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Chapter 1

Introduction

The main activities performed during the tree years of my PhD are related

to the timing failures problems in module-based CMOS VLSI circuits.

The attention to module-based (or block-based) circuits follows the cur-

rent VLSI physical design trends that attempt to limit the parametric fail-

ures due to the scaling of technology toward nanometric feature sizes. In

such technologies, in fact, the traditional design paradigms that are based

on small (i.e gate level) cells may produce high levels of variability, thus

resulting in parametric defects. The use of highly regular cell structures,

called logic bricks has been proposed to solve these problems thus increasing

the yield of VLSI circuits. A brick comprises a logic function created from

a small set of logic primitives that are mapped on to a micro-regular fabric.

Such logic function is typically more complex that those implemented in

traditional VLSI libraries.

Field Programmable Gate Array (FPGA) technology also exploits a

module based design approach. Unlike logic bricks, FPGAs are completely

programmable, because they are based on look up tables (a n-bit LUT can

accomplish every n-bit function), but the drawback is related to the imple-

mentation of the LUT, that is unknown to designer and not optimized for

regularity.

In this scenario, the delay fault testing became a big issue, since it is

very difficult to study a circuit built using modules whose implementation

in not known, either for technological and for intellectual property reasons.

Moreover, the aggressive construction technologies and the high speed of

1



2 CHAPTER 1. INTRODUCTION

clocks make the need for delay fault testing more relevant.

The main PhD activity, that will be explained in detail in this thesis

work, is related to a new method that we propose to generate test vectors

for path delay faults in circuits based on modules. Such method exploits a

functional approach at module level and a structural one at circuit level.

In particular, we consider single path delay fault testing in a combina-

tional circuit or in an (enhanced) full-scan one that is composed of functional

blocks whose implementation is not known. We identified suitable condi-

tions so that a test pair is able to propagate a transition through the path

under test, in order to detect a path delay fault. Also, additional conditions

to prevent invalidation of tests by hazards have been identified. We suppose

that the dynamic behavior of the block is modeled using input delays such

as in the timing arc delay model.

We target simple combinational blocks such as logic bricks, that are

expected to present up to 8-10 inputs and a low logic depth. The used

method is scalable, to generate conditions for path delay fault tests also at

gate level.

In order to assess the feasibility of the proposed approach, I realized

a software, written in C/C++, that permits to find out robust and non-

robust test pairs, starting from the BLIF description of a module based

circuit. Such a software uses a BDD description of the blocks’ functions on

which we apply Boolean Differences to obtain local sensitization conditions

at module level. Since there are circuits whose BDD structure may be very

large and it may be inefficient (in some cases also infeasible) to treat it, we

translate functions obtained at macros level to a CNF description. After

that, a SAT solver generates the test pairs at circuit level starting from the

conjunction of all the CNF functions.

The software tool was used to verify the proposed approach on a set of

benchmarks (both combinational or full-scan) from ITC’99 and ISCAS’85

sets. Such benchmarks allowed to show the feasibility of the proposed ap-

proach, although they are not fully representative of the target circuits for

which the method was developed.

Another significant work, carried out during my PhD period, also deal

with testing of macro-based circuits, but it concerns specifically logic bricks.

In particular, a method for high quality functional fault simulation and

test generation for such circuits was conceived and a software tool that
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implements it was developed.

For both the approaches, results showed the feasibility of them, but also

highlighted several possibilities to improve and extend the work done. This

thesis is organized in the following way: in section 2 a presentation of main

digital ICs testing issues involved in this work is provided, specially whom

related to macro-based circuits. In section 3 the motivation and the aims

of the work is presented, while the conceptual model is discussed in more

detail in section 4, followed by a round-up of the mathematical and technical

instruments used to model it, in section 5. Presentation and discussion of

the results, obtained from experimental measurements, are given in section

6. Conclusive remarks and future works are presented in 7.

Finally, in appendix A high quality functional fault simulation and test

generation method for logic bricks will be presented.





Chapter 2

Digital ICs testing in macro

based circuits

Several kinds of tests are performed on a digital device during its life cycle,

depending on the life phase of the circuit, on the specific application of the

circuit and on others economical issues. In general, the entity that performs

the different types of tests also varies.

When a new circuit is designed and realized, it needs a verification of

the design and the test procedures; this is the verification testing and aims

to validate the correct functioning of the circuit. Verification testing is

performed generally with a big involvement of the chip designers.

After this phase, the chip goes in the production phase, when it needs to

be checked mainly for manufacturing defects; the set of such tests is called

manufacturing testing .

Finally, the chip is tested by the customer (often a systems manufac-

turer), that execute the so called acceptance testing , or incoming inspection.

It is possible to identify two big classes of tests [10], parametric and

functional.

Parametric Testing. These tests verify if the values of AC and DC char-

acteristics of the circuit are within the operational range. Examples

of DC parameters that can be tested are: output current and voltage

level, leakage current, threshold levels and input/output impedance;

the AC parameters can be: propagation delay, setup and hold time,

5



6 CHAPTER 2. DIGITAL ICS TESTING IN MACRO BASED CIRCUITS

bandwidth and noise. Since these test are related to circuit’s charac-

teristics, they are generally technology-dependent.

Functional Testing. These tests aim to verify if the circuit is able to

accomplish the function for which it was designed. They are performed

stimulating the circuit with input vectors and checking if the values

of outputs or internal nodes are correct. This work deals with these

types of tests, in particular with the generation of the test vectors for

path delay faults.

2.1 Fault Models

As stated above, the functional test of a combinatorial circuit consists of

the sensitization of the circuit by a test vector and the subsequent check of

the circuit’s nodes logic values. Such nodes can be internal or can be the

outputs of the logic net. Since it is impossible to generate test patterns for

real defects, abstracts models of defects are needed.

A fault model is a representation of a circuit’s defect (or class of defects)

behavior. The fault model is necessary to the test pattern generation process

and to the output response check. As stated in [62] a good fault model

should satisfy two criteria: (1) it should accurately reflect the behavior

of defects, and (2) it should be computationally efficient in terms of fault

simulation and test pattern generation.

Although several categorization concerning fault models have been pro-

posed, in this paragraph only a brief list of the most known models will

be given, while a focus will be posed on delay fault models, later in this

chapter.

Stuck-at faults. This model represents faults that have substantially three

properties:

1. the fault site can be any node of the circuit (both an input or an

output of a gate)

2. the faulty line is permanently set to 0 or 1

3. if only one line can be faulty it is called single stuck-at model ,

else it is called multiple stuck-at model .
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A schematic representation of stuck-at faults is shown in figure 2.1.
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Figure 2.1: Examples of stuck-at faults

Transistor faults. These are CMOS device faults models; they are divided

in:

• stuck-open faults ; they represent a broken line in a transistor and

can drive to a sequential behavior of the gate

• stuck-short faults ; they represent a short between two lines in a

transistor and can drive to an anomalous power consumption in

steady state.

Schematic examples are shown in figure 2.5.
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Figure 2.2: Examples of transistor faults
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Bridging faults. These models identify a low resistance path between two

nodes of the circuit; they are modeled by inserting a short (a 0 Ω

resistance) between the nodes. They take different names depending

on which kind of nodes are bridged together. A bridging fault can

arise between:

• two terminal of a transistor ; this category falls in that of tran-

sistor faults

• two nodes of a gate; this category is divided again depending

upon the presence of a feedback path originated from the bridging

fault.

Schematic examples are shown in figure 2.3.
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Figure 2.3: Examples of bridging faults

Delay faults. They model faults that change the timing of a circuit (or a

part of it) without changing its functionality. A delay fault can arise

when there is an extra delay on a gate, interconnection, or memory

element of the circuit. So, when the circuit is tested with a slow

clock, it works properly, while testing it with at-speed clock, it may

fail, because the circuit timing constraints have been violated.

Later in this chapter, the delay fault model will be discussed in more de-

tail, with particular regard to the path delay fault model, since it will be

exploited in this work.
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2.2 Automatic Test Pattern Generation (ATPG)

As seen before, the aim of the testing is to identify faulty circuits; to do so

it is necessary to feed the circuit under test with a certain number of test

patterns , that are input vectors capable to sensitize and find out a specific

class of faults.

Since VLSI circuits are growing in dimension and density, an exhaus-

tive test (i.e., a complete check of all the possible sites of faults under all

the possible sensitization conditions) is infeasible. So an automated and

sophisticated system to find test patterns efficiently is required. This task

is called Automatic Test Pattern Generation.

Test pattern generation is a computationally complex problem, and is

a central question in testing, because of the relevant theoretical concerns

related to the algorithm development, but also for the implication in the

circuits design. To develop an ATPG algorithm, a list of faults to be revealed

is required; this list can be derived from the circuit description and a list of

fault models.

The target in the ATPG algorithm development is to have an high com-

putational efficiency and an high test vectors quality. The computational

efficiency is composed of two parts, the efficiency in test generation phase

and during the application of the test vectors to the circuit (in general this

latter component is proportional to the number of the test vectors to ap-

ply). The quality of the test vectors is evaluated in terms of fault coverage,

that is the percentage of detected faults on the total number of faults, and

in terms of defect coverage, that is the amount of fault models that the

algorithm can detect.

The efficiency of ATPG algorithms varies a lot, depending on the fault

model considered (and its abstraction level), the type of circuit under test,

and the required test quality. In brief, the purpose of a good ATPG algo-

rithm is to individuate a (possibly) small set of vectors with the (possibly)

higher coverage for the considered set of faults, in the smallest amount of

time possible.

It must be noted that the goal to find a little set of vectors can be, except

for small circuits, often infeasible, due to the high computational cost, but

during the fault simulation, a compaction of test vector is generally carried

out.
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Although there are automatic test pattern generation algorithms for

both sequential and combinatorial circuits, the generation of test patterns

for sequential circuits is more difficult as several vectors are required both

to activate and to propagate a fault, because also the state of the circuit

must be taken into account.

There are several methods proposed in literature to address the ATPG

for sequential circuits. Some of those aim to bring the sequential circuit to

a combinatorial description, using specific techniques.

When it is impossible to have a combinatorial-like situation, there are

approaches that extend combinatorial algorithms to the sequential condi-

tion (e.g. building sequences of the circuit’s combinatorial part). Others

techniques use a functional description of the circuit, to work on a state

machine of the circuit.

There are design techniques that aim to enhance the testing capability

of the circuit. Design of circuits using some of such techniques is called

Design For Testability (DFT). In particular the scan techniques, between

others things, permit to treat a sequential circuit as a combinatorial one,

from the point of view of testing. In fact, since the flip-flops delays can

be always included in the combinatorial part of the circuit, then it is often

possible to study every combinatorial stage as a single combinatorial circuit,

from the point of view of delay faults.

Combinatorial ATPGs are divided in two big categories, listed above.

Pseudo random. These techniques generate random test patterns; when

a predefined coverage value is reached, the algorithm is stopped.

Deterministic. These techniques generate test patterns starting from the

logic conditions that permit the detection of faults. There are sev-

eral algorithms falling in this category; a class of them bases the test

pattern search on the structure of the circuit; the most known ones

are D-Algorithm [46], PODEM [25] and FAN [23]. There are also

algorithms basing the search on the function of the circuit, i.e. inde-

pendently from the topological information; this is the case of boolean

differences-based approaches, as described in [32].
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2.3 Delay Fault Testing

In order to obtain fault free operations in synchronous sequential circuits,

a signal have to propagate its logic value correctly within a specified time

(the clock period) along a path between two memory elements. If the signal

propagation time exceeds the clock period, then a delay fault occur. A

generic sequential circuit can be viewed schematically as shown in figure

2.4, that is a certain number of combinatorial areas between registering

stages (composed by flip-flops or latches).
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Figure 2.4: Scheme of a sequential circuit

Delay fault testing consists of propagating a transition through a block

of combinatorial logic and checking if the resulting transition arrives within

a predefined amount of time.

The example in figure 2.5 shows the propagation of a transition trough

a combinational stages. Two possible scenarios are shown; in the first, the

propagation delay is shorter than the clock period, while in the second, the

combinatorial delay exceeds the time budget. The effect is that the flip flop

B sample a wrong value on output c.

Unlike the logic faults, delay faults need two test vectors (a test pair) to

be checked, the first one to propagate the initialization value (often given

with a slower clock) and the second at speed, to verify if the outputs change

their values before the clock event occur. The scheme used to obtain this,

is illustrated in figure 2.6, where a combinatorial block is fed by a latch to

load input values while another latch stores output values.

DF Models. Before to present the principal delay fault models, some ter-

minology remarks must be given.

