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Abstract 

The Subei basin is located east of the Tanlu fault, a major discontinuity 

which separates the Archean North China Craton from the Proterozoic Yangtze 

Craton. South-West of the Tanlu fault the two cratonic blocks collided during 

Triassic time, originating the well-known UHP (Ultra-High Pressure) belt of 

Dabie Shan. 

Central-eastern China experienced widespread basaltic volcanism during 

Cenozoic, probably related to extensive lithospheric thinning and mantle 

upwelling along weak zones of the Archean-Proterozoic lithospheric roots. 

This volcanism was particular intense in the Subei basin, where it included 

minor tholeiitic eruptions in the early Paleogene, and more extensive, 

xenolith-bearing alkali basalt activity in the Neogene. Three localities, 

Panshishan (PSS), Lianshan (LS) and Fangshan (FS), about 30 km apart, were 

sampled in the Subei basin and more than 60 peridotite xenoliths were 

collected. Volcanism in the last locality has been dated at about 9 Ma. 

Most of the xenoliths are rounded and small to moderate in size (typically 

5–10 cm in diameter), Most of the xenoliths are lherzolites ranging from highly 

fertile (16-23 vol% of clinopyroxene) to cpx-poor lherzolites (with cpx modal 

content of 6-9%), although few harzburgites, olivine-websterite and dunites are 

also found. No hydrous nor metasomatic secondary phases were observed. 

Textures vary from coarse-grained protogranular (~70% of total samples) 

through porphyroclastic (~20%) to equigranular (~10%) type. Rarely 

metasomatic textures, mainly spongy clinopyroxene, were observed.  

Using two pyroxenes geothermometer (Brey and Kohler, 1990), Panshishan 

and Lianshan show quite low equilibrium temperature (T=816-1010℃), 

whereas Fangshan samples show temperature between 1011°C and 1208°C, 
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Pressure estimates on the basis of Ca-exchange between olivine and 

clinopyrossene,  range between 12 to 25, 11 to 23 and 11 to 33 Kbar for 

Panshishan, Lianshan and Fangshan lherzolites, respectively. fO2 conditions 

calculated for Panshishan and Fangshan samples range over four orders of 

magnitude from log fO2~ -4.12 to 0.25 FMQ and from 2.26 to -2.13 FMQ, 

respectively; Lianshan samples present a more restricted range, with log fO2 

from 0.55 to -2.4 FMQ. 

FTIR analyses of nominally anhydrous minerals (NAMs) have been carried 

out for these xenoliths. Water content in olivines is very low; frequently it 

reaches the instrument detective limitation (less then 2ppm). Water content 

varies from 37 to 183 ppm for cpx and 13 to 74 ppm for opx. Fangshan 

xenoliths have the highest water content for both opx and cpx compare to other 

two localities, while Panshisan have the lowest water content in opx, leading to 

anomalously high DH2Ocpx/opx ratios.  

Panshishan xenoliths show δ18O values ranging from 5.28 to 5.78 ‰ in 

olivine, 5.87 to 6.53 ‰ in opx, 5.18 to 6.15 ‰ in cpx, and 4.11 to 5.37 ‰ in sp. 

The results are similar to those reported by Yu et al. (2005), although these 

authors refer a broader range of δ18O values for ol, opx and cpx. In Lianshan 

xenoliths, δ18O values range from 5.42 to 5.96 ‰ in olivine, 6.01 to 6.67 ‰ in 

opx, 5.77 to 6.34 ‰ in cpx, and 4.52 to 5.58 ‰ in sp. In xenoliths from 

Fangshan δ18O values range from 5.12 to 6.32 ‰ in ol, 5.79 to 6.57 ‰ in opx, 

5.33 to 6.31 ‰ in cpx, and 4.37 to 5.39 ‰ in sp.  

On the basis of the cpx REE patterns the 47 measured xenoliths are 

subdivided into five different groups. Group I, with LREE-depleted pattern; 

Group II, with upward convex pattern, Group III, with flat REE pattern; Group 

IV, with LREE-enriched pattern; and Group V, with spoon-shape pattern. 
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Group I samples reflect low degree of mantle melting process (F less than 10%) 

and group IV samples has been strong modified during mantle metasomatic 

event/s. 

Comparing water content of peridotite minerals (NAMs) with geochemical 

parameters, such as major and trace element compositions of minerals, melting 

index (i.e. Mg# value) for whole rock and minerals, oxygen isotopes, as well as 

physico-chemical parameters such as Temperature, Pressure and Oxygen 

Fugacity no correlation are envisaged. In conclusion, at least for the Subei 

Basin lithospheric mantle represented by xenoliths of Panshinshan, Linshan 

and Funshan water contents in NAMs are not related to the main 

depletion/enrichment processes occurring in the upper mantle, but it appears as 

an intrinsic (pristine?) feature of different mantle domains. 
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Riassunto 

  

Il bacino di Subei si trova a est della faglia Tanlu, una discontinuità 

importante che separa il cratone Archeano della Cina del Nord dal Cratone 

Proterozoico di Yangtze. A sud-ovest della faglia Tanlu i due blocchi cratonici 

collidono durante il periodo Triassico, dando luogo alla nota UHP (Ultra-High 

Pressure) cintura del Dabie Shan.  

Durante il Cenozoico la Cina centro-orientale vede un estensiva attività 

vulcanica, probabilmente correlata al vasto assottigliamento litosferico e alla 

risalita del mantello lungo le zone di debolezza delle radici litosferiche 

archeane-proterozoiche. Questa attività vulcanica è stata particolarmente 

intensa nel bacino Subei, includendo anche limitate eruzioni toleiitiche nel 

Paleogene inferiore, ed una cospiqua attività alcali-basaltica, ricca di xenoliti di 

mantello nel Neogene. Tre località noodulifere nel Subei Basin (Panshishan 

(PSS), Lianshan (LS) e Fangshan (FS)) tutte nl raggio di 30 km, sono state 

campionate per questa tesi e più di 60 noduli peridotitici sono stati raccolti. Il 

vulcanismo dell’ultima località è stato datato a circa 9 Ma. 

La maggior parte degli xenoliti sono arrotondati e generalmente di 

dimensioni da centimetriche a decimetriche (5-10 centimetri di diametro). 

Questi sono principalmente lherzoliti (cpx modale 16-23%) e lherzoliti povere 

in cpx (cpx modale 6-9%); sono comunque presenti alcune harzburgiti, 

olivine-websterite e duniti. Non sono state rilevate fasi idrate, né fasi 

metasomatiche secondarie. La tessitura più frequente (~70% dei campioni 

totali) è la protogranulare a grana grossa, ma gradazioni verso la porfiroclastica 

(~ 20%) e equigranulare (~ 10%) sono comunque osservate. Tessiture 
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metasomatiche sono rare e principalemente caratterizzate da clinopirosseno 

spongy.  

