
Università degli Studi di Ferrara

Dottorato di ricerca in Matematica e Informatica

Ciclo XXI

A Grid architectural approach applied for
backward compatibility to a production system

for events simulation

Settore Scientifico Disciplinare INF/01

Dottorando: Tutore:
Dott. Andreotti Daniele Prof. Luppi Eleonora

Anni 2006/2008

2

Università degli Studi di Ferrara

Dottorato di ricerca in Matematica e Informatica

Ciclo XXI

Coordinatore: Prof. Luisa Zanghirati

A Grid architectural approach applied for
backward compatibility to a production system

for events simulation

Settore Scientifico Disciplinare INF/01

Dottorando: Tutore:
Dott. Andreotti Daniele Prof. Luppi Eleonora

Anni 2006/2008

Contents

Abstract VII

Introduction IX

1 Distributed systems 1

1.1 Overview . 1

1.2 Types of distributed systems . 2

1.2.1 Basic distributed systems topologies 3

1.2.2 P2P and distributed systems 5

1.3 Grid systems . 6

1.3.1 Grid taxonomy . 6

1.3.2 Data Grid organization . 7

1.3.3 Service Grid . 12

1.4 BaBar’s events generation systems . 12

1.4.1 The traditional system . 13

1.4.2 The BaBarGrid system . 14

2 Grid computing projects 17

2.1 Grid computing . 17

2.1.1 European grid projects . 19

2.2 The gLite middleware . 20

2.2.1 Workload Management . 21

2.2.2 Information system . 22

2.2.3 Data Management services . 23

III

IV CONTENTS

2.3 Security . 27

2.3.1 VO . 27

2.3.2 Users certificates . 27

2.3.3 VOMS . 28

2.4 The INFN grid project . 29

2.4.1 Grid elements . 29

2.4.2 Jobs submission . 30

3 A case study: BaBar 33

3.1 BaBar’s computing model evolution 33

3.1.1 The Computing Model 2 (CM2) 35

3.2 An overview of the ROOT framework 35

3.2.1 Kanga ROOT . 36

3.3 Data bookkeeping . 39

3.3.1 New BaBar’s bookkeeping . 39

3.4 BaBar software releases . 40

3.4.1 Software releases management 42

3.4.2 Import of software releases . 42

3.5 The traditional Simulation Production workflow 43

3.5.1 Software utilities: ProdTools 45

3.5.2 Data access for Simulation Production 46

3.5.3 Ams performance tests . 47

3.5.4 Xrootd . 49

3.5.5 Output storage . 51

4 BaBarGrid system 53

4.1 Simulation production requirements 53

4.1.1 Data access . 55

4.1.2 Storage facilities . 57

4.1.3 Submission jobs grid compliance 57

4.2 Software distribution . 58

4.2.1 Simulation Production software 58

CONTENTS V

4.2.2 Resources pool selection . 59

4.3 ProdTools changes . 60

4.3.1 spbuild . 60

4.3.2 spsub . 60

4.3.3 spmerge . 61

4.4 General workflow . 61

4.4.1 Environment setup . 61

4.4.2 Run allocation management 62

4.4.3 Services . 62

4.4.4 Execution environment setup 63

5 BaBarGrid: implementation and results 65

5.1 Organization of hardware resources 65

5.1.1 Input data setup . 66

5.1.2 Output data handling . 68

5.2 Software setup . 69

5.2.1 SP software packaging . 69

5.2.2 Jobs creation and submission 70

5.2.3 Monitor . 73

5.2.4 Monitor backend . 74

5.2.5 Monitor frontend . 78

5.2.6 Monitor utilities . 80

5.3 Results . 81

5.3.1 Productions comparison . 81

5.3.2 Comparison with other sites 84

6 Conclusions 89

6.1 Open problems . 90

6.2 Future trends . 91

Appendix 93

VI CONTENTS

Glossary 101

List of tables 105

List of figures 107

Bibliography 117

Abstract

Distributed systems paradigm gained in popularity during the last 15 years, thanks

also to the broad diffusion of distributed frameworks proposed for the Internet plat-

form. In the late ’90s a new concept started to play a main role in the field of

distributed computing: the Grid.

This thesis presents a study related to the integration between the BaBar’s frame-

work, an experiment belonging to the High Energy Physics field, and a grid sys-

tem like the one implemented by the Italian National Institute for Nuclear Physics

(INFN), the INFNGrid project, which provides support for several research domains.

The main goal was to succeed in adapt an already well established system, like

the one implemented into the BaBar pipeline and based on local centers not inter-

connected between themselves, to a kind of technology that was not ready by the

time the experiment’s framework was designed. Despite this new approach was re-

lated just to some aspects of the experiment, the production of simulated events by

using Monte-Carlo methods, the efforts here described represent an example of how

an old experiment can bridge the gap toward the Grid computing, even adopting

solutions designed for more recent projects.

The complete evolution of this integration will be explained starting from the

earlier stages until the actual development to state the progresses achieved, present-

ing results that are comparable with production rates gained using the conventional

BaBar’s approach, in order to examine the potentially benefits and drawbacks on a

concrete case study.

VII

Introduction

Grid systems gained in popularity during the last decade as one of the emerg-

ing frontier for distributed computing. Benefits for experiments of last generation,

which architecture is already organized since the early stages around such a kind of

framework, are evident. Going back to that class of projects born before the grid

coming, issues concerning feasibility of integration and architecture constrains arise.

The BaBar experiment, organized at the Stanford Linear Accelerator Stanford, falls

inside this category since its framework was developed in early ’90s.

Contributions

In this thesis is illustrated the approach followed to integrate the existing BaBar

model for the production of simulated events to the grid environment, in order

to verify the degree of adaptation of a traditional and already well consolidated

framework to the facilities offered by grid mechanisms. The main goal, therefore, is

to obtain a new hybrid system built using components of both worlds and capable

to achieve the same results in terms of number of events produced weekly, but

providing an easier management in terms of resources and costs. Despite this study

is performed on a specific project and considering that different experiments could

require different solutions, the work proposed provides some approaches that can be

easily adopted by other cases.

IX

X INTRODUCTION

Thesis structure

This thesis is organized in five main sections, which core is represented by the range

starting from Chapter 3 until Chapter 5. In the first part of Chapter 1 an overview of

the distributed computing paradigm is provided to recall the main concepts related

to this branch of the computer science. A classification based on different kinds of

architecture is then discussed to introduce the second part of the chapter focused

on Grid systems, where a taxonomy is given in terms of internal organization.

A concrete example of a grid system is described in Chapter 2, where the INFN-

Grid project is presented and discussed in detail. In particular, the main components

of this system will be outlined, like data management, bookkeeping and security, in

order to give a comprehensive idea of the scenario used as background platform for

this project.

Chapter 3 illustrates the BaBar framework implemented at SLAC, describing

the evolution of the computing model and the mechanisms adopted by the tradi-

tional simulated Monte-Carlo events production. Information provided here help to

understand the choices that brought to the definition of a new production system,

BaBarGrid, that is explained in detail in Chapter 4.

The new production system is presented pointing out how the constrains of both

environments, Grid and BaBar, have been integrated in a full working solution

suitable for the simulation production of the experiment. Finally, in Chapter 5, a

description about implementation details is given along with a summary of results

achieved. In Chapter 6 a general overview of the work done is discussed outlining

motivations and open problems.

Chapter 1

Distributed systems

In this chapter will be introduced a general description of what distributed systems

are along with a discussion of the most common architectures implemented under-

neath. Moreover, a topology is then outlined in terms of information flow, taking

into account aspects like resource availability and discovering.

In the second part of the chapter grid systems are introduced, outlining a general

taxonomy for this category.

1.1 Overview

Distributed systems represents a field of the computer science that rapidly changed

in last two decades, especially thanks to the great improvements achieved in two

research domains like microprocessors and computer networks. From the mid ’80s

advance in technology brought the CPU’s field to gain an unexpected level of per-

formances, through an evolution from 8/16-bit machines to 32/64-bit architectures

that quickly outperformed old mainframes in terms of costs/benefits.

Research in the network field also led to high-speed computer networks, from

Local Area Networks able to connect hundreds of machines within a local domain,

where fast links of 100 Mbits or more move huge amount of data, to Wide Area

Networks which interconnect million of nodes spread over the world by using a

variety of links at different speeds [1].

Different typologies of distributed systems have been implemented to achieve that

degree of abstraction necessary to present a heterogeneous collection of machines

1

2 CHAPTER 1. DISTRIBUTED SYSTEMS

as it was a single coherent system. In order to support this feature providing at

the same time a single-system view, distributed systems are usually organized into

logical layers architectures where a key role is played by the middleware layer. The

middleware extends over multiple machines hiding the underneath layer represented

by operating systems and basics communication facilities, while on the other side

provides a common interface for all applications of the above layer. Distributed

systems typically have, among other, the following characteristics:

• Allow different vendors and operating systems to inter-operate

• Communication among components are hidden from users

• Provide an architecture which can be expanded easily

• Supply a good level of reliability even though some parts may be unavailable

1.2 Types of distributed systems

Nowadays distributed systems implementations come in a variety of flavors, if con-

sidering the kinds of architecture implemented beneath. From the point of view of

the information flow, a topology can be defined on the basis of the organization of

services and resources and how they can be discovered and accessed. In the follow-

ing section will be discussed the common solutions adopted both by centralized and

decentralized managements, by using graphs where nodes shown represent system’s

components which exchange information through a network link when connected by

an edge [2].

Several proprieties can be discussed when evaluating distributed systems design,

therefore the following characteristics will be taken into account in order to give an

overview of the most common:

• Manageability: represents the easy of use of a system, including all the funda-

mental management operations needed to keep the whole system working

1.2. TYPES OF DISTRIBUTED SYSTEMS 3

• Fault Tolerance: the capacity for a system to deal with different kind of failures

maintaining an acceptable level of stability

• Security: this property involves several topics, like users authorization, infor-

mation integrity, data protection

• Scalability: represents the capacity of the system to grow in size, resulting in

an extension of its potentials maintaining at the same time an equal degree of

reliability

• Information coherence: is related to the information provided by the system

in terms of data consistency, non-repudiation and reliability

1.2.1 Basic distributed systems topologies

Centralized systems represent one of the most well known organization, generally

implemented following the classic client/server pattern, where all functionalities are

collected on a dedicated server accessed by several clients. Despite this architecture

is considered one of the oldest, it is still used in a variety of applications and it was

also integrated in the model of the first generation of p2p applications, in relation

to data look-up. The ease of management comes at the price of a single point of

failure schema which also implies scalability issues.

Hierarchical systems implement an architecture where authority flows down from

the root node toward the leaves. The main advantages is represented by the high

level of scalability they can achieve, as a concrete example like DNS demonstrated

during past years [3]. Despite this typology is more fault-tolerant than centralized

systems, it still introduces a single point of failure for the root node and is generally

harder to secure compared to a centralized system since when high level nodes are

compromised the whole system can be damaged. Coherence is generally achieved

by means of cache mechanisms.

Decentralized systems consist of groups of node acting as peers, where each com-

ponent of the system, in theory, have the same role and communicate symmetrically

to each other. A first quite popular implementation of a pure decentralized system

4 CHAPTER 1. DISTRIBUTED SYSTEMS

was introduced by the Gnutella network, which demonstrated how easily new nodes

can join and leave the system but also highlighted the several drawbacks of such

kind of solution. Security is an issue for these systems due to the lack of control on

information introduced by nodes, moreover scalability can become an issue if the

overly-network management implemented is not able to maintain coherent the whole

system, avoiding to carry out too much overhead. However, decentralized systems

offer a high degree of fault-tolerance since the failure of one particular node doesn’t

impact the rest of the system. Nowadays p2p evolution brought to new solutions

which allowed to improve the efficiency of fundamental functionalities for a such

kind of systems, like datalookup , leading to the development of dedicate protocols

like CAN, Chord and Pastry implemented in popular applications for file sharing

and communication.

Naturally, other kinds of architectures are implemented as hybrid solutions of

those discussed above, like for example the so called brokered systems which can

broker specific functionalities [4]. In practice, several factors can determine the

nature of a system since even those that are considered heavily decentralized can

implement centralized solutions for specific purposes.

Figure 1.1: Example of distributed systems architectures [3]

In order to determine whether a system is centralized or decentralized, three

main areas can be further considered: resource discovery, resource availability and

1.2. TYPES OF DISTRIBUTED SYSTEMS 5

resource communication. Resource discovery can be provided both centrally or

not, depending on the target must be achieved, furthermore it can be subdivided

into two other aspects like location information content and information retrieving

methods. Information access, for example, can be centralized while methods of

how information is retrieved can be decentralized, as a well known example, the

DNS, demonstrates. Decentralization plays a more important role in how data are

localized than they are accessed due to the need for users to find required information

quickly.

Along resource discovery another very closely tied aspect is the availability of

resources. In a centralized system resources are collected at a specific site resulting

in a single point of failure, while decentralized systems offer many duplicates for

supplying the same functionalities.

Resource communication within a distributed system can be considered as two

different approaches: point to point or brokered. The first solution involves direct

connection between two components, despite the fact the link can be multi-hop. In

the latter a central server is placed in the middle of the communication to keep in

sync resources that cannot reference to each others directly.

1.2.2 P2P and distributed systems

During last decade p2p systems gained popularity thanks to the implementations

supplied for many well known applications. p2p networks allow to connect on large

scale transient devices providing robust solutions for different application domains,

working using a dedicated overlay network in a complex environment.

P2P systems belong to the full decentralized category, overlapping part of the

topologies scenario discussed previously and spreading network and resource de-

mands across the network. Although their decentralized nature, even p2p systems

can provide a partial centralized management even if there is no global notion of

centralization from the point of view of single peers. More important, the p2p tech-

nology led to the development of several applications in different domains, providing

new solutions for the distributed systems field.

6 CHAPTER 1. DISTRIBUTED SYSTEMS

1.3 Grid systems

The ”Grid” concept is based on the idea of sharing different kinds of resources,

therefore different typologies of grids can be defined. From the point of view of

pure computation, the computational grid category denotes the possibility for a

system to aggregate from different sources, even belonging to different domains, a

high amount of computational capacity which would be difficult to achieve from any

single machine connected to the system.

Depending on the application domain involved, this category can further sub-

divided into two sub-categories: high performance computing and high throughput

computing grids. In the former case, the target requires a strict cooperation between

the most part of the pool of machines connected to the system in order to solve a

challenging task as quickly as possible. Typical applications are weather modeling

that require an intensive computing process to deliver results in time.

On the other hand, many applications don’t require to solve a specific prob-

lem where time is such a limiting constraint, but instead need to maintain a high

throughput rate for completing as many jobs as possible. One of the most dif-

fuse application in this field concerns Monte-Carlo simulations, which production

architecture perfectly fits this kind of model.

1.3.1 Grid taxonomy

Scientific experiments led grid architectures to rapidly change in order to adapt to

specific requirements, preserving at the same time a standard set of features suitable

for being applied to different research domains. A general grid taxonomy involves

several aspects depending on the kind of purpose it is focused on, therefore the

most common views about data, computation and application will be taken into

account in this section, highlighting just those parts directly involved in the aim of

this thesis.

Nowadays many research domains are supported by grids which type can be

associated to one of these categories since the development of a multi purpose grid,

able to provide effective solutions for each of the above fields, still remains an open

1.3. GRID SYSTEMS 7

Figure 1.2: Example of grid systems taxonomy [5]

issue. For example, one of the main difference between data and application grid

is related to specialized infrastructure the former category must provide for data

access and storage management, which requires dedicate solutions not offered by

the standard set of services.

1.3.2 Data Grid organization

Data grid can be considered as a branch derived from the evolution of the Web, since

both systems were designed to share a huge amount of data to be distributed among

domains at different locations. The main difference lies in that pool of instruments

the grid offers to elaborate data, giving the possibility to compare information among

different domains, providing also those mechanisms to standardize the meanings

associated to those information.

Data grid architectures require a complex organization since different aspects

must be taken into account. The model implemented to support a data grid in-

frastructure represents the way data sources are arranged [5], which depends on

different factors like data size, the kind of sharing mode adopted and distribution

of data sources. A selection of most popular models is shown in figure... and repre-

sents a collection of strategy is implemented by different projects to effective solve

the organization task:

• Monadic: the main characteristic of this solution consists of a single point for

collecting data. Only one main repository is implemented while data can be

collected from different sources, even geographically distributed. Repository

8 CHAPTER 1. DISTRIBUTED SYSTEMS

Figure 1.3: Data model organization [5]

replication is allow just to improve fault tolerance, due to the one single point

of failure architecture, but data cannot be replicated on other locations to

improve data access. Despite all constrains that a such solution presents, it

has been adopted in those cases where all accesses were local to a specific area

• Hierarchical: this model implements a distributed approach and spreads data

over other centers belonging to the same collaboration. An example is given by

the MONARC (Models of Networked Analysis at Regional Centres) [6] group

located at CERN that proposed a tiered architecture for data distribution. A

main center, at the top of the chain, collects all data generated into the main

repository that represents a reference for all smaller centers. Portions of the

repository are then subdivided among sub-nodes, classified as lower levels of

the chain: these kind of institutions generally don’t need the whole set of data

1.3. GRID SYSTEMS 9

but are interested just to a portion. Walking down toward the bottom of the

graph, sites become smaller in terms of requirements like storage capacity and

network bandwidth. Several experiments in the field of High Energy Physics,

like CMS and BaBar, adopted this kind of model which one advantage is

to preserve consistency quite easily due to a single main point where data

are collected. Naturally, to improve data access hybrid solution can be used,

as for example, to replicate the main repository at those sites that fulfill all

requirements to become a mirror of the main center, like in the case of BaBar

where, through dedicated tools purpose-made, the central repository has been

replicated also to other institutions in Europe.

• Federation: this kind of approach is quite common since is based on the reuse of

already installed resources. As example, many institutions like to share infor-

mation using local databases previously adopted for different tasks, building a

data network with other external sites which allow users to demand data from

whatever node connected. Each node is responsible for providing mechanisms

for accessing data and safely check users credentials. Different kinds of feder-

ations are possible depending on sites local policies and suitable mechanisms

to define a uniform interface to access data shared on a heterogeneous pool of

nodes

• Hybrid: models belonging to this category combine concepts described in the

previous architectures and their evolution is driven by the experience gained by

users on different application domains to solve common problems. An example

of peer-to-peer communication integrated into a hierarchical/federated model

is shown in Figure 1.4

Another key element of the general taxonomy is represented by the organizations

that operate on the grid, which depending on their internal polity can be classified

as follow:

• collaborative: when entities belonging to the same organization work together

10 CHAPTER 1. DISTRIBUTED SYSTEMS

Figure 1.4: Data Grids taxonomy [5]

sharing resources to reach a common goal, after specific policies about re-

sources usage have been established

• regulated: a single organization establishes rules for accessing resources to all

other participants, defining remissions and rights

• economy-based: are based on a profit mechanism where consumers contact

producers on the base of quality of services they offer, therefore rules follow

the level of agreement among participants

• reputation-based: provide a set of well known services that represents the

organizations’ credentials by which inviting new entities to participate

A further distinction can be made depending on the scope a data grid is designed

for. Intradomain scope means that the whole system is dedicated to just a single

1.3. GRID SYSTEMS 11

application therefore the infrastructure offer to all participants features and mecha-

nisms specialized for that particular field. On the other hand,interdomain provides

a common base for different fields of reaserch, offering a general purpose platform

of services.

Data Transport

Within a data grid framework, data transport play a key role since it governs re-

ally complex tasks like data access, management, security and transfer of infor-

mation, providing underneath mechanisms for both low and high communication

levels. Since the complexity of this sub-taxonomy, just a general overview will be

given about most common topics.