A path is a route between a primary input (PI) and a primary output

(PO) of a circuit. A path can be represented in a schematic way as shown

in figure 2.7.The primary input of a path under test is called path root , the
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Figure 2.5: Propagating a transition
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Figure 2.6: Delay fault testing

input on the path of a single gate/block is called on-path input , while the

others inputs of the gates/blocks are called side inputs .
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Figure 2.7: Schematic representation of a path

Note that the on-path input of the first gate/block of the path is the

path root. Figure 2.8 shows a graphical representation of such concepts.

There are three main types of delay fault models, namely gate delay

fault model, transition fault model and path delay fault model. A gate delay

fault , as stated in [52], is a gate defect that results in at least one path
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Figure 2.8: Path related nomenclature

fault, while a path delay fault occur when a transition applied to a path

input does not arrive to the path output in time to set the output memory

element. The major problem with the path delay fault model is the number

of paths to be considered, in fact, in a circuit, the number of paths can

became exponential in the number of gates.

The transition faults was defined in [61] by means of a slow-to-rise or a

slow-to-fall fault on the output of a gate. The first models a delay defect

during a rise transition, while the latter during a fall transition. If the defect

on the gate is large enough to affect any path passing through it, then a

transition fault exists on the specific gate.

It must be emphasized that a path delay fault is associated with an

entire path, so it models a distributed defect , while gate delay faults and

transition faults represent local defects ; also the latter can be viewed as

stuck-at faults on circuit’s signals.

2.3.1 Path Delay Fault Testing

“A path delay fault is a path of the combinational network between input

and output latches for which a transition in the specified direction as initi-

ated by the setting of an input latch does not arrive at the path output in

time for proper setting into an output latch.”[52]

A circuit path has a delay fault if the timing budget of the path is

greater than the clock period; such a situation may (or may not) result
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in a functional error at the output(s) of the entire circuit, because of the

sensitization conditions, that are not justified.

The path delay fault model considers the delay of the entire path, hence

the potential delay fault is seen as distributed along the entire path. In

this way, the major limitation of the others delay fault models is overcome,

because the gate delay fault and the transition delay fault address local

defects, while path delay fault, models global faults.

Since the path delay fault arise when the sum of the delays of the gates

along the path exceed the clock interval, no matter the size of the delay

of the single gate is. Also, in the path delay fault model no assumptions

about the localization of the fault within the path are made, so such a

model comprise also the gate delay fault model. Moreover, the amount of

the exceeding time is not relevant for testing.

In order to construct a test for path delay fault in a circuit, two test

vectors are required. First, the initialization vector , brings the circuit to

the initial state using a clock with a period that allows to all signals in the

circuit to stabilize (i.e., not necessarily at speed). Then the propagation

vector activates the fault; it permits to see the fault effects on the primary

outputs. The latter stage is performed using the system clock. Must be

noted that, during path delay fault testing, the circuit is assumed to be

fault free, obviously except for delay faults that may affect the circuit.

For every path in a circuit, up to two path delay faults can exist, one

related to the propagation of the rise transition (i.e. 0 → 1) applied to

the on-path input and the other one related to the application of a fall

transition (i.e. 1 → 0) to the on-path input. Hence the maximum number

of possible path delay faults in a circuit is 2∗nπ, where nπ is the number of

paths in the circuit. In the following of this work, the association between

a path and one of transitions will be referred to as pattern, so, for every

path, two possible patterns can be sensitized. Note that this is true only

in case of gate level circuits which does not use xor gate; in fact, as it will

be observed in more depth later, xor gates or more complex functions may

permit to propagate a transition both in a positive way and in a negated

one.

Not all the paths in a circuit can be tested for path delay faults, in

fact, as shown in figure 2.9, from [62], a falling transition on path a-b-c-e

can be propagated but a delay fault cannot be highlighted; paths with this
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characteristic are called statically unsensitizable. Instead, a path that does

not permit the propagation of both the transitions, is called false path.

�

�

� �

�

Figure 2.9: A static unsensitizable but not false path

For example, in figure 2.10, the node b and the node d cannot be at high

logic state (i.e. logic ’1’) at the same time. Thus, the path a-c-e is a false

path. Note that a false path is always statically unsensitizable, but not vice

versa [62], in fact, path a-b-c-e in figure 2.9 is not a false path (i.e. at least

a transition can be propagated).

�

�

�

�

�

Figure 2.10: An example of false path

Sensitizability is the main requirement to test the paths for path delay

faults, but ATPG algorithms have to find test pairs for paths with partic-

ular sensitization properties. Such properties are related to the constraints

required from paths to be tested, hence are related to the test quality. These

matters will be discussed in more detail in the next paragraph.

2.3.2 Test Pattern Generation for Path Delay Fault Test-

ing and Robustness

The delay fault test generation task consists in the search of the test pairs

〈u, v〉, such that, after applying u to the PIs of the circuit, the application of

v produces a wrong output, if sampled with the test clock. ATPG for path

delay fault, however, has a peculiarity, in fact test pairs can be characterized

depending to the constraints needed for paths testability.
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To do such a characterization, the robustness concept, defined in [35] is

required. In [51], a possible classification of robustness classes was proposed;

a schema is shown in figure 2.11, from [51]. The basic concept is that smaller

is the set of path delay faults, less restrictive constraints are required and

hence higher is the quality of the test pairs associated.
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Figure 2.11: A classification of path delay faults

Robust Testability. If a test pair is able to find the path delay fault regard-

less to the presence of a delay fault in the others paths of the circuit, this

test pair is a robust test . In figure 2.12 is explained a situation in which a

delay on one of the off-paths can mask the detection of the delay fault of

the path under test.

The path under investigation is a-e-g, the test pair Vnr={〈a=0, b=1,

c=1, d=1〉,〈a=1, b=1, c=0, d=1〉} can detect a delay fault on path a-e-

g, but if there is a fault on path c-f-g, it could be impossible to establish

that a delay fault arise. In such a situation, the couple of vectors Vnr is a

non-robust test for the path a-e-g.

In figure 2.13, there is an example of robust test, instead. The circuit

is the same and the pattern too. In order to robustly sensitize the path

a-e-g, the test pair Vr={〈a=0, b=1, c=0, d=1〉,〈a=1, b=1, c=0, d=1〉} is

required, in fact, as can be seen, a delay fault in path under investigation

(a-e-g) is still detected, even if the path c-f-g is also affected by a path

delay fault. A path that have at least one robust test is said to be robustly

testable.

So, in the cited case, even if the path a-e-g has a non-robust test, it is

robustly testable anyway. As can be seen in graphic representations, robust
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Figure 2.12: Non-robust sensitization

testability conditions can also be viewed as the non-robust ones, with the

constraint to have no hazard propagating trough the on-path.

Between robust and non-robust paths, there is an intermediate class of

testable paths, called validatable non-robust testable (VRN testable) [44].

As stated above, a non-robust test can be invalidated by the presence of

delay faults on certain side paths. If it is possible to ensure that such side

paths are fault-free, then the non-robust test is said validatable non-robust

(VRN) [51]. Note that the side paths may be either robustly or VRN

testable themselves; in the latter case the rule is applied transitively. So, a

VNR test, as a robust test, is able to detect a delay fault regardless of the

presence of delay faults on side paths [51].

If a test is able to reveal a path delay fault only when there is another

path delay fault, then such a test is called functionally sensitizable (FS).

In figure 2.14 the same circuit is sensitized with the test pair Vfs={〈a=0,

b=1, c=0, d=1〉,〈a=1, b=1, c=1, d=1〉}. As can be seen, only if there is a

delay fault of the path c-f-g, a delay fault on path a-e-g can be detected.
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Figure 2.13: Robust sensitization

All the path delay faults that do not belong to one of the previously cited

categories (i.e., are not sensitizable), are called functional redundant (FR).

In brief, a robust test pattern has the highest test quality (it will detect

a defect no matter faulty conditions on off-input paths), the non-robust

detects a defect if there is only a single fault on the path, and FS test

patterns can only detect multiple defects on paths [36]. Last, functional

redundant cannot detect any path delay fault.

2.4 Functional block design

With the scaling of the CMOS feature sizes, specially toward nanoscale, and

the consequent increasing of integration, the number of ways in which a chip

can fail, increases. In fact, failures arise due to manufacturing defects and

reliability faults, but also the impact of parametric failures is increasing.

Application specific IC (ASIC) development requires the construction of

ad hoc masks for every layer; this permits to have an high grade of flexibility
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Figure 2.14: Functional sensitization

during the design, but it may became a disadvantage for the high production

costs and the long time-to-market. In fact, specially with the growing of

the ICs integration level and the consequent shrinking of the feature sizes,

the costs for the corrective steps and silicon re-spins are greatly increased.

As an example, the figure 2.15 from [65] shows the estimated trend in ASIC

mask set costs.

Figure 2.15: Mask Cost vs. Technology Generation
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The above mentioned problems with ASICs (i.e. the design costs and

the high time-to-market) are driving designers to choose solutions based on

more customizable devices. In particular, the trend is addressed towards

configurable and programmable solutions.

There are a lot of programmable devices, but in this work the attention

will be posed on Field Programmable Gate Arrays (FPGAs) and logic bricks ,

since these are between the most promising technologies, specially towards

system on chip (SoC) paradigm and nanoscale design. The main drawback

with such solutions is the loss in terms of performance, power and die area

[42]; as an example, diagrams in figure 2.16 form [42] represent a comparison

between FPGA and ASIC technologies.

Figure 2.16: Comparison of FPGA vs. ASIC

Field Programmable Gate Arrays can offer a valid solution to the ASICs

limits, in fact they have all the advantages of programmability; besides

lower design costs, thanks to the low time-to-market, they offer a further



2.4. FUNCTIONAL BLOCK DESIGN 21

economic gain. The main drawback is the loss of efficiency, above all in

terms of die area and speed.

Another possible solution to ASICs weak points could be a full-mask-

set design methodology, based on logic bricks, an hybrid solution between

standard cell ASICs and configurable arrays, proposed in [28]. As analyzed

in [60], designing an IC using regular logic bricks permits to improve man-

ufacturability, since regularity has been recognized to be a valid mean to

limit the variability of circuit’s parameters, that can cause malfunctioning,

specially with the shrinking of ICs sizes.

2.4.1 Field Programmable Gate Array

Field Programmable Gate Arrays are programmable devices constituted es-

sentially by a matrix of programmable logic blocks (PLB), and programmable

interconnections between them, connecting logic blocks between them and

to programmable IOs. Over the years, several hardware cores have been

added to the basic structure, such as microprocessors, DSPs (digital signal

processors), blocks of RAM and FIFO (first-in first-out) memories or IP

(intellectual property) cores (e.g. Ethernet mac core).

The principal characteristic of FPGAs is programmability. To allow

programmable blocks to change their own behavior, a memory is used, the

so-called configuration memory. Depending on the construction technology

of the configuration memory, different types of FPGAs exist.

The principal classification of FPGAs is related to the programmability

of the memory; in fact they can be divided in volatile and non-volatile,

in one-time programmable and erasable, but they can also be in-system

programmable or not.

Fuse technology uses bipolar transistors, while antifuse technology is

CMOS-based; both are one-time programmable. EPROMs are erasable

only with UV (ultra violet) light, while EEPROMs are electrically erasable,

so depending from the package, they can also be in-system programmable.

Better than the EEPROMs (with regard to programmability and package

size), the Flash memories are erasable, but not all of them are in-system

programmable. Finally SRAM-based FPGAs are in-system programmable

and re-programmable, but they are non-volatile.

So, the SRAM-based FPGAs are the most versatile; for this reason, in
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the last years, the use of such devices has grown, also because of its higher

density, more features and lower costs compared to non-volatile FPGAs.

One of the major problem with SRAM-based FPGAs is that, unlike the

non-volatile ones, they lose configuration when powered off, so an external

memory is required to store the configuration information.

The configuration is performed by loading a stream of bits, called bit-

stream in the configuration memory. After the boot of the device, an inter-

nal state machine configures all the programmable blocks, depending upon

the information held by bitstream.

Figure 2.17 shows a schematic representation of the structure of an

FPGA with a microprocessor and some hardware cores.
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Figure 2.17: An FPGA schematic representation

FPGA Testing. In order to perform tests on FPGAs, the structure of such

devices must be taken into account. In fact, as mentioned above, there are

several kind of structures in a typical FPGA.

Testing of SRAM-based FPGAs has recently been a subject of several

research studies. As stated in [30], there are two possible kinds of testing

techniques for in-system reconfigurable FPGAs, external testing techniques,

and those employing built-in self test (BIST) approaches.
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Also, it is possible to identify testing techniques for FPGAs as applica-

tion independent testing or application dependent testing [30]. The former

stimulate all the FPGA parts with no regards to the task that the device

will perform (i.e., the application), while the latter tests the specific config-

uration loaded by the user. So, application dependent testing is less general

then application independent one, but it is considerably better with respect

to delay faults, and in particular with path delay fault.