Utilizzando il geotermometro a due pirosseni (Brey e Kohler, 1990), gli 

xenoliti di Panshishan e Lianshan registrano temperature di equilibrio 

relativamente basse (T = 816-1.010℃) per un mantello sublitosferico, mentre i 

noduli di Fangshan mediamente presentano temperature di equilibrio più alte 

tra i 1011 °C e 1208°C. Stime di pressioni, calcolate usando la distribuzione 

del Ca tra olivina e clinopyrosseno, variano rispettivamente da 12 a 25, da 11 a 

23 e da 11 a 33 Kb in Panshishan, Lianshan and Fangshan. 

I campioni di Panshishan e Fangshan mostrano un ampio range di valori di   

fO2 (fino a 4 ordini di grandezza), rispettivamente da ~ -4.12 a 0.25 FMQ e da 

2.26 a -2.13 FMQ,  mentre i campioni di Lianshan resigrano un range di fO2 

molto più ristretto: da 0.55 a -2.4 FMQ. 

Misure FTIR in minerali nominalmente anidri (NAMs) sull’intera 

campionatura di noduli, registrano contenuti d'acqua in olivina molto bassa 

vicina al limite di rivelabilità dello strumento (meno di 2 ppm). Il contenuto di 

acqua nei clinopirosseni varia da 37 a183 ppm mentre negli ortopirosseni varia 

da 13 a 74 ppm. Gli xenoliti di Fangshan hanno un contenuto di acqua 

superiore sia per cpx che per opx se confrontati con le altre due località, mentre 

gli xenoliti di Panshishan mostrano un contenuto in opx più basso a cui 

consegue un DH2Ocpx/opx anormalmente alto.  

I noduli di Panshishan presentano δ18O che varia da 5.28 a 5.78 ‰ 

nell’olivina, da 5.87 a 6.53 ‰ nell’opx, da 5.18 a 6.15 ‰ per cpx e da 4.11 a 

5.37 ‰ per sp. I risultati ottenuti sono simili a quelli riportati da Yu et al. 

(2005), anche se i noduli oggetto di questa tesi, mostrano un range più ristretto 

di δ18O per olivine e pirosseni. I noduli di Lianshan, presentano valori di δ18O 
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da 5.42 a 5.96 ‰ nelle olivine, 6.01-6.67 ‰ in opx, 5.77-6.34 ‰ per cpx, e 

4.52-5.58 ‰ per sp. I noduli di Fangshan registrano δ18O che variano da 

5.12-6.32 ‰ nell’olivina, da 5.79 a 6.57 ‰ nell’opx , da 5.33 a 6.31 ‰ nel cpx, 

e da 4.37 a 5.39 ‰ nello sp.  

In base ai pattern di REE dei cpx, i 47 xenoliti analizzati sono stati 

suddivisi in cinque diversi gruppi. Gruppo I: con un pattern delle LREE 

impoverito; Gruppo II: con un pattern convesso verso l'alto; Gruppo III: con un 

pattern piatto di REE; Gruppo IV: con un pattern di LREE arricchito ed infine 

il Gruppo V: con un pattern di REE a cucchiao. I campioni del gruppo I 

possono essere modellizati per gradi di fusione parziale inferiore al 10% di un 

mantello primitivo, mentre i campioni del Gruppo IV riflettono composizioni 

di un mantello estensivamente modificato da processi metasomatici. 

Confrontando il contenuto di acqua dei minerali peridotitici (NAMs) con i 

parametri geochimici, che includono gli elementi maggiori ed in traccia dei 

minerali, l’indici di fusione (i.e. Mg#) sia di roccia totale che di singoli 

minerali, e isotopi dell’ossigeno, unitamente a parametri fisico-chimici come 

Temperatura, Pressione e Fugacità di Ossigeno non è stata verificata nessuna 

correlazione. In conclusione si può affermare che, almeno per il mantello 

litosherico del Subei Basin rappresentato dagli xenoliti di Panshinshn, Linshan 

e Funshan, il contenuto d'acqua nel NAMS non sembra dipendere dai principali 

processi di impoverimento e di arricchimento che sono avvenuti nel mantello 

superiore. Questa tesi suggerisce invece che tale parametro possa essere una 

caratteristica intrinseca (primitiva?) dei diversi domini di mantello presenti 

nell’area.  
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Chapter 1 - Introduction and aim of the thesis 
 
 

Mantle xenoliths 
Until now it is difficult to access directly and get the information on the 

composition and evolution of the deeper part of the lithosphere, i.e. the lower 

crustal and upper mantle layers. Mantle-derived xenoliths provide a good 

chance to understand the nature of the mantle. Xenoliths can be transported by 

magma to the Earth’s surface when volcano erupts. As the magma rise from its 

source (upper mantle) to the surface in a very short time (just few days or even 

few hours) the xenoliths represent almost a “quenched” product and most 

source information could be kept. Peridotite is the dominant rock of the upper 

part of the Earth's mantle. It is a dense, coarse-grained rock, consisting mostly 

of the minerals olivine (ol), orthopyroxene (opx), clinopyroxene (cpx), spinel 

(sp) and/or garnet (grt) and representing, in most cases, the residues of partial 

melting after the extraction of basaltic melts (e.g. Salters and Stracke, 2004; 

Workman and Hart, 2005). A system study of the peridotite xenoliths can make 

us better understanding the composition, structure, physical and chemical 

features of the upper mantle, to learn the past, now and even the future of our 

Earth. 

 
Water in nominally anhydrous minerals 

Knowledge of the amount of water, or hydrogen species, inside the earth at 

present, and in the past, is a critical issue for understanding the petrological, 

geochemical, geophysical and dynamical processes of the Earth, as well as for 

constraining the segregation, accretion and evolution model of the planet and 

the whole cycle of hydrogen in its interior. This relies heavily on the 
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well-known fact that water, even in trace amounts, has a strong influence on 

many chemical and physical properties of its host silicate minerals/rocks, 

including mechanical and rheological strength (e.g. Griggs, 1967; Kronenberg 

et al., 1986; Hirth and Kohlstedt, 1996), rate of ionic diffusion (Goldsmith, 

1987; Elphick et al., 1988), melting behavior (Kushiro, 1972; Arndt et al., 1998) 

and electrical conductivity (Karato, 1990); and, if extracted from minerals, it 

contributes to the formation of ore deposits and hydrous fluids, and even to the 

triggering of deep-seated earthquakes (Meade and Jeanloz, 1991). After the 

Griggs and Blacic (1965) and Martin and Donnay (1972) pioneering works and 

the early speculations of Fyfe (1970) – later reviewed by Ackermann et al. 