Functions: features provided at this level can be split into three specific tier

which cover as many different degrees of communication. The first one, the transfer

protocol, manages bits transfer among network nodes and has been largely adopted

by grid communities, like the widely used GridFTP [7]. Overlay Network: data rout-

ing is performed at this level, providing specific solution over the internet protocol

to satisfy a particular purpose. An example is given by p2p network where DHT

(Distributed Has Table) are used to achieve a better performance in data access

and retrieving [8]. Common features include storage in the network, caching of data

transfers for better reliability and the ability for applications to manage transfer of

largedatasets. The last level provides file I/O mechanism to hide the complexity

and the unreliability of the networks, allowing applications to access remote files as

they were locally available.

Security: this is a fundamental requirement for data grids since the integrity of

data must be preserved and shared only among trusted users. Several mechanisms

for authentication and authorization are possible, ranging from coarse-grained meth-

ods like Unix file permissions to fine-grained solutions like public key cryptographic

protocols. Moreover, other approaches can be implemented for defining a further

stricter access policy, by using instruments like Access Control List (ACLs), while

data encryption may also be provided for all information classified as confidential.

Fault Tolerance: when transferring large quantity of data a reliable underneath

12 CHAPTER 1. DISTRIBUTED SYSTEMS

mechanism is necessary to grant fault tolerance. Several approaches can be imple-

mented to fulfill this requirements, the most common take care to restarting over

or resuming from the point where interruption took place. GridFTP protocols, for

example, allow for resuming transfers from the last byte acknowledged.

1.3.3 Service Grid

This category represents one of the most interesting scenario in the field since the

target is not just limited to offer a service on demand for a limited period of time, but

also provides those services that cannot be offered by any single machine, eventually

combining well known functionalities into a new kind of service. Further categories

can be outlined from this one: on-demand, collaborative, and multimedia.

• Collaborative grids let interconnected components to collaborate each others,

allowing real time interaction between humans and applications

• On-demand grids are able to satisfy on-demand requests performing a dynamic

aggregation of different resources to provide new kind of services

• Multimedia grids offer support for realtime multimedia applications, supplying

all needed controls for providing the needed quality for data streams over

multiple machines [14]

The interest around this kind of systems has arisen during last years, thanks

also to the diffusion of web-services paradigm which became very popular also in

the business field. Despite this rapid evolution, many efforts are still required to

improve these young technologies and ti define solid standards.

1.4 BaBar’s events generation systems

In this section will be introduced an overview of the two systems currently used

in BaBar for producing simulated events. Although a complete description will

be given in the next chapters, a comparison is provided here in terms of common

properties for the distributed system paradigm. In spite of the BaBar’s traditional

1.4. BABAR’S EVENTS GENERATION SYSTEMS 13

model can be considered more an organization of different sites glued by a common

coordination than a real distributed system, some considerations can be made from

the point of view of data distribution, therefore, characteristics like the architectural

model, fault tolerance, data coherency, security and scalability will be taken into

account for both approaches.

1.4.1 The traditional system

As explained before, the BaBar experiment adopted the MONARC model where

data are distributed within a tiered architecture. Despite data required for the

simulation process are regularly mirrored on secondary sites, providing a natural

backup solution when problem occurred at SLAC, the system is still considered

a single point of failure since it strongly depends by the efficiency of the central

repository, therefore any delay introduced at the main site for regenerating corrupted

data heavily prejudices minor sites activities.

Due to the intrinsic centralized nature of the model, data coherency is maintained

quite easily by specific tools that take care to import on remote sites the required

version of data needed to the simulation. Requests are pointed directly to the

main database at SLAC when changes are notified by the central management.

Occasionally some sites can run different kinds of simulation in parallel by simply

reorganizing a set of specific local links to point to the desired version of input data,

previously downloaded. This mechanism grants that all sites involved perform the

simulation using the same set of data, reacting promptly when changes are needed

and maintaining the required flexibility to handle particular conditions.

Security depends directly on the protection level implemented on each single

site involved. Naturally, the root site represented by the SLAC center is crucial

and must offer an adequate level of protection since it represents the core of the

whole experiment, providing data not only for the simulated events task but also

for all other activities. From the point of view of the simulation process, minor sites

depends by the root node, therefore security concerns mostly the SLAC main center

if considering the flow of data to distribute.

Commonly, centralized systems like the one used in BaBar are not able to scale

14 CHAPTER 1. DISTRIBUTED SYSTEMS

as it would be expected since the most of data are distributed by a single source,

nevertheless the root site demonstrated to be able to offer the required level of

efficiency for managing the workload even when new sites came into play.

1.4.2 The BaBarGrid system

Several aspects of the BaBarGrid system are common to the traditional one, since

the grid approach can be considered as a natural evolution of the original schema.

Therefore the new system can be thought as a composed design of two distinct

parts where the single site, in charge of connecting to SLAC to download data and

to require runs for production, hides the underneath grid infrastructure which can

be composed of several sub-sites where running the production.

Security, for the BaBarGrid system, can heavily rely on mechanisms implemented

within the grid context, where users must be authenticated before accessing system’s

resources. Moreover, even validity for users’ jobs expires after a specific amount of

time in order to force the authentication procedure periodically. Whenever a new site

joins the grid, it must subscribe security policies required by the system, resulting

in a easier management of the security topic.

A grid system should offer a high level of scalability, allowing new sites to join

in without affect the overall performances. At present, the BaBarGrid system bot-

tleneck is represented by the external grid resources used for reading input data

needed to the simulation process, which amount is limited to few sites compared to

the total amount of nodes it could be possible to use as global resources pool.

Considering transparency in data access, it can be split in two different aspects,

related to the access to the input data and the access for storing and retrieving

results produced. In the former case, the degree of transparency is quite low since

both the site manager and simulation jobs must be aware about data location, which

is maintained by using hard coded configuration files. This mechanism is necessary

since input data for BaBar’s simulation are not managed within the standard grid

system and therefore a separate service had to be implemented for this purpose. On

the other hand, grid facilities greatly help to achieve a very good level of transparency

for storing and retrieving output data, hiding low level access/transfer processes

1.4. BABAR’S EVENTS GENERATION SYSTEMS 15

behind a uniform interface.

Chapter 2

Grid computing projects

In this chapter an introduction to the grid computing and its basic concepts is given.

Many services will be highlighted along with the components strictly related to the

aim of the project described in this thesis. As examples, some international projects

will be presented along with an architecture overview of the Italian grid system,

INFNGrid, used as the base platform for the development of this work.

2.1 Grid computing

The need to easily access a large quantity of computing resources, like CPUs power

and storage facilities, led to research different solutions to face the challenge put by

new generation projects, more and more oriented toward a distributed approach.

The Grid concept, started in late ’90s, represents more than a revolution an evo-

lution of the well known ideas in the field of distributed computing, introducing at

the same time a new vision to allow a transparent use of all its potentials [9]. The

main difference compared to the World Wide Web consists in what is shared among

users: the Web shares information while the grid allows a great flexibility in sharing

computing resources of different nature. Many efforts brought to the development of

the so called middleware, considered the fundamental component to give a uniform

representation of all the different kinds of hardware and software technologies that

work together underneath, providing a high level of abstraction that allows users to

focus just on the achievement of their own goals, without worrying about details like

how to locate best resources for matching their tasks requirements. During last years

17

18 CHAPTER 2. GRID COMPUTING PROJECTS

several communities, both in academic and business fields, started to embrace the

grid philosophy trying to develop their own personal ”recipe” to match the best bal-

ance between costs and performances, resulting in the birth of different approaches

to the same problem. Despite the lack of a real unique standard, these contributes

helped to keep alive the research for new solutions to improve the different parts

that make up the grid technology.

The grid idea is based on a collaborative approach, since generally a single in-

stitution cannot supply all the resources necessary to achieve a specific goal, where

a huge amount of data need to be handled or a high level of computational work

is required. The possibility to dynamically plug in new resources allows new en-

tities to join the grid environment with little effort, automatically gaining all the

benefits provided by the architecture. Nowadays grids can be spread over different

countries and are made up different computing centers connected by fast network

links. This is a great difference compared to other traditional solutions, where com-

puting resources were usually bounded to a single physical institution or, at most,

distributed among few centers. Grid middleware allows to access resources spread

worldwide since even the management of services and facilities are distributed, del-

egating to each single site the responsibility to keep things working to contribute to

the efficiency of the whole system. However, the lack of a central management along

with the management of institutions that can join an leave the grid dynamically,

represents a great challenge that require to design new solutions to efficiently face

scalability issues that a such environment implies.

A great contribute for the development and implementation of the Grid come

from the open source community which provides well known protocols and opens

standards to build the basic services, which are often improved to match those chal-

lenging requirements needed to operate on the grid in a reliable and efficient way.

Although standardization is not mandatory in grid computing, the need for a com-

mon general guideline is necessary to avoid the raise of too many types of grid that

would make it much more difficult to combine so different technologies. The main

group which is actually working towards standards adoption in grid computing is the

Open Grid Forum (OGF) [10] . The path for the definition of a new standard is quite

2.1. GRID COMPUTING 19

complicate, moreover is not always easy to find examples of grid implementations

where standard solutions have been adopted.

2.1.1 European grid projects

Driven by the need to define common guidelines for a uniform grid environment, dur-

ing past years the European Union promoted international projects to start building

a reliable grid network. The Enabling Grids for E-sciencE (EGEE) project [11],

which first part officially ended in 2006, was one of the most important example.

The aim of the project was to develop a secure and robust grid network to allow

researchers from several countries access major computing resources, independently

on their geographical location, bringing together experts from more than 50 coun-

tries with the common goal of developing a service Grid infrastructure available to

scientists 24 hours-a-day [5]. The two years project, funded by the European Com-

mission with more of 30 million euro, defined two main pilot application domains for

testing the performance of the evolving infrastructure: the High Energies Physics

field, for supporting the Large Hadron Collider Computing Grid (LHC), and the

biomedical research for those communities involved in the bioinformatics field. The

next phase of the project, EGEE-II [12], shares its infrastructure with the World-

wide LHC Computing Grid Project (WLCG) [13], providing a total amount of more

than 72000 CPUs available, with more than 260 sites connected and at least 7500

registered users, for a total amount of about 20 PB of data store, reinforcing the

collaboration among different institutions. Other topics, like training and connec-

tion to the industry are taken into account and periodical events are promoted to

extend the knowledge about the grid to new users and to discuss new approaches

to fulfill business requirements for those companies that would like to invest in this

technology.

Several examples show the many potentials the grid has to offer with the differ-

ent projects started in different fields of research and industry. From the beginning,

EGEE formed a strategic alliance with the LHC Computing Grid (LCG) project [13]

[14] to provide computing resource to the four applications representing the four dif-

ferent LHC experiments: ALICE (A Large Ion Collider Experiment), ATLAS (A

20 CHAPTER 2. GRID COMPUTING PROJECTS

Toroidal LHC Apparatus), CMS (the Compact Muon Solenoid Experiment) and

LHCb (The Large Hadron Collider Beauty Experiment). This support has been ex-

tended to several other HEP collaborations that have joined the infrastructure later,

such as the US BaBar (the B and B-bar experiment) [15], CDF (Collider Detector at

Fermilab) [16] and ZEUS [17]. On the medical field other applications approached

the grid philosophy, like the WISDOM Drug Discovery project [18], which aim is

to speed up the process of finding new drugs against malaria, or the GPS@ (Grid

protein Sequence @nalysis) [19], a bioinformatic portal dedicated to various pro-

tein analysis tools, which target is to help biologists and physicians understand the

genomes which have now been sequenced.

Looking to other scientific domains, Geocluster is the first industrial applica-

tion successfully running on the EGEE Grid Production Service on the field of

Geophysics, that within the Expanding GEOsciences on DEmand (EGEODE) com-

munity explores the composition of the Earth’s layers and let researchers to process

seismic data, while a project for astrophysics researches, MAGIC [20], investigates

the behaviour of air showers in the atmosphere, which are caused by high energetic

primary cosmic rays, processing data located on the Canary Islands, to study the

origin and the properties of high energy gamma rays.

2.2 The gLite middleware

One of the fundamental part of a grid architecture consists of the middleware com-

ponent. The aim of the middleware is to act as a glue to interconnect all different

kinds of hardware underneath, providing a uniform software platform to the users,

in order to allow a transparent usage of all resources available hiding as much of

implementation details as possible [21] .The EGEE project actually uses the gLite

middleware as the basic platform for its architecture, which was born from the col-

laborative efforts of more than 80 people in 12 different academic and industrial

research centers and by the contributions from other projects like LCG and VDT

[22].

Middleware is made of several software services and libraries providing function-

2.2. THE GLITE MIDDLEWARE 21

alities which are common to different kind of domains, due the general purpose they

were designed for. Tasks like finding the right pool of nodes where execute user jobs

on a heterogeneous environment or accessing different kinds of storage facilities in

a transparent way are standard operations that must be provided to preserve the

ease of use of the whole system from the user’s prospective. Jobs submission must

be integrated with a mechanism able to give the possibility to the user to monitor

the full life cycle of the job until its completion, while the underneath architecture

takes care to route jobs toward the right place. Another important issue consists

in data access, along with data transfer and replication, besides, the status of all

available resources must be collected, published and kept updated. Finally, a grid

environment must face the security challenge, implementing mechanisms to avoid

access and usage of shared resources to unauthorized users.

2.2.1 Workload Management

The Workload Management System (WMS) [23] [24] allows users to submit jobs,

and performs all tasks required to execute them, without exposing the user to the

complexity of the Grid. The user is responsible to describe his jobs and their re-

quirements, and to retrieve the output when jobs are finished [25]. It consists of

several components resulting in a quite complex system in charge of taking decisions

about which location on the grid offers the best matching in terms of user’s jobs

requirements.

Users write job using the Job Description Language (JDL) [26] which codes re-

quirements and properties as attribute-value pairs, including all information needed

to perform the job correctly. When submission step takes place, the Information

System is contacted to get the list of best candidates CEs that fulfill all the re-

quirements. Several advanced features are included to refine the search of optimal

balance among expectations and resources actually available, along with the capa-

bility of automatic resubmission in case of errors, the submission of interdependent

jobs and a realtime check for jobs output.

22 CHAPTER 2. GRID COMPUTING PROJECTS

2.2.2 Information system

Discovering resources and monitoring related status along with checking how logged

in users are using them, is a critical issue for a grid environment and need specific

components to be implemented. The Information Service (IS) accomplished these

needs providing the necessary feedback about resources availability to permit users

to decide which location offers the best environment for jobs execution. Two dif-

ferent types of Information Services are available in gLite: the Globus Monitoring

and Discovery Service (MDS) [27] and the Relational Grid Monitoring Architecture

(RGMA) [28]. The MDS, based on the LDAP protocol, is capable of handle both

static and dynamic resources, like the type and status, and is structured in a hi-

erarchical way. At the top of the chain the Berkeley Database Information Index

(BDDI) provides a complete list of all resources available. The list provided by the

BDII is published by using the LDAP url format and consists of a set of all gateways,

typically CEs, located at remote farms where jobs can be submitted. On each single

farm other components take care to collect local information as feedback for the

top BDII queries. The Grid Resource Information Server (GRIS), installed on each

critical element of the farm like CE, SE or RB, collects all necessary information and

then propagates this stream of data to the local site BDII, usually installed on the

CE, that communicate with the top level BDII, as depicted in Figure 2.1. Another

solution for the same purpose was introduced later by the the OGF, as a relational

implementation of the Grid Monitoring Architecture (GMA), based on relational

databases. The schema consists of three main components, the Producer, the Con-

sumer and the Registry. The first one provides information registering themselves to

the Registry, which replies to the Consumer requests providing the location of Pro-

ducers holding the information needed. R-GMA represents a more flexible solution

compared to MDS enabling users to share information in a virtual database. Indeed,

other applications uses this architecture for different purposes like, for example, job

monitoring or accounting.

2.2. THE GLITE MIDDLEWARE 23

Figure 2.1: MDS Information System architecture

2.2.3 Data Management services

Within a grid environment, a fundamental role is played by the mechanisms dele-

gated to the data handling that must be performed over a distributed architecture

composed by heterogeneous kinds of hardware and software components. Several

types of data access and transfer protocols are provided to extend the flexibility

of the system.The GSIFTP [29] protocol, that includes the characteristics of FTP

with support for Grid Security Infrastructure (GSI) [30], allows to transfer data

efficiently to and from the SE and along with the GridFTP server represents one

of the most common data service installed on WLCG/EGEE SE. The Remote File

Input/Output protocol (RFIO) allows to direct access files stored in the SE and was

developed for tape archiving systems and both versions, secure and insecure exist.

Another protocol for direct remote access is GSI dCache Access Protocol (gsidcap),

an enhanced version of the of the dCache [?] [31] native access protocol (dcap). In

gLite the service for data storage is represented by the Storage Element, where users

data are stored for further uses. All recorded information are considered read-only,

therefore a file on a SE cannot be modified but just removed and then replaced.

Each site can freely choose among different types of SE when deciding to install its

24 CHAPTER 2. GRID COMPUTING PROJECTS

own local data service:

• CASTOR [32]: this solution offers an interface between a tape mass storage

system and a disk buffer used as frontend, while all details are hidden by

a virtual filesystem. Data transfer is handled by a dedicated process which

takes care to migrate files from disk to tape. The RFIO insecure protocol is

implemented, allowing access to the SE only from nodes located in the same

LAN

• dCache: it can be used either as a disk only storage system and as disk buffer

frontend to a other mass storage system like HPSS [33]. A virtual filesystem

hides a pool of nodes that can be dynamically added, while a server reperesents

the single point of access to the SE. The system adopts the gsidcap protocol

for data access

• LCG Disk pool manager: like previous systems, a virtual filesystem hides the

complexity of a disk pool architecture, based on the secure RFIO protocol that

grants file access even from WAN. The pool consists of a set of disks where

new nodes can be added dynamically

In order to provide a uniform interface to every type of storage element, the Stor-

age Resource Manager (SRM) [34] has been designed and is actually implemented to

the most of SE installed, hiding the complexity related to the management of disks

and tapes beneath. Furthermore, users are unaware about resources setup and can

perform several operations like file requesting, space reservation and migration of

data from tape mass storage to disk.

In gLite, data management is strictly related to the concept of file as main unit

for operations, therefore a reliable mechanism for registering files must be provided.

The solution implemented offers different levels for successfully mapping filenames

and their location on the grid:

• the Grid Unique IDentifier (GUID) is a 36 bytes unique identifier associated

to a file. A such string, composed by a time stamp and a MAC address, has

the following format:

2.2. THE GLITE MIDDLEWARE 25

guid:<string>

• the Logical File Name (LFN) provides a much more human readable way to

refer to a file, acting as a alias for it. In this way users can refer to a file being

aware about its physical location The typical format is:

lfn:<any_string>

In the case of the LCG File Catalogue, described later, a logical structure is

defined to organize all LFNs, using the format shown below:

lfn:/grid/<MyVO>/<MyDirs>/<MyFile>

• the Storage URL (SURL) represents the Physical File Name (PFN) of the file

and identifies a replica in a SE. The format depends on the availability of the

SRM interfaces on the SE:

<sfn|srm>://<SE_hostname>/<some_string>

In the first case the prefix sfn indicates the SE does not support SRM and

therefore the path for file location is composed by the following elements:

sfn://<SE_hostname><SE_storage_area><VO_path><filename>

For SRM-managed SEs a virtual system is used therefore the filename may not

be related with its physical location so there is not a any particular format for

SURL.

• the Transport URL (TURL) includes information about the protocol sup-

ported by a SE and used to access the file:

<protocol>://<some_string>

where the string after the double slash may have any format that can be

understood by the SE serving the file. TURLs can be obtained automatically

by the SURL through the Information System or the SRM interface.