The advantage of application dependent testing results from the struc-

ture of the FPGAs interconnections. FPGA interconnections are hierarchi-

cal, that is: various matrix of interconnections exist, both global and locals,

that permit to route the signals between different zones of the device. With

the miniaturization trend in the manufacturing technology of FPGAs, the

interconnection delay within a path can became the major contribution to

the total path delay. Because it is very difficult to test all the possible

interconnections during the application independent testing, doing the test

for only the configured ones is more feasible.

2.4.2 Logic Bricks

One of the newest approach to increase yield of the VLSI circuits construc-

tion is based on the use of highly regular structures called logic bricks .

“A brick comprise a logic function created from a small set of logic

primitives that are mapped onto a micro-regular fabric”[28].

The new design methodology studied in [28], is based on a library of

macro components, that must be built following two main directives. The

set of primitives must be:

1. flexible enough to realize the logic required

2. small enough to limit the geometric shape within the bricks.

Logic bricks have been conceived to improve manufacturability of the

circuits [28], because they are constructed following some rules to obtain

the maximum regularity, e.g. all wires on a given layer are unidirectional,

have fixed pitch, and are wide enough to avoid notches and landing pads.

Figure 2.18, from [28] shows an example of these constraints.

As explained in [58], bricks layout is created in two phases consisting

of transistor placement and routing. Transistor placement is performed
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Figure 2.18: Regular Bricks. Micro-regularity constraints
within bricks and compatible borders (shown in
gray) provide macro-regularity compatible over
radius of influence

using an extended branch-and-bound technique that minimizes wire length

and cell area, both of which are estimated during brick creation. Routing

for a logic brick is accomplished by transforming the problem to a SAT

formulation.

In figure 2.19, from [28], an example brick is showed. As can be seen, the

number of points that can be programmed (marked with a X) is very low,

compared with the full-customizable FPGA basic block, shown in figure

2.20. In fact the latter use a n-bit look up table (LUT) that can accomplish

every n-bit function; the drawback is related to the implementation of the

LUT, that is unknown to designer and not optimized for regularity and area

occupation.
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Figure 2.19: Example of a logic brick
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Figure 2.20: Schema of a FPGA basic block





Chapter 3

Aim of the Project

Delay fault testing and at-speed testing are widely used to verify the timing

of synchronous digital IC’s. The importance of these techniques is still grow-

ing because of the relevant IC’s parameters uncertainties which characterize

the current technologies [5, 6, 11].

In order to drive this process, several fault models and test generation

techniques have been developed that target different trade-offs between ac-

curacy and efficiency.

The largest fraction of these approaches is based upon gate level de-

scriptions of the circuit [51]. In case the basic building blocks are more

complex than logic gates and their implementation is not known, functional

level approaches have been proposed [43, 64]. For instance, this is the case

for look-up tables based Field Programmable Gate Arrays (FPGAs) and it

may be a perspective for deep submicron circuits that exploit logic bricks

as basic building blocks [28]. This class of circuits has been referred to as

macro [43] or module based [64].

The path delay fault model [52] can be used in both gate and macro based

combinational (full-scan) circuits to detect distributed defects resulting in

timing violations. Path delay fault testing verifies the timing of paths by

providing sensitization conditions ensuring that errors are produced when

transitions are propagated through paths whose delays exceed their timing

budget.

27
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3.1 Overview

Robust testing [35] is the main paradigm ensuring the verification of a path’s

timing independently from the timing of other paths in the circuit. This

goal is typically achieved by preventing from the propagation of hazards

along the path under test.

In this regards, the specific case of module/macro based circuits, how-

ever, presents two main differences with respect to the gate level case.

The first one depends on the possibly complex internal structure of

macros which, differently from simple CMOS gates, may contain different

internal paths that let a transition on a specific input to propagate to a

macro’s output. For this reason, there are delay fault models that, if the

macro implementation is not known, conservatively assume that every in-

put configuration sensitizing a path from the macro’s input to its output is

characterized by an independent value of delay to be verified in the testing

phase [43, 64].

The second difference regards the problem of hazard generation that,

in macro based circuits, is more complex than in gate based ones. In gate

level circuits, in fact, a hazard can be generated only because of skews

between the arrival times of suitable transitions of at least two gate inputs

(function hazard) [39]. In the case of macro based circuits, reconverging

paths within the macro may generate an output hazard even if only a single

input switches (logic hazard).

3.2 Review

In this section, a brief review of the works strictly related to the activity

presented in this thesis and that partially stimulate the interest in such

matters, will be given.

In [43], a functional delay fault model has been developed for combina-

tional circuits containing macros. In such a work, function robust path delay

faults have been defined to describe the conditions for the robust propaga-

tion of a transition through a macro. These conditions are computed by

using a signal representation that relates a triple to each signal denoting:

1. the value to which the signal eventually stabilizes when applying the
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first test vector;

2. the value during the transition;

3. the value to which the signal stabilizes after the application of the

second test vector.

Robust conditions are then computed by analyzing the truth table of the

macro. These conditions are computed for each macro along a path and the

path delay fault is considered to be tested by a set of test pairs justifying

all the possible combinations of robust conditions. This kind of approach

will be thereafter referred to as exhaustive path verification.

In [64], a delay fault test generation method for modular circuits is

presented. Such a method exploits the ease of boolean expressions manip-

ulation that is provided by ordered binary decision diagrams (BDDs) [8].

In order to reduce the occurrence of logic hazards, the robust sensitization

conditions used in this method are more restrictive than in [43]. Because of

this, the robust conditions described in [64] do not scales down to gate level

conditions when modules implementing simple elementary logic functions

are considered. Also, this method considers exhaustive conditions for robust

path delay fault testing. In addition, the authors provide a technique for the

design of hazard-free logic modules ensuring that the proposed test genera-

tion method detects all robustly testable paths in gate level implementation

of modules.

3.3 Motivation

The methods proposed in the literature mainly focus on robust tests which

ensure high levels of test quality. However, when robust tests are not avail-

able, non-robustly sensitizable paths and even functionally sensitizable paths

[51] may result in timing violations and should be verified by delay fault

testing.

In this regards, during my PhD period, a new method for delay fault

testing of circuits based on modules that allows to account for robust, non-

robust and functional sensitization conditions was proposed. This approach

can support any kind of delay fault model including the exhaustive condi-

tions considered in [43] and [64]. However, the approach was specifically
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applied to the case of small combinational modules whose timing can be

reasonably modeled using the timing arc delay model [17]. The use of such

an approximate model is justified by the growing relevance of interconnect

delays in submicron digital ICs [27] and by the relevant sources of timing

defects that may affect such interconnects such as those due to breaks or

opens [12, 3, 34].

Our method is based on a signal representation that allows to describe

path delay fault testing constraints.

For each on-path macro, the proposed method uses boolean differential

calculus supported by the BDD package described in [53] to compute dif-

ferent kinds of side input sensitization conditions. Robust, non-robust and

functional sensitization conditions are expressed as a function of the macro’s

input signals.

The set of test pairs detecting the considered path delay fault can be

computed by expressing the sensitization conditions of all the macros along

the path as a function of the variables describing the values of PIs and by

performing the conjunction of such functions [64]. This approach may be

expensive for some class of circuits that cannot be efficiently described in

terms of ordered BDDs [9].

To approach this problem, an alternate technique based on boolean sat-

isfiability [1] was used. This kind of technique has been successfully applied

to delay fault test generation both in combinational [13] and sequential [20]

ICs.

In a first step, the proposed approach uses BDDs and boolean differ-

ences to compute the different kinds of sensitization conditions for each

on-path macro as a function of macro’s input signals. Then it translates

these functions to conjunctive normal forms (CNFs). The constraints on

the side inputs of on-path macros are justified by using additional CNFs

that describe the consistent operations of each macro in the circuit with

the initialization and the launch test vector. An additional CNF describing

the (function) hazard generation and propagation is also computed for each

macro in the circuit.

Finally, the CNF that describes the whole set of test pairs detecting the

considered path delay fault is computed as the conjunction of all the above

mentioned CNFs. If existing, a test pair for the considered path delay fault

can be found by invoking a SAT solver [40] on such a final CNF.
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The SAT approach to test pairs generation becomes attractive when

searching for only a subset of all the possible test vectors; in fact, for circuits

that can be efficiently managed using BDDs, the methods completely based

on BDDs [64] are expected to be more effective in evaluating all the possible

test vectors than the proposed one.

The proposed approach is here instantiated by considering an example of

fault model that well matches with the case of small combinational macros.

Such a model has been suggested in [30] to the purpose of FPGA testing.

It supposes that the propagation delay from an input to the output of a

macro depends only on the kind (rise/fall) of input and output transitions.

Therefore, the fault is considered to be tested when all the possible con-

sistent combinations of rising and falling transition of on-path signals have

been verified. Each of them will be referred to as a pattern of the consid-

ered path. The CNFs describing the kind of signal transitions for a specific

pattern can be simply added to the CNF describing sensitization conditions

and circuit’s operations. If existing, a test pair detecting such a fault can

be found by invoking any SAT solver (zChaff [40] is used in this instance).

Within the considered delay model, the proposed approach allows for a

correct management of function hazards. In case of more complex circuits,

the timing arc approximation becomes not realistic and the generation of

internal logic hazards cannot be neglected.

Finally, it must be noted that the proposed signal representation allows

to describe the problem of robust and non-robust test generation as pseudo

boolean [1] optimization problem.

The feasibility of the proposed approach has been verified by applying it

to a set of macro based combinational benchmarks that has been obtained

by modifying the ISCAS’85 [7] benchmarks and the full-scan, synthesized

version of some of the ITC’99 benchmarks [16].





Chapter 4

A new model for delay fault

testing in macro based ICs

This work addresses single path delay faults in a combinational circuit or

in an (enhanced) full-scan [18] one, that is composed of functional macros

whose implementation is not known.

As stated before, when testing for a path delay fault, two test vectors

〈u, v〉 are applied to the circuit, allowing a transition to propagate through

the faulty path; these vectors constitute a test pair and are called initializa-

tion and launch (or propagation) test vectors respectively. The initialization

vector u is applied at a low test rate, thus ensuring that each line of the cir-

cuit has enough time to reach its steady state value. Then, the propagation

test vector v is launched and the circuit outputs are captured using a fast

test rate. The time elapsing between the launch of v and the capture of POs

signals is the clock period T ; for the sake of simplicity, timing parameters

of flip-flops are not considered.

In order to detect a path delay fault (i.e. a path delay exceeding the

timing constraints), the used test pair has to propagate a transition through

the path under test. This kind of test may be invalidated by hazards, so, to

prevent from this kind of problems, suitable conditions have been identified

[51].

As explained in section 2, the robust testing paradigm ensures that a

path delay fault, that makes the path’s delay larger than T , is detected

33
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BASED ICS

by a robust test independently of any other delay inside the circuit. This

definition has been initially introduced in the case of gate level networks

in [35], and in [43] it has been extended to circuits composed of functional

macros.

The macros along the path implement functions f : B
n → B (B = {0, 1})

and the dynamic behavior of the single block is modeled using input delays

such as in the timing arc delay model [17]. Such a model is widely used in

timing analysis, but, differently from timing analysis, these delays are not

quantified in path delay fault model, that considers them as unbounded.

This timing model, illustrated in figure 4.1, is not well suited for complex

combinational blocks, because it misses both the possibly different paths

within a block and the possible paths’ recombination between blocks, giving

rise to the generation of logic hazards.
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Figure 4.1: Simple timed model of a functional block (macro)

This work target simple combinational macros, such as logic bricks, that

are expected to present up to 8-10 inputs and a low logic depth. In such

modules, the generated logic hazards should present a reduced width, thus

being easily filtered out by the logic in their transitive fan-out.

4.1 Signal Representation

In order to characterize the sensitization conditions of macro’s side inputs,

the following signal representation is used.

Let ui and vi be the final (t → ∞) values of a signal si belonging to a

path p when u and v are applied to the circuit, respectively.

In particular, let t0 and t0 + T be the instants triggering the launch of v

and the capture of the corresponding POs, respectively. Let also δi be the
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actual slack of si with respect to the path’s end when the considered test

pair is applied. Depending on the path’s side inputs, the logic value sampled

at path’s end may be sensitive to the value wi of si at tsi
= t0 +T − δi (this

value will be referred to as the sampled value of si). A logic error may be

sampled if wi 6= vi.