(1983) – who stated that OH-bearing anhydrous minerals might be a significant 

reservoir for water in the Earth’s mantle, it has been gradually and widely 

accepted that nominally anhydrous minerals can commonly contain few to 

several thousand ppm of water (H2O by weight) in their lattice, predominated 

by OH and/or less molecular H2O, and are the main hydrogen reservoir in the 

deep earth, especially in the upper mantle (Bell and Rossman, 1992a; Ingrin 

and Skogby, 2000; Bolfan-Casanova, 2005). Such water may play crucial but 

diversified roles on many properties and processes in the earth (e.g. Williams 

and Hemley, 2001; Keppler and Smyth, 2006). Recent works on quartz, garnet 

and igneous feldspars in the upper and middle crust demonstrate that they 

contain more than ~ 1200 ppm H2O as dispersed, structurally bound OH 

groups, molecular H2O and/or NH4+ (Kronenberg, 1994; Johnson and Rossman, 

2003, 2004). The upper mantle is dominated by ol, cpx and opx, so these 

nominally anhydrous minerals in principle can also incorporate some 

water/hydroxyl in them. A thorough investigation about water in peridotite 

xenoliths coupled with other geophysics/geochemistry information is therefore 
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necessary for a better understanding of the whole Earth system. Fourier 

transform infrared (FTIR) absorption spectroscopy is a highly sensitive, 

site-specific, high resolution (down to 20 μm), and non-destructive in situ 

method for the study of OH and molecular H2O in minerals. It can provide 

quantitative determination of the amount of structurally incorporated water and 

OH in the target minerals, although depending on the experimentally-calibrated 

absorption coefficients for given phases. (Rossman, 1996) 

 

Oxygen isotopes 

Oxygen is the most abundant element in silicate rock-forming minerals. 

Oxygen isotope composition of mantle may have been affected by processes 

such as removal or addition of melt and fluids, or the recycling of crustal 

component at subduction zones. Oxygen isotopes of mantle xenoliths have the 

potential to make important contributions to identify this heterogeneity. 

Importantly, the stable isotopes 18O and 16O are strongly fractionated in the low 

temperature geochemical environments prevailing at the Earth's surface. 

Therefore, tectonic processes that return to the mantle material that has at one 

time resided in surface or near-surface environments should provide an 

effective means of introducing oxygen of variable isotopic composition into the 

upper mantle. 

 

Aim of this work 

 In the present PhD thesis a detailed work which includes petrography, major 

element and trace element composition of whole rock and minerals, oxygen 

isotope compositions for ol, opx, cpx and sp, coupled with water content 

measurements by FTIR on opx and cpx were carried out in Subei basin area, 
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thus representing the most complete studies of the area developed so far. The 

main aim of the work is to highlight the relationships between petrological 

features of the mantle peridotite and its water content.  

 

Structure of this study 

This thesis is subdivided into 8 chapters, starting with the general 

introduction presented here, followed by other Chapters. 

 

Chapter 2 gives a brief introduction to the geological setting of the North China 

Craton and Dabie Shan-Sulu UHP (Ultra-High Pressure) belt with some 

available geological, tectonic, petrological, dynamic and chronological data. 

Then a summary of the previous works that have done in the Subei basin is 

reported. 

 

Chapter 3 describes details of analytical methods which include whole-rock 

analysis by XRF, major and trace element contents in minerals obtained by 

EMPA and LA-ICP-MS, water content in NAMs acquired by FTIR and 

minerals oxygen isotopic composition using laser fluorination technology.    

 

Chapter 4 gives a petrological picture of xenoliths from the three sampling 

localities, Panshishan, Lianshan and Fangshan in Subei basin. Textures of hand 

speciments and thin sections are described. Petrological classification for rock 

type is applied for xenoliths by mineral mode content estimates by more than 

1600 points counting. 
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Chapter 5 shows the geochemistry of the sample, including major and trace 

element content for both whole rock and the four mineral phases (ol, opx, cpx 

and sp). Based on the pattern and distribution of rare earth elements, xenoliths 

have been divided into five groups: Group I, with LREE-depleted pattern; 

Group II, with upward convex pattern, Group III, with flat REE pattern; Group 

IV, with LREE-enriched pattern; and Group V, with spoon-shape pattern. At 

the end of the chapter, we report the oxygen isotopic composition of all the 

four minerals phases in the xenoliths. 

 

After the discussion of single mineral major elements, in Chapter 6 equilibrium 

temperature, pressure and redox state of the Subei Basin mantle domain are 

determined. 

 

Chapter 7 reports the results from the FTIR experiments for NAMs water 

contents. H species are confirmed in the spectra. Water contents for opx and 

cpx are calculated by integrating the absorption areas and whole rock water 

contents are evaluated. 

 

Chapter 8 deals with the discussion. It is divided in: a) modelling depletion and 

enrichment processes that affect the sampled xenoliths; b) evaluating the 

possible relationships between petrological features of the Subei basin mantle 

and its water content; c) making comparison between NAMs water contents of 

minerals and whole rock with other localities.  

 

The Appendix includes all the tables mentioned in the thesis and detailed 

information for EMPA results of mineral grains core and rim, and repeated 
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measurement for trace element by LA-ICP-MS. Some related publications are 

listed at the end of appendix.  
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Chapter 2 - Geologic setting and previous works 
 
 
Geologic setting and sample localities 

The North China Craton (NCC) is the Chinese part of the Sino-Korean Craton 

(SKC), named the North China Block in some literature. It is one of the most 

ancient cratons on the Earth, composed of early Archean and Proterozoic 

metamorphic rocks with the oldest recorded crustal ages >3.8 Ga (e.g. Liu et al., 

1992), and is the largest craton in China, covering an area >1,700,000 km2. It is 

separated from the Mongolian Block by the eastern Central Asian Orogenic 

Belt in the north, and from the Yangtze Craton, part of the South China Craton, 

by the Triassic Dabie Shan-Sulu UHP belt in the south and east (Fig. 2.1). In 

the west, it is separated from Tarim Craton by the Qilianshan Orogen. The 

NCC is crosscut by two large-scale geophysical and geological linear zones. In 

the west, it is cut by the NS trending Daxing’anling-Taihangshan Gravity 

Lineament (DTGL) (equiv. North–South Gravity Lineament (NSGL), which 

separates two topographically and tectonically different regions and probably 

related to the diachronous lithospheric thinning of the craton (Ma, 1989; Xu, 

2007). In the east, it is traversed by the Tan-Lu Fault Zone (TLFZ), which is 

associated with significant Cenozoic and Mesozoic volcanism.  

