll gates for heavy traffic
AB1 | alpha 12| alpha?23| alpha3l| alpha?2l| alpha32| alpha13
1. Extr.| 0.71227 0 0.29277 1| 0.70723| 0.28773
2. Extr | 0.89832| 0.20633 1| 0.793067 0 0.10168
mean| 0.805295| 0.103165| 0.646385| 0.8965335| 0.353615| 0.194705
width/2 | 0.093025| 0.103165| 0.353615| 0.1034665| 0.353615| 0.093025
AB2 | alpha 12| alpha 23| alpha3l| alpha2l| alpha 32| alpha 13
1. Extr.| 0.87613| 0.037825 0 0.96218 1 0.12387
2. Extr 1| 0.15656| 0.78079| 0.84344| 0.21921 0
mean| 0.938065| 0.097193| 0.390395| 0.90281| 0.609605| 0.061935
width/2 | 0.061935| 0.059368| 0.390395| 0.05937| 0.390395| 0.061935
2C1 | alpha 12| alpha 23| alpha31l| alpha?2l| alpha 32| alpha 13
1. Extr.| 0.98711| 0.098959 1 0.90104 0| 0.012887
2. Extr | 0.88837 0| 0.043949 1| 0.95605| 0.11163
mean| 0.93774| 0.04948| 0.5219745| 0.95052| 0.478025| 0.0622585
width/2 | 0.04937| 0.04948| 0.4780255| 0.04948| 0.478025| 0.0493715
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BD1 | alpha 12| alpha 23| alpha 31| alpha 21| alpha 32| alpha 13
1. Extr.| 0.75736 0| 0.62692 1| 0.37308| 0.24264
2. Extr | 0.84913| 0.10385 1| 0.89615 0 0.15087
mean| 0.803245| 0.051925| 0.81346| 0.948075| 0.18654| 0.196755
width/2 | 0.045885| 0.051925| 0.18654| 0.051925| 0.18654| 0.045885
CD1 | alpha 12| alpha 23| alpha 31| alpha?2l| alpha 32| alpha 13
1. Extr.| 0.47272 0| 0.56297 1| 0.43703| 0.52728
2. Extr | 0.72603| 0.36376 1| 0.63624 0 0.27397
mean| 0.599375| 0.18188| 0.781485| 0.81812| 0.218515| 0.400625
width/2 | 0.126655| 0.18188| 0.218515| 0.18188| 0.218515| 0.126655
EF1 | alpha 12| alpha 23| alpha 31| alpha?2l| alpha 32| alpha 13
1. Extr. 1| 0.13338| 0.39623| 0.76986| 0.60377 0
2. Extr 0.8862| 0.23014 0| 0.86662 1 0.1138
mean| 0.9431| 0.18176| 0.198115| 0.81824| 0.801885 0.0569
width/2 0.0569| 0.04838| 0.198115| 0.04838| 0.198115 0.0569
EH1 | alpha 12| alpha 23| alpha 31| alpha?2l| alpha 32| alpha 13
1. Extr. 1| 0.23274| 0.46599| 0.76726| 0.53401 0
2. Extr | 0.88345| 0.13173 0| 0.86827 1 0.11655
mean| 0.941725| 0.182235| 0.232995| 0.817765| 0.767005| 0.058275
width/2 | 0.058275| 0.050505| 0.232995| 0.050505| 0.232995| 0.058275
EH2 | alpha 12| alpha 23| alpha 31| alpha?2l| alpha 32| alpha 13
1. Extr.| 0.69816 0| 0.28645 1| 0.71355| 0.30184
2. Extr | 0.91575| 0.23378 1| 0.76622 0 0.08425
mean| 0.806955| 0.11689| 0.643225| 0.88311| 0.356775| 0.193045
width/2 | 0.108795| 0.11689| 0.356775| 0.11689| 0.356775| 0.108795
EH3 | alpha 12| alpha 23| alpha 31| alpha?2l| alpha 32| alpha 13
1. Extr.| 0.88551 0 | 0.082278 1| 0.91772| 0.11449
2. Extr 0.9836| 0.097348 1| 0.90265 0| 0.016405
mean| 0.934555| 0.048674| 0.541139| 0.951325| 0.45886| 0.0654475
width/2 | 0.049045| 0.048674| 0.458861| 0.048675| 0.45886| 0.0490425
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H | alpha 12| alpha 23| alpha3l| alpha?2l| alpha32| alpha 13

1. Extr.| 0.70959| 0.031382 0| 0.96862 1| 0.29041
2. Extr 1| 0.30602| 0.89985| 0.69398| 0.10015 0
mean| 0.854795| 0.168701| 0.449925| 0.8313| 0.550075| 0.145205
width/2 | 0.145205| 0.137319| 0.449925| 0.13732| 0.449925| 0.145205
5H1 | alpha 12| alpha 23| alpha3l| alpha2l| alpha 32| alpha 13

1. Extr.| 0.81845 0| 0.016755 1 0.98325| 0.18155
2. Extr 1| 0.127779| 0.97798| 0.82221| 0.022019 0
mean| 0.909225| 0.088895| 0.4973675| 0.911105| 0.5026345| 0.090775
width/2 | 0.090775| 0.088895| 0.4806125| 0.088895| 0.4806155| 0.090775
EF1 | alpha 12| alpha?23| alpha3l| alpha?2l| alpha32| alpha 13

1. Extr. 0.8862| 0.13338 0| 0.86662 1 0.1138
2. Extr 1| 0.23014| 0.39623| 0.76986| 0.60377 0
mean| 0.9431| 0.18176| 0.198115| 0.81824| 0.801885| 0.0569
width/2 0.0569| 0.04838| 0.198115| 0.04838| 0.198115| 0.0569
EF2 | alpha 12| alpha 23| alpha3l| alpha?2l| alpha 32| alpha 13

1. Extr.| 0.88837 0| 0.043949 1 0.95605| 0.11163
2. Extr | 0.98711| 0.098956 1| 0.90104 0| 0.01289
mean| 0.93774| 0.049478| 0.5219745| 0.95052| 0.478025| 0.06226
width/2 | 0.04937| 0.049478| 0.4780255| 0.04948| 0.478025| 0.04937
EF3 | alpha 12| alpha 23| alpha3l| alpha 21| alpha 32| alpha 13

1. Extr.| 0.79374 0 0.19895 1 0.80105| 0.20626
2. Extr | 0.95482| 0.16592 1| 0.83408 0| 0.04518
mean| 0.87428| 0.08296| 0.599475| 0.91704| 0.400525| 0.12572
width/2 | 0.08054| 0.08296| 0.400525| 0.08296| 0.400525| 0.08054
FG1 | alpha 12| alpha?23| alpha3l| alpha?2l| alpha 32| alpha13

1. Extr.| 0.62276 0 0.29734 1 0.70266| 0.37724
2. Extr | 0.86713| 0.23422 1| 0.76578 0| 0.13287
mean| 0.744945| 0.11711| 0.64867| 0.88289| 0.35133| 0.255055
width/2 | 0.122185| 0.11711| 0.35133| 0.11711| 0.35133| 0.122185
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