In order to characterize signals from the point of view of the sampled

value (an unbounded delay model is used), a boolean variable (αi) is related

to each signal. In particular, αi = 0 denotes the case where wi = vi while

αi = 1 denotes the case where a delay fault may make wi 6= vi. Now, the

case of hazards is not considered and therefore, when αi = 1, wi = ui. In

a hazard-free and single path context, αi characterizes the timing behavior

of si with the current test pair.

Using αi, the value of a signal si under the possible presence of a delay

fault is characterized by:

wi = (αiui + α′ivi). (4.1)

Note that αi is not referred to a particular defect location, but to the

timing of the whole path.

Considering b, a single output combinational block, described under the

simplified timing arc delay fault model in figure 4.1 (this model will be

refined in section 4.4), Sb = (s0, s1, . . . , sn−1) is the ordered set of the input

signals of a block and fb : B
n → B is the implemented function. If

Ub = (u0, u1, u2, . . . , un−1) and Vb = (v0, v1, v2, . . . , vn−1) are the ordered

sets of variables denoting the values of signals belonging to S when the test

vectors u and v are applied, respectively, then the correct value sampled at

the block output signal (sout) is vout = fb(v0, v1, v2, . . . , vn−1).

Finally, let αb = (α0, α1, . . . , αn−1) be the ordered set of the variables

determining the value of wi for each input of the block.

If the sampled values of the input signals of b are denoted as Wb =

(w0, w1, w2, . . . , wn−1), then, in the actual circuit, the following relationship

holds: wout = fb(w0, w1, w2, . . . , wn−1).

For instance, in case fb = v0v1 + v2, sampled values are given by:

wout = (α0u0 + α′0v0)(α1u1 + α′1v1) + (α2u2 + α′2v2) =

= α′0α
′
1v0v1 + α′0α1v0u1 + α0α

′
1u0v1 + α0α1u0u1 + α2u2 + α′2v2
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It must be noted that the proposed signal representation is equivalent to

the one proposed in [43]. The use of the variables αi is here introduced

to explicitly denote delay fault effects and to enable the use of boolean

differential calculus.

4.2 Path Delay Fault testing sensitization con-

ditions

In case a transition is propagated through a path containing the block b

with output out, a logic error is sampled at the path’s end if:

σb = wout ⊕ vout = 1. (4.2)

σb describes all the configurations of Ub, Vb and αb that produce the sampling

of a wrong logic value at the path’s end in case the value of sout is propagated

through a sensitized path.

In the particular case of single path delay faults, the condition that

sk ∈ Sb is the on-path input require that a path delay fault is on the path

(αk = 1 and a logic error is sampled at path end (σb = 1), so the following

relationship can be imposed:

σb,k = σbαk = 1.

The kind of transition propagated to sk can be imposed as the conjunction

of σb,k with the the suitable values of uk and vk. For instance, a rising

transition can be described as u′kvk, thus leading to the following condition:

σrise
b,k = αku

′
kvkσb = 1, (4.3)

that describes all the possible kind of sensitization conditions for the side

inputs of the considered block (robust, non-robust and functional) in case

of a rising transition of sk. As it will be shown, the kind of sensitization

conditions depends on the values to be assigned to the variables α of the

off-paths to satisfy equation 4.3.

4.2.1 Robust Conditions

The possible values of the side inputs that ensure robust test conditions for

the considered block need to be computed. This test paradigm is simply
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enforced by making fault detection independent of any delay in the circuit

other than that of the tested path. In this case, it can be simply imposed

that σb,k must be independent of the values of αj, ∀j 6= k. This condition

(ρb,k) can be expressed in closed form using the boolean differences with re-

spect to all the possible non-empty subsets of αb,k = αb\{αk}. In particular,

it is:

ρb,k =

( n−1
∑

j 6=k
j=0

∂σb,k

∂αj

+
n−2
∑

i6=k
i=0

n−1
∑

j 6=k
j=i+1

∂2σb,k

∂αi∂αj

+
n−3
∑

i6=k
i=0

n−2
∑

j 6=k
j=i+1

n−1
∑

l 6=k
l=j+1

∂3σb,k

∂αi∂αj∂αl

+ . . .

· · ·+
∂nσb,k

∂α0...∂αk−1∂αk+1...∂αn−1

)′

(4.4)

where ∂f/∂x is the boolean difference of f with respect to x (∂f/∂x =

f |x=0 ⊕ f |x=1).

In the remainder of this work, the disjunction of all the boolean dif-

ferences of the generic function g with respect to all non-empty subsets

of boolean variables in the generic set A will be denoted to as D(g, A).

Therefore, equation 4.4 can be rewritten as:

ρb,k = D(σb,k, αb,k)
′. (4.5)

The set of input configurations of the logic block must satisfy both the

condition of error detection in case of path delay fault on the on-path (σb,k)

and the robust propagation conditions (given by ρb,k). So the relationship

holds:

ηb,k = ρb,kσb,k = 1. (4.6)

ηb,k includes all the possible robust sensitization conditions (that are inde-

pendent of the variables in αb,k set) for the on path input sk. Note that

these conditions allow for transitions on side inputs. This may increase the

logic hazards probability, but it allows to explore cases related to multiple

input transitions that may have an impact on the timing of CMOS ICs

[14, 55].

It is worth mentioning that the closed form formulation of ρb,k involves

the computation of 2n−1−1 coefficients. As an alternative, the dependencies
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on αi can also be eliminated in an iterative or recursive way:

ηi
b,k =















σb,k if i = −1

ηi−1
b,k

(

∂ηi−1
b,k

∂αi

)′

if 0 ≤ i ≤ n− 1 ∧ i 6= k
(4.7)

requiring a linear number of computations. The final value of ηb,k can be

computed as:

ηb,k =







ηn−1
b,k if k 6= n− 1

ηn−2
b,k if k = n− 1.

(4.8)

In the example introduced in section 4.1, if s0 is the on-path input,

conditions are:

ηb,0 = u′0.v0.v1.u
′
2.v

′
2 + u0.v

′
0.u1.v1.v

′
2.

In this expression, the two product terms correspond to the cases of rising

and falling transitions of s0, respectively. The corresponding pairs of input

vectors are shown in table 4.1.

These assignments to the block’s side inputs provide robust conditions

for fault effect propagation, avoiding the possible generation of functional

hazards at the output of the block. Conversely, they do not provide any pro-

tection with respect to logic hazards generated inside the block, because the

method herein described does not consider blocks’ internal implementation.

It must be noted that, in case fb corresponds to the function of a logic

gate, the presented method provides the traditional conditions for robust

test generation.

4.2.2 Non-Robust Conditions

The problem of non-robust tests in circuits composed of combinational

macros has not yet been addressed in details in the literature. However,

in case no robust test exists for a given path, it may still give rise to timing

errors and it should be tested. To this purpose, non-robust side input as-

signments that are not included in the robust set are also addressed in this

work. So, it is required that:

a) at least one side input has a fault-free delay (thus violating robustness);

b) no side input should be required to be delayed (the violation of this

condition would lead to functional sensitization).
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For a given pair of macro’s input values (〈u, v〉), condition a) can be ex-

pressed as:

∃ j 6= k : σb,k(u, v)|αj=1 = 0

while condition b) is:

¬∃ j 6= k : σb,k(u, v)|αj=0 = 0.

The conjunction of these conditions (µb,k) can be expressed in a more com-

pact way as:

µb,k = σb,k

∣

∣

Q

j 6=k α′
j

·
(

σb,k

∣

∣

Q

j 6=k αj

)′
= 1 (4.9)

where σb,k

∣

∣

Q

j 6=k α′
j

represent the evaluation of σb,k when αj = 0 ∀j 6= k (i.e.

the generalized cofactor of σb,k with respect to
∏

j 6=k α′j) and σb,k|Qj 6=k αj
is

the evaluation of µb,k when αj = 1 ∀j 6= k.

The set of input test pairs satisfying both the condition of error sampling

(with error on the on-path) (σb,k) and non-robust minus robust condition

(ηb,k) are given by:

θb,k = σb,kµb,k = 1. (4.10)

So, θb,k groups those test pairs that do not satisfy robust constraints while

they still ensure non-robust sensitization conditions.

Therefore, once robust test generation for a given path delay fault fails,

non-robust test sequences may be generated.

In the example of section 4.1, it is:

θb,0 = u′0v0v1u2v
′
2α
′
2 + u0v

′
0u
′
1v1u

′
2v
′
2α
′
1.

As can be seen, the first product term corresponds to a rising transition of

u0 and defines a set of configurations of U and V that detects the fault only

if α2 = 0. The second product term describes a test set detecting the fault

only if α1 = 0. The corresponding test vectors are shown in table 4.1.

The whole set of non-robust tests can be computed as:

ξb,k = ηb,k + θb,k = 1. (4.11)

As an alternative, ξb,k can be directly computed by using the following

formulation that, for each side input, imposes that either the test is in-

dependent of the considered side input timing or it requires that it has a
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kind of sensitization u0u1u2 v0v1v2 α0α1α2

robust 0-0 110 1- -
11- 010 1- -

non-robust minus robust 0-1 110 1-0
10- 010 10-

Table 4.1: Robust and non-robust test conditions for the block
implementing the function ab+ c

fault-free timing:

ξi
b,k =



























σb,k if i = −1

ξi−1
b,k

(

α′i +

(

∂ξi−1
b,k

∂αi

)′)

if 0 ≤ i ≤ n− 1 ∧ i 6= k

ξi−1
b,k if i = k

(4.12)

requiring the computation of a linear number of coefficients. The values of

ξb,k can be computed as:

ξb,k =







ξn−1
b,k if k 6= n− 1

ξn−2
b,k if k = n− 1 .

(4.13)

4.2.3 Quality of non-robust tests

In the case of non-robust tests, the number and the timing of the side in-

puts which do not satisfy robust constraints have a strong impact on the

probability that a non-robust test is invalidated in spite of a path delay

larger than the available slack [49, 15]. In particular, non-robust tests fea-

turing the longest path segments which are robustly testable are preferable

to others, as shown in [49]. Also, side inputs that do not satisfy robust test

constraints should stabilize to their final value as soon as possible, as shown

in [15].

Since the presented method makes use of the unbounded delay hypoth-

esis, the only way to improve the quality of non-robust tests is to minimize

the number of side inputs that do not satisfy robust constraints.

From this point of view, equation 4.11 does not pose any constraints

on the quality of non-robust tests, which will depend on random choices
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performed by SAT solver. However, the problem can be approached by

using a pseudo boolean formulation.

As known, pseudo boolean solvers [1] can minimize linear functions in the

form
∑

i aibi where ai ∈ N and bi ∈ {0, 1}, according to boolean constraints

that are typically expressed as CNFs. This property can be exploited in

order to minimize the number of side inputs that do not satisfy robust

constraints.

In case a solution of equation 4.11 requires a fault-free transition of a

side input si, the corresponding variable αi is set to 0. Conversely, if this

constraint is not present, αi may be set to any value. Therefore, if Q is the

set including all the side inputs of blocks along the path, the cost function

to be minimized is:

Ψ =
∑

∀i∈Q

(1− αi)

where the sum is the arithmetic one.

In case the solver achieves Ψ = 0, a robust test is found, otherwise,

the minimization process will reduce the number of side inputs that do not

satisfy robust constraints, thus providing a high quality non-robust test.

This formulation of the high quality path delay fault testing as a pseudo

boolean problem may take advantage from any performance improvement

of pseudo boolean solvers.

4.2.4 Functional sensitization

The test pairs that satisfy equation 4.2 (i.e. the fault sampling conditions)

but does not satisfy non-robust conditions are referred to provide only func-

tional sensitization conditions [51] and they can be can be computed as:

νb,k = σb,k(ηb,k + ξb,k)
′ = 1.

The test pairs defined by νb,k may result in an error only if the transition

of one or more side inputs violate timing constraints, that is are able to

discover only multiple faults.
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4.3 Accounting for Hazards

4.3.1 Hazards on side inputs

In order to keep the description of the method as simple as possible, in

the previous analysis it was not accounted for possible hazards on the side

inputs of b.

Before to describe how the method accounts for hazards, a brief remark

of the kind of hazards existing is required. A module output may present

two kinds of static hazards [21]: function and logic. Function hazards de-

pend on the timing of block’s inputs and the block’s logic function, while

logic hazards are implementation dependent. Since the presented method

is independent of the implementation of logic blocks, only function hazards

will be considered.