Based on the lithological assemblage, tectonic evolution and P-T-t paths of 

metamorphic rocks, the North China Craton can be divided into the Western 

and Eastern Blocks, separated by the central Orogenic Belt (equiv. Trans-North 

China Orogen Belt. Fig. 2.1: Zhao et al., 2000; 2001). 
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Fig. 2.1 - Simplified tectonic units of Eastern China and sample locality. (modified after Zhang 
et al., 2008) 
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The Western Block is composed of late Archean to early Proterozoic 

metasedimentary belts that unconformable overlie the Archean basement; the 

latter consists mainly of granulite facies gneiss and charnockite with small 

amounts of mafic granulites and amphibolites. The basement of the central 

Orogenic Belt consist of late Archean amphibolites and granulites, and 2.5 Ga 

granite-greenstone terrains, overlaid by 2.4-2.2 Ga bimodal volcanic rocks in 

the southern region and thick carbonate and terrigenous sedimentary rocks 

interlayered with thin basalt flows in the central region. The Eastern Block 

consists mainly of 3.5-2.5 Ga orthogneisses (dominated by tonalitic, 

trondhjemitic and granodioritic gneisses (TTGs)), 2.5 Ga granitoids and less 

amounts of ultramafic to mafic volcanics and sedimentary supracrustal rocks 

including banded iron formations. The collision between the Western and 

Eastern blocks may have led to the formation of the Central Orogenic Belt and 

represent the final amalgamation of the North China Craton. There are 

contrasting views regarding the timing of the collision between the Eastern and 

Western Blocks. Multi-grain zircon U-Pb age populations from TTG gneisses 

of the Central Orogenic Belt have upper intercept of 2.5-2.7 Ga and lower 

intercept of 1.8-2.0 Ga. These younger ages are consistent with Sm-Nd ages of 

garnets from the high-pressure granulites in this belt and 40Ar/30Ar ages of 

hornblendes in amphibolites and biotites in TTGs, along with SHRIMP zircon 

rim ages of the TTGs and supracrustal rocks (Zhao et al., 2000, 2001). The age 

of 1.8-2.0 Ga are interpreted as the age of metamorphic overgrowth. These, as 

well as near-isothermal decompressional clockwise P-T paths, led Zhao et al. 

(2000; 2001) to propose that collision occurred between the two Blocks at ~1.8 

Ga. However, a 2.5 Ga ophiolite complex in the northern Central Orogenic 
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Belt was reported by Kusky et al., (2001). It implies a much older collisional 

event between these two blocks. Li et al. (2000; 2001) suggested a model that 

combines all these observations and assumes that collision occurred between 

the two blocks at ~2.5 Ga followed by rifting during the 2.3-2.4 Ga with 

subsequent collision at 1.8-2.0 Ga representing the final 

amalgamation/cratonization event.  

The Dabie Shan-Sulu UHP belt lies between the North and South China 

Cratons, extending from east to west for ca. 2000 km in the central-eastern 

China (Fig. 2.1). It is separated into two terrenes by about 500 km of 

left-lateral strike-slip displacement along the TLFZ. The Sulu terrain in the east 

is segmented into a number of blocks by several NE-SW trending faults sub 

parallel to the TLFZ, and the Dabie Shan terrain in the west is the major 

segment bounded by the TLFZ to the east and separated into a series of 

continuous zones by several EW-trending faults of large scales. The formation 

of the Dabie Shan-Sulu UHP belt occurred mainly in the Triassic, caused by 

collision between the North China and Yangtze Cratons with peak 

metamorphism at ~ 245 Ma (Hacker et al., 1998). The basement of the Dabie 

Shan-Sulu UHP terranes is constituted by metamorphic rocks, such as schists, 

greenstones, gneisses, and rare quartzites, marbles, granulites, and eclogites, 

intruded by granitoids. The occurrence of eclogites first suggests that pressures 

of metamorphism were high. Discovery of coesite, diamond, and extreme 
18O-depletion, as well as exsolution of clinopyroxene in orthopyroxene, rutile 

and apatite, in eclogites (e.g. Okay et al., 1989; Wang et al., 1989; Yui et al., 

1995; Zheng et al., 1996; Ye et al., 2000) demonstrates that deep subduction of 

continental crust to the depths of about 200 km and the subsequent quick 

exhumation (see also a review by Zheng et al., 2003 and references therein) of 
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eclogites in Central Dabie Shan and the granulites in North Dabie Shan (after 

Zheng et al., 2003) occurred. 

The NCC experienced widespread tectonothermal reactivation, beginning 

from the early Paleozoic but occurring mainly during the late Mesozoic and 

Cenozoic, as manifested by the emplacement of early Paleozoic kimberlites, 

voluminous late Mesozoic basaltic rocks and granites and Cenozoic alkali 

basalts (Fan et al., 2000; Zhang et al., 2002; Yang et al., 2003; Zhang et al., 

2004; Wu et al., 2005). The NCC also experienced development of extensive 

sedimentary basins (most of the eastern portion of the craton is covered by 

Quaternary sediments) and presently has higher heat flow (60 mW/m2: Hu et 

al., 2000) compared to other Archean and Proterozoic cratons (Nyblade et al., 

1990; Jaupart and Mareschal, 2003). The changes in tectonic/magmatic activity 

are also reflected in a change in the type and composition of mantle xenoliths. 

Xenoliths carried in Ordovician kimberlites are deep-seated garnet-facies 

peridotites. These highly refractory xenoliths, together with the appearance of 

diamonds in the kimberlites, indicate a typical ancient cratonic lithospheric 

mantle which was thick (ca. 200 km) and cold (geotherm ca. 40mW/m2) at 

least up to mid-Ordovician time (Wu et al., 2005; Zhang et al., 2008). By 

contrast, xenoliths hosted in late Cretaceous and Cenozoic basalts are 

dominated by fertile spinel peridotites, which record shallower (60-100 km) 

and hotter (mean geotherm ca. 80 mW/m2) lithospheric mantle (Fan and 

Hooper, 1989; Xu et al., 1998; Zheng et al., 1998, 2001, 2006; Fan et al., 2000; 

Rudnick et al., 2004; Reisberg et al., 2005; Ying et al., 2006), in good 

agreement with an average present-day surface heat flow of 60 mW/m2 and 

thin lithosphere of 60-80 km. These suggest that 80-140 km of cratonic 

lithosphere was removed or strongly modified during late Mesozoic-early 
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Cenozoic time (Menzies et al., 1993, 2007; Griffin et al., 1998; Xu, 2001, 

2008b; Zheng et al., 2001, 2006; Gao et al., 2002, 2004, 2008; Zhang et al., 

2002, 2005, 2008, 2009; Wu et al., 2003, 2005). Xu (2001) show a 

thermo-tectonic evolution of the lithospheric mantle beneath North China 

Craton and related magmatism (Fig. 2.2). 
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Fig. 2.2 - Schematic illustration of the thermo-tectonic evolution of the lithospheric mantle beneath North China Craton and related magmatism. CLM: Continental 

Lithospheric Mantle; LAB: Lithosphere Asthenosphere Boundary; ALK: alkali basalt; LAMP: lamprophyre basalt; TH: tholeiite basalt; OB+AOB: subalkali basalts; 