26 CHAPTER 2. GRID COMPUTING PROJECTS

Figure 2.2: File names mapping

To efficiently manage all the associations a single file could produce, a grid catalog

has been implemented. In the past the old EDG-RLS catalog was proposed, but

due to serious security and scalability issues a new solution was taken into account.

The LFC FIle Catalogue (LFC), maintains mappings between GUIDs and LFNs

and between GUIDs and SURLs and is implemented using a Oracle database as

backend . The catalog publishes its endpoint to the Information System therefore

can be discovered and accessed both from users and other services like, for example,

the WMS. A pool of lfc commands is provided to let users query the catalog and

perform several operations, like create or remove files and directories, in a Unix-like

way. Another set of utilities, called lcg-utils, is provided to perform operations like

creating or removing replicas, moving replicas from a SE to another and retrieve a

GUID from a LFN or SURL. Since a file is considered a Grid file only if is both

physically present on a SE and registered into the catalog, the use of these high level

utilities is strongly recommended to preserve consistency between files in SEs and

related entries into the catalog, otherwise a file could be considered corrupted by

the system. The typical example occurs when an entry is deleted from the catalog

but the related file is still present on the SE. In this case, the file it still on disk but

it will result unavailable. High level tools safely remove a file by deleting either the

entry in the catalog and all the replicas of the file, independently on their location.

2.3. SECURITY 27

2.3 Security

One of the most critical issue for a Grid environment is related to the security of

information exchanged. The system, indeed, must provide a reliable mechanism to

protect data against unauthorized users and be able to preserve information integrity

in case of potential services failures, due to the violation of communication protocols.

As the middleware evolved, new mechanisms have been introduced to make safer

operate over the grid platform.

2.3.1 VO

The sharing of resources among structures that collaborate to a common project or

are involved in the achievement of the same goal, is a topic which importance is clear

in a such distributed environment like the grid. Virtual Organizations were intro-

duced to allow a great flexibility in managing resources within multi-institutional

areas, providing instruments to easily define collaborative strategies for problem

solving [35]. Specific rules define which resources are available and by who can be

accessed, providing a dynamic controlled coordination for sharing services like com-

puting and storage facilities. Generally, each institution defines a VO to share its

resources since it is a mandatory step to be allowed to operate on the grid. Users

must subscribe to at least one VO before starting work, but further steps are re-

quired to be fully authorized. A single user, indeed, must obtain an account on

specific machine called User Interface representing the node from where jobs sub-

mission starts and copy there the personal certificated previously requested to be

authenticated.

2.3.2 Users certificates

In order to operate on the grid, each user must provide his own credentials to other

users or to services involved during the communication. The Globus Toolkit [36]

defines the Grid Security Infrastructure based on the asymmetric keys mechanism,

as described by the Public Key Infrastructure. A couple of keys is generated for

each end point of the communication, users or services, creating a private key and

28 CHAPTER 2. GRID COMPUTING PROJECTS

a public key. The private key must be preserved in a safe location while the public

key is freely distributed to all the entities interested in the conversation. Messages

are encrypted by the sender with the public key of the receiver which is the only

one that can decrypt the message using his own private key. Requirements for a

secure communication concern the authenticity of the entities involved, each identity

must be trusted by participants, the privacy of the message must be guaranteed

along with its integrity, its meaning cannot be altered by any external entity and

of course the participants must be authorized to interact to each other. TheGlobus

Toolkit covers all the described topics through services like X.509 certificates [37]

for authentication and proxy certificates for delegation and single-sign on. User

certificates are released by trusted entities recognized by EGEE called Certification

Authorities (CA). After a user has logged to the User Interface he can use his

personal certificate to generate a proxy from it. Proxy is used to delegate the user

credentials through to the whole chain of requested authorizations that will follow

jobs submission, allowing the execution of all operations needed. In order to reduce

security risks, the proxy has a shorter validity than the original certificate, which

usually lasts for one year.

2.3.3 VOMS

In order to enable users to access resources provided by VOs and offer support for

group membership and roles, the Virtual Organization Membership Service (VOMS)

[38] [39] [40] was developed within the DataTag collaboration and then further im-

proved and maintained by the actual European project EGEE. VOMS is a system

for managing authorization data within multi-institutional collaborations provid-

ing a database of user roles and capabilities and a set of tools for accessing and

manipulating data contents to generate Grid credentials for users when needed.

The VOMS database contains authorization data that defines specific capabil-

ities and general roles for specific users. A suite of administrative tools allow ad-

ministrators to assign roles to users and manipulate capability information, while

command-line tools allows users to generate a local proxy credential based on the

contents of the VOMS database. This credential includes the basic authentication

2.4. THE INFN GRID PROJECT 29

information that standard Grid proxy credentials contain, but it also includes role

and capability information from the VOMS server. Standard Grid applications can

use the credential without using the VOMS data, whereas VOMS-aware applications

can use the VOMS data to make authentication decisions regarding user requests.

2.4 The INFN grid project

At the end of ’90s the National Institute for Nuclear Physics approved the INFN-

GRID project [41] to develop the first Italian Grid Infrastructure, based on GARR,

the Italian research network. From the beginning the collaboration with CERN,

others European centers and some industries, led the Italian Grid to being part of

fundamental project like DataGrid, a milestone towards an infrastructure support-

ing the common European Research Area (ERA). INFN-Grid has promoted several

EGEE projects helping to deploy worldwide grid service to support interoperabil-

ity among other major grid infrastructures in the world and represents a successful

example of collaboration between more than 40 sites supporting several scientific

domains like high energy physics, biomedical, earth-observation and industry. The

project is based on the standard gLite middleware as core for supported services,

providing some custom configurations for specific tasks like resources monitoring.

INFNGrid infrastructure represents the grid network used as base for the develop-

ment of the project described in this thesis and it provides support for the mech-

anisms concerning all the critical points examined above. In the following sections

will be illustrated the typical job submission workflow, highlighting the common

components provided by the gLite infrastructure.

2.4.1 Grid elements

In order to join the grid network, the new node must fulfill some basic requirements

in terms of components provided. A grid farm to be considered as part of the

infrastructure needs at least a local batch system to schedule incoming jobs plus a

pool of machine where executing tasks, moreover a storage unit to read and write

results is required along with an interface from where logging to the system. The

following list gives a brief description for the main elements of the architecture:

30 CHAPTER 2. GRID COMPUTING PROJECTS

• User Interface: this node represents the entry point of the grid farm. Users ac-

counts are created and configured to accomplished all security policies needed.

A pool of tools allows to submit jobs to the grid, monitoring and retrieving

results after completion

• Computing Element: it is the main gate to access the pool of working machines

where jobs are executed. The framework allows to choose among different

types of batch systems to manage jobs scheduling. Actually is also used to

store the software used by different experiments

• Worker Nodes: are the machines where jobs are actually executed. Generally

worker node pools consists in a heterogeneous group of hardware nodes

• Bdii: this critical component belongs to the Information System infrastructure

and provides the list of available resources when contacted by the resource

broker

• Resources Broker: the purpose of this service is to accept incoming submission

requests from the user interface choosing where sending users jobs on the basis

of specified requirements and the resources obtained by the bdii

• Storage Elements: is the unit in charge of storing data from job output and

input data needed by applications installed by VOs

2.4.2 Jobs submission

The Grid allows users to access and share its computing resources to achieve tar-

gets otherwise hard to reach without a collaborative effort. The standard solution

actually adopted to provide these kind of features concerned the submission of jobs

following a specific workflow. First af all a user must be authorized to use resources

belonging to a VO and has to install his personal certificate on the UI, from which

will be generated a proxy certificate used as temporary credential ticket for all ser-

vices will require it for any security reason. From the UI the user submits jobs,

written in JDL, to the WMS, where all needed files specified in the Input Sandbox

2.4. THE INFN GRID PROJECT 31

Figure 2.3: Jobs submission workflow

will be copied. The WMS examines information provided by the BDII, to match the

best CE where sending jobs, and interrogates the LFC to find input data requested.

After creating a wrapper script to prepare the job, it is then transferred to the

selected CE where is scheduled on the local batch system. Before jobs execution,

input data within the Input Sandbox are copied to the WN where the job will run.

During execution the job can use the data management tools to register output files

in the grid catalog. When job successful completes, all files eventually contained in

the Output Sandbox are transferred to the WMS from where will be retrieved by

the user on the UI. Automatically resubmissions are provided in case of failure. The

Logging and Bookkeeping services keeps trace of status changing for the job during

the whole cycle, providing information on the status of the job when queried by the

user. Figure 2.3 shows the logical workflow schema.

Chapter 3

A case study: BaBar

In this chapter we introduce the BaBar experiment in order to focus the attention on

the computing model adopted for the production of simulated Monte-Carlo events,

known as Simulation Production (SP). The evolution of the BaBar computing model

will be highlighted along with the strategy adopted to distribute, locate and retrieve

data needed to the simulation process.

3.1 BaBar’s computing model evolution

The BaBar experiment investigates the CP Violation phenomenon, related to the

subtle matter and anti-matter asymmetry presents in the universe. The collabora-

tion is made up by more than 700 researchers based at 74 institutes spreads over

11 countries in the world, while the main center is located at SLAC, the Linear Ac-

celerator Center of the Stanford University, California, where an electron positron

collider is used to study the physics of B-mesons by continuously colliding bunches

of high-energy electrons and positrons 250 million times per second. Events simula-

tion is a major task of the experiment, since at least three times as many simulated

events are needed as data events, where each event is the result of a collision between

an electron and positron. The process simulates the interaction of the particles gen-

erated during the physics step with the detector, where particles are created using

dedicated programs on the base of specific models and theoretical calculations. The

noise produced during the real events generation is also taken into account and

mixed together with data for achieving a more realistic result.

33

34 CHAPTER 3. A CASE STUDY: BABAR

BaBar has taken a huge amount of data since 1999, stored in a local database

which size now has grown over 800 TB stored in more than 850,000 files. In order

to face the challenge that a such amount of data required to be efficiently handled,

the framework of the experiment was implemented mainly in C++ as most of the

main applications needed for computing processing, for data distribution and to

develop database interfaces. The first version of the BaBar computing model was a

data-center model [42] where, especially for analysis, main data were available only

at SLAC. The increment of the expected luminosity and the relative high cost in

terms of computing, led the evolution of the model toward a multi-tiers distributed

computing environment, to make use of the computing power and of the storage

facilities available at national centers.

BaBar’s structure classifies computing centers depending on data set provided,

in a MONARC like style. Tier A sites host a copy of all the data and in general they

should provide at least 30% of the total data sample, stored on disk or mass storage

facilities, in order to make possible to run high level physics analyses, as well as

specific detector studies requiring RAW data. Tier B sites serve a region and act as

secondary data distribution centers. Tier C are typically individual institutes having

access to a small sample of the data corresponding to the direct physics interest of

the sites and they are largely used to produce SP events since represents the best

solution to accomplished this demanding task.

The storage layer was supported by the Objectivity [43] [44] technology, to pro-

vide an object oriented approach to data persistence for the event store of the

experiment. In a such as environment, events were stored on the basis of data gran-

ularity, from the most detailed information up to the highest level of abstraction

suitable for physics analysis, following a hierarchical schema. Moreover, navigation

structures were provided in order to access any kind of event at any level of the

event store. Data and Monte-Carlo production were written into Objectivity while

analysis jobs were read from there [45] [46]. This method offered an optimal com-

promise for efficiently performing analysis on collections of filtered events but only

if the dataset of the eventstore was sufficiently large, indeed, export of these collec-

tions to remote sites could result in performance lack due to the large amount of

3.2. AN OVERVIEW OF THE ROOT FRAMEWORK 35

references to the main database. Besides, other Objectivity limitations related to

its internal data representation led to the copy oh hundreds of GBs for each single

exported collection. This brought to scaling and maintenance issues and introduced

navigational overheads inside theeventstore, increasing latency since many data to

be used had to be staged back from external device like tapes. Data compression

was not optimized making hard to export parts of the eventstore to other sites [47].

A second event store which was based on ROOT I/O [48] was developed to match

this requirements, at least as temporary solution to provide faster access to data,

but it was not suitable for reconstruction and Monte-Carlo production.

3.1.1 The Computing Model 2 (CM2)

The high complexity introduced by the Objectivity framework, due to the amount

of data growth, required a more reliable ad efficient environment to meet the new

requirements of the experiment. The new Computing Model (CM2) [49] resulted in

a more efficient architecture, built on a ROOT based system calledKanga [50].

3.2 An overview of the ROOT framework

The ROOT system was developed at CERN (the European Organization for Nu-

clear Research) [51] to fullfill the modern requirements of performance needed by

interactive data analysis tools, offering a set of C++ Object Oriented frameworks.

A framework is a collection of cooperating classes that make up a reusable design

solution for a given problem domain, it typically includes objects that provide de-

fault behaviour programmers can inherit and eventually override in order to let the

framework to call application code at the appropriate times. ROOT is being de-

veloped for the analysis of Particle Physics data, but can be equally well used in

other fields where large amounts of data need to be processed. It consists of about

310 classes grouped in 24 different frameworks, divided in 14 categories [52]. The

system offers also an embedded C/C++ interpreter, CINT [53] [54], to allow fast

prototyping for applications development. One of the most important component of

ROOT consists of the I/O system that provides a convenient way to serialize to disk

36 CHAPTER 3. A CASE STUDY: BABAR

data structures, appending them to the internal hierarchical schema. The ROOT

framework is also capable to provide remote file access via a TCP/IP data daemon

known as rootd. Data, local or remote, can be accessed thanks to the dedicated

framework class; a file handle is returned to the client and can be used to access

data in a transparent way.

As described in more detail later in this chapter, the BaBar computing team

developed a new service for data access in distributed environment, called Xrootd

[55]. This service is fully compatible with the standard rootd daemon, but overall

its performances matching better the needs of the experiment.

3.2.1 Kanga ROOT

The Kanga eventstore was intended to replace the Bdb/Objy eventstore used in

BaBar as part of the original computing model. It was designed to be a scalable,

flexible and more reliable replacement for the original eventstore technologies while

providing the relevant functionality for analysis and production [56]. It includes,

among others, the following facilities:

• access to multiple data components

• multiple access methods

• data borrowing and pointer collections

The user interface to the eventstore is an event ”collection”. Each collection

represents an ordered series of events mapped to one or more files, while the data

itself is written to ROOT trees within the files. All of the collections from production

will have names beginning with /store, following a schema as shown in the following

example:

/store/
SP/
SP/BkgTriggers/
PR/
PRskims/
SPskims/

R12/
R14/
R16/

3.2. AN OVERVIEW OF THE ROOT FRAMEWORK 37

An event in the Kanga event store consists of components, which correspond

to the different levels of detail of the event data. References between objects in

the same component as well as references between objects in different components,

which may be stored in different files, get persisted using the same custom reference

class. The key component of the event is the event header. An event header holds

a pointer to each of the event components. Such a pointer basically consists of the

logical file name of the ROOT file containing the corresponding component tree, and

the number of the entry in that tree that corresponds to the event. The component

tree can be in the same ROOT file as the event header, in another file of the same

event collection, or in a file of another collection.

The new eventstore structure introduced three concepts for data classification:

• collections represent logical site independent names, used to configure users

jobs access to multiple data components, perhaps clustered to separate files

• multiple access methods

• data borrowing and pointer collections

• logical file names (LFN): are site-independent names given to all files in the

eventstore. Any references within the event data itself must use LFN’s so that

these remain valid when they are moved from site to site

• physical file names (PFN): file names that will vary from site to site. To

create a PFN a prefix is added to the LFN to supply all information needed

about how to access data at a specific site

Events are organized in event collections, ordered lists of event headers. An event

collection can:

own a component: there’s a deep copy of the component data in one of the

ROOT files of this collection; the component pointer in the event header points to

a file of this collection.

borrow a component: the component pointer in the header points to a file of a

different collection. No component data but just the component pointer is stored in

this collection.

38 CHAPTER 3. A CASE STUDY: BABAR

This feature allows to create very compact pure pointer collections in one case,

and more efficient deep copy collections in another case. Because a collection consists

of simple ROOT files and because it is relocatable, data import and export was cut

down to simple file copy.

The event collection is the user interface to retrieve event data from the event

store. If a collection has to be opened for input, the logical file name (LFN) of the

first file with the event header tree of the collection gets constructed from the col-

lection name by a simple naming convention. The translation from LFN to physical

file name (PFN) also is done without any file catalog or centrally managed database.

The following example of a collection’s name translation helps to explain the

schema:

/work/users/andreotti/mycollection

When an application needs to read this file, a name translation is performed by

the CM2 code to get it to a standard name convention, derived by the collection

name by simply append ”.01.root” to it:

/work/users/andreotti/mycollection.01.root

The LFN so obtained is a site independent name. In order to find it physical

counterpart, a further transformation is required, using a site-specific config file

called KanAccess.cfg , described later in this section, that adds the rest of the

physical path needed to reach and open the file to the given site. Within the .01.root

file there will always be an ”event header” which contains information on other LFNs

which may need to be opened. Using the same config file, these will be converted

to PFNs and opened as needed. The CM2 Kanga eventstore provides two different

methods for access files, one based directly on filesystem, locally or remotely by

using NFS, or by the Xrootd service. The configuration file which describes the

site-specific mapping of LFN’s to PFN’s is the KanAccess.cfg file:

read /store/PR/* file /nfs/serv1/ read /store/SP/* xrootd serv2:1094/

3.3. DATA BOOKKEEPING 39

In this case, the first keyword (”read”) simply says that the rule applies to reading

data. If the LFN is matched by the second field (e.g. ”/store/PR/*”) then the rule

will be used. The 3rd element in the rule (”file” or ”xrootd”) chooses an access type

and the 4Th element provides the needed information to do the LFN/PFN mapping,

indeed providing the prefix required for path completion. As result, PFN is like to:

/nfs/scratch/work/users/andreotti/mycollection.01.root

in case of nfs access, or

root://somehost:1094//work/users/andreotti/14.3.1a/mymooseevents.01.root

if xrootd access is used.

When the main application for simulated events production runs, it automat-

ically looks for this particular file to understand which kind of access is available

before establishing a connection with the input data source.

3.3 Data bookkeeping

The BaBar experiment needed a bookeeping mechanism to efficient access the huge

amount of data generated. Since the early stages the design adopted led to a poor

implementation due most to the kind of technology beneath, resulting in an almost

useless tool difficult to use and where improvements were hard to achieve. The

scenario drastically changed when the new computer model was adopted, fixing

performance lacks introduced by the old system.

3.3.1 New BaBar’s bookkeeping

At the end of 2003, BaBar switched to the new computing model with an eventstore

based on structured flat files coded in the ROOT format. The old system based on

Objectivity technology allowed just poor control of the event data to file association.

This made the navigation from event data of low level of detail to the corresponding

data of higher detail practically impossible if the more detailed data had to be

staged back from tape [57]. Another key element in support of the change was the

40 CHAPTER 3. A CASE STUDY: BABAR

implementation of a metadata catalog that allowed users to easily locate and retrieve

data needed for analysis. The requirements highlighted the need for a scalable and

flexible solution to provide users with data even in a distributed environment, leading

to the development of a system based on a relational database and a set of tools to

interact with it.

Data from the detector is divided into runs, each run needs to be processed and

there can be several versions of processing. The output of each processing needs

to be in the bookkeeping and runs stored form the units data of the eventstore ,

called collections, which name is unique. A collection can contain events from any

number of runs; a list of all the collections is the core of the bookkeeping. More

specifically, in order to provide different parts of the eventstore to users, collections

can be grouped into lists, based on well defined criteria, called dataset [58]. These

lists are pre -created and saved in the database, providing fast access and ease of

use. Since the BaBar experiment is a large collaboration, the whole bookeeping was

designed to be fully mirrored to other sites, keeping changes in sync. Along with

distributing the metadata, the bookkeeping includes data import and export tools,

to distribute the data on the base on the defined dataset [59]. The aim of the BaBar’s

bookkeeping is to to keep track of data produced that have successfully passed a

chain of checks and were declared good to be used by users. It was implemented

in order to build up a workflow stream were the state of the production could be

updated during the different steps involved into the process.