The signal model described in section 4.1 can be modified in order to de-

scribe the possible presence of hazards that are characterized by the boolean

variables hi and χi. The first variable denotes the possible presence of a

hazard (of course, all primary inputs have hi = 0), while the second one

describes the uncertainty on the value that is sampled in case the hazard

is active when the sampling instant occurs. This latter event occurs only if

a timing violation is in order, because, at the sampling instant, the signal

has not yet stabilized to its final value. Therefore, the value of a signal si

can be written as:

wi = (α′ivi + αi(h
′
iui + hiχi)) (4.14)

For the considered logic block, let Hb = (h0, h1, . . . , hn−1) and χb =

(χ0, χ1, . . . , χn−1), be the ordered sets of such variables. Robust test condi-

tions can be expressed by imposing that, for all inputs but the on-path one,

fault detection is independent of the value of αj and, for all inputs, fault

detection is independent of χj.
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Therefore, equation 4.6 can be rewritten as:

ρb,k =

( n−1
∑

j 6=k
j=0

∂σ

∂αj

+
n−1
∑

j=0

∂σ

∂χj

+
n−2
∑

i6=k
i=0

n−1
∑

j 6=k
j=i+1

∂2σ

∂αi∂αj

+

+
n−1
∑

i6=k
i=0

n−1
∑

j=0

∂2σ

∂αi∂χj

+
n−2
∑

i=0

n−1
∑

j=i+1

∂2σ

∂χi∂χj

+ . . .

· · ·+
∂2n−1σ

∂α0....∂αk−1∂k+1....∂αn−1∂χ0∂χ1....∂χn−1

)′

(4.15)

that, in a more compact way, is:

ρb,k = D(σ, αb,k ∪ χb)
′.

Since the different effects of hazards are not of interest for the method,

a relevant simplification can be made by considering χi = X ∀i, where X

is a boolean variable representing an unknown value. In this way, equation

4.15 becomes:

ρb,k =

( n−1
∑

j 6=k
j=0

∂σ

∂αj

+
∂σ

∂X
+

n−2
∑

i6=k
i=0

n−1
∑

j 6=k
j=i+1

∂2σ

∂αi∂αj

+
n−1
∑

i6=k
i=0

∂2σ

∂αi∂X
+ . . .

· · ·+
∂nσ

∂α0....∂αk−1∂αk+1....∂αn−1∂X

)′

(4.16)

or, in a more compact formulation:

ρb,k = D(σ, αk ∪X)′ .

Equation 4.6 can be used to calculate ηb,k and also in this case an iter-

ative or recursive computation can be used. Considering a simple example

(fb = v0v1), where s0 is supposed to be the on-path input, it is obtained:

ηb,c = u′0u1v1h
′
0 + u0u

′
1h
′
0h
′
1v0v1

. The first product corresponds to the case of a rising transition. In order to

satisfy it, the on-path transition (i.e. that on s0) must be hazard free and the

side input must simply be at high logic value with the second test vector.

Note that the constraints on the on-path input signal are automatically

satisfied by considering the logic feeding such a signal. The second product
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term, instead, corresponds to a falling transition. In this case, both the

inputs should be hazard free, while the side input should remain stable

at the high logic value. Again, these conditions correspond to the usual

constraints used in the robust testing of an AND gate.

4.3.2 Evaluation of hazards within the circuit

As shown in the previous section, the robust test conditions may include

constraints on the variables (hi) denoting the possible presence of hazards

on path’s side inputs. Test generation should provide hazard-free transitions

when required by equation 4.16, therefore, the circuit should be character-

ized from the point of view of hazards.

Within the timing arcs delay model , a hazard may be present at the

output of a functional block because of:

a) the generation of a hazard caused by hazard-free transitions at the

block’s inputs;

b) the propagation of an input hazard.

Note again that (logic) hazards generated because of the internal timing of

the considered block are neglected.

In the actual circuit, the hazards generated in case a) depend on the

input vectors applied to the considered module c, the timing of the input

signals of c and the delays that are related to such input signals. Since

an unbounded delay model is used, the characterization of all the possible

hazards occurring at the output of c is required.

To this purpose, the signal representation introduced in section 4.3 will

be used, but in this case wi does not represent the sampled value of si; it

simply represents any value after ui and before vi.

Under such hypothesis, γc describes the possible presence of a static

hazard at the output of c:

γc = (uc ⊕ wc)(wc ⊕ vc) = 1 (4.17)

where, uc, wc and vc can be computed as a function of the values charac-
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terizing the n inputs of c:

uc = fc(u0, u1, . . . , un−1),

wc = fc(w0, w1, . . . , wn−1),

vc = fc(v0, v1, . . . , vn−1).

Note that the condition in equation 4.17 can be satisfied only if uc = vc.

It must be noted that, in this approach, dynamic hazards are not con-

sidered, because they would be relevant only if constraints on side inputs

specify both ui and vi with ui 6= vi. This, however, contradicts robustness

hypothesis because in such a case the value sampled at the output of the

considered block would depend on the side input’s timing. In any case, the

proposed method can be easily extended to handle dynamic hazards.

In order to compute wc, a block’s input signal si is characterized by ui,

vi and by:

wi = (α′ivi + αi(h
′
iui + hiX)),

thus accounting for both the generation of a function hazard at the output of

c and the propagation of input hazards described by the variables hi ∈ Hc.

In equation 4.17, γ′c describes the possible conditions that, depending

also on the macro’s inputs timing as defined by the values of the variables

in αc, cannot give rise to the possible presence of hazards. In the context

of robust testing, the input values that ensure a hazard-free output inde-

pendently of their relative timing are required. Therefore, the difference

operator (D) is used again to provide the configurations of Uc, Vc and Hc

which, independently of the actual ICs timing (a part from the timing inter-

nal to c), cannot give rise to the generation of a hazard. The characteristic

function (nc(Uc, Vc, α, X)) of this set of configurations can be computed as:

nc(Uc, Vc, α, X) = γ′c D(γ′c, α ∪ {X})
′. (4.18)

Consistently with its definition, the function hc= n′c describes the input

configuration that may produce an output hazard.

As an example, considering the function fc = v0v1 + v2 again, it is:

nout =v0v1u0u1h
′
0h
′
1+v0v1u0u

′
2h
′
0h
′
1h
′
2+v′0v

′
2u
′
0h
′
0h
′
2 +

+v′0u
′
0u
′
2h
′
0h
′
2+v1u

′
0u
′
2h
′
0h
′
1h
′
2+v′1v

′
2u
′
1h
′
1h
′
2+v′1u

′
1u
′
2h
′
1h
′
2 +

+v2u2h
′
2+v′2u0u1h

′
0h
′
1h
′
2+u0u1u2h

′
0h
′
1h
′
2+u′0u

′
1u
′
2h
′
0h
′
1h
′
2,
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that denotes all the possible hazard-free conditions.

The use of the function nc depends on the method used for delay test

generation. In a context completely based on BDDs, nc can be expressed for

each c as a function of PIs and it can be substituted to the variable h′c in the

function describing the robust sensitization conditions for a path. This may

be not possible for some circuits also because the BDD representing hazards

may be more complex than that describing the circuit’s logic function.

In this method, instead, BDDs are used to compute the functions nc of

each IC’s macro. Then the (potential) hazard activity of the whole circuit

is computed as a CNF by translating the relationship h′c = nc(U, V, α,X)

of each macro to a CNF.

This representation of hazards’ activity in the circuit will be used to

justify the constraints imposed by robust conditions on the variables hi of

side inputs, assuming that PIs have hi = 0.

4.4 Instance of fault model

The test generation technique described in the previous sections may sup-

port different kinds of delay fault models for macro based circuits. In this

section, it will be instantiated by using a fault model [30] that is consistent

with the timing arc delay model, illustrated in figure 4.2.
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Figure 4.2: An example of timing arc delay model that ac-
counts for the different kinds of transitions on the
inputs and the output of a macro

It must be noted that the delay model in figure 4.1 was only used to

simplify the discussion of the proposed approach. The model in figure 4.2

accounts for the kind (rise (r) or fall (f)) of transitions of the inputs and
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of the output of a macro. It is well suited to describe the delays of complex

CMOS cells in a context where:

a) macros are not expected to feature possibly complex paths requiring

the use of exhaustive test approaches [43, 64];

b) the delays of the interconnects between such cells are still expected to

represent a relevant fraction of the actual path’s delay.

As regards the values of delay parameters, in this work this model has been

adjusted using the unbounded hypothesis.

In this context, the timing of a path can be verified by sensitizing it for

all the possible combinations of rise and fall delays of its on-path signals.

This fault model will be thereafter referred to as pattern path fault model

where a pattern πp of a path p containing mp macros is here defined as

one of all the possible combinations of rising (r) and falling (f) transitions

{r, f}mp+1. Such a model is consistent with the constraints imposed by the

logic functions of on-path macros.

In particular, the number of pattern delay faults related to a path p

depends on the functions of the on-path macros. In fact, if the relationship

between the on-path input and the output is unate for all the macros along

the path, only two patterns are possible. On the contrary, if all these

relationships are binate there are 2mp+1 patterns. Note that this model

requires a specific test pair for each pattern fault.

It must be also noted that the meaning of a pattern delay fault is well

defined in the case of robust tests, while the same does not hold in the case

of non-robust tests. In fact, if the side inputs of a macro does not satisfy

robust conditions, the macro’s output presents the same initial and final

value. In such cases, the values r and f are referred to the direction of the

last transition of the possible output hazard. If out is the macro output and

vout = 0(1), then the transition will be denoted by f(r).

As an example, figure 4.3 shows a small circuit composed of very simple

combinational macros whose functions are shown in table 4.2. Bold lines

denote a path instance p = (s0, s7, s10, s11) which involves the macros M0,

M3 and M4.

The module M0 is non inverting, so that only the cases of a rising or a

falling transition that propagate from s0 to s7 with no inversion has to be
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Figure 4.3: Example of macro based combinational circuit

macro equation

M0 s7 = s0s1 + s2

M1 s8 = s2 + s4

M2 s9 = s0s6

M3 s10 = s3s7 + s8s
′
7

M4 s11 = s10s9

Table 4.2: Equations of the macros in figure 4.3

considered. These two possibilities that are in order for the arc (s0, s7) will

be denoted as 〈rr〉 and 〈ff〉, respectively. Conversely, M3 and M4, instead,

let to propagate the on-path signal in both a non-inverting and an inverting

way. Therefore, all the cases (〈rr〉, 〈rf〉, 〈fr〉 and 〈ff〉) for both the arcs

(s7, s10) and (s10, s11) have to be considered. By merging such information

in a consistent way, the set of pattern delay faults illustrated in table 4.3 is

obtained.
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test no. s0s7s10s11

1 〈rrrf〉
2 〈rrrr〉
3 〈rrfr〉
4 〈rrff〉
5 〈ffrf〉
6 〈ffrr〉
7 〈fffr〉
8 〈ffff〉

Table 4.3: Pattern delay faults of the physical path p in figure
4.3





Chapter 5

Implementation of our approach

In order to verify the feasibility of the proposed test generation approach, an

ATPG algorithm and a software tool that implement it were developed. The

tool generate robust and non-robust test pairs for path delay faults. To do

so, the algorithm uses BDD based boolean differential calculus to compute

sensitization conditions for the on-path macros of the block-based circuit

under test. Also, it uses boolean satisfiability to justify such conditions by

means of suitable primary inputs’ assignments.

Before to present the algorithm implementation in more details, a brief

presentation of the instruments used to obtain it are given in the following

sections.

5.1 Instruments

5.1.1 Boolean Differences

The concept of boolean differences was introduced by Shannon in 1938 [48],

but it was formalized and used for the first time by Reed [45] and Muller [41]

in 1954. Subsequently, many other works continued to deepen and extend

such a concept, principally in order to solve the fault detection problem in

logic circuits (in particular for stuck-at faults) [59].

In the following, the mathematical matters will not be discussed, because

this is not the aim of this work. Instead, some of the characteristics of

51
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the boolean differences that permit us to use theme for the purpose of

discovering robust (or non-robust) path delay faults will be presented.

Given a boolean function F (X), where X = (x1, x2, . . . , xi, . . . , xn) and

xi are boolean variables, the boolean difference of F (X) with respect to a

variable xi can be indicated as ∂F/∂xi and corresponds to:

F |xi=0 ⊕ F |xi=1

where ⊕ is the exclusive OR symbol and F |xi=1 and F |xi=0 are the positive

and negative cofactors of F (X) with respect to xi. So the formula can be

written as:

∂F

∂xi

= f(x0, x1, . . . , 0, . . . , xn−1)⊕ f(x0, x1, . . . , 1, . . . , xn−1). (5.1)

As can be seen from previous formula, if the function F (X) is indepen-

dent of xi, then the two cofactors are equals between them, so the result

of the exclusive OR will be zero. Therefore boolean differences can express

the dependence of a function respect to a variable (or more variables).