ALK+BA+NE: alkali and strongly alkali basalts). 
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(a) Paleozoic. A thick lithospheric keel existed under the NCC and extended into the diamond 
stability field. A metasome horizon was formed at 80 to 120 km through repeated infiltration of 
small melt batches derived from the convective asthenosphere (Menzies et al., 1993). The 
lithosphere was cold corresponding to ~40 mW/m2.  
(b) Jurassic to early Cretaceous. The low-temperature melting components in metasome zones 
were reactivated due to thermal perturbation associated with initial lithospheric erosion. These 
magmas show enriched mantle components.  
(c) 90 to 80 Ma. Magmatism during this period was absent. The SCLM was essentially dry due 
to the exhaustion of fusible components during precedent magmatism. The solidus of dry 
peridotites was not intercepted by the thermal gradient.  
(d) Early Tertiary. The lithosphere was significantly thinned (< 60 km) as a result of 
lithospheric extension and associated asthenospheric upwelling. The thermal gradient was as 
high as ~90 mW/m2. The magmatism is mainly tholeiites (TH) and subalkali basalts (OB+AOB) 
with minor alkali basalt. The depleted mantle source involved in these rocks suggests that 
lithosphere erosion may have been accomplished by the end of the Cretaceous.  
(e) Present. The lithosphere thickens (> 70 km) since the Miocene subsequent to the lowering 
of the LAB as a result of thermal decay (~ 65 mW/m2). The declining in the partial melting 
degrees and the increase in the depth of partial melting result in the formation of alkali- and 
strongly alkaline basalts (ALK+BA+NE). New lithosphere was accreted below the old keel 
remnants. This lithostratigraphy is believed to vary from west to east with relics of the old keel 
being more important in the western part of the craton. 

 

The lithospheric thinning in eastern China is a warmly and widely discussed 

topic in the last decade (Fan and Menzies, 1992; Menzies et al., 1993; Griffin 

et al., 1998; Menzies and Xu, 1998; Menzies et al., 2007). It is not clear, in fact, 

the scale, mechanism and timing, as well as tectonic controlling factors, of this 

geodynamical process. The scale for the lithospheric thinning involves both its 

spatial and vertical distribution, which indicates how wide and how thick the 

lithosphere has been removed, respectively. There is at present a general 

consensus that the NCC has experienced significant lithospheric thinning, 

especially in its eastern domain. Recent studies show that, not only the NCC, 

but also the north-east and south-east China are characterized by rather thin 

lithosphere relative to other ancient cratons on the Earth (Xu et al., 2000; Zou, 
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2001; Xu, 2002; Wu et al., 2003). Based on these works, it seems that the 

entire eastern China, to the east of the DTGL, has experienced lithospheric 

thinning. This can be further supported by the thermal structure (Fig. 2.3a; He 

et al., 2001) and seismic tomography (Fig. 2.3b; Priestley et al., 2006) of the 

upper mantle below eastern China. The issue for the vertical thinning involves 

the removal of the lithospheric mantle only or both the lower crust and the 

whole lithospheric mantle, which is still under debate (Menzies et al., 1993; 

Griffin et al., 1998; Menzies and Xu, 1998; Zheng, 1999; Xu, 2001; Wu et al., 

2003; Gao et al., 2004; Xu et al., 2004; Menzies et al., 2007). 

 
Fig. 2.3 - Thermal (a) and tomography (b) structure of the upper mantle in eastern China. (after 
He et al., 2001 and Priestley et al., 2006, respectively) 

 

How the lithospheric keel below eastern China had been lost has been the 

subject of considerable debate during the past 20 years, among which previous 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 16 -

studies are largely concentrated on the eastern NCC. Various mechanisms have 

been proposed to explain this process below the NCC, the most prevailing are:  

(1) Delamination in a short period (Yang et al., 2003; Gao et al., 2004). Yang 

et al. (2003) suggested that lithospheric delamination took place primarily in 

the early Cretaceous, based on the evidence for widespread crustal melting 

during 130-110 Ma which would require thinning of the lithosphere. By 

contrast, Gao et al. (2004) argued for Jurassic delamination of the lower crust, 

based on their discovery that Jurassic andesites, dacites and adakites from 

Xinglonggou (north NCC, Western Liaoning Province) have chemical 

signatures consistent with their derivation as partial melts of eclogites that 

interacted with mantle peridotite; in this case, they proposed that lithospheric 

thinning had reached such a stage by the late Jurassic that lower crustal rocks 

could be delaminated, converted to eclogites, incorporated into the convecting 

mantle and melted. The latter model, however, is difficult to reconcile with the 

fact that mafic and felsic Mesozoic magmatism peaked in the early Cretaceous 

(Yang et al., 2003; Xu et al., 2004; Wu et al., 2005) rather than the Jurassic; 

furthermore, rapid delamination is clearly at odds with the protracted Mesozoic 

magmatism (~100 Ma) in the NCC (e.g. Xu et al., 2004), and it is not easy to 

explain satisfactorily the linear thinning along the whole east China (Fig. 2.3a, 

Fig.2.3b).  

(2) Thermal-mechanical erosion (e.g. Griffin et al., 1998; Xu, 2001). Within 

this scheme, lithospheric thinning proceeded by heat transport into the 

lithosphere and small-scale asthenospheric convection induced by extension. 

Once lithospheric mantle is thermally converted to asthenosphere, it can 

convectively mix with, and eventually be replaced by, asthenosphere (Davis, 

1994). A recent hypothesis suggests that the lithospheric thinning has been 
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initiated with hydration which weakened the base of the old lithospheric mantle 

and transformed it into the convective asthenosphere. The water required for 

such a process may come from the dehydration of the subducted Paleo-Pacific 

lithosphere that lies horizontally in the 410-660 km transition zone beneath 

eastern China. The westward subduction of the Pacific plate caused an 

accumulation of eclogitic material above the 670 discontinuity with may 

coincide with the surface position of the DTGL as it has been recently 

observed by high-resolution seismic tomography (Huang and Zhao, 2006). 

Furthermore, the subduction may also explain the Bouguer gravity anomaly in 

eastern China and the formation of the DTGL in the early Cretaceous (e.g. Niu, 

2005; Xu, 2007). 

 Although the lithospheric thinning in east China has been well recognized for 

more than a decade, debate continues on the time-scale of such destruction, 

especially in terms of its beginning, peak-period and ending. This, however, 

relies fundamentally, or at least in part, on the understanding of how the 

lithosphere keel could be removed. A short time interval of only 10-20 Ma, or 

even less, for delamination-induced thinning (Yang et al., 2003; Gao et al., 

2004) is in strong contrast to that of over 100 Ma for erosion-induced thinning 

(Griffin et al., 1998; Xu, 2001; Xu et al., 2004). Some relevant geological, 

geochemical and geophysical data on a 200 Ma time scale for the NCC is 

summarized by Menzies et al. (2007) (Fig. 2.4) so that these events can be 

cross-correlated. The presence of mantle derived plutonic rocks around 

180-190 Ma is believed to mark the reactivation of the cratonic lithosphere, the 

early Cretaceous is widely agreed to mark a key period, and the thinning is 

probably very weak, if any, in the Cenozoic (Menzies et al., 2007; and 

references therein). 
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Fig. 2.4 - A 200Ma event history for the NCC (after Menzies et al., 2007). Thermal evolution 
“Continental to oceanic” geotherms based on basalt- and kimberlite-borne xenoliths and 
surface heat flow measurements. Note the temporal change that peaks in the Cenozoic. 
Intrusive rocks have a magmatic peak at 130–120Ma. Effusive rocks with a temporal change in 
mantle source from enriched to depleted largely inferred from Sr–Nd isotope variation (Xu, 
2004). Mantle xenoliths primarily found in Cenozoic volcanic rocks with a characteristic 
“depleted” isotopic signature ( Xu et al., 1998). The timescale of keel delamination and 
lithospheric thinning is debated by Gao et al.(2004), Yang et al.(2003), Wu et al.(2005) suggest 
it occurred within a 10Ma, whereas Griffin et al.(1998), O’Reilly et al.(2001), Xu et al.(2004) 
believe it can occur over a period of 100Ma. 