Concerning the production of simulated events, each site sends request to the

SP coordinator at SLAC to get new runs to execute. The coordinator fulfills user

requests and updates the bookkeeping to keep trace of the whole productions status.

After runs completion, on each site automatic tools take care to update the central

database, providing information about local production status [60].

3.4 BaBar software releases

BaBar software is based on releases, where each release is a set of stable packages and

library suitable for different tasks supported by the experiment. Periodically, when

3.4. BABAR SOFTWARE RELEASES 41

new features come into play, a new release is built and deployed to the collaboration,

resulting in an improvement for the capabilities of the software. The BaBar software

release [61] tools consist of a set of scripts which work within a specific directory

structure providing an easy way to build the software of the experiment by using the

GNUmakefiles mechanism. The whole release system is often referred to as SRT,

referring to the SoftRelTools (Software Release Tools) package which is itself used

to install and maintain releases.

A package is a self contained piece of software intended to perform a well defined

task, identified by a unique name and includes its own library and files. Some

complex projects, like for example the Geant [62] simulation of BaBar, require the

integration of different packages, while some others packages can be used on their

own. This part of the BaBar software is maintained by a package coordinator, who

is responsible for testing the code and releasing new versions when appropriate,

including the source code and documentation for stable and self consistent versions

of all packages within their own subtrees. All the files required for a package should

then be contained within the single package directory which will also include a GNU

makefile which implements some standard targets and definitions.

A software release is made of a consistent set of packages together with the

libraries and binaries created for various machine architectures. All created releases

are grouped inside a specific directory where several symbolic links are used to refer

to particular releases, defined as follows:

• newest: the most recently built release. The only quality requirement is that

the release (mostly) compiled. The release coordinator determines which re-

lease this should point to

• test: the most recent release which has passed basic tests, such as running the

full reconstruction on a small number of events. The reconstruction coordina-

tor determines which release this should point to

• current: this release is the most recent to have reached an acceptable level of

quality. Acceptable is determined by a combination of code and physics checks

42 CHAPTER 3. A CASE STUDY: BABAR

3.4.1 Software releases management

The most of BaBar software and documentation is maintained using the Concurrent

Versions System, CVS [63]. This is a widely used public domain tool for maintaining

software. CVS allows different people to modify software, keeping track of the

modifications and allowing specific copies to be tagged. These tagged versions can

then easily be accessed at any later time, even though many changes may have been

implemented since the original tag. All packages created are tagged when considered

stable and new versions are defined when improvements take place, while files and

subdirectories of a BaBar package can be maintained as a whole, identified uniquely

by the related tag. The repository consists of a single copy of the master sources

and contains all the information to permit extracting previous software releases or

packages at any time based on either a symbolic revision tag.

3.4.2 Import of software releases

Since all BaBar software is maintained in AFS (Andrew File System) [64] direc-

tories, users at remote sites have to create a personal AFS account to access the

CVS repository to import latest releases and packages. A set of specific tools are

provided to easily import each part of software required, re-creating the correct re-

lease directory structure at the remote site. The procedure is split in two steps,

the first one imports only those parts that are operating system independent, while

the other imports any operating system specific files. Users must take care of set-

ting the local environment following the BaBar defined policies, eventually making

some specific changes to configuration files as needed, before running configuration

scripts to complete the release installation. After the completion of this task at

remote sites, a complete version of the release is available as independent copy from

the main repository.

3.5. THE TRADITIONAL SIMULATION PRODUCTION
WORKFLOW 43

3.5 The traditional Simulation Production work-
flow

The BaBar detector produces signals that after several stages are translated into a

collection of data in the BaBar event store [65]. Simulated data consists of generated

particles which leave signals in a simulated-BaBar detector having the same format

as the signals left by real data in a real detector. The aim of simulation production is

to create simulated collections that mimic real data collections as closely as possible,

therefore several stages are required to achieve this result:

• Generation of the underlying physics event

• Particle transport and calculation of the idealized energy deposits in the de-

tector

• Overlaying of backgrounds and digitization of the energy deposits

• Reconstruction of the event

After particles generation, provided by specific events generators modules, data

are propagated to a detector simulation layer over GEANT4 [66] running in the

BaBar framework. The output is stored in a data structure which lists the idealized

energy deposited by the particles passing through the detector, and the location

of each energy deposit. The next stage transforms the acquired data into signals

which look like the real data, including also backgrounds to represents detector’s

noise, then the reconstruction stage is performed retrieving for each event, data

produced in the previous stage and combined into candidate events consisting of

particle tracks, energy clusters, and probable particle identifications. Simulation

jobs come in runs composed by at least 2000 events, where each simulated event

takes about 8 seconds on a modern processor and results in 20kB of storage.

In the early years of the experiment, the simulation events process was split

into three distinct phases, where the output of each step provided the input for the

next one, requiring the intermediate data to be retrieved from and stored to the

database between stages. At the end of 2002, SLAC could provide a considerable

44 CHAPTER 3. A CASE STUDY: BABAR

computing power but since the most was dedicated for other tasks, like data recon-

struction and analysis, this led to increase the distributed computing efforts among

the several institutions belonging to the collaboration, so the simulation production

process became the ideal candidate: from SLAC runs were distributed to remote

sites and executed to local batch systems. During the following years, in order to

improve production efficiency, a new simulation executable called Moose (Mono-

lithic Object-Oriented Simulation Executable) replaced the three-stages workflow

and was able to perform all steps on each event before producing the final output.

The new architecture brought several benefits on management, the number of jobs

to handle decreased to one third and the servers load was reduced since there was

no output from each stage. The human resources management played a main role

since the whole procedure required three people at SLAC working in shift. Since

such constraint was not acceptable for remote sites, the agreement was to offer just

one person, a reliable toolkit was developed to provide a suite of services to handle

the distributed production. The toolkit was called ProdTools [67], a set of PERL

command line tools and libraries designed to assist the production manager on each

site, providing an interface between the central production database at SLAC and

the local batch system used at remote site. The whole system, indeed, was devel-

oped around a single Oracle database which provided the global coordination for

runs requests and information configuration for each job to submit on remote sites.

In order to support the wide range of different batch systems used by external

farms, like PBS [68] or LSF [69], a layer was introduced to let sites create the appro-

priate interface following the template provided by the SLAC central management.

In this way all remote sites could set up and improve their own custom interface

without the central management had to take care to test all the different remote

batch systems. Before the new computing model took place, all jobs produced were

written into the Objectivity database each site had to install locally, so a dedicate

utility was designed, MocaEspresso [70]. Its main goal was to execute two tasks in

parallel, in order to recognize data completed and ready to be extracted and the

relative transfer to SLAC through multiple streams. This application introduced a

great improvement for speed within the production chain and quickly became the

3.5. THE TRADITIONAL SIMULATION PRODUCTION
WORKFLOW 45

Figure 3.1: MocaEspresso GUI provided an easy way to handle the large amount of
parameters needed for simulation

main tool for data export to SLAC, where all produced events were staged before

further uses [71]. After the introduction of the new computing model, a new set of

tools were developed to better interconnect data transfer and bookkeeping updates,

leading to the actual configuration that was used as base model for the purpose of

this work.

3.5.1 Software utilities: ProdTools

The evolution of the computing model in BaBar and the related distributed approach

for SP, introduced the need for a set of tools able to provide the required support

to easily manage the different steps during the production of simulated events. The

ProdTools suite was designed to achieve this purpose and consisted of a set of PERL

scripts and libraries grouped in two conceptually software layers. At the top of the

46 CHAPTER 3. A CASE STUDY: BABAR

chain the main tools covered all the critical steps, like jobs creation submission

on the local batch system, check of submitted runs, merging of completed jobs

into collections and update of the bookkeeping at SLAC to keep general status in

sync. Besides the main tools, other modules were provided to allow each site to

build its own interface to achieve the best configuration for the production without

modifying the standard tools, which maintenance was under the responsibility of the

development team at SLAC, eventually adding new features. This flexible approach,

already used in BaBar to uniform the access to the different kind of local batch

systems supported at remote sites, allowed to write a software layer to use the Grid

as the standard batch system for the BaBar SP schema.

ProdTools were regularly updated at SLAC and users could download new ver-

sions via the CVS system, while each upgrade introduced at local sites could be

submitted into the repository for further usage. The most of operations performed

by ProdTools kept also updated the main database at SLAC, delegating each remote

site to keep information in sync without any extra effort from the main center. This

distribute approach allowed to keep trace of the whole life-cycle of each job, from

the build stage until the recording of data produced.

3.5.2 Data access for Simulation Production

The new computing model design represented an improvement even for the SP

workflow, increasing the deployment of new data needed for the simulation process

producing output data directly into ROOT format, easier to handle. During this

transition step through to a full Kanga-ROOT system, condition data were still read

from the Objectivity database while the background trigger, representing the detec-

tor’s noise, were indeed converted into ROOT format too. A key element during this

phase was still played by the Advanced Multithreaded Server (AMS) [72], a server

component acting like an interface between the OO database and clients requests.

The AMS server was designed to grants data access in different ways, including the

possibility to fulfill requests coming from remote clients. Unfortunately, due to some

weakness in its design, the standard version didn’t perform as expected so a new

modified version was written at SLAC to try to enhance productivity.

3.5. THE TRADITIONAL SIMULATION PRODUCTION
WORKFLOW 47

In order to understand the actual usability of the system, we implemented a

testbed in Italy for both versions, using dedicated machines to simulate the typical

stress conditions could happen at the server side when reached by an increasing

amount of remote connections generated by real jobs. The aim of this test was to

verify the robustness of such a system, focusing on its remote access mechanism in

case of further implementation within a heavy distributed environment like the grid.

Infact, inside the BaBar community, AMS server was used most locally within farms,

providing access just to local machines without giving any kind of performance

evaluation about an intensive use in a more distributed context.

3.5.3 Ams performance tests

Tests were performed using a dedicated data server in Ferrara, with Objectivity

installed and configured to distribute typical condition data through an AMS server,

while simulation jobs run on clients located at Ferrara, Naples, Trieste, Catania, Bari

and Padova. Comparative measurements of performances were performed on both

versions of AMS, standard and enhanced, configured in the same way: 32 threads

used to handle client requests, for a total amount of 100 to 250 jobs of 2000 events

each. Standard AMS reached its limits after just 30 concurrent simulation jobs,

with a failure rate of almost 50% as load increased up to 80 parallel clients, while

performances improved using the SLAC AMS, able to handle about 75 clients before

jobs failure occurred. Limiting the number of connections for a single client increased

the execution time for some jobs while allowing more jobs to contact the AMS in

parallel. A good balance between efficiency and stability was achieved, setting the

maximum number of connections to 20 for each client. In Figure 3.2 are reported

tests performed on both servers.

A different test was performed to investigate the effect of connection speeds

between different sites. The aim of this test was to verify the effective influence of

distance on data access, in order to take into account the relation between data and

clients locations. Two AMS servers were set up, the first at Ferrara and the second

at Naples, while jobs run on clients locate at Bari, Ferrara, Napoli and Padova.

Each test consisted of 200 jobs, each with 2000 events in order to simulate a real

48 CHAPTER 3. A CASE STUDY: BABAR

Figure 3.2: AMS servers comparison

production flow. The time spent to complete the jobs on each site was measured

along with the maximum number of concurrent clients connected during production.

The link speeds to Bari, Ferrara, Napoli and Padova were 15, 16, 32 and 160 Mb/s

respectively. In the first part of the test, data were read using the AMS server

installed in Ferrara, while production jobs run on clients located in Ferrara, Padova

and Bari, successful completing the 99% of the submission. In the second part, the

production jobs read the data remotely from the AMS installed at site in Naples.

Due to a faster network link, Padova completed jobs more quickly than other sites,

confirming the quality of network access and data location played a basic role in

turn around times and is an important parameter in choosing the optimal running

conditions. The whole system produced more than 3 million events, successfully

completing the whole production cycle for 98% of the jobs [73]. The mean elapsed

time for jobs accessing the two different servers is reported in Figure 3.3.

Despite the adoption of the enhanced version of AMS dramatically improved the

stability of the system for distributed jobs access, it represented just a temporary

solution. Scalability issues resulted in a bottleneck for large job submissions, more-

over the setup required to achieve an acceptable level of production was not feasible

to be deployed to all computing centers involved in a grid system.

However, AMS provided the required reliability for those sites of the collabora-

3.5. THE TRADITIONAL SIMULATION PRODUCTION
WORKFLOW 49

Figure 3.3: Access times with local and remote AMS servers

tion where more local servers were able to run at the same time, while for managing

the events simulation task over a grid system other solutions needed to be introduced

to implement an equivalent mechanism suitable for real production.

3.5.4 Xrootd

When BaBar decided to switch from a data eventstore based on database technology

to the new computing model, a new approach in data access was required, in order

to built a reliable system able to efficiently work within a distributed environment to

retrieve information spread over different locations, and also supporting the ROOT

protocol, chose as default data format.

Despite the standard file access mechanism provided by ROOT via a TCP/IP

based data server daemon known as rootd, already capable of transparent data

access by a plugin manager layer, Figure 3.4, this solution was not suitable for the

purpose, resulting in a waste of system resources when multiple requests needed to

be handled concurrently.

This new scenario pushed the efforts toward the data distributing field, leading

to the development of the XrootD suite [74] which main components consist of

server daemons and clients that communicate via a dedicated protocol, maintaining

a backward compatibility with the original rootd server. The main goal was to design

50 CHAPTER 3. A CASE STUDY: BABAR

Figure 3.4: Mechanism for transparent data access in ROOT

a new architecture in order to achieve transparency in data access for clients, that

had to be unaware of servers underlying file system type, while providing cooperation

among different servers to balance and distribute the workload. Moreover, many

efforts were requested to optimize system resources to gain the best performance

on both server and client sides, taking into account the need for a high level of

fault tolerance behaviour to face connection problems could occur during client-

server communications. This new system outclassed the standard rootd service, and

fulfilled the need of a real production environment, where thousands of clients could

send requests to a large number of servers. Due to this new set of features, the

system is considered an extension of the classic rootd (eXtended rootd) [55]. The

main component consists of the xrootd file server capable of high scalability over a

P2P network, implemented as an architecture plug-in based. Moreover the protocol

developed provides for a generalized security framework, while both the client-server

paradigm and p2p models are embedded in the same file access protocol, resulting

in a high level for scalability.

Multiple parallel requests per client are allowed reducing system resources con-

sumption thanks also to the connection multiplexing system adopted to let many

clients to share the same TCP connection. Different kind of components, like data

servers and redirectors cooperate to export a unique namespace. The client is de-

veloped both as a generic Unix implementation and as an extension of the classic

3.5. THE TRADITIONAL SIMULATION PRODUCTION
WORKFLOW 51

Figure 3.5: Xrootd server architecture

Figure 3.6: Xrootd client architecture

ROOT framework, called TXNetFile, implementing the fault tolerant and reliable

behaviour defined in the communication protocol along with strategies for data

caching.

Xroot/TXNetFile provided very good performances in distributed file access,

playing a key role in the development of the simulation production over the Grid.

3.5.5 Output storage

After jobs completion, users can retrieve output data by using ProdTools scripts,

that take care to automatically collect jobs results. A parallel task provides to

merge all data into collections of about 1.5 GB each, ready to be exported to the

52 CHAPTER 3. A CASE STUDY: BABAR

main center at SLAC. Here collections are handled by automatic import tools that

store them both into the local mass storage and into the High Performance Storage

System (HPSS) [75] for further usage. HPSS software manages petabytes of data on

disk and robotic tape libraries providing a highly flexible and scalable hierarchical

storage management that keeps recently used data on disk and less recently used

data on tape. HPSS uses cluster, LAN and/or SAN [76] technology to aggregate the

capacity and performance of many computers, disks, and tape drives into a single

virtual file system. In order to have HPSS work efficiently it is important to have

large files be put into HPSS, since the time to mount a tape and to position it for

file reading are significant (ten’s of seconds) so files sizes of 1GB and larger are

desirable. When import of collections is completed, the related status is updated in

the bookkeeping an data are marked as ready for further analysis [77].

Chapter 4

BaBarGrid system

In the previous chapters two different computing environments have been described,

the INFN-Grid model and the BaBar architecture, represented as standalone enti-

ties. In the following sections it will be highlighted the strategy adopted to join

together the common components of the two environments to design a suitable sys-

tem to efficiently perform simulation production on the grid.

4.1 Simulation production requirements

When the grid paradigm was proposed as a new alternative way for the BaBar SP

production [78] [79], just few implementations took place at the beginning. The

main issue concerned that the traditional production model was already working at

full speed achieving very good results, and despite the new approach was considered

promising due to the several benefits it could offer, it neither provided an easy way

to quickly join the framework of the experiment nor offered the required flexibility

for easily setup a parallel environment capable of the same level of productivity.

By the time the grid model was introduced, the average rate of simulated events

was of about 40 million per week, run over more than 2000 CPUs spread among

different sites. A such huge amount of resources became an issue since BaBar was

not involved in any grid project capable of the same potential, so a detailed plan

had to be designed to achieve this goal and allow a fast prototyping for a new design

to deploy over a grid platform. A new testbed was created in Italy based on the

INFN-Grid project, while the main center for tests was setup by the local INFN

53

54 CHAPTER 4. BABARGRID SYSTEM

section based at the Ferrara University [80].

The need for a broad platform where running the simulation led to an evaluation

of the resources offered by the Italian grid, in order to achieve the best compromise

between the maximum number of effectively usable sites and performances. As

a matter of fact, different aspects had to be taken into account, concerning both

practical and technical issues like:

• agreements policy for sites access and utilization

• local resources management and problem solving

• network link quality and data distribution

The Italian grid shares its computing resources among different kind of experi-

ments, so the first step to log in was to define a Virtual Organization for BaBar to

allow a full access to any kind of facilities provided and exporting a uniform interface

for users utilization. As general rule, a site can decide which VOs to support and

since many institutes connected to the INFN grid were also involved in BaBar, a

first testbed was built considering that intersection as policy.

Another critical issue concerned the manpower required to handle those resources

at candidate sites, as just standard services were provided without any support for

specific BaBar requirements, like reliable solutions for input data access needed

for the production of simulated events. The general agreement in BaBar was to

allocate at most a couple of experts to manage production at remote sites, so the

new approach had to fulfill or eventually improve this requirement.

Besides, to reach the optimal balance, data had to be distributed in a such way

to allow good performances, favouring high speed connections to decrease latency

for input reading, especially for those sites that required remote access. The most

obvious choice would have been to prefer just sites with the higher number of com-

puting slots available, but in practice this was not always the best solution since

many different type of jobs were generally routed to farms belonging to this kind

of typology, resulting in an increment of the length of the queued jobs list. A first

testbed was built on a group of 8 sites (Padova, Ferrara, Bologna, Pisa, Perugia,

4.1. SIMULATION PRODUCTION REQUIREMENTS 55

Napoli, Bari and Catania) selected over a set of 20 for a total amount of about 500

CPUs, paying attention to cover the most of the national area [81] [82].

4.1.1 Data access

Data distribution and access was a critical point to investigate since its fundamental

role played in the production process. The main drawback concerned the lack of

a full integration between the BaBar data services and the grid storage facilities,

moreover the main executable for the simulation needed to read a large quantity

of data which was not opportune to move closer, indeed the typical size of a full

conditions dataset was of about 60 GB, while a background triggers set was of

about 15 GB. Technically speaking, move the whole set of input data closer to the

main application before starting the simulation it would have been an easy step,

but due the way data were read, it could not be accepted as good compromise.