As discussed in section 2.1 the robust testability of a path delay fault is

related to the independence of a delay fault on the on-path, respect to the

delay faults on the side paths. As stated in section 4, in the present work

the presence of a delay fault on a signal is represented in a symbolic way (by

means of a boolean variable, called α). Therefore, the robustness conditions

can be express in a functional way, applying the boolean differences method

on the on-path macros’ functions with respect to the α variables of the off-

paths.

5.2 Binary Decision Diagrams

Binary Decision Diagrams are rooted, directed, acyclic graphs, that are able

to represent boolean functions as a chain of if-then-else constructs. Such

a data structure is based on the concept of Shannon expansion [48], that

states, between others things, that a boolean function can be splited in two

parts, fixing a value for a variable. Iterating such a transformation on the

function, an if-then-else structure is obtained, called Binary Decision Tree

(BDT). A BDD is obtained by converting the BDT in a graph and removing

some redundancy.



5.2. BDDS 53

In a more pragmatic way, a BDD is a graph (directed and acyclic), with

a single initial node, called root, with two terminal nodes, labeled as logic

zero and logic one, and several internal nodes, representing the boolean

variables of the function. Every node, except the terminal ones, have two

arcs representing the possible variable assignment values (i.e. the logic zero

and the logic one). Figure 5.1 shows a representation of the function a∗b+c

by means of a BDD structure.

�
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Figure 5.1: BDD example for the function a ∗ b+ c

The BDD structure can be changed to obtain a new BDD that describe

the same function, but whose structure is optimized; often this is obtained

by removing some redundancy. A BDD on which no further optimization

can be carried out, is called to be reduced. Also, a BDD on which the

variables on every path from root to leafs has the same order, is called to

be ordered, also called OBDD . If a BDD is reduced and ordered, is called

ROBDD . A ROBDD is a canonical representation of a boolean function,

that is, the ROBDD representation of a function is unique, given an order

of the variables. BDDs where initially introduced in [33] and [2], but in [8]

the OBDDs and the ROBDDs were defined.
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In order to represent and manipulate BDD data structures, several in-

struments are available. In the algorithm described later, the CUDD (Col-

orado University Decision Diagram) package [53] was used, so in the next

section a brief presentation of this package will be given.

5.2.1 Colorado University Decision Diagram package

In order to use BDDs in the algorithm presented, Colorado University De-

cision Diagram package [53] was used. CUDD is a library of functions that

permits to create and manipulate various type of decision diagram struc-

tures; it was developed by Fabio Somenzi of Colorado University.

CUDD package can be used as a black box, or by one of the interfaces

available and written in various programming languages, or it can be used

importing the library in the project [54]. This latter manner was used in

this instance.

A significant characteristic of BDDs is the order of the variables, because

a big gain in terms of dimension of the structure and/or efficiency during

manipulation can be obtained, using a proper order of the variables. CUDD

package permits to reorder the BDDs by means of a large set of dynamic

reordering algorithms. Some of them are variations of existing techniques,

while others have been developed specifically for the package [54]. Reorder-

ing can be obtained automatically every time a BDD reach a given number

of node, or it can be forced by a call. In both the modality all the meth-

ods can be used. Also, it is possible to impose an arbitrary order of the

variables, by a permutation of them [54].

Figure 5.2 shows a BDD representation of a simple function with no

reordering of variables (in A) and after applying a simple reordering algo-

rithm (B). As can be seen in figure 5.2, BDD in A has 28 nodes, while that

one in B has been halved to 14 nodes, obtaining a big advantage in terms of

dimension of the structure, hence in physical space allocation and probably

in management costs. It must be noted that the result obtained in figure

5.2 B could not be the best possible, it was obtained applying one of the

algorithms available from the CUDD package only with the purpose of show

an example of the gain that can be obtained in terms of node numbers after

a reordering operation on a BDD.
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A

B

Figure 5.2: BDD example before (A) and after (B) reordering

5.3 Boolean Satisfiability

Given a boolean function, the Boolean Satisfiability (SAT) problem [1] per-

mits to determine if exist a valid assignment for the variables, such that

the function is satisfiable; if so, it is possible to obtain such values. If the

assignments do not exist, the function is said to be unsatisfiable.
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In order to use the satisfiability, a SAT solver is required; this is a

software tool, that implements one of the many satisfiability algorithms

available. Several solver algorithms and SAT solvers have been developed;

between the most known, there are GRASP [37], WalkSAT [38], MiniSat

[22] and Chaff [40]. The big effort in SAT solvers development is due [40]

to the fact that SAT is widely used in some branch of the Electronic Design

Automation (EDA), such as automatic test generation [56] and logic syn-

thesis [31], but also in Artificial Intelligence (AI), for example in automatic

theorem proving.

The most part of solvers employs combinations of the Davis-Putnam

(DP) backtrack search strategy [19] and heuristic local searches techniques.

When using heuristics, it is not guaranteed the completeness of the elabo-

ration, that is, it is not guarantee that the solver will find the satisfiability

assignments or the unsatisfiability [40].

In this work zChaff , an implementation of the Chaff algorithm [40] is

used. Chaff is a complete solver, since it is based almost exclusively on the

DP search algorithm [40].

Almost all the SAT solvers work on functions described in Conjunctive

Normal Form (CNF). Such a formulation consists of a conjunction of dis-

juncted boolean values. Every value is called literal, it is an instance of a

function variable and it can be in asserted or negated form. A clause is

the logical OR of literals, and finally the logical AND of all the clauses

represents the function.

Conjunctive normal form is used to describe functions on which to apply

satisfiability because every function can be expressed in CNF and every

subset of clause can be tested for satisfiability independent from each others;

a function is satisfiable if all the clauses are satisfiable themselves.

5.4 Test generation algorithm

The proposed test generation approach uses BDD based boolean differential

calculus to compute sensitization conditions for on-path macros, while it

uses boolean satisfiability to justify such conditions by means of suitable

PIs’ assignments.

The proposed algorithm reads a BLIF (Berkeley Logic Interchange For-
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mat) [57] description of the combinational circuit and, for each macro b

in the circuit, it uses a BDD package called CUDD (Colorado University

Decision Diagram) [53] to perform the following operations:

• it maps the sets Ub, Vb, Hb∪{X} and αb that characterize the macro’s

inputs to a set of independent BDD variables;

• accordingly to the macro’s function fb and to equation 4.18, it com-

putes the BDDs corresponding to the functions fb(Ub), fb(Vb) and

nb(Ub, Vb, Hb) that characterize the output signal of the macro.

Once this operation has been performed, the CNF describing the con-

sistent operations of the macro b is computed by:

a) adding the variables ub, vb and hb to the BDD system;

b) computing the BDDs corresponding to the following expressions: ub =

fb(Ub), vb = fb(Vb) and hb = n′b(Ub, Vb, Hb);

c) mapping the (local) BDD variable indexes to global CNF signal in-

dexes;

d) translating the BDDs computed in b) to a CNF.

By repeating this operation for each macro of the circuit, a conjunctive

normal form (CNF) is achieved, describing the consistent operations of the

whole circuit when a test pair is applied. Such a CNF is stored for further

use.

Then, a path list is generated that contains all or a fraction of the

circuit’s physical paths. In this regards, it must be noted that the selection

of target paths is a critical step in delay test generation [49], but this matter

is beyond the scope of this work. For each path, all the consistent pattern

delay faults are generated.

Once computed the CNF characterizing the whole circuit and the fault

list, the proposed algorithm starts to process target faults (in this case,

pattern delay faults).

In the robust case, for a given pattern delay fault, the algorithm first

builds the BDD describing wi for each output signal si along the path. Then,

it applies differential operators to obtaining the function σb,k (where k is the
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on-path input of the considered macro) that must be also consistent with

the kind of transition imposed by the target pattern delay fault on si. Then,

it iterates as indicated in equation 4.7 to compute the BDD corresponding

to ηb,k which, in the robust case, is not a function of variables in αb,k.

Finally, the BDDs corresponding to the sensitization conditions of on-

path macros are translated to CNFs, joined to the CNF describing the whole

circuit and passed to the SAT solver.

In the non-robust case, ξb,k is computed for each on-path input, while the

kind of transitions imposed by the pattern delay fault in this case regards

only the macros’ outputs with the test vector v, thus letting possible hazards

to propagate along the path.

5.4.1 Implementation

In order to verify the effectiveness of the proposed approach and algorithm,

a software tool was developed. As said, such a tool works as ATPG for path

delay faults in circuits composed by functional macros, but it is scalable in

both the directions; in fact it is also possible to generate test pairs for both

total functional circuits (i.e. constituted by a single block) and gate level

described circuits.

Initially, the tool reads the circuit, described in BLIF format [57], so

it is possible to know the topological characteristics of the circuit, such as

the number of the blocks and the number and the structure of the paths

(the paths are noted in a text file). Using these information, a set of CNF

clauses is created, describing the conditions for the propagation of the sig-

nals throughout the entire circuit.

For every path, all the blocks are analyzed, so, for every block of the

path, a BDD describing its function is generated. Boolean differences are

applied on such BDDs, obtaining the robust (or non-robust) sensitization

conditions. Starting from the BDD representation of the conditions, a CNF

is generated; the CNFs related to every block of the path are joined together

(in conjunction) to obtain a single CNF. Also, the global propagation condi-

tions are added to the CNF and, when searching for robust tests, additional

conditions to avoid hazards are added.

The zChaff SAT solver operates on the total CNF and returns all the

assignments for the PIs’ variables that justify the CNF function. Such
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values are the test pairs for the path under test of the circuit.

The software tool is able to change its behavior according to several op-

tions available; a list of the most important features will be briefly explained

below. Above all, it is possible to generate robust or non-robust test pairs,

also it is possible to generate all the tests discoverable or only one test pair

for every pattern of the path. Moreover, it is possible to search the test

pairs in every path of the circuit or only in specific paths, given in a text

file. It is also possible to work on a percentage of the entire set of the paths,

chosen randomly from the entire set.

There are also several ways to customize some of the internal details of

the tool; principally, it is possible to customize the test generation algo-

rithm, also it is possible to choose the results desired (only statistics, also

the test vectors value, also the graphical representation of BDDs...) and

some of the formatting of the results. Finally it is possible to change some

of the technical details for BDD management, such as the garbage collection

or extraction of values from BDDs as cube or prime.

With the default options, the tool generates two statistics files as results.

The first one collects all the principal information divided in four classes:

1. statistics of call

2. circuit statistics

3. test vector generation statistics

(these are the actual results)

4. computational statistics.

Figure 5.4 shows an example of statistical results obtained by the research of

robust test pairs for b01, a simple full-scan circuit from ITC’99 benchmarks

[16], whose blif representation is shown in figure 5.3.

The other statistics result is a XY file, whose points give the percentage

of paths whose coverage is less than X; it permits to construct a probability

density function of the coverage. Figure 5.5 shows a graph of the probability

density function for robust test pair generated for b01 circuit.
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.model b01 opt C.blif

.inputs a b c d e f g

.outputs h i j k l m n

.names a b d e f j

110-- 1

1-10- 1

-110- 1

--101 1

--010 1

.names a b d e f j m k

-11-1-- 1

-0-01-- 1

---101- 1

--10-0- 1

---01-1 1

1----00 1

.names a b d f j k m n l

-11--1-- 1

--1-10-- 1

--0-00-- 1

-1---10- 1

1--1--00 1

...

...

.names a b d e f m

010-- 1

100-- 1

1110- 1

0010- 1

111-1 1

001-1 1

01-10 1

10-10 1

.names d e f n

011 1

.names g h

1 1

.names c i

1 1

.end

Figure 5.3: Blif description of b01 full-scan macro-based cir-
cuit
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Figure 5.4: Example of the TPG output: statistical results of
robust generation for b01 circuit
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Figure 5.5: Probability density function of the robust coverage
for b01 circuit





Chapter 6

Experimental Measurements

In order to assess the feasibility of the proposed approach, a set of combi-

national benchmarks was considered. The set of benchmarks is composed

of some circuits from the ITC’99 [16] (full-scan version) and ISCAS’85 com-

binatorial sets [7].

Since all the considered benchmarks are originally described as gate level

netlists, some gate level subnetwork was collapsed in more complex macros

featuring a number of inputs in the range 4 − 10, using the reduce depth

command of SIS [47]. Then, local (i.e. without considering global don’t

cares) minimization was performed, using the command simplify.