 

Previous petrological work in the studied area 

Subei basin is located at the south edge of NCC (Fig. 2.1), east of the TLFZ in 

east central China. This region is marked by the Triassic collision of NCC and 

the Yangtze Craton. West of the Tanlu fault, the collision zone is defined by 

the Dabie Shan UHP belt, but the location of the suture east of the fault is 

debated. The resemblance of petrologic and structural features between the 

Sulu and the Dabie Shan UHP belts may imply that the suture lies beneath or 

slightly north of the Sulu terrain. In this case the mantle lithosphere beneath the 
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Subei basin would belong to the Yangtze Craton. However, Li (1994) proposed 

a crustal-detachment model, based on the interpretation of linear aeromagnetic 

anomalies, surface geological observations, and deep seismic profiles. The 

model shows that during the mid-Mesozoic collision between the two 

continental blocks, the upper crust of the South China Craton (SCC, composed 

of the Yangtze Craton and the Cathaysia Craton) in the Subei-Yellow Sea 

region was detached from the lower crust and thrust over the NCC for more 

than 400 km, whereas the lower part of the lithosphere was subducted under 

the NCC along a subsurface suture running east of Nanjing (Fig. 2.5). Chung 

(1999) studied the trace element and isotope characteristics of Cenozoic basalts 

in Subei Basin and Shandong Province around Tanlu fault and inferred the 

same plate boundary between the NCC and SCC. The samples studied here 

come from just north of the proposed subsurface suture.  

 
Fig. 2.5 - Crustal-detachment model for SCC beneath Subei basin (modified after Li 1994) 
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Fig. 2.6 - Detail map of sample locality and alkali basalt outcrops in the northern part of 
Jiangsu Province (modified after Zhi, 1991) 

 

East central China experienced widespread Cenozoic basaltic volcanism, 

probably directly or indirectly related to the lithospheric thinning. This 

volcanism was particularly intense in the Subei basin, where it includes minor 

tholeiitic eruptions in the early Paleogene, and more extensive, 

xenolith-bearing alkali basalt activity in the Neogene (Fig. 2.6). Several works 

were carried out in the Subei basin area on both basalts and xenoliths.  

A K-Ar ages and Sr, Pb isotopic characteristics of some Cenozoic volcanic 

rocks from Anhui and Jiangsu province were reported by early work of Chen 

and Peng (1988), According to this work the volcanism of Fangshan has been 
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dated at about 9 Ma, while Tashan, about 10km north Fangshan, has an age of 

18Ma.   

Sun et al. (1998) show that 187Os/ 188Os ratios for spinel lherzolite xenoliths 

from Panshishan range from 0.1241 to 0.1294. Most of them are lower than 

that of the primitive mantle (0.1290±9), suggesting that these xenoliths have 

slightly unradiogenic Os isotopic features. This result is concordant with the Sr 

and Nd isotopic characteristic in Panshishan reported by Chen and Wang 

(1994).  

Zou et al. (2000) measured major, trace element, and Nd–Sr–Pb isotopic 

compositions of mantle xenolith-bearing Cenozoic basalts in southeastern 

China. Just two samples from Fangshan, and compared their results with those 

on NCC (Hannuoba, Datong, Kuandian, and Wudalianchi, Song et al., 1990; 

Basu et al., 1991; Zhang et al., 1991, 1995; Liu et al., 1992.). From Subei basin 

they found an increase in 87Sr/86Sr and a decrease in 143Nd/144Nd moving both 

Northward (Hannuoba, Datong, Kuandian, and Wudalianchi) and Southward 

(Mingxi, Xionglong, Longyou and Niutuo, Zou et al. 2000) (Fig. 2.7). They 

suggest that southeast China basalts result from a mixing between an 

asthenospheric mantle and an EM2 component, whereas the northeast China 

basalts reflect a mixing between an asthenospheric mantle and an EM1 

component. The basalts in central-eastern China Nushan, Fangshan, and 

Tashan have the highest 143Nd/144Nd and the lowest 87Sr/86Sr and may represent 

the isotopic composition of the asthenospheric mantle (Fig. 2.8).  
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Fig. 2.7 - 143Nd/144Nd vs 87Sr/86Sr for NE and SE China basalts (modified after Zou et al., 2000) 
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Fig. 2.8 - Outline of the mantle source components for the late Cenozoic basaltic rocks from 
East Asia (DMM = depleted mantle, EM1 and EM2 = enriched mantle type 1 and type 2, 
respectively). Distribution of the basalts and locations of mantle-derived xenoliths are after 
Hoang et al. (1996), Zou et al. (2000), and Choi et al. (2005). Tectonic boundaries between the 
North China Craton and the South China Block in South Korea are after Ree et al. (1996) and 
Chough et al. (2000). Xenolith Locations: 1 = Hainan Island, 2 = Niutoushan, 3 = Mingxi, 4 = 
Longyou and Xilong, 5 = Fangshan and Tashan, 6 = Nushan, 7 = Kuandian, 8 = Hannuoba, 9 = 
Erkeshan, Keluo, Nuominhe, Wudalianchi and Xiaogulihe.  
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Reisberg et al. (2005) have determined the whole-rock Os isotopic 

compositions and Re and Os concentrations for the ultramafic xenoliths from 

the Subei Basin (Panshishan, Lianshan and Fangshan). Re–Os analyses were 

coupled with whole rock major and trace element and S abundance 

determinations, and with characterization of rock textures, modal phase 

proportions and sulfide petrography. The two main sampling areas, Panshishan 

(eight xenoliths) and Lianshan (eighteen xenoliths) have similar textures and 

major and moderately incompatible lithophile trace element compositions. 