The executable was able to read data both locally and remotely, but in the first

case it would have been necessary to copy almost the whole set of data to the disk

where jobs would have taken place for execution and where it would have been

automatically removed by the system after jobs completion. On the other hand, to

access data remotely, dedicated servers were required to store and distribute data

via thexrootd service. In order to understand which methods provided the best

solution, a comparison between different access methods was made within a real

production environment, reading the background data ROOT files as follows:

• Direct access via a local Xrootd server using its protocol

• Directly out of a local dCache Storage Element using the DCAP protocol

• Copying data from a dCache Storage Element to a local disk, by using the

LCG data management tools via the GridFTP protocol, where files could be

locally read by the job

A set of 100 jobs composed of 2000 events each were run once for each different

method working on the same hardware set, while the average time to complete the

task was calculated, providing as input data set a collection of background trigger

56 CHAPTER 4. BABARGRID SYSTEM

Figure 4.1: Mean elapsed time for different access methods

consisted of a set of ROOT files for a total amount of 2.5 GB. The second and third

methods tested were included because considered good candidates for providing

data in a scenario where BABAR specific services were not required [83]. As shown

in Figure 4.1 , the difference among input methods is almost irrelevant since the

time taken to read the data is low enough compared to the computing time, even

considering the time taken to copy the files to the local disk.

Due to these slight differences and taking into account the limit introduced by

copying data to each job location every time a new simulation process starts, the final

decision considered the xrootd access method the most appropriate for providing

data, in order to uniform the access interface for input data reading on the whole

set of grid sites. Since the above approach required the installation of dedicated

machines external to the grid framework, three xrootd servers were configured and

placed on different farms to provide the best coverage for clients demand, trying

to achieve a balance to minimize the network latency for those sites that had to

require data remotely over a wan connection. Despite it was not possible to install

an xrootd server at each site due to management/permissions problems, the usage

of three servers really improved the production rate, thanks also to the features

provided by the xrootd suite.

4.1. SIMULATION PRODUCTION REQUIREMENTS 57

4.1.2 Storage facilities

The introduction of the new BaBar computing model allowed for a more flexible

data management since results could be written directly to single flat files instead of

interact with a database interface like Objectivity. As general improvement related

to the simulation production, it was not necessary to install dedicated AMS servers

at remote sites since this procedure have been replaced by the installation of Xrootd

servers which setup provided a much smoother configuration, resulting in a reduction

of the number of people involved for remote site maintenance. More specifically,

when new condition/background data were required to be imported at local Xrootd

server site, just a simple copy transfer of data took place from SLAC or from an

already updated server, dramatically reducing update timing.

Particular attention has been dedicated in the design of the output storage mech-

anism, since the critical role played in the production workflow. Requirements for

this step were quite strict since the simulation output took several hours to be com-

pleted, asking for a reliable procedure to store results safely. Output data were also

written into flat ROOT files so it became quite easy integrate the common storage

facilities provided by the grid middleware with the production workflow. In order

to built a safe and robust mechanism for preserving output results, jobs had to

communicate with the standard LFC catalog to associate output data name to a

unique logical id, easily accessible from the whole grid environment as the default

bookkeeping service, besides different levels of data transfer recovery from worker

nodes to storage elements were introduced, as backup solutions in case of failures

during the registration into the catalog.

4.1.3 Submission jobs grid compliance

A critical point that needed an accurate planning, during the migration to the tra-

ditional production model of BaBar to the grid system, concerned how to build and

submit jobs in a grid-like way. All single farms belonging to the BaBar collaboration

already have installed local batch systems, like PBS or LSF, required to schedule

incoming jobs over the computing resources availability. The idea was to create an

58 CHAPTER 4. BABARGRID SYSTEM

interface layer between the job creation and the job submission steps, in order to

allow the reuse of the code already written for BaBar’s purposes, specializing it for

the grid paradigm. More specifically, the SP software provided the ProdTools suite

written to fulfill every production requirements that had to be modified for achiev-

ing the target. The integration had to handle two different aspects of the workflow:

the first was related to the setup of a grid job complaint with the grid submission

system, taking care of creating a specific JDL wrapper for each single job where

encapsulating all needed information for a successful submission. This step required

also to design a mechanism to deal with input data needed for the simulation, along

with the managing of the output produced and more generally to define an envi-

ronment to safely perform the job execution. On the other side, integration had to

face the incompatibility between the grid monitor tools and the mechanism provided

by BaBar for the same purpose, resulting in the development of a new mechanism

to translate information produced by the BaBar submission workflow to a stream

compatible with the grid environment. This process was critical to maximize the

reuse of the already written code developed for BaBar providing at the same time a

correct management on the grid of each single simulation production issue. More-

over, specific new tools needed to be planned to provide mechanism like a realtime

monitor for the retrieve and check of submitted jobs.

4.2 Software distribution

In order to efficiently run SP jobs on the grid, a re-organization of the BaBar soft-

ware was required to take advantage of all benefits offered by the new environment.

Software for simulation production needed to be easily installable on grid nodes

resulting in independent package ready to run everywhere without any external

reference.

4.2.1 Simulation Production software

BaBar software is based on releases, where each release is a set of stable packages

and library suitable for different tasks of the experiment. Periodically, when new

features come into play, a new release is built and deployed to the collaboration,

4.2. SOFTWARE DISTRIBUTION 59

resulting in an improvement for the capabilities of the software. In the traditional

BaBar framework the whole release has to be installed at remote sites which required

it, introducing a considerable delay due to the fact a single release is about 2 GB in

size, and must be downloaded and then fully configured before using. This limit was

not compatible with the grid approach, where the need for a capillary distribution

requires to package all the needed software in a format easily installable everywhere

without any extra adjustment by the local site manager. Moreover, one of the benefit

introduced by this system would have been to cut the amount of persons involved in

the management for external sites not directly accessible by the production manager.

In order to fulfill these requirements, a dedicated module was developed to extract

from the main release just the portion of software dedicated to the production of

simulated events, creating an independent component ready to be installed at any

computer element via the standard grid submission. The process uses the grid

bookkeeping catalog to make the software package available everywhere on the grid,

while a specific grid job, sent to the target site, takes care of downloading the

package and to install it. Following this procedure allows a fast distribution of the

package without involving managers at remote sites. In order to allow the simulation

production manager to install his own software to an external site, a special grid

user was defined to gain the right privileges to perform this kind of operation.

4.2.2 Resources pool selection

The SP manager is responsible for selecting the pool of grid farms where jobs will

be executed. This choice is performed before starting the production workflow, but

new sites can be added to the pool even later, and it depends on several factors like

the total amount of slots available, site location and local support provided in case

of problems. Generally, a group of 6-8 sites is considered the standard pool where

submitting jobs since, as the practice demonstrated, such solution provides the right

balance between resources needed and ease of management.

As general rule, sites are selected considering how far they are from data servers

to improve access to input data required for the simulation, along with the level of

support provided to fix local problems on selected farms. Due to the dynamic man-

60 CHAPTER 4. BABARGRID SYSTEM

agement of the grid resources and to some weaknesses in the Information System,

is not possible to delegate this choice to an automatic mechanism. Indeed, local

policies could be adopted at remote sites to distribute free resources on the basis

of specific criteria, allocating, for example, the most of free slots for jobs execution

to a specific experiment and usually these kind of information are not published by

the Information System.

After several tests it was possible to select a pool of nodes which demonstrated

to fulfill all requirements, offering a good level of support for troubleshooting and

able to provide a stable platform for getting into a real production flow. Special

tags are used to mark selected CEs where software is installed correctly to allow the

Resource Broker to easily identify nodes belonging to the pool of suitable resources.

4.3 ProdTools changes

Since the traditional SP workflow for jobs is not suitable for the grid environment,

the ProdTools suite have been modified accordingly. The following section describes

for which tools changes were required while all implementation details will be given

in the next chapter.

4.3.1 spbuild

The build process maintains almost the same schema provided for the traditional

model, but important differences have been introduced to prepare the job structure

for the submission over the grid. In particular, a new software library has been

implemented: when the spbuild script is run, the information regarding the charac-

teristics of the job are obtained by the bookkeeping at SLAC as usual, but during

the initialization the build process interacts with the new code to create any addi-

tional files needed to wrap the job, providing the compatibility with the standard

grid submission instruments.

4.3.2 spsub

In order to control jobs running over the grid, a dedicated mechanism has been in-

tegrated during the submission step. The spsub script has been modified to directly

4.4. GENERAL WORKFLOW 61

use the standard grid submission tool, providing all information needed for checking

the whole life cycle of each production job to the custom monitoring application

specifically developed. As for the previous step, all new features provided by the li-

brary are implemented in a transparent way from production manager’s prospective

and maintained on a separate level to maintain an high grade of flexibility.

4.3.3 spmerge

Collections are aggregated using the same mechanism provided by the old workflow,

since this operation is not performed over the grid. The main difference consists to

execute this step on a local machine instead of using the same pool of nodes that

perform the simulation in order to optimize the workload. The reasons that lead

to that choice along with details about its implementation will be discussed in the

next chapter.

4.4 General workflow

The main idea about SP on grid was to allow one single site manager to efficiently

manage the whole production cycle by his own, resulting in a resources saving

through a central coordination of all sites involved. After completing all tests on

SPGrid feasibility, the whole project has been installed at INFN CNAF (Italian

National Center for Research and Development about Information and Data trans-

mission Technologies) which became the main center for SPGrid in Italy.

4.4.1 Environment setup

All software needed for BaBar SP, has been installed on the User Interface from

where jobs can be submitted over the grid. This machine plays a key role since from

a logical point of view is in the middle of the two environments, supplying config-

uration settings for both BaBar and Grid software. As first step, the production

manager logs in to the UI and all required settings for the BaBar SP are executed.

This step allows to identify locations where storing new jobs before submission and

provides links to other important parts of the software of the experiment, like the

ProdTools repository and the main BaBar software releases installation. The latter

62 CHAPTER 4. BABARGRID SYSTEM

location is used by those components within the ProdTools involved in operations

that take place before and after the simulation over the grid, which related packages

versions must be in sync with the current release developed at SLAC. After the

completion of this step, which for the most is transparent from the user’s prospec-

tive, the UI presents to the SP manager the same kind of environment it would be

provided by a standard BaBar machine, while the standard settings already supplied

by the UI offers all necessary functionalities to communicate with the grid.

4.4.2 Run allocation management

Once logged in, the SP manager queries the central database at SLAC to ask for new

runs to produce. Typically a run consists of a production job made of 2000 events at

least and is provided with all configuration and data files needed for computing the

simulation correctly. The SP coordinator in charge at SLAC arranges new bunches

for all sites belonging to the collaboration to fulfill clients request automatically

when they run out of runs. Different types of runs can be served to remote clients,

but generally the most of sites combine efforts to work on a common goal.

The infrastructure implemented at CNAF has been identified at SLAC with the

name ”infngrid” to be included in the list of sites capable to give a contribute to the

simulation production, hiding details about the grid-based implementation in order

to provide a transparent interface from the SP coordinator’s prospective.

4.4.3 Services

In order to complete the initial setup, the user starts a set of services assigned to

specific purposes. Scripts for merging collections produced by simulation, along

with the one that provides to transfer them to SLAC must be activated, moreover

a dedicated monitor application is run by the SP manager to control jobs over the

grid. After these operations, the whole system can run automatically, while the only

manual operation required is to query for new runs to build. Due to the distributed

nature of the grid this operation was performed manually to avoid any kind of

problems could occur at remote sites and that could not be easily fixed remotely

by the production manager once runs have been allocated. Merged collections are

4.4. GENERAL WORKFLOW 63

Figure 4.2: SPGrid schema

continuously exported to SLAC where automatic tools take care to import them in

the main repository, while the BaBar bookkeeping is updating accordingly.

Basically, the SPGrid system is designed over two layers to organize both oper-

ations performed over the grid and those executed locally on dedicated machines.

From this prospective the UI links local BaBar services to the grid through a monitor

application that takes care to check production status. Monitoring the simulation

over the grid represents the core service since it was designed to perform different

tasks in order to coordinate the production workflow. The SPGrid monitor applica-

tion gets as input data the references generated by the submission step to trace jobs

over the grid, providing to retrieve and check results which are then passed to the

next steps, executed locally on the User Interface. A web interface is also supplied

as visual feedback about the ongoing production. Tasks performed over the grid can

be further subdivided depending on functionalities provided, like for example pure

computing, data transfer or information system operations.

4.4.4 Execution environment setup

When a job reaches a Worker Node a sequence of steps is performed before running

the simulation process in order to set the execution environment accordingly. In

particular the right version of condition and configuration data, representing the

input domain for the simulation, must be set along with the location which offers the

64 CHAPTER 4. BABARGRID SYSTEM

best access for reading those data. New conditions and background data versions are

periodically provided from SLAC and installed on each Xrootd server to be accessed

by grid jobs. A map for the right input data to read is dynamically generated

on the WN before running the simulation, besides the most convenient server is

chosen on the base of job’s location. This mapping takes into account where job is

physically located and select the server using a built-in schema where a list of target

machines is defined. The schema provided is set statically by the SP manager inside

a specific file read during the job initialization and can be modified as needed. Due

to the limited amount of external resources, actually just three Xrootd servers are

installed within the SPGrid system, jobs routing toward input data machines is

defined considering factors like distance and the amount of bandwith for location

where a server is installed.

Chapter 5

BaBarGrid: implementation and
results

The following sections outlined the hardware and software organization required to

set up the SPGrid infrastructure, covering all aspects involved. The second part of

the chapter discusses results achieved through a comparison between the other sites

involved in the collaboration, where the old production system is still adopted as

the main approach.

5.1 Organization of hardware resources

Several hardware components are required to build a reliable infrastructure able to

connect SP functionalities with services provided by the grid middleware and the

User Interface represents the gate among these two systems. As described later,

the most of the BaBar software is accessible trough this machine, which mounts

different partitions data using the Network File System (NFS). Since it also provides

the common middleware services for interacting with the grid, is recommendable to

preserve its standard configuration as much as possible, to prevent serious system

overloads that could compromise fundamental functionalities. Therefore custom

applications developed for managing the SPGrid workflow and installed on the UI

have been designed to respect this directive.

Another fundamental component of the infrastructure is the Computing Element,

where SPGrid software is installed. Like for other experiments, specific software

package are installed in predetermined disk area on CEs, which provide to export

65

66CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

its contents to all the underneath Worker Nodes of the related farm through NFS.

Next sections covers in more detail custom setups performed to adapt the SP

architecture to the grid system used, taking into account the I/O data management

for the simulation.

5.1.1 Input data setup

Since from the beginning one of the most critical part for the interoperability among

SP and the grid was represented by the need to find the good balance between the

constrains defined by both environments without limiting performances. Hardware

setup had to take into account three different levels of service, like jobs submission,

I/O data management/bookkeeping and results publishing. Data handling required

a specific customization since input data needed for the simulation process were

installed on dedicated machines and made available via Xrootd servers. Each server

has been installed and accordingly configured, while ROOT files for conditions and

background triggers have been copied on dedicated partitions on servers.

The main access for SPGrid submission is provided by the UI, where the Prod-

Tools suite has been installed and configured, since most of the critical steps of

simulation production are managed from this middleware component. Besides jobs

submission over the grid, other processes installed on the UI provide features like

jobs monitoring and retrieving, while even the merge step is performed locally on

this machine.

Within the ProdTools directory has been created the repository where is possible

to modify templates provided for local configurations, grouped into sub-directories

for each different site. At this level the infngrid directory includes three fundamen-

tal components written to achieve the SP-INFNGrid interoperability: batchutils.pl,

Moose.bash and local-grid-setup.

The first one is the common template that comes with any new version of Prod-

Tools and where is possible to add new features for a specific site, like the generation

of a grid skeleton for the job when it is built. Moreover, it supplies a mechanism

to support the submission of two different kinds of job, those related to the real

production and those performed for merging output collections.

5.1. ORGANIZATION OF HARDWARE RESOURCES 67

The local-grid-setup file contains information to point the job toward the right

Xrootd server, providing the access endpoint on the basis of job’s location. This

file also defines some environment settings like the default Storage Element to use

for data storage, the entry point in the LFC catalog where registering metadata

information and the description of which version of condition and configuration data

using for the current production, to allow the job to reach the correct information

on the Xrootd server assigned. When a job runs on a Worker Node, the local-

grid-setup file is executed within the main job’s wrapper. After assigning the most

appropriate Xrootd server, it provides to write a specific KanAccess.cfg file which

will be used when the job will attempt to contact the server, and where is written

a set of rules that describe how to access data on that server. Moreover, some

special files are created to describe which conditions and configurations data need

to be read from the Xrootd server assigned. Before starting the simulation, the

job will read those files to get the right version of input data requested and will

try to access them on the server. The local-grid-setup file is fully customizable, so

when conditions and configurations need to be update, generally after on average

one month, it’s considerably easy to change the old versions with the new ones.

Naturally, the setup provided by this file is applied to all the jobs involved in the

simulation production for a specific version of input data.

The Moose.bash script represents the main wrapper in charge of setting the

environment of the WN where job will be sent, therefore it inspects all configuration

files supplied with the job by the central database at SLAC, adding information to

accomplish the right execution on the grid, including those defined by the local-grid-

setup file. When the job arrives on a WN , the Moose.bash is run and takes care to

execute the following tasks:

• setting of the job’s environment after reading all configuration files supplied

with the job

• running the simulation according to the directives provided by the local-grid-

setup file for input data access

• checking the collection produced using the standard BaBar’s procedure for

68CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

Figure 5.1: ProdTools repository tree

inspecting SP collections

• transferring output files to the Storage Element selected

5.1.2 Output data handling

A critical part within the production workflow is related to the validation process

for collections created during the simulation. Since inspecting a collection can take

several minutes, the choice was to delegate this operation to the node were execution

started and not to the User Interface where the monitor tool takes care of retrieving

data, therefore, after job completion, the following actions take place on the Worker

Node:

• inspection of the collection to find corrupted parts

• attempt to register the checked file into the LFC catalog, using as storage unit

the closest SE for the WN where job run

5.2. SOFTWARE SETUP 69

• if errors occur, the file is transferred to the same SE but using low level data

transfers utility like GridFTP

• if the closest SE is down, a GridFTP transfer is performed to the default SE,

typically the one installed at CNAF

The transfer step is implemented as a three levels approach to minimize problem

with the grid bookkeeping service, that could be not available, trying to safely store

output data. As practice demonstrated, this solution provided a pretty robust mech-

anism to avoid data loss, thanks also to the redundancy offered by the INFNGrid

infrastructure in terms of services availability. Checking collections on WNs allows a

concurrent control for results obtained without overloading the monitor application

on the UI.

5.2 Software setup

Dedicated software components were developed as support to the SPGrid project,

representing the effective core of the system. Several aspects have been taken into

account to achieved the necessary interoperability and to build a reliable and efficient

system in order to monitor the SP activity on the grid.

5.2.1 SP software packaging

In order to provide an efficient distribution of the simulation software over the grid, a

specific tool written in PERL was designed to extract from the main software release

of BaBar just those components related to the production of simulated events. Due

to its size, about 2 GB against about 200 MB of code really used for SP, a complete

release is not suitable for being installed to all selected CE, besides new versions

are released quite frequently resulting in a slow management for removing and re-

installing the software.

The extractor-tool executes the main application, performing a short simulation

to match the same conditions of a real production job. The test is performed on the

UI using configuration files for a real job while input data are reading by one of the

Xrootd server available. Indeed, a copy of the KanAccess.cfg file used in the real

70CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

Figure 5.2: Jobs directory tree on UI

production process is maintained on the UI. When simulation is over the resulting

output log contains all the system calls performed, by means of, all libraries and

data files are included in a single tar archive ready to be used as self consistent

unit. The next step consists to register the package on the LFC catalog to make it

available on the grid, trough a standard job that provides to download and install

it on the target CE, where is shared between the beneath WN.