In this regards, it must be noted that these circuits are not representative

of optimized macro-based circuits. Conversely, they are still useful to the

purpose because:

a) they are more complex than optimized circuits;

b) they feature several different macros (while for instance circuits based

on bricks use a small number of macros);

c) local optimization may result in macros’ input configurations which

are not controllable or not observable thus providing overheads to test

generation.

63
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6.1 Results

The characteristics of the considered benchmarks are shown in table 6.1

providing the number of PIs, POs, cells and the average fan-in of the circuit’s

macros. In this regards, note that benchmarks still contain several simple

gates (including inverters) that decrease this quantity. In fact, the average

fan-in over all benchmarks is 3.7, but becomes 4.5 when not considering

buffers and inverters. The last two columns of table 6.1 show the number

of physical paths and the number of pattern faults for each benchmark,

respectively. Note that in the case of the benchmark c6288, only a sample

of paths was considered, because of the huge number of resulting pattern

delay faults.

bench PIs POs cells avg. paths patterns
name no. no. no. fan-in no. no.

b01 7 7 7 4.29 62 378
b02 5 5 5 3.80 42 134
b03 35 34 43 3.70 990 3236
b04 36 7 96 3.85 9671 57042
b05 35 70 175 4.02 183451 2439776
b06 11 15 16 2.69 148 418
b07 50 57 184 3.91 15875 41846
b08 30 25 37 4.57 571 1936
b09 29 29 52 5.08 767 2366
b10 28 23 55 4.29 714 1762
c432 36 7 96 2.89 71950 143900
c499 41 32 74 4.43 7648 113280
c880 60 26 142 3.96 4708 16094
c1355 41 32 120 3.07 9440 139904
c1908 33 25 186 3.01 38751 502396
c2670 233 140 408 2.46 22466 117376
c3540 50 22 447 2.97 655228 15995316
c5315 178 123 307 3.21 33343 331168
c6288 32 32 484 4.80 10000 1393742
c7552 207 108 1030 3.02 68616 561222

Table 6.1: Characteristics of the considered benchmarks set

Table 6.2 and table 6.3 show test generation results in the robust and

non-robust cases, respectively. In particular, table 6.2 shows the percentage

of robustly detected pattern delay faults (Cr), the percentage of paths that
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generate at least a robustly testable pattern delay fault (Pr), and the number

of generated test pairs (with no kind of compaction).

bench Cr Pr test pairs CPU
name (%) (%) no. time

b01 55.54 83.87 129 10.4
b02 56.25 78.57 65 3.0
b03 66.36 87.17 1854 39.7
b04 28.93 45.35 11128 224.0
b05 3.34 9.03 38478 76.6
b06 47.12 58.78 181 3.7
b07 22.88 30.26 9192 67.9
b08 40.52 50.26 617 497.4
b09 72.22 77.44 1676 21.0
b10 50.75 64.29 861 29.0
c432 8.02 13.97 11551 82.6
c499 48.53 51.46 54848 42.2
c880 88.96 89.51 14170 49.7
c1355 39.33 41.39 54848 40.4
c1908 31.54 36.26 127386 26.3
c2670 24.21 24.91 16914 64.1
c3540 2.97 9.22 215604 26.5
c5315 51.83 67.23 132256 159.0
c6288 19.88 41.24 215864 217.0
c7552 39.51 62.68 134742 184.0

Table 6.2: Results for robust test generation

Table 6.3 shows the percentage of non-robustly detected pattern delay

faults (Cnr), the percentage of paths that generate at least a non-robustly

testable pattern delay fault (Pnr), and the number of generated test pairs

(with no kind of compaction). As can be seen, similarly to the gate level

case, some benchmark present very low levels of robust coverage.

The last two columns of table 6.2 and table 6.3 show the average CPU

time (per pattern) in the robust and in the non-robust cases, respectively.

The data have been collected by using a Intel Celeron CPU working at

2 GHz. The computational costs have been shown to be dominated by

the time spent by the SAT solver to prove that a pattern delay fault is

untestable. This can be seen by comparing the CPU time used for ro-

bust and non-robust test generation for the benchmarks C432 and C880.

Although the benchmark C880 is larger than the C432, the average CPU
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bench Cnr Pnr test pairs CPU
name (%) (%) no. time

b01 60.68 91.94 147 19.9
b02 57.44 80.95 66 2.9
b03 67.66 88.38 1882 52.5
b04 34.85 57.04 13899 188.3
b05 4.89 12.50 55257 31.2
b06 48.98 62.16 189 3.3
b07 25.21 32.94 10318 54.6
b08 42.51 55.17 656 34.6
b09 72.75 77.44 1692 10.2
b10 52.32 67.93 889 19.8
c432 8.74 15.41 12588 87.2
c499 48.75 51.46 54912 216.2
c880 89.05 89.51 14182 40.0
c1355 46.10 54.92 139904 175.1
c1908 33.15 36.78 136327 20.0
c2670 28.02 37.54 23523 24.8
c3540 5.39 19.43 655228 57.9
c5315 57.19 75.58 152893 37.1
c6288 26.95 49.32 298741 194.0
c7552 44.29 64.77 146031 59.0

Table 6.3: Results for non-robust test generation

time per pattern fault is smaller. This because the C432 bench has several

untestable delay faults.

In this regards, it must be noted that, with respect to the data in tables

6.2 and 6.3, consistent savings can be achieved because several paths exist

(48.55% in average) that do not contain any non-robustly testable pattern.

This occurs because it is impossible to generate a test vector v that satis-

fies static sensitization conditions. Therefore, if such paths contain several

patterns it is convenient to first attempt to generate a test vector satisfying

static sensitization conditions. If this operation fails, no robut or non-robust

tests can be generated.
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Conclusions and future works

In this thesis the main work carried out in my PhD period was described.

The aim of such an activity was the development of an ATPG methodology

for delay faults in macro based circuits whose implementation is not known.

The result of the work was a framework to be used in delay fault test

generation, that target robust as well non-robust test conditions for different

kinds of path delay faults.

The proposed algorithm can deal with circuits that pose problems to

BDD only based methods; this is obtained using BDDs at macro level, and

satisfiability at circuit level. In addition, the used signal representation can

also support methods that improve the quality of non-robust tests. Results

show the feasibility of the proposed approach for a set of combinational

circuits.

Many improvement may be done both to the algorithm and to the frame-

work that implements it. In results shown in the section 6.1, it can be seen

that, for several circuits, CPU time value is high. It must be emphasized

that computations are performed starting from scratch for each path, and

this imply that sensitization conditions may be computed several times for

the same side input of a block.

In this regards, considering the simple circuit in figure 7.1, the paths

S0 − S7 − S10 − S11 and S4 − S8 − S10 − S11 share M3 and M4 macros.

In particular, conditions for sensitization from S10 input to S11 output of

macro M4 are the same when considering both the paths. The software

developed, in this case, compute every time the same conditions, giving an

67
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overhead in terms of CPU time. This choice was done in order to keep the

single path computation separated from each other, for the purpose to use

any method (independent of the ATPG algorithm) to choose the paths on

which to apply it.
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Figure 7.1: Paths with shared blocks

To avoid this problem, improvements are possible in the algorithm. In

fact, basing the fault search not on paths, but on blocks or group of adjacent

blocks, the duplicated computations of conditions may be avoided. In this

manner, it would be possible also to exploit others delay fault models, such

as segment delay fault , proposed in [26] and [49]. Such a model is a restric-

tion of the path delay fault one, but it considers segments (i.e. subpaths)

instead of paths; from PI to segment start and from segment end to PO, no

constraints are considered.

It could be also possible to enhance non-robust tests quality, by mini-

mizing the number of constraints that make a fault non-robust, as explained

in section 4.2. In fact, using a pseudo boolean approach to minimize the

number of constraints violating robustness, it can be possible to obtain ro-

bust tests if the minimized value is zero, and non-robust tests else. Such

conditions may be considered high quality non-robust tests, because the

number of violating constraints is the minimum possible.

A possible further work may be the evaluation of different kind of syn-

thesized circuits. As the approach considers circuits composed of macros

whose implementation is not known, it would be interesting to evaluate dif-
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ferent implementations of circuits in order to compare the resulting values,

in terms of robust and non-robust coverage and performance of the algo-

rithm. This can be obtained both synthesizing circuits using different kind

of standard library, and using a custom approach (as done in this work),

but giving different parameters to synthesizer (i.e. block size, maximum

and minimum number of inputs, maximum logical depth. . . ). In this way,

a tuning of the circuits’ behaviors could be obtained.

Finally, the software may be enhanced by adding the fault simulation

feature. In fact, as said, the software permits to generate all test pairs for

the paths under test. In this manner it was seen that, for every testable

pattern, there are a lot of test pairs, so it is possible that a single test pair

may reveal more than a path delay fault. Therefore, it could be possible to

obtain a test vector compaction by means of fault simulation. This could

be possible because, in the proposed algorithm, the off-path inputs are not

forced to remain stable, as in the approach proposed in [64], where only one

path at a time can be sensitized.
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Appendix A

High quality testing for circuits

composed of small combinational

macros

A.1 Introduction

Another significant work, that I deal with during my PhD period, targets

specifically one of the kind of macro based circuits, those that use logic

bricks as basic building block [28]. In particular, a test generation and fault

simulation method for this kind of circuits has been developed.

As explained in section 2.4, logic bricks exploit a regular layout structure,

that mitigate the lithography reliability problems that may affect standard

CMOS libraries when the feature size is scaled toward nanometer technolo-

gies [28].

For a given application, in [60] a methodology is introduced identifying

a set of basic logic functions whose layout can be conveniently fitted into a

small number of geometrically optimized regular structures. The transistor

level structure of a logic brick may include either pass-transistor logic (PTL)

[28] or conventional CMOS gates. Moreover, the proposed logic bricks are

supposed to be configurable by exploiting suitable vias [28].

In order to satisfy the test quality requirements of nanoscale CMOS

circuits, it should be noted that the extension of switch and gate level fault

models to logic bricks may be not immediate because the tools mapping the
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logic brick’s function on the physical fabrics may hide some implementation

details to the designer.

In this regard, test generation for logic modules whose realization is not

known is a widely addressed topic in test automation [29]. The reason for

this is twofold: first, these tests can be used before of the availability of

a gate level circuit implementation; second, realization independent tests

can be used for circuits whose realization is not known because of intel-

lectual property (IP) restrictions. These techniques mainly target circuits

implemented using standard cell or full-custom CMOS design styles. Their

typical main target is to generate test sets providing a high stuck-at fault

coverage on the widest possible range of gate level implementations. Dif-

ferent fault models, such as the bridging one, have been considered as a

possible target for realization independent test generation, as in [24].

In this regards, consider a functional block b implementing a function

f : {0, 1}n → {0, 1}m. Any combinational fault model for the module b

can be described as F ⊂ G, where G is the set of the possible functions g :

{0, 1}n → {0, 1}m and F represents the set of the possible faulty functions

that can be related to b because of the presence of a physical defect. In [4],

this model has been referenced as multiple input pattern fault model and it

has been used to abstract physical defects to the behavioral level.

In the most general cell fault model [24], it is F = G \ f and, as a

consequence, all the possible input vectors should be applied to the block

under test and, for each of them, any possible configuration of output values

should be exposed to POs. In order to reduce the intrinsic complexity of

the cell fault model, several fault models featuring F ⊂ G \ f have been

developed. These operations are typically based on relevant properties of

f .

When considering a multi-output combinational module, most of the

techniques [4] consider a single module output at a time. Hayes and Kim

[29], instead, consider the problems related to multiple errors at module

outputs when the modules are embedded inside a combinational circuit. In

particular, the possible presence of multiple errors at the module’s outputs

is accounted by using a test generation heuristic that first attempts to prop-

agate the error on a target output in a way that is independent of other

module outputs and then employs an 11-values algebra to account for the

possible reconvergence of module’s output signals and the possible masking



A.1. INTRODUCTION 83

of erroneous values.

The case of logic bricks is rather different from that of large combina-

tional macros because their very compact structure and the use of nanoscale

technologies are very likely to make defects to produce multiple errors at

their outputs. These may be due to defects affecting sub-circuits which are

shared by more than one module output, or to faults such as bridgings that

connect sub-circuits independent each other under fault-free conditions.

The lack of knowledge about the internal structure of logic bricks can

be approached by the different test generation approaches, that account for

functional modules whose structure is unknown [29], while the problems

related to the presence of multiple errors at the brick’s output has not yet

addressed in details.

To this purpose, a fault simulation and test generation method was stud-

ied and developed. It target an exhaustive verification (cell model) of the

module functionality by accounting in an exact way for the problems related

to the physical defects that may give rise to multiple errors. In particular,

such a method attempts to verify that, for each inputs’ configuration of

module under test, the brick’s outputs have the correct value. Of course,

this will be possible only under the controllability and observability con-

straints imposed by the surrounding logic.