They show that Os isotopic ratios are related to Yb, thus suggesting an ancient 

melt extraction process which depleted the rocks in Re. These Os isotopic 

systematic suggest that both areas were affected by an early Proterozoic (~1.8 

Ga) melt extraction event. Thus the two areas apparently shared the same long 

term lithospheric history. Nevertheless, the sulfide abundances and whole rock 

S, Os and Re concentrations are strikingly lower in Lianshan than in 

Panshishan, and the two localities have different incompatible lithophile trace 

element signatures. These differences resulted from contrasting melt 

percolation styles between the two areas. Panshishan experienced interaction 

with S-saturated possibly evolved melts that added Re, Cu and S, but had no 

affect on Os abundances, while Lianshan was affected by extensive percolation 

of sulfur undersaturated melts that removed Re, Os and S. On the basis of lack 

of correlation between 187Os/188Os and 187Re/188Os, compared with the good 

correlation between 187Os/188Os and Yb, they speculated that the perturbation 

of the Re and Os concentrations was fairly recent, and perhaps related to 

Mesozoic or Cenozoic lithospheric thinning in eastern China. 

On the other hand Xu et al.(2008a) obtained in situ Re–Os isotopic data for 

sulfide grains in mantle-derived peridotite xenoliths from Panshishan and 
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Tashan in Subei basin, They use TRD (Time of Re depletion model ages, which 

assume that all Re was depleted at the time of melting; these ages are more 

robust indications of the minimum age of melt depletion; Walker et al., 1989; 

Pearson et al., 1995a,b) and found that the sulfide populations in xenoliths 

from this area are dominated by grains that yield Neoproterozoic to Mesozoic 

ages. Archean ages are not recorded. The integration of sulfide and whole-rock 

Re–Os data suggests that the oldest part of the lithospheric mantle sampled 

beneath Subei basin may be Paleoproterozoic in age, and has been modified in 

Mesoproterozoic and Phanerozoic time. 

For stable isotope, Zhi et al. (1996) use a conventional BrF5 method for 

Oxygen isotope composition of mantle-derived materials from Anhui-Jiangsu 

basalt, while Li et al. (1999) measure oxygen isotope by the laser probe 

technique on mineral separates from mantle xenolith and megacryst in 

Cenozoic basalts, East China. Two samples from Panshishan are included. One 

δ18O value of 4.97 for Ol was obtained, and δ18O values are 5.67 and 5.25 for 

opx and 5.50 and 5.80 for cpx.  

Yu et al. (2005) collected eight peridotite xenoliths from Panshishan, using 

ICP-MS measured trace elements of clinopyroxenes and systematic oxygen 

composition for ol, opx and cpx were measured using laser fluorination 

technology. The oxygen composition of minerals falls in the “normal” mantle 

range and achieved equilibrium between them. Clinopyroxene enrichment in 

incompatible elements indicates that some samples experienced a cryptic 

metasomatism.  

A systematic work in Subei basin is still lacking. The previous works either 

have few samples, e.g. Li et al. (1999); Zhou et al. (2000) with just 2-3 samples, 

or just focus on certain elements or isotope composition, e.g. Sun et al. (1998) 
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on Os isotope, Reisberg et al. (2005) on whole rock Re-Os and Xu et al. (2008a) 

on sulfides Re-Os, Li et al. (1999) and Yu et al. (2005) on oxygen isotope. 
 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 27 -

Chapter 3 - Analytical method 

 

In this chapter, analytical method are described in detail. They include: 

whole rock major and trace elements obtained by XRF, in situ mineral major 

element measurements with electron microprobe (EMP), in situ mineral trace 

elements analysis with LA-ICPMS, in situ water contents of minerals using 

FTIR instrument, and oxygen isotopic ratios determination using a laser 

fluorination method. 

 

Whole rock - XRF 

Whole rock X-ray Florescence (XRF) analyses were carried out at the 

Department of Earth Science, University of Ferrara, on a Philips PW 1400 

spectrometer using standard procedures (Franzini et al., 1975; Leoni and Saitta, 

1976). Fresh parts of xenoliths were selected, crashed and powdered. In order 

to keep the geometry of the tube-sample-detector assembly constant, the 

sample is normally prepared as a 1 cm thick disc, typically 50 mm in diameter. 

This is located at a standardized, small distance from the tube window. 

Because the X-ray intensity follows an inverse-square law, the tolerances for 

this placement and for the flatness of the surface must be very tight in order to 

maintain a repeatable X-ray flux. A further reason for obtaining a flat and 

representative sample surface is that the secondary X-rays from lighter 

elements often only emit from the top few micrometers of the sample. In order 

to further reduce the effect of surface irregularities, the sample is usually spun 

at 5-20 rpm. It is necessary to ensure that the sample is sufficiently thick to 

absorb the entire primary beam. For higher-Z materials, a few millimeters 

thickness is adequate, but for a light-element matrix such as coal, a thickness of 
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30-40 mm is needed. Major, minor and some trace elements (Ba, Co, Cr, Nb, 

Ni, Rb, Sr, V, Y and Zr) were analyzed. Typical uncertainties are <3% for Si, 

Ti, Fe, Ca and K, and 7% for Mg, Al, Mn, Na and P; uncertainties for trace 

elements (above 10ppm) are <7% for Rb, Sr and V and 15% for Ba, Ni, Co and 

Cr.   

 

Mineral major elements - EMPA 

Electronic microprobe analyses were performed at state key Laboratory for 

Mineral Deposits Research, Nanjing University and Institute of Petrology, 

Vienna University. In Nanjing University the mineral composition of samples 

was determined using a JOEL Superprobe (JXA 8100). Operating conditions 

were as follows: 15 kV accelerating voltage, 10 nA beam current and <5 μm 

beam diameter. Natural minerals and synthetic oxides were used as standards, 

and a program based on the ZAF procedure was used for data correction. 

Multi-point measurements were carried out from the core to the rim region of 

each mineral grain, and 3-4 grains of each mineral were measured in every 

sample. 

In Vienna University the major element analyses of minerals were carried out 

on a Cameca SX100 electron microprobe, the operating conditions were 15 kV 

and 20 nA. In order to reduce alkali loss, glass analyses were performed using 

a defocused beam with a diameter of 5–10 μm at 15kV and 10nA. The error for 

all elements is below 5%, except for Na, which may be up to 10%. Natural and 

synthetic standards were used for calibration, and the PAP correction (Pouchou 

and Pichoir, 1991) was applied to the data. 
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Water content in NAMs - FTIR 