5.2.2 Jobs creation and submission

When jobs are built by the spbuild tool, the main database at SLAC is queried to

obtain information related to jobs. The directory ALLRUNS is created on the UI

along with a sub-directory for each single job as described by the structure shown

in Figure 5.2:

Inside each job’s directory several files are generated when the run is built, rep-

resenting the complete description of the job in terms of kind and total amount of

events to simulate using a specific decay mode for particles involved, along with the

5.2. SOFTWARE SETUP 71

type of background triggers to use. All these information are stored at SLAC for

each single job and distributed to remote sites when the SP manager decide to built

the allocation given. From the simulation production’s point of view, these files

come into play after the submission step, when the job reaches the Worker Node,

to be used both just before it starts to simulate the bunch of pre-assigned events

to correctly setup its working environment, and during the real production stage.

Moreover, each time a new job is built, two fundamental files are also copied from

the infngrid repository to the job directory: the ”Moose.bash” and the ”local-grid-

setup”. These two files are basically the same for all jobs: the first never changes

since it contains the consolidated list of steps to perform a single SP simulation,

while the second is updated only when new conditions are provided by SLAC.

The need for the capability of submitting jobs directly over the grid required the

introduction of some changes into the standard process used by BaBar to build jobs.

In particular, the ”spbuild” script has been modified to automatically generated a

JDL file for each new job created, thanks to a new library developed to provide

grid functionalities to SP jobs. This software layer overrides the standard template

provided by ProdTools, the ”batchUtils .pl” file, which has been modified to offer

a set of functionalities for using the grid. In this case, a check on the input pa-

rameters of the job is performed and integrated with other information to make the

job suitable for a grid submission. Specific requirements are defined into the JDL

wrapper for routing the job toward CEs with particular characteristics, including

all configuration files needed for SP. At the end of this procedure a run is ready and

can be submitted using the standard grid procedure (Figure 5.3).

The library implemented supplies also other functionalities for the submission

step since different use cases could occur according to the kind of jobs could be

submitted. The ”spsub” tool is actually used both to perform a regular submission

over the grid and for processing a merge job when collections produced need to be

aggregate into a single file.

In the case of a standard job, the submission can be related either to a real

production activity or to the validation process, which consists to send a well defined

range of jobs to a particular CE to validate input data installed at that site. This in

72CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

Figure 5.3: Jobs submission schema

a mandatory step before starting a new run allocation in order to be sure to produce

correct results. Generally, at traditional BaBar sites the same batch system is used

both for production and merging purposes, but this solution was not suitable for

a such grid environment due to the imposed constrains, therefore was necessary to

handle the two cases separately.

Merging jobs is a very intensive task in terms of CPU load and requires to

install the ProdTool suite locally to run, moreover merged collections are stored

within the ALLRUNS dir, making difficult to distribute the whole process over grid

nodes. More important, this process was designed to run over a dedicated pool

5.2. SOFTWARE SETUP 73

of resources, where each merge is performed independently by others, but in the

case of the grid it would have meant that two different kinds of task (simulation

and merge) had to compete using an already shared pool of resources, probably

resulting in a extreme time consumption process. To solve the problem, merging

processes are executed directly on the UI, accordingly configured to support the load,

implementing a special wrapper to let the spmerge script to fork a new child process

for each single merge, performing the task as a parallel operations. As the practical

experience demonstrated, the maximum number of parallel merge jobs depends on

system resources availability in terms of memory and CPU power. Despite is not

possible to achieve the same efficiency provided by a dedicated batch system, this

solution allowed to reach a good compromise with at most 8-10 concurrent jobs for

daily production peaks of about 15 million of simulated events.

5.2.3 Monitor

A fundamental feature for the management of jobs submitted to a batch system is

represented by the possibility to check the status of each single activity, in order to

have a feedback about the behavior of the whole process. Simulation Production

already provided a set of scripts for this purpose, but the design proposed concerned

just the usage with a traditional local batch system. Moreover, some implementation

details put too many constrains for achieving an efficient deal with a distributed

environment like the grid, therefore a more suitable solution was planned to build a

custom tool for monitoring grid jobs for SP.

The monitor was designed as a two layers concept, a part acting as backend which

provides the core functionalities of the application, and another layer represented by

a set of tools that provides the frontend for the user, where results can be monitored

through a web interface, implemented as a classic producer-consumer logic. The

main idea was to develop a tool able not just to report jobs status, but also to

decide which kind of action take for each single case could occurred during jobs life-

cycle. The resulting application takes care of checking the status of each single job,

retrieving and validating results or eventually resubmitting failed jobs automatically.

74CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

5.2.4 Monitor backend

The SP-Grid monitor runs as a Unix daemon that periodically checks status for

already submitted jobs and also verifies if any new job has been recently submitted.

This check is performed reading the list created during the first submission step,

saved in a dedicated file, where for each job is maintained a link between the original

SP run number and the relative grid id. Besides, a job can be submitted to the grid

more than once in case of errors, therefore this list could contain a new grid id for

the same job (run) id.

The first time a job is submitted after being built, its status is updated in the

main database at SLAC, following the standard SP procedure. As mandatory rule

of BaBar, when a job fails is necessary to rebuild it using the same run number but

with a different version tag before trying to resubmit it again, in order to preserve

the integrity of the main database and to trace its whole history, marking the old

version as failed when simulation did not end successfully. On the other hand, this

kind of approach could become quite inconvenient to handle when jobs fail frequently

for problems due just to the grid system underneath. Rebuilding a large amount of

jobs slows down performances and increase the overhead between jobs submission.

To avoid this problem, further resubmissions for a single job are performed without

interacting again with the central database at SLAC, but simply resubmitting it

over the grid. Job’s status is then updated to ”resubmitted” while the new job’s

entry is added to the list as it was a new re-built submission from the SP system’

perspective. This procedure can be considered safe from the BaBar management’s

point of view since the most of failures are not generally related to simulation errors

but just to common grid drawbacks, like software not properly configured at remote

sites. However, simulation errors can occur sometime and in this case the job is just

dropped after a specific timeout letting the garbage system, provided by ProdTools,

to update accordingly the BaBar bookkeeping.

The monitor daemon maintains a data structure for saving jobs status, which is

periodically updated taking into account only all valid jobs actually active on the

grid. This new set is both saved on a file, to be further compared with the submission

5.2. SOFTWARE SETUP 75

list, and stored in a table in memory as to be used as a catalog for retrieving jobs

information. A comparison between the monitor’s table and the submission list is

performed each time monitor awakes (generally after 10 or 15 minutes on the basis

of user customization), in order to check if new jobs have been submitted and to

verify also if any new versions for old jobs have been supplied. The operation is

performed on the basis of the submission date: if a new run is found into the list of

submitted jobs and it is not already present in memory, it is simply inserted as a

new element into the table, otherwise a check is performed on the submission date

to consider just the newest version of the run found. The old version states that

some kind of problem occurred and that job is not running anymore, therefore it

can be ignored.

In the main table stored in memory are kept all information needed to trace jobs

behavior, including both the SP and grid ids along with the location where jobs

have been sent for execution and, of course, their status (Figure 5.4).

Figure 5.4: Table for jobs information

From the monitor point of view, the pool of possible states a job can walk through

includes all standard grid stages plus others related to the operations performed off-

grid, like building and merging.

Pre-Grid Post-Grid
SPChecked

Built Merged
Archived

Table 5.1: Monitor off-Grid status

76CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

Check for jobs status is performed incrementally, considering only those jobs

that have not yet reached a terminal state, excluding all completed ones, along with

those marked as failed or that need to be resubmitted or have been moved toward

to other off-grid steps like merging or transferring. For all active jobs a temporary

list of their grid ids is collected and used to perform the status check as a unique

bulk request, through the standard tool provided by the gLite middleware. The

output is parsed and the main jobs status table is accordingly updated with new

information. Failures for jobs submitted could occur for several reasons, due both to

a problem on grid sites and to errors related to the simulation process. In such cases

a list of failed jobs is kept to allow an automatic resubmission. Jobs resubmission

is also automatically performed for those jobs that waited on queue for more than

six hours at remote CEs, in order to optimize the distribution over all the available

resources and gain better production performance.

Each job completed is then retrieved, copying output log files from the RB to

the UI, while the ROOT file containing simulation results is copying back following

the same schema used when data are transferred from the WN to the SE: first the

LFC catalog is queried and in case of errors the file is retrieved directly using low

level data management tools like GridFTP .

Despite a job could be considered as ”Done” by the grid system perspective,

it does not mean it is valid for BaBar, since problems could be generated from

different sources, like for example simulation errors or transfer problems after results

completion. In order to verify the quality of the ROOT file produced, the following

procedure is applied:

• the existence of the file is checked within the job directory on the UI

• the standard BaBar check is performed to investigate the number of events

effectively contained into the file. This number must be the same of that spec-

ified in the configuration file for the job, created when run was built and stored

within the job’s directory along with all needed files. The classical approach

for validating files was split in two steps, the first and more computing con-

suming is performed directly by the WN, while the second one, a shallow and

5.2. SOFTWARE SETUP 77

faster inspection of the file, is executed by the monitor at this stage taking

also into account result generated by the first check

• any noticed error is considered as a failure and job is marked as ”bad”

This process is critical since corrupted collections of data can bring to serious

problems during the merging stage, resulting in data loss. Jobs that pass this step

are marked as ”good” and are considered ready for the next steps.

Figure 5.5: Backend logical view

Information about jobs status are periodically saved to a file to minimize loss

of data in case of system crashes, which is also used at each new restart of the

application to populate the table kept in memory with last available information

about jobs activities. Another feature supported by the application is to preserve

78CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

Figure 5.6: Monitor backend schema

all data collected on a persistent support that can be analyzed for statistical uses

and that is sent, with a frequency of five minutes, to the web server in charge of

publishing results, as shown in Figure 5.6.

5.2.5 Monitor frontend

Driven by the need to provide an effective feedback for data monitoring, a web

interface was designed to allow to check the simulation production on the grid. The

idea was to give the most interesting information grouped by topics, maintaining

both an historical database for the general workflow and supplying details about the

status of production for sites involved. In order to fulfill these requirements, a new

set of tools was developed using a modular approach to handle the different kind of

information through a parallel pipeline.

On the official web server of INFN was installed the set of scripts in charge

5.2. SOFTWARE SETUP 79

of preserving a history for the production using the Round Robin Database suite

(RRDtool) [84], a toolset for high performance data logging that also offers a graph-

ing system for time series data and that provides flexible solution for customize user

application. This tool was chosen also for the ease of use and maintenance since it is

capable of acquiring data from several kind of sources, automatically handling data

storage as function of the time, allowing the user to choose the desired granularity.

A script takes care to parse the file transferred by the monitor application from the

UI to extract information about jobs status, accordingly formatted and inserted into

the database and also plots a chart for each specific time interval. For the purposes

of this work, data are preserved for at most one year while the range for granularity

varies from monthly to hourly views. Moreover, the general production workload is

taking in account and a plot for locations where jobs run is provided. The result

is an overview of the production workflow in terms of general status for submitted

jobs, which contributes to simplify the management and help to schedule the oper-

ations to perform. Further features allow to aggregate data for each single site in

terms of jobs activities, providing information about the distribution of jobs over the

grid nodes through a dedicated chart, which supplies details about workload within

single sites (FIgure 5.7). On a dedicated machine, where BaBar software release

was previously installed, another application queries the main database at SLAC to

extract other useful information from the bookkeeping, like the amount of simulated

events produced by INFN -Grid each single day. These data are also aggregated into

a plot that shows the weekly trend, besides the total amount of events produced

by each site involved in BaBar is showed, offering a comparison between results

achieved by different institutions. The queries to the main database are performed

asking for all the completed collections exported to SLAC from the beginning of

the BaBar production. All charts shown in the web page are refreshed every five

minutes, except for the ones generated by the queries to the SP bookkeeping, while

another process controls when new updates for jobs status come into play to keep

the monitor frontend in sync with the backend counterpart.

80CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

Figure 5.7: Web interface for monitor frontend

5.2.6 Monitor utilities

To coordinate the activities of all components described above, a set of scripts

have been developed to run as Unix daemons on the User Interface. The main

functionalities concern the following features:

• automatic submission of already built jobs

5.3. RESULTS 81

• check of the monitor backend activity

• automatic stop of the backend in case the process hangs and restart of the

service

The main purpose of these utilities is to keep the production process always up

and running in order to avoid system downtime. Indeed, to complete a full cycle, for

each single run must be taken into account the delay introduced by each step, like

building, submission, queuing/running, merging and transfer, plus the time required

by the automatic import tool at SLAC to mark last imported collections as valid and

update the bookkeeping, which usually takes 12 hours as safety constrain against

data loss. Therefore is mandatory to react promptly, for example when new runs

are ready to be submitted or when new merged collections are ready for export.

Moreover, a periodic check is performed to ensure the monitor backend is active and

to prevent unexpected blocks of the production system, that occasionally can occur

when the UI is overloaded, restarting the application if necessary. In this case a

special interrupt signal is sent to allow the monitor backend to conveniently save all

data in memory to persistent structures before exiting and start over again.

5.3 Results

In this section is reported a discussion about results achieved at the end of this

study. Despite the BaBar experiment has already reached the end, data collected

need to be analysed therefore simulation will be performed during next months. The

system implemented is still ongoing and collaborates within the SP community to

produce a relevant part of the daily production rate, providing the expected level of

support to the experiment.

5.3.1 Productions comparison

After more than one year and half of intensive production, we can say the new

system stepped into the production pipeline quite smoothly, providing even better

results than expected. A comparison among the last three production cycles of the

82CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

Figure 5.8: SPGrid: a three years comparison

experiment is shown is Figure 5.8. The SP activity in BaBar lasts about one year

before a new cycle come into play, besides, two production cycles could in general be

overlapped for few weeks before all sites move to the new one. Therefore, the period

taken into account represents a significant interval since during the months selected

just one cycle at a time was running, allowing a better understanding of the infor-

mation obtained. The improvement gained during the last cycle is evident, in terms

of total amount of simulated events produced. Of course this result depends directly

on the increment of computing resources, which availability has grown significantly

in the last period, but it also depends on the stability and reliability achieved by

the SPGrid system, which allowed to sustained a high and continuous rate for the

whole production pipeline.

As explained above, a high reactive system is fundamental to rapidly respond to

every kind of event can occur within the pipeline, along with a good fault tolerance

to extend the uptime as long as possible, to achieve the highest production rate over

the unit of time, which in general is considered to be a working day. Improvements

to the code and a better organization for sites belonging to the SP pool, in terms

of quality of services, allowed to achieve better performances resulting in a more

efficient and stable system, as reported in Figure 5.9. In 2008 it was able to stay up

5.3. RESULTS 83

Figure 5.9: SPGrid: uptime improvements

for the 75% of the time, against the 55% and the 65% of the second and first year

respectively. In some occasions the SP process stopped at SLAC for different kinds

of problems or just because a quick reorganization was required, for example to keep

the bookkeeping neat or to reprocessing some corrupted conditions data, therefore

the evident inactivity shown by the plot has to be considered conform to the BaBar

SP policy.

In order to evaluate the behavior of nodes where SP jobs run, an efficiency index

has been calculated for each site as the ratio between the total amount of submitted

jobs and the ones successfully completed daily. In practice, the monitor backend

keeps trace for each site of the productivity efficiency, calculating this index and

considering all jobs managed within the 24 hours. This index gives information

about the reliability of a specific site, helping to decide where it could be more

convenient to perform further submissions and outlining possibly failures at specific

locations.

The most important contributes to SPGrid are given by sites like CNAF and

Pisa, thanks to the considerable amount of computing resources available, although

other sites with a large quantity of job slots, like for example Catania, are often

taken into account. Figure 5.10 shows resources allocated for the BaBar VO within

84CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

the INFNGrid system. In spite of so many sites offer support for the BaBar’s VO, it

doesn’t mean that all resources listed are freely accessible by SP jobs, indeed, many

sites adopt private policies to preserve a certain amount of resources for favoring

particular activities, depending on the experiments they are involved in. Therefore,

a such list of resources is just indicative: the production manager must take care to

add or remove a specific site in the pool of nodes used for production, depending on

circumstances that can occur in a dynamic environment like the grid.

Sites like CNAF and Pisa allocate a certain number of slots for BaBar thanks

to special agreements involving institutions where these farms are installed. In

particular, at CNAF no limit was set in terms of number of slots usable, but the local

fairshare policy allows to utilize just a specific amount of computing power per month

for each VO. This value is directly proportioned to the investment made by each

group for supporting the center. At Pisa, instead, just the 10% of computing slots

is available for BaBar, amount shared with other experiments, assuring, however,

the required level of resources.

Figure 5.10: Resources allocated for the BaBar VO

5.3.2 Comparison with other sites

INFNGrid was the first site where the grid approach for SP was implemented, and

despite other few attempts have been tried by other institutes, no other grid imple-

5.3. RESULTS 85

Figure 5.11: CNAF resources monitor for BaBar

mentation succeed in reach the same level of performances. As depicted in Figure

5.12, SPGrid stepped into the effective production workflow about 3 years ago, in-

creasing the total amount of simulated events at every new cycle. For the first years

its contribution was quite marginal, due to the overall instability of the system that

relegated the INFNGrid site at a low rank, if compared to other sites much more

competitive in terms of number of events produced. After passing the test phase,

rate increased until reaching the standard level required to be qualified as a reliable

site.

Considering the last production cycle, which is currently ongoing, results achieved

are pretty interesting if compared wide world to ones obtained by other sites involved

in BaBar SP, the most of which still adopt the traditional system of production.

Figure 5.13 presents the total amount produced for SP in the last year, taking into

account contributes for each site belonging to the collaboration. As reported by the

chart, INFNGrid is one of the most important source of simulated events.

Started as an experimental project to evaluate the possibility to run the BaBar

SP on grid, at the beginning it was introduced to get behind the production al-

ready performed in Italy and based on the traditional system. Actually the SPGrid

approach covers about the 85% of the total amount of simulated events produced

in Italy, a result that brought to consider this method as the official one for the

86CHAPTER 5. BABARGRID: IMPLEMENTATION AND RESULTS

Figure 5.12: SP: cycles comparison by sytes

Figure 5.13: SPGrid: global production

5.3. RESULTS 87

next years, replacing also the small part that is still performed using the traditional

method.

Chapter 6

Conclusions

Grid systems are becoming a strong reality within the distributed domain, although

the evolution of this branch of computer science is still quite young. Nevertheless,

important steps forward have been successfully done to define common standards

and reliable solutions for building a solid platform for a variety of different ap-

plications. In a such promising scenario is also interesting to think how to apply

these mechanisms retroactively to those projects that are still ongoing, but which

frameworks were designed before the grid concept came into play. Despite the con-

strains imposed by their architectures, for some specific topics is feasible to adopt

the grid way. A typical example is given by the batch processing task that in the

grid paradigm finds a natural evolution.

On the basis of these considerations, in this thesis we introduced as case study

the BaBar experiment, a well known project developed at the Stanford Linear Accel-

erator Center in the field of High Energies Physics. BaBar’s framework was designed

in the early ’90s therefore was an ideal candidate for the purpose of this work, which

aim was to successfully apply the grid paradigm to such a traditional model, gain-

ing at least the same level of performances in terms of simulated events produced

weekly. Different aspects of BaBar’s model were taken into account, like data man-

agement and information bookkeeping, outlining those characteristics considered as

consonant to the grid.

After an initial period which required a preliminary study about the feasibility of

the SPGrid process, the whole system has been implemented at CNAF, establishing

the main center for producing simulated events on the grid in Italy. In spite at the

89

90 CHAPTER 6. CONCLUSIONS

beginning the new approach has not been considered reliable enough to sustain a

complete production cycle [70], the scenario improved considerably when the inte-

gration of the different components of the SP model reached its maturity, thanks

both to software and infrastructure improvements.