The choice of using an exhaustive verification not only depends on the

possibly unknown structure of the logic brick, but also on the increased

variability of circuit parameters and on noise. Even if the transistor level

structure of the module and the defect location are known, a circuit level

analysis of the faulty circuit may be only partially meaningful. In fact, the

actual behavior of a faulty module will depend on its parameters which

may vary across the die and from die-to-die. In addition, the noise that the

module and its neighborhood are experiencing during the application of a

test may result in different behaviors of the same faulty circuit.

Anyway, the proposed method can be easily extended to handle different

fault models where only a fraction of the input and output configurations

are considered.

This method uses a fault simulation technique that, for a given mod-

ule and input vector, in a single step accounts for all the possible defect

induced behaviors (i.e. the set of all the possible faulty configurations) of

the module outputs. To this purpose, each module output is considered as
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an independent boolean variable and the possibly different fault effects are

propagated in a symbolic way: each signal in the transitive fan-out of the

considered module outputs is computed as a function of such variables. In

this way, the circuit POs are computed as a function of the module out-

puts and the behaviors of such signals that may be detected can be easily

computed by comparing such values with the POs’ fault-free values.

Symbolic fault effects propagation can be performed in different ways, for

instance a BDD based approach to account for the uncertainties in bridging

faults propagation can be used, as in []. In this work, instead, the limita-

tions on the number of outputs which are expected in a logic brick have been

exploited, to propose an efficient technique which prevents from the com-

plexity related to the use of Binary Decision Diagrams (BDDs). Symbolic

techniques have also been applied to the fault simulation of RTL designs

[63, 50].

In particular, any function of the module outputs is represented by

means of its truth table as it is encoded by the bits of a word of the simula-

tion host. With such a choice, any boolean operator of the host machine can

be applied to such a kind of operands, thus computing the related composed

function.

Note that, when using a 64-bit architecture, a maximum number of 6

outputs modules can be computed (of course this limitation can be easily

extended, but simulation can no longer be performed in a single step). In

addition, the proposed approach to fault simulation can be easily extended

to HDLs.

The test generation method, instead, uses a boolean satisfiability (SAT)

solver [22] to compute test vectors for target behaviors (i.e. a module input

configuration and a set of wrong output values). The test generation process

is repeated until a module has been exhaustively tested.

A.2 Fault modeling and simulation

The cell fault model supposes that a defect affecting the block under test (c)

changes its function fc in an unpredictable way, thus requiring an exhaus-

tive testing of the module that should be verified for each possible input

configuration and for each possible output configuration. Fault simulation
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Figure A.1: Fault simulation step example

should efficiently account for this kind of behavior.

Example 1. As an example, consider the combinational circuit illustrated

in figure A.1. The figure shows also the fault-free signals’ values when the

input vector

(u0, u1, u2, u3, u4, u5, u6) = 1101110

is applied to such a circuit.

In case the block under test is b0, its input configuration is (abc) = 011

and the fault-free values of modules’ outputs are (fg) = 11 ⇒ (w0w1) = 11.

In the considered circuit, the detection of a defect affecting b0 depends on

the faulty value of w0w1:

• if w0w1 = 01, then an error propagates to the PO v1, thus resulting in

fault detection;

• if w0w1 = 10, then an error propagates to the PO v2, thus resulting in

fault detection;

• if w0w1 = 00, then the fault is not detected.

Therefore, the input configuration (abc) = 011 is still not completely verified

by the considered test vector. An additional test vector would be required to

expose defects resulting in (w0w1) = 00 when such a local input configuration

is applied. This is possible by applying the test vector 1101111 that results

in an error at the output v3

The exhaustive verification of module’s functionality is possible only if

the inputs of the module are freely controllable and its outputs are freely
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observable. This property, however, may be not verified because of observ-

ability and controllability don’t cares.

From the point of view of fault simulation, the example 1 suggests that,

for the current test vector, several simulation runs may be required to ana-

lyze the effects of defects affecting module outputs in an unknown way.

To account in a single step for all the possible behaviors of the module’s

outputs, a symbolic approach was used, that relates a boolean variable to

each output of the considered module and, for each signal in the transitive

fan-out of the module’s outputs, computes a function of such variables.

A.2.1 Fault simulation algorithm

In order to describe the proposed fault simulation algorithm, some def-

initions for a combinational circuit composed of multi-output functional

modules must be introduced:

– let U = {u0, u1, ...., un−1} be the set of circuit PIs;

– let V = {v0, v1, ...., vm−1} be the set of POs;

– let W = {w0, w1, ...., wk} be the set of internal signals;

– let S = U ∪ V ∪W be the set of all circuit signals.

Let also nb and mb be the number of inputs and outputs of a module b

implementing the function fb : {0, 1}nb → {0, 1}mb , respectively.

When a test vector t belonging to a sequence T is applied to the circuit,

ϕ(si, t) ∈ {0, 1} is the fault-free logic value of the signal si ∈ S.

In the proposed method, a boolean variable αk ∈ A = {α0, α1, ...., αmc−1}

is related to each output of the block under test c, and a boolean function

σ(si, t) : {0, 1}mc → {0, 1} defined on the support A is related to each

signal si belonging to the transitive fan-out of the outputs of c.

First, fault-free simulation computes ϕ(si, t) for each signal in the cir-

cuit. Then, if the signal sj corresponds to the k-th output of c, symbolic

simulation initializes σ(sj, t) to αk. These values are propagated through-

out the circuit by using the modules’ functions, to compute the expression

of each signal in the transitive fan-out of c as a function of the variables

belonging to A.
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Once symbolic propagation terminates, the POs of the circuit are a

function of the variables αk ∈ A, and the configurations of these variables

that can be detected at the p-th PO wp are given by:

ϕ(wp, t)⊕ σ(wp, t) = 1. (A.1)

Finally, the configurations of the variables in A (i.e. the output values of c)

that are detected by t are those satisfying:

δ(c, t) =

p=m−1
∨

p=0

σ(wp, t) = 1 (A.2)

Note that δ(c, t) is related to the current input configuration ξ(c, t) of c,

and it will be denoted as δ(c, ξ(c, t)).

At the end of simulation, the output configurations of c that can be

detected by the whole test sequence T when the input configuration ξ0 is

applied to c are given by:

∆(c, ξ0) =
∨

∀t∈T | ξ(c,t)=ξ0

δ(c, ξ(c, t)) = 1. (A.3)

Note that the maximum size of the on-set of ∆(c, ξ0) is 2m
c − 1, this

because the configuration of the variables in A corresponding to the fault-

free output of c (fc(ξ0)) cannot belong to ∆(c, ξ0).

Example 2. Consider again the example 1. In such an example, let α0

and α1 be the boolean variables related to the outputs w0 and w1 of the block

under test. As illustrated in figure A.2, as a result of symbolic fault effects

propagation, the functions σ related to signals in the fan-out of b0 are:

σ(w0) = α0 σ(w6) = α1

σ(w1) = α1 σ(v3) = 1

σ(v0) = 1 σ(v1) = α0 + α′1

σ(w5) = 0 σ(v2) = α′0 + α1

Therefore, δ(v2) = 1⊕α′0 +α1 = α0α
′
1. Since ϕ(w0) = ϕ(w1) = 1, the fault

is detected if an error is present on w0, but not on w1.

As regards the implementation of symbolic simulation, possibly differ-

ent alternatives are possible. For instance, in [] symbolic simulation was
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Figure A.2: Fault simulation algorithm example

performed using Binary Decision Diagrams (BDDs). Here, the properties

of logic bricks that are expected to feature some limitation on the number

of module’s outputs are exploited, to propose an alternate technique that

avoids some of the implementation complexity related to the use of BDDs.

In this approach, the functions σ describing the possible behaviors in the

presence of a fault are described by their truth tables which are mapped on

the words of the simulations’ host. In the practice, the i-th bit of a host

word holds the value of the i-th row of the truth table of σ (for a given

configuration (α̂0, α̂1, ...., α̂mc−1), it is i =
∑mc−1

j=0 α̂j2
j).

In case blocks’ functions are represented using boolean expressions, the

function σ related to the output of a logic block can be computed using

bitwise logic operators of high level languages (AND, OR, NOT). As a less

efficient alternative, one can use the logic vectors data types and operators

which are commonly available in HDLs.

A.2.2 Coverage metrics

For a given macro c featuring nc inputs and mc outputs, one can define a

fault coverage as the fraction of possible pairs of input fault-free configura-

tions (ξ) and faulty output configurations that are detected:

Cc =
1

2nc

∑

∀ξ

|∆(c, ξ)|

2mc − 1
(A.4)

where, |∆(c, ξ)| is the size of the ON set of ∆(c, ξ).

In order to account for possibly large differences in the complexity of

the used macros, the fault coverage of the whole circuit is expressed as a
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sum:

C =

∑

∀c w(c)Cc
∑

∀c w(c)
(A.5)

where the coverage of each cell is weighted by a coefficient w(c) accounting

for the functional complexity of c that is expected to be proportional to its

hardware complexity. In this work, the literal count of fc is used.

A.3 Test generation

In the test generation procedure, a pseudo random test sequence is applied

to the circuit until it does not provide coverage increments for a given

number of test vectors. Then a deterministic approach, based on Boolean

Satisfiability (SAT), is used.

In particular, such a method selects an undetected behavior (i.e. a

pair of input configuration and output value) and try to generate a test

pattern that generate such a behavior. The mechanism is better explained

in example 3.

Example 3. Figure A.3 shows a schema of the deterministic test generation

step. In this situation, a test vector for the i− th module is searched, when

the local input vector 01001 is applied and the output configurations 101 and

110 have been detected during fault simulation. A test vector applied at PIs

provides a fault coverage increment if the result of CONDB is true, that is

if the three following conditions hold:

i. Mi outputs values are not a behavior already detected;

ii. the behavior generated by test vector 01001 is not the fault free one;

iii. vector 01001 feeds the macro Mi (CONDA).

Iterating the step explained in example 3, an exhaustive test generation

for all modules is obtained, thus detecting all the (detectable) faults.

A.4 Results

In order to evaluate the proposed approach, the full-scan version of the

ITC’99 benchmarks were used in their optimized version, as provided by

[16].
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Figure A.3: Deterministic test generation step example

Since these circuits are described at the gate level, the reduce depth

command of SIS [47] was used, that allows to cluster more nodes in a sin-

gle output one. Moreover, since the achieved nodes are single output ones,

a very simple approach that joins blocks sharing some input and cube to

obtain multi-output blocks was used. Of course the complexity and cost

of these circuits is not representative of logic bricks based circuits designed

using dedicated tools. However, they are still representative of the com-

putational problems encountered by fault simulation and test generation

tools. Table A.1 shows the characteristics of the circuits obtained after

such transformations.

Table A.2, instead, shows the test generation algorithm results for the

considered benchmarks. As can be seen, the first column (i.e. the tests

number) shows two values in sum between them. These values are those

resulting from the pseudo random approach and the deterministic one, re-

spectively.

With regard to CPU times, they are quite linearly related to circuits’

sizes (i.e. the number of cells).
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bench input output cells average average average

name no. no. no. fan-in fan-out literals

b03 35 34 41 4.26 1.60 7.85
b04 77 74 163 3.95 1.77 7.61
b05 35 70 156 3.85 1.69 7.61
b06 11 15 18 2.33 1.50 3.55
b07 50 57 125 4.25 1.75 8.22
b08 30 25 33 5.03 1.81 9.12
b09 29 29 47 4.48 1.68 9.91
b10 28 23 37 4.89 1.51 7.18
b11 38 37 97 5.77 1.77 13.96
b12 126 127 250 4.74 1.52 8.90
b13 62 63 51 4.86 1.84 12.62
b14 276 298 2311 3.75 1.25 5.66

Table A.1: Characteristics of the benchmarks set

bench test coverage coverage CPU

name no. value value time

b03 641+290 51.88 53.22 519
b04 2865+7874 50.41 54.85 36219
b05 894+626 44.84 48.81 3955
b06 224+0 72.07 72.07 7
b07 760+445 36.61 40.25 6425
b08 225+169 55.00 56.69 307
b09 2496+873 50.82 57.25 2576
b10 243+0 48.86 48.86 3495
b11 2658+287 39.48 40.62 45894
b12 923+560 57.65 62.96 6259
b13 2091+335 65.71 66.28 1370
b14 7130+4683 48.86 54.69 1259657

Table A.2: Results after the application of the algorithm
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