At the present time, results achieved state the SPGrid approach can really co-

exist with the traditional one, providing on average the same level of production

rate reached by the most of sites involved in the collaboration, but requiring a less

intensive resources management from the point of view of the final user. This as-

sumption is especially true in terms of human resources, since just a single person

can control all the whole production workflow on several farms when the traditional

approach requires at least one person for each single site. Moreover, costs can be

reduced as obvious consequence of the intrinsic nature of the grid, that allows to

access resources of different domains transparently. Therefore the SPGrid manager

can focus just to those grid sites stated as appropriate for the production, without

worry to manage any external resources except for the ones specifically dedicated to

the experiment.

6.1 Open problems

Approaching a new vision is rarely painless for a project with an already well es-

tablished background. Although target was achieved in terms of expectations, some

aspects could not be further improved due to both BaBar’s framework limitations

and grid policies. In particular, a more fine distribution of input data needed for

the simulation process would have been required. The management of non grid

nodes to host this kind of data has as direct consequence a serious scalability is-

sue that limited the SPGrid pool nodes to grow in size. At the time the SPGrid

approach was implemented, the Xrootd service was not included into any official

middleware release, while, from the SPGrid’s prospective, this was the only feasible

way to access input data in such a system like the grid. The best solution would

have been represented by the deployment of the Xrootd service toward the Storage

Element units, allowing the widest possible distribution and, at the same time, to

6.2. FUTURE TRENDS 91

fully supporting this service at each grid farm.

Lack of such a kind of flexibility imposed rigid constrains to the interoperability

with other grid systems ready for supporting the BaBar VO. The impossibility for

those systems to provide a reliable and continuous support to maintain dedicate

external servers for input data, along with the absence of a global coordination,

limited the cooperation among grids of other countries, although some tests were

also performed toward that direction, but never for real production purposes.

On the other hand, this work was driven by the idea to connect these two different

environments respecting the basic characteristics of both worlds, therefore avoiding

any kind of spurious solutions that would have led to a hard maintainability of

the whole system. From this point of view, and considering the natural constrains

imposed since the beginning, the project revealed the required level of flexibility to

accomplish the task.

6.2 Future trends

The SPGrid approach has been started to supply the required amount of computing

resources, otherwise difficult to collect for a single Italian site at the time the project

began, to compete with other international research centers for the production of

simulated events. Despite the fact that new experiments nowadays are able to add

more innovative technologies within their workflow, the BaBar SPGrid experience

demonstrated it worth to invest in this new approach although the early scepticism

about the flexibility it could offer when applied to an already established model.

Moreover, within the SPGrid design some new kind of services were adopted, like

the Xrootd suite, which was intensive used and promoted, offering to the grid com-

munity an example that has been taken into account even by other and more recent

experiments.

Appendix

Main job’s configuration files

local-grid-setup

1 ###
2 # #
3 # Xrootd s e r v e r de s i gna t i on on the b a s i s o f job ’ s l o c a t i o n #
4 # #
5 ###
6
7
8 #!/ bin / bash
9

10 s=$VO BABAR DEFAULT SE
11
12
13 i f [! −z ‘ echo $s | grep ”\ . f e \ . ” ‘] ; then
14 export XROOTD HOST=babarbecue . f e . i n f n . i t
15 e l s e
16 i f [! −z ‘ echo $s | grep ”\ . na \ . ” ‘] | | [! −z ‘ echo $s | grep ”\ . ba \ . ” ‘

] ; then
17 export XROOTD HOST=babarbecue . f e . i n f n . i t
18 e l s e
19 i f [! −z ‘ echo $s | grep ”\ . pd \ . ” ‘] ; then
20 export XROOTD HOST=bbr−serv08 . c r . cnaf . i n f n . i t
21 e l s e
22 i f [! −z ‘ echo $s | grep ”\ . cna f \ . ” ‘] ; then
23 export DATA PATH=/s to rage / gp f s 01 /babar/ SP cdb cfg bkg /data/
24 e l s e
25 i f [! −z ‘ echo $s | grep ”\ . p i \ . ” ‘] ; then
26 export XROOTD HOST=babarxrd . p i . i n f n . i t
27 e l s e
28 export XROOTD HOST=bbr−serv08 . c r . cnaf . i n f n . i t
29 f i
30 f i
31 f i
32 f i
33 f i
34
35
36 ### Defau l t Storage Element and LFC path d e f i n i t i o n ###
37
38 export OUTPUT SE=storm02 . cr . cnaf . i n f n . i t
39 export OUTPUT SE PATH=/s to rage / gp f s 01 /babar

93

94 Appendix

40 export LFC LFN PATH=/gr id /babar/SPGrid/ i n f n g r i d
41
42
43
44 #SP10
45 export CDB ROO BOOT=”kanga : : / cond24boot/ f u l l / cdb boot . root ”
46
47 export CFG DEFAULT IMPL=ROOT
48 unset OO FD BOOT
49
50
51 ### Dynamic genera t ion o f the KanAccess . c f g f i l e ###
52
53 mkdir −p $PWD/kanga/ con f i g
54
55
56 i f [−z ‘ echo $DATA PATH‘] ; then
57 echo ” rootenv Root . XTNetFileAllowWanConnect 1”>$PWD/kanga/ con f i g /

KanAccess . c f g
58 echo ” rootenv Root . XTNetFileAllowWanRedirect 1”>>$PWD/kanga/ con f i g /

KanAccess . c f g
59 echo ” rootenv XNet . RedirDomainAllowRE ∗ . i n f n . i t ”>>$PWD/kanga/ con f i g /

KanAccess . c f g
60 echo ” rootenv XNet . ConnectDomainAllowRE ∗ . i n f n . i t ”>>$PWD/kanga/ con f i g

/KanAccess . c f g
61 echo ” rootenv XNet . RequestTimeout 1200”>>$PWD/kanga/ con f i g /KanAccess .

c f g
62 f i
63
64 echo ””>>$PWD/kanga/ con f i g /KanAccess . c f g
65
66 echo ”# CfgDB”>>$PWD/kanga/ con f i g /KanAccess . c f g
67
68 i f [−z ‘ echo $DATA PATH‘] ; then
69 echo ” read / s t o r e / c f g /∗ xrootd $XROOTD HOST:1094/”>>$PWD/kanga/ con f i g

/KanAccess . c f g
70 e l s e
71 echo ” read / s t o r e / c f g /∗ f i l e / s to rage / gp f s 01 /babar/ SP cdb cfg bkg /

data/”>>$PWD/kanga/ con f i g /KanAccess . c f g
72 f i
73
74 echo ” wr i t e / s t o r e / c f g /∗ e r r o r”>>$PWD/kanga/ con f i g /KanAccess . c f g
75
76 echo ”# CDB”>>$PWD/kanga/ con f i g /KanAccess . c f g
77
78 i f [−z ‘ echo $DATA PATH‘] ; then
79 echo ” read / s t o r e /cdb/∗ xrootd $XROOTD HOST:1094/”>>$PWD/kanga/ con f i g

/KanAccess . c f g
80 e l s e
81 echo ” read / s t o r e /cdb/∗ f i l e / s to rage / gp f s 01 /babar/ SP cdb cfg bkg /

data/”>>$PWD/kanga/ con f i g /KanAccess . c f g
82 f i
83
84 echo ” wr i t e / s t o r e /cdb/∗ e r r o r”>>$PWD/kanga/ con f i g /KanAccess . c f g
85
86
87 i f [−z ‘ echo $DATA PATH‘] ; then
88 echo ” read / s t o r e /∗ xrootd $XROOTD HOST:1094/”>>$PWD/kanga/ con f i g /

KanAccess . c f g
89 e l s e

Appendix 95

90 echo ” read / s t o r e /∗ f i l e / s to rage / gp f s 01 /babar/ SP cdb cfg bkg /data
/”>>$PWD/kanga/ con f i g /KanAccess . c f g

91 f i
92
93
94 ### Writing o f c on f i g f i l e s f o r d e f i n i n g the l a s t v e r s i on o f cond i t i on s

and con f i g u r a t i on s data to use ###
95
96 #SP10 CFG
97 export CFGDB=”/ s t o r e / c f g /2008/05/CfgDB−20080514T224248 . root ”
98
99 #SP10 CDB

100 export CDB=”/ s t o r e /cdb/cond24boot/ f u l l /2008/09/20080915T142817/CDB
−20080915T142817−cdb boot . root ”

101
102
103 mkdir −p $PWD/kanga/ con f i g / cfgdb /
104 mkdir −p $PWD/kanga/ con f i g /cdb/
105
106 echo ” wr i t e / c f g /CfgDB\ . root e r r o r”>>$PWD/kanga/ con f i g / cfgdb /

CfgDBNameRules . c f g
107 echo ”− i n c lude kanga/ con f i g / cfgdb /CfgDBNameRules−l a t e s t . c f g”>>$PWD/

kanga/ con f i g / cfgdb /CfgDBNameRules . c f g
108
109 echo ” read / c f g /CfgDB\ . root $CFGDB”>$PWD/kanga/ con f i g / cfgdb /

CfgDBNameRules− l a t e s t . c f g
110
111 echo ” wr i t e /cdb/ cdb boot \ . root e r r o r”>$PWD/kanga/ con f i g /cdb/

CdbNameRules . c f g
112 echo ”− i n c lude kanga/ con f i g /cdb/CdbNameRules−l a t e s t . c f g”>>$PWD/kanga/

con f i g /cdb/CdbNameRules . c f g
113
114
115 #SP10
116 echo ” read /cond24boot/ f u l l / cdb boot \ . root $CDB”>$PWD/kanga/ con f i g /cdb

/CdbNameRules−l a t e s t . c f g
117
118
119 ### Se t t i n g the current d i r on WN where job runs as the roo t d i r f o r

the s imu la t i on ###
120
121 export BFROOT=$PWD

Moose.bash

1 ###
2 # #
3 # Wrapper f o r SP jo b s over the Grid #
4 # #
5 ###
6 #!/ bin / bash
7
8 i f [−a con f i g . sh] ; then
9 . c on f i g . sh

10 echo ” Sourc ing c on f i g . sh from current d i r e c t o r y $PWD” >>

$TYPE$JOBNUM. batchout

96 Appendix

11 f i
12
13 HOST=‘hostname | cut −d . −f1 ‘
14
15 #se t s t a t u s f i l e
16 STATUSFILE=‘pwd‘”/ s t a tu s . txt ”
17
18
19 ### Redef ine s e t t i n g s f o r the Grid environment ###
20
21 export SITE=$HOSTNAME
22 export REL=Moose−$JOBSRT
23 export SW DIR=$VO BABAR SW DIR/SP
24 export SP ROOT=$SW DIR/$REL
25 export PARENT=$SP ROOT/ s r c
26 export LD LIBRARY PATH=$SP ROOT/ sh l i b
27 export PATH=${PATH} :$SP ROOT/bin
28 export OO CONNECT RETRIES=4
29 export OO RPC TIMEOUT=50
30 export BDB STANDALONE MODE=”yes ”
31 export OO CACHE MAX=2500
32 export OO CACHE INIT=1000
33 export OO FD LIMIT=20
34 export MooseHBookFile=framework . hbook
35 export SPCHECKLOG=spcheck . l og
36 export LCG CR TIMEOUT=900
37 export ROOTSYS=$SP ROOT/ root
38
39
40 #t e l l s t a t u s f i l e t h a t s c r i p t has s t a r t e d
41 echo ”Job . bash − $PROCSPEC − Sta r t i ng job on $HOST − ” ‘ date ‘ >>

$STATUSFILE
42
43 #run the s i t e commands
44 #. $SITEDIR/ l o ca l−$TYPE−batch >> $TYPE$JOBNUM. ba tchou t
45
46 /bin / ln −f −s $PARENT PARENT
47 apppath=$SP ROOT/bin /
48
49
50 #run l o c a l g r i d se tup
51 . l o c a l−gr id−setup
52
53
54 #determine p la t form
55 SPPLATFORM=‘uname ‘
56
57 # wr i t e out in format ion to l o g f i l e
58 echo Run $JOBNUM $TYPE ve r s i on $JOBSRT on $HOST >> $TYPE$JOBNUM. log
59
60 # check l o g f i l e was s u c c e s s f u l l y c rea t ed (avo ids core dumps l a t e r on)
61 i f [! −s $TYPE$JOBNUM. log] ; then
62 errmsg ”ERROR: Cannot wr i t e to $TYPE$JOBNUM. log . Has the d i sk f i l l e d

up?”
63 e x i t 2
64 f i
65
66 i f [”$USER” = ”bbrprod”] ; then
67 echo USER: bbrprod >> $TYPE$JOBNUM. log
68 echo JOB SETUP BY: $us e r l og >> $TYPE$JOBNUM. log

Appendix 97

69 e l s e
70 echo USER: ‘whoami ‘ >> $TYPE$JOBNUM. log
71 f i
72
73 echo DATE: ‘ date ‘ >> $TYPE$JOBNUM. log
74 echo RELEASE: $RELEASE >> $TYPE$JOBNUM. log
75 echo PARENT: $PARENT >> $TYPE$JOBNUM. log
76 echo BOOTFILE: $OO FD BOOT >> $TYPE$JOBNUM. log
77 echo =============== >> $TYPE$JOBNUM. log
78 pr intenv >> $TYPE$JOBNUM. log
79 echo =============== >> $TYPE$JOBNUM. log
80 u l im i t −a >> $TYPE$JOBNUM. log
81 echo =============== >> $TYPE$JOBNUM. log
82 echo PRODDECAYFILES: $SPDFTAG >> $TYPE$JOBNUM. log
83 echo =============== >> $TYPE$JOBNUM. log
84 i f [”$SPPLATFORM” = ”SunOS”] ; then
85 p s r i n f o −v >> $TYPE$JOBNUM. log
86 f i
87 i f [”$SPPLATFORM” = ”Linux”] ; then
88 cat /proc / cpu in fo >> $TYPE$JOBNUM. log
89 f i
90 echo =============== >> $TYPE$JOBNUM. log
91 #cat $OO FD BOOT >> $TYPE$JOBNUM. l o g
92 echo =============== >> $TYPE$JOBNUM. log
93
94 i f [−z ”$PWD”] ; then PWD=‘/bin /pwd ‘ ; f i
95 export PWD
96
97 i f [−r $ t c l f i l e] ; then
98 echo ”Using s p e c i f i e d t c l f i l e $ t c l f i l e ” >> $TYPE$JOBNUM. log
99 e l s e

100 errmsg ”ERROR: Cannot f i nd $ t c l f i l e ”
101 e x i t 2
102 f i
103
104 # wr i t e t h i n g s out to the l o g s
105 echo ’======= Appl i ca t ion ========’ >> $TYPE$JOBNUM. log
106 l s −lL $apppath >> $TYPE$JOBNUM. log
107 echo ’==== workdir l i s t i n g =======’ >> $TYPE$JOBNUM. log
108 l s − l >> $TYPE$JOBNUM. log
109 echo ’==== symlink l i s t i n g =======’ >> $TYPE$JOBNUM. log
110 f i nd . −type l −exec l s −ldL {} \ ; >> $TYPE$JOBNUM. log
111 i f [−f user1 . dec] ; then
112 echo ’======= user . dec ===========’ >> $TYPE$JOBNUM. log
113 cat user ∗ . dec >> $TYPE$JOBNUM. log
114 f i
115 echo ’============================’ >> $TYPE$JOBNUM. log
116
117
118 #t e l l s t a t u s f i l e t h a t a p p l i c a t i o n i s s t a r t e d
119 echo ”Job . bash − $PROCSPEC − s t a r t i n g $apppath − ” ‘ date ‘ >> $STATUSFILE
120
121 # run the job and time i t
122 $TIMEBIN $apppath/$appname $ t c l f i l e >> $TYPE$JOBNUM. log 2>&1
123
124 j ob s t a t=$?
125 echo $appname f i n i s h e d at ‘ date ‘ >> $TYPE$JOBNUM. log
126
127 #t e l l s t a t u s f i l e t h a t a p p l i c a t i o n i s f i n i s h e d

98 Appendix

128 echo ”Job . bash − $PROCSPEC − $appname f i n i s h ed , s i g n a l $ j ob s t a t − ” ‘
date ‘ >> $STATUSFILE

129
130
131
132 #check roo t output
133
134 $apppath/KanCopyUtil −r ${JOBNUM} . moose &>$SPCHECKLOG
135
136
137 # Source l o ca l−$TYPE−wrapup
138 #. $PRODTOOLS/ s i t e /$BFSITE/ l o ca l−$TYPE−wrapup $JOBNUM $JOBSRT >>

$TYPE$JOBNUM. ba tchou t
139
140 echo ” gz ipp ing framework . root ” 2>&1 >> $TYPE$JOBNUM. batchout
141 gz ip framework . root
142
143 gtar −c z f run${JOBNUM}${TARGET} . t a r . gz ∗ . root 2>&1 >> $TYPE$JOBNUM.

batchout
144
145
146 s=$HOSTNAME
147 i f [! −z ‘ echo $s | grep . p i . ‘] ; then
148
149 VO BABAR DEFAULT SE=lcg−se01 . c r . cnaf . i n f n . i t
150 export VO BABAR DEFAULT SE
151
152 f i
153
154 ### Sta r t output t r a n s f e r
155
156 echo ” s t a r t i n g lcg−cr ” 2>&1 >> $TYPE$JOBNUM. batchout
157
158 #the lcg−cr can f a i l s f o r l f c s e r v e r down or f o r ClosestSE se r v e r down
159 echo ” lcg−cr −v −t $LCG CR TIMEOUT −−vo babar − l l f n : / g r id /babar/SPGrid

/ i n f n g r i d /run${JOBNUM}${TARGET} . t a r . gz f i l e :PWD/run{JOBNUM}${
TARGET} . t a r . gz”

160 lcg−cr −v −t $LCG CR TIMEOUT −−vo babar − l l f n : $LFC LFN PATH/run${
JOBNUM}${TARGET} . t a r . gz f i l e :PWD/run{JOBNUM}${TARGET} . t a r . gz
2>&1 >> $TYPE$JOBNUM. batchout

161
162 #Check i f the ClosestSE se r v e r i s up
163 i f [$? −ne 0] ; then
164 echo ” lcg−cr f a i l e d f o r C lo s e s t SE , t ry with lcg−cr on ${OUTPUT SE

}” 2>&1 >> $TYPE$JOBNUM. batchout
165
166 lcg−cr −v −t $LCG CR TIMEOUT −−vo babar − l l f n : $LFC LFN PATH/run${

JOBNUM}${TARGET} . t a r . gz −d ${OUTPUT SE} f i l e :$PWD/run${JOBNUM}$
{TARGET} . t a r . gz 2>&1 >> $TYPE$JOBNUM. batchout

167
168 #Check i f the OUTPUT SE se r v e r i s up
169 i f [$? −ne 0] ; then
170 echo ” lcg−cr f a i l s f o r d e f au l t OUTPUT SE ${OUTPUT SE} , f i l e not

t r a n s f e r r e d ” 2>&1 >> $TYPE$JOBNUM. batchout
171
172 #Use g r i d f t p as backup t r an s f e r method on the $OUTPUT SE (in l o ca l−gr id

−se tup)
173 echo ” s t a r t i n g g lobus u r l copy” 2>&1 >> $TYPE$JOBNUM. batchout
174 echo ” globus−ur l−copy −vb f i l e : //PWD/run{JOBNUM}${TARGET} . t a r

. gz g s i f t p : //$OUTPUT SE/$OUTPUT SE PATH/run${JOBNUM}${

Appendix 99

TARGET} . t a r . gz” 2>&1 >> $TYPE$JOBNUM. batchout
175
176 globus−ur l−copy −vb f i l e : / / ‘pwd‘ / run${JOBNUM}${TARGET} . t a r . gz

g s i f t p : //$OUTPUT SE/$OUTPUT SE PATH/run${JOBNUM}${TARGET} .
t a r . gz 2>&1 >> $TYPE$JOBNUM. batchout

177
178 i f [$? −ne 0]
179 then
180 echo ” globus−ur l−copy on $OUTPUT SE f a i l e d ” 2>&1 >>

$TYPE$JOBNUM. batchout
181 e l s e
182 echo ” globus−ur l−copy on $OUTPUT SE succeeded ” 2>&1 >>

$TYPE$JOBNUM. batchout
183 f i
184 e l s e
185 echo lcg−cr succeeded on $OUTPUT SE 2>&1 >> $TYPE$JOBNUM.

batchout
186 f i
187
188 e l s e
189 echo lcg−cr succeeded f o r C lo s e s t SE >> $TYPE$JOBNUM. batchout
190 f i

Glossary

A

AFS Andrew File System;
ALICE A Large Ion Collider Experiment;
AMS Advanced Multi-threaded Server;
ATLAS A Toroidal LHC ApparatuS;

B

BaBar B and B-bar experiment;
BDII Berkeley Database Information Index;
BOGUS Babar Object-oriented Geant-4-based Unified Simula-

tion;

C

CA Certification Authority;
CE Computing Element;
CERN European Laboratory for Particle Physics;
CM Computer Model;
CMS Compact Muon Solenoid;
CNAF INFNs National Center for Telematics and Informatics;
CP Charge Parity;
CVS Concurrent Version System;

E

EDG European DataGrid;

101

102 GLOSSARY

F

FTP File Transfer Protocol;

G

GeV Giga electron Volt;
GIIS Grid Index Information Server;
GLUE Grid Laboratory for a Uniform Environment;
GRAM Globus Resource Allocation Manager;
GRIS Grid Resource Information Service;
GSI Grid Security Infrastructure;
GUI Graphical User Interface;
GUID Grid Unique ID;

H

HEP High Energy Physics;

I

ID Identifier;
IN2P3 Institut Nacional de Physique Nuclèaire et de Physique

des Particules;
INFN Istituto Nazionale di Fisica Nucleare;
IS Information Service;

J

JA Job Adapter;
JC Job Controller;
JCS Job Control Service;
JDL Job Description Language;

GLOSSARY 103

L

LB Logging and Bookkeeping Service;
LCG LHC Computing Grid;
LDAP Lightweight Directory Access Protocol;
LFN Logical File Name;
LHC Large Hadron Collider;
LHCb Large Hadron Collider beauty experiment;
LM Log Monitor;
LSF Load Sharing Facility;

M

MDS Monitoring and Discovery Service;
MOOSE Monolithic Object Oriented Simulation Executable;

N

NFS Network File System ;
NS Network Server;
NTP Network Time Protocol;

P

PBS Portable Batch System;
PERL Pratical Extraction and Report Language;
PEP-II Positron Electron Project II;
PFN Physical File name;
PID Process IDentifier;

104 GLOSSARY

R

RA Registration Authority;
RAL Rutherford Appleton Laboratory;
RB Resource Broker;
RC Replica Catalog;
RLS Replica Location Service;
RM Replica Manager;
ROOT An Object-Oriented Data Analysis Framework;

S

SDK Software Development Kit;
SE Storage Element;
SimApp Simulation Application;
SLAC Stanford Linear Accelerator Center;
SP Simulation Production;

U

UI User Interface;

V

VO Virtual Organization;
VOMS Virtual Organization Management Team;

W

WM Workload Manager;
WMS Workload Management System;
WN Worker Node;

X

XROOTD eXtended Root Daemon;

List of Tables

5.1 Monitor off-Grid status . 75

105

List of Figures

1.1 Example of distributed systems architectures [3] 4

1.2 Example of grid systems taxonomy [5] 7

1.3 Data model organization [5] . 8

1.4 Data Grids taxonomy [5] . 10

2.1 MDS Information System architecture 23

2.2 File names mapping . 26

2.3 Jobs submission workflow . 31

3.1 MocaEspresso GUI provided an easy way to handle the large amount

of parameters needed for simulation 45

3.2 AMS servers comparison . 48

3.3 Access times with local and remote AMS servers 49

3.4 Mechanism for transparent data access in ROOT 50

3.5 Xrootd server architecture . 51

3.6 Xrootd client architecture . 51

4.1 Mean elapsed time for different access methods 56

4.2 SPGrid schema . 63

5.1 ProdTools repository tree . 68

5.2 Jobs directory tree on UI . 70

5.3 Jobs submission schema . 72

5.4 Table for jobs information . 75

5.5 Backend logical view . 77

107

108 LIST OF FIGURES

5.6 Monitor backend schema . 78

5.7 Web interface for monitor frontend . 80

5.8 SPGrid: a three years comparison . 82

5.9 SPGrid: uptime improvements . 83

5.10 Resources allocated for the BaBar VO 84

5.11 CNAF resources monitor for BaBar 85

5.12 SP: cycles comparison by sytes . 86

5.13 SPGrid: global production . 86

Bibliography

[1] A.S. Tanenbaum and M. Steen. Distributed Systems: Principles and Paradigms.

Pearson, 2007.

[2] N. Minar. Distributed Systems Topologies: Part 1. Retrieved November, 15:7,

2001.

[3] N. Minar. Distributed Systems Topologies: Part 2. Retrieved January, 15:8,

2002.

[4] I.J. Taylor. From P2P to Web Services and Grids: Peers in a Client/Server World.

Springer, 2009.

[5] S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of Data Grids

for distributed data sharing, management, and processing. ACM Computing

Surveys (CSUR), 38(1), 2006.

[6] The MONARC project. Website, 2000. http://monarc.web.cern.ch/MONARC/.

[7] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke.

GridFTP: Protocol extensions to FTP for the Grid. Global Grid ForumGFD-RP,

20, 2003.

[8] F. Dabek, J. Li, E. Sit, J. Robertson, M.F. Kaashoek, and R. Morris. Designing

a DHT for low latency and high throughput.

[9] J. Joseph, M. Ernest, and C. Fellenstein. Evolution of grid computing archi-

tecture and grid adoption models. IBM SYSTEMS JOURNAL, 43(4):624, 2004.

[10] Open Grid Forum. Website, 2008. www.ogf.org/.

109

110 BIBLIOGRAPHY

[11] EGEE Home Page. Website, 2006. http://egee1.eu-egee.org/.

[12] EGEE Home Page. Website, 2008. http://www.eu-egee.org/.

[13] WLCG. Website, 2008. http://lcg.web.cern.ch/LCG/.

[14] P. Lebrun. The Large Hadron Collider, A Megascience Project. In Proceedings of

the 38th INFN Eloisatron Project Workshop on Superconducting Materials for High

Energy Colliders, 1999.

[15] The BaBar Home Page. Website, 2008. http://www.slac.stanford.edu/

BFROOT/.

[16] The Collider Detector at Fermilab. Website, 2008. http://www-cdf.fnal.gov/.

[17] Zeus Homepage. Website, 2007. http://www-zeus.desy.de/.

[18] Wisdom. Website, 2007. http://wiki.healthgrid.org/Wisdom:web_site.

[19] Gpsa web portal. Website, 2005. http://gpsa.ibcp.fr/.

[20] The MAGIC telescope. Website, 2008. http://wwwmagic.mppmu.mpg.de/.

[21] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems: Concepts and

Design. Addison-Wesley Reading, Mass, 2001.

[22] Virtual Data Toolkit. Website, 2008. http://vdt.cs.wisc.edu/.

[23] G. Avellino, S. Beco, B. Cantalupo, A. Maraschini, F. Pacini, M. Sottilaro,

A. Terracina, D. Colling, F. Giacomini, E. Ronchieri, et al. The DataGrid

Workload Management System: Challenges and Results. Journal of Grid Com-

puting, 2(4):353–367, 2004.

[24] E. Laure, SM Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,

F. Pacini, F. Prelz, J. White, et al. Programming the Grid with gLite. Compu-

tational Methods in Science and Technology, 12(1):33–45, 2006.

BIBLIOGRAPHY 111

[25] S. Burke, S. Campana, A.D. Peris, F. Donno, P.M. Lorenzo, R. Santinelli, and

A. Sciaba. gLite 3.1 User Guide, 2008. https://edms.cern.ch/file/722398/

/gLite-3-UserGuide.pdf.

[26] F. Pacini. Job Description Language HowTo, 2003. http://www.infn.it/

workload-grid/docs/.

[27] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information

Services for Distributed Resource Sharing. In 10th IEEE International Symposium

on High Performance Distributed Computing, volume 184. San Francisco, 2001.

[28] A. Cooke, A.J.G. Gray, L. Ma, W. Nutt, J. Magowan, M. Oevers, P. Taylor,

R. Byrom, L. Field, S. Hicks, et al. R-GMA: An Information Integration System

for Grid Monitoring. LECTURE NOTES IN COMPUTER SCIENCE, pages 462–

481, 2003.

[29] G. Aloisio, M. Cafaro, and I. Epicoco. Early experiences with the GridFTP

protocol using the GRB-GSIFTP library. Future Generation Computer Systems,

18(8):1053–1059, 2002.

[30] Carnegie Mellon University. Overview of the Grid Security Infrastructure. Web-

site, 2008. http://www.globus.org/security/overview.html.

[31] P. Fuhrmann. dCache, the commodity cache. In proceedings of the Twelfth

NASA Goddard and Twenty First IEEE Conference on Mass Storage Systems and

Technologies, Washington DC, 2004.

[32] J.P. Baud, B. Couturier, C. Curran, J.D. Durand, E. Knezo, S. Occhetti, and

O. Barring. CASTOR status and evolution. Arxiv preprint cs.OH/0305047, 2003.

[33] RA Coyne, H. Hulen, R. Watson, I.B.M.F.S. Co, and TX Houston. The High

Performance Storage System. In Supercomputing’93. Proceedings, pages 83–92,

1993.

112 BIBLIOGRAPHY

[34] A. Shoshani, A. Sim, and J. Gu. Storage Resource Managers: Middleware

Components for Grid Storage. In Proceedings of the Nineteenth IEEE Symposium

on Mass Storage Systems.

[35] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Gianoli, F. Spataro,

F. Bonnassieux, P. Broadfoot, G. Lowe, L. Cornwall, et al. Managing Dy-

namic User Communities in a Grid of Autonomous Resources. Arxiv preprint

cs/0306004, 2003.

[36] I. Foster and C. Kesselman. The Globus project: a status report. In Hetero-

geneous Computing Workshop, 1998.(HCW 98) Proceedings. 1998 Seventh, pages

4–18, 1998.

[37] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X. 509 Public Key Infras-

tructure Certificate and Certificate Revocation List (CRL) Profile, 2002.

[38] R. Alfieri, R. Cecchini, V. Ciaschini, L. dellAgnello, Á. Frohner, K. Lőrentey,

and F. Spataro. From gridmap-file to VOMS: managing authorization in a Grid

environment. Future Generation Computer Systems, 21(4):549–558, 2005.

[39] Web Documentation Voms. Website, 2008. https://twiki.cnaf.infn.it/

cgi-bin/twiki/view/VOMS/WebDocumentation.

[40] Grid ecosystem - voms. Website, 2008. http://www.globus.org/grid_

software/security/voms.php.

[41] R. Alfieri, R. Barbera, P. Belluomo, A. Cavalli, R. Cecchini, A. Chierici,

V. Ciaschini, L. DellAgnello, F. Donno, E. Ferro, et al. The INFN-Grid Testbed.

Future Generation Computer Systems, 21(2):249–258, 2005.

[42] Boutigny D. The BaBar experiments distributed computing model. Computing

in High Energy Physics and Nuclear Physics (CHEP 2001), 2001.

[43] J. Becla. The BABAR Database: Challenges, Trends and Projections. Techni-

cal report, SLAC-PUB-9179, Stanford Linear Accelerator Center, Menlo Park,

CA (US), 2002.

BIBLIOGRAPHY 113

[44] A. Adesanya, T. Azemoon, J. Becla, A. Hanushevsky, A. Hasan, W. Kroeger,

A. Trunov, D. Wang, I. Gaponenko, S. Patton, et al. On the Verge of

One Petabyte-the Story Behind the BaBar Database System. Arxiv preprint

cs.DB/0306020, 2003.

[45] I. Gaponenko, D. Brown, D. Quarrie, E. Frank, and S. Gowdy. An Overview of

the BaBar Conditions Database. In Proceedings of the International Conference

on Computing in High Energy Physics.

[46] A. Hasan, A. Trunov. Managing the BaBar Object Oriented Database. In

CHEP Conference, Beijing, China, September 2001.

[47] I.A. Gaponenko and DN Brown. CDB–Distributed Conditions Database of the

BaBar Experiment. CHEP proceedings, Interlaken, Switzerland, September, 2004.

[48] R. Brun, F. Rademakers, et al. ROOT-An Object Oriented Data Analysis

Framework. In Proceedings AIHENP, volume 96, pages 81–86, 1997.

[49] Peter Elmer. Cm2 - an introduction. Website, 2004. http://www.slac.

stanford.edu/BFROOT/www/Computing/Documentation/CM2/intro/.

[50] Peter Elmer. Howto setup up a cm2 kanga eventstore. Website,

2004. http://www.slac.stanford.edu/BFROOT/dist/releases/nightly/HOWTO/

HOWTO-Setup-a-CM2-Kanga-Eventstore.

[51] CERN. Website, 2008. http://public.web.cern.ch/public/.

[52] Rademakers F. Brun R. Architectural overview. Website, 1996. http://root.

cern.ch/root/Architecture.html.

[53] M. Goto. Concept and application of cint c++ interpreter. Interface Magazine,

4, 1996.

[54] M. Goto. Cint-embedding tcl/tk graphics. Interface magazine, 4, 1997.

114 BIBLIOGRAPHY

[55] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky. XROOTD-A Highly

scalable architecture for data access. WSEAS Transactions on Computers, 1(4.3),

2005.

[56] P. Elmer. The new BaBar Computing and Analysis Model. Technical report,

2003.

[57] M. Steinke and P. Elmer. How to build an event storeThe new kanga event

store for BaBar. In Computing in High Energy Physics Conference (CHEP04),

Interlaken, Switzerland.

[58] D. Smith. BaBar Book Keeping Project–a Distributed Meta-Data Catalog

of the BaBar Event Store. In Computing in High Energy Physics Conference

(CHEP04), Interlaken, Switzerland.

[59] D. Smith. Bookkeeping, An Overview of some issues, May 2005. BaBar Col-

laboration Meeting. Technical report.

[60] Bookkeeping documentation. Website, 2007. http://www.slac.stanford.edu/

BFROOT/www/Computing/Distributed/Bookkeeping/Documentation/.

[61] Srt: Software release tools. Website, 2004. http://www.slac.stanford.edu/

BFROOT/www/Computing/Environment/Tools/SRT/.

[62] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce,

M. Asai, D. Axen, S. Banerjee, G. Barrand, et al. Geant4a simulation toolkit.

Nuclear Inst. and Methods in Physics Research, A, 506(3):250–303, 2003.

[63] Brian Berliner. Concurrent Versions System. Website, 2006. http://www.

nongnu.org/cvs/.

[64] Carnegie Mellon University. Andrew Fyle System. Website, 2008. http://www.

openafs.org/.

[65] Overview of the babar simulation. Website, 2002. http://www.slac.stanford.

edu/BFROOT/www/Computing/Offline/Simulation/web/simover/simover_main.

html.

BIBLIOGRAPHY 115

[66] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai,

G. Barrand, R. Capra, S. Chauvie, R. Chytracek, et al. Geant4 developments

and applications. Nuclear Science, IEEE Transactions on, 53(1 Part 2):270–278,

2006.

[67] Douglas Smith. Prodtools man pages. Website, 2008. http://www.slac.

stanford.edu/BFROOT/www/Computing/Offline/Production/prodtools.pdf.

[68] About Open Pbs. Website, 2008. https://secure.altair.com/openpbs.html.

[69] Load Sharing Facility. Website, 2008. http://www.platform.com/Products/

platform-lsf.

[70] DA Smith, F. Blanc, C. Bozzi, A. Khan, S.L.A. Center, and CA Menlo Park.

BaBar simulation Production-a millennium of work in under a year. Nuclear

Science, IEEE Transactions on, 53(3 Part 3):1299–1303, 2006.

[71] Daniele Andreotti. Mocaespresso Home Page. Website, 2001.

http://hepunx.rl.ac.uk/BFROOT/www/Computing/Offline/Production/

MocaEspresso/index.htm.

[72] Setting up ams. Website, 2002. http://www.slac.stanford.edu/BFROOT/www/

Public/Computing/Databases/experts/setupAMS.shtml.

[73] CAJ Brew, FF Wilson, G. Castelli, T. Adye, E. Luppi, and D. Andreotti.

BABAR Experience of Large Scale Production on the Grid. In Proceedings of

the Second IEEE International Conference on e-Science and Grid Computing table

of contents, page 151, 2006.

[74] A. Dorigo, P. Elmer, and F. Furano. XROOTD/TXNetFile: a highly scalable

architecture for data access in the ROOT environment. In Proceedings of the

4th WSEAS International Conference on Telecommunications and Informatics table

of contents. World Scientific and Engineering Academy and Society (WSEAS)

Stevens Point, Wisconsin, USA, 2005.

116 BIBLIOGRAPHY

[75] High Performance Storage System Portal. Website, 2008. http://www.

hpss-collaboration.org/hpss/index.jsp.

[76] D. Publishing, D. Applications, E. Computing, M. Languages, and V.A. Titles.

Introduction to Storage Area Networks by Jon Tate; Fabiano Lucchese; Richard

Moore.

[77] A. Trunov, T. Azemoon, A. Hasan, and W. Kroger. Production Data Export

And Archiving System For New Data Format Of The BaBar Experiment. CHEP

proceedings, Interlaken, Switzerland, September, 2004.

[78] D. Boutigny, DH Smith, E. Antonioli, C. Bozzi, E. Luppi, P.V.G. Grosdidier,

D. Colling, J. Martyniak, R. Walker, R. Barlow, et al. Use of the European Data

Grid software in the framework of the BaBar distributed computing model.

Arxiv preprint physics/0306082, 2003.

[79] T. Adye, D. Andreotti, R. Barlow, B. Bense, C. Bozzi, CAJ Brew, RD Cowles,

E. Feltresi, A. Forti, G. Grosdidier, et al. Grid Applications for High Energy

Physics Experiments. Grid, 2005.

[80] Infn Ferrara. Website, 2008. http://www.fe.infn.it/.

[81] C. Bozzi, T. Adye, D. Andreotti, E. Antonioli, R. Barlow, B. Bense,

D. Boutigny, CAJ Brew, D. Colling, RD Cowles, et al. Using the grid for the

BaBar experiment. Nuclear Science, IEEE Transactions on, 51(5 Part 1):2045–

2049, 2004.

[82] D. Andreotti, E. Antonioli, C. Bozzi, E. Luppi, M. Melani, P. Veronesi, I.N.

di Fisica Nucl, and I. Ferrara. Production of simulated events for the BaBar

experiment by using LCG. In Nuclear Science Symposium Conference Record, 2004

IEEE, volume 3, 2004.

[83] CAJ Brew, FF Wilson, G. Castelli, E. Luppi, and D. Andreotti. BaBar SPGrid

- Putting BaBar’s Simulation Production On The Grid. In Proceedings of the

BIBLIOGRAPHY 117

Second IEEE International Conference on e-Science and Grid Computing table of

contents, 2006.

[84] Tobias Oetiker. About RRDtool. Website, 2008. http://oss.oetiker.ch/

rrdtool/.