Double-polished thin sections with a thickness of about 0.2 mm were 

prepared for the FTIR investigation (resin was used during the polishing 

treatment). The cleaning procedure of the sections prior to measurements 

included 10 to 20 hours dissolution in ethanol or acetone to remove the residual 

epoxy, followed by heating in an oven at ~ 100 °C for 3 to 10 hours to remove 

the surface absorbed water. Infrared spectra were obtained at wavelengths from 

650 to 6000 cm-1 using a Nicolet® 5700 FTIR spectrometer (Fig. 3.1) coupled 

with a Continuμm microscope at the School of Earth and Space Sciences, 

University of Science and Technology of China (USTC) in Hefei. The 

principal advantages of such treatment are that: First, it is easy to observe the 

sample spot and to check the quality optically before the measurements; second, 

the liquid-N2 cooled detector placed over the microscope is optimized for a 

focused beam; Third, the focused IR beam yields higher intensities than a 

measurement in the sample chamber of the spectrometer. The samples were 

measured by unpolarized radiation with an IR light source, KBr beam-splitter 

and liquid-nitrogen cooled MCT-A detector. A total of 128 or 256 scans were 

counted for each spectrum at a 4 cm-1 or 8 cm-1 resolution. Optically clean, 

inclusion- and crack-free areas, usually centered in the core region of each 

grain, were selected for the measurements with apertures of 30×30 or 50×50 

μm, depending critically on the size and quality of the mineral grains.  
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Fig. 3.1 - Picture of the Nicolet 5700 FTIR spectrometer coupled with a microscope 

 

Large and fresh grains were selected for the H-profile analysis. An accurate 

measurement of hydrogen-species in anisotropic minerals requires orientation 

of single crystals and use of polarized IR radiation (Libowitzky and Rossman, 

1996). This is a very difficult technique to perfect and so an alternative 

technique using unpolarized determinations was performed and a statistically 

significant number of individual grains for each mineral in the same sample 

were chosen. Assuming that crystal orientation is randomly distributed within 

each sample (as evidenced by the variability in our FTIR results) an average 

value was used. Water contents were calculated by the modified form of 

Beer-Lambert Law: Δ=I×c×t×γ. where Δ is the integral absorption area (cm-1) 

of absorption bands, I is the integral specific absorption coefficient 

(ppm-1•cm-2), c are the contents of hydrogen species (ppm H2O), t is the 

thickness of the section (cm), and γ is the orientation factor discussed by 
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Paterson (1982). In this study, the integral region was 3000–3800 cm−1, and the 

integral specific coefficients for cpx and opx were taken from Bell et al. (1995; 

2003). Thickness was measured with a digital micrometer and reported as an 

average of 30~40 measurements covering the whole section; Baseline 

corrections were carried out with a spline-fit method by points outside the 

OH-stretching region.  

Several factors have to be taken into consideration during the integration of IR 

spectra: (i) The Nicolet 5700 FTIR spectrometer occasionally suffers from an 

intrinsic problem, in that it can randomly produce positive, neutral or negative 

absorptions in 3700-3900 cm-1, usually peaked at ~ 3740 and ~ 3850 cm-1 (Fig. 

3.2). These absorptions can change from one type to another in very short time, 

e.g. in less than a few minutes. Dehumidifiers were working all the time to 

keep the atmosphere in the labs dry and we try to less people in the room to 

avoid increase moisture. so that unstable of the background are probably 

caused by an artifact of the instrument, e.g. by the silicon carbide source, rather 

than by the instabilities of the background (ii) The application of liquid-N2 on 

the coupled microscope can sometimes lead to the formation of invisible water 

film on the detector, and thus result in a weak absorption peak at about 3250 

cm-1. (iii) Some secondary phases even in trace amounts, e.g. invisible 

amphibole/mica lamellae, may contribute to the absorption of hydrogen-related 

species in the 3000-3700 cm-1 region, e.g. a weak band at ~ 3660 cm-1 

observed in some Panshishan samples. (iv) Residual traces of epoxy on the 

sample wafers can generate minor absorptions between 2800 and 3000 cm-1 

because of influences from C-H bands; this contribution should not be included 

in the calculation of the total integrated OH absorbance, especially for some 

spectra which can extend down to ~ 2800 cm-1. The influences from the above 
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mentioned 4 aspects are actually, in most cases, very little or negligible to the 

final total integrated area related with the absorption of OH/water molecular 

structurally bound to the host minerals; but there are a few occasions that their 

influences are so evident that they have to be treated separately. I attempted to 

resolve and fit the individual peaks manually on each background-subtracted 

spectrum, of which the bands from non-structural OH/H2O are notably visible 

(in this case, the contributions are mostly beyond 5%), by using the Peakfit 

V4.12 program (Jandel Scientific). The Gaussian form was used to fit the 

spectra, and the results were usually assured by r2 > 99.9% at 95% confidence 

level. The above case (iii) is a little complicated, because altered hydrous 

products may produce, in addition to the ~ 3660 cm-1 peak, absorption bands at 

other positions, which may superimpose on the typical peaks from structural 

hydrogen-species. In this case, it is impossible to separate the superimposed 

peak at present. 

The interference from the FTIR spectrometer, mentioned above as artifact of 

the instrument, has fundamental influences on the baseline treatment of the IR 

spectra, in that it produces absorption in the 3700-3850 cm-1 range (see also the 

later chapter for details). Therefore, this problem must be treated carefully. I 

try to resolve this by the following procedure illustrated in Fig. 3.3: firstly, a 

blank background spectrum was obtained (Fig. 3.3a); secondly, a subtraction 

was carried out on a normal spectrum with many noisy bands in the 3700-3850 

cm-1 area (Fig. 3.3b) relative to the blank, and a new spectrum with very weak 

or relatively simple absorptions in this region was produced (Fig. 3.3c); finally, 

a linear replacement was performed on the yielded spectrum between ~ 3750 

and 3900 cm-1 for an approximation, which was processed by a “Straight Line” 

function provided in the Omnic software (Nicolet), and a relatively 
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high-quality spectrum was made (Fig. 3.3d), on which the band at ~ 3740 cm-1, 

if present, can be easily resolved by Peakfit software. According to the curve 

trend of the spectrum (Fig. 3.3d), this approach, in most cases, contributes very 

little (e.g. < 2% or even less) uncertainty to the final calculated water content. 

 

 
Fig. 3.2 - Absorption diagram of the Nicolet 5700 FTIR spectrometer (The spectra were 

obtained for a blank, and were vertically offset for the illustration) 
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Fig. 3.3 - Interference treatments from the instrumental absorption diagram 

 

Uncertainties in the obtained results derive from: (1) Unpolarized light. This is 

the main uncertainty during the analysis but it is estimated to be mostly less 

than 10% considering the applied procedures and the recent approach of 
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Asimow et al. (2006). (2) Baseline correction. Some strongly rising, non-linear 

baselines may be an intrinsic part of the spectrum in the OH region. These 

baselines commonly arise from Fe2+ and may arise from silicate overtones in 

thick samples. A major, subjective source of uncertainty in IR measurements of 

OH in minerals remains the choice of baseline. Error introduced by different 

baseline corrections, e.g. spline-fit, polynomial-fit or slightly changing the 

points during the fitting is usually < 5%.  (3) Variation of thin sections 

thickness. This was less then than 6% centered on the average value for each 

sample. (4) Absorption coefficients. There are slight differences between 

absorption coefficients in cpx and opx in my samples and those used to 

determine the mineral specific absorption coefficients (Bell et al., 1995), due to 

their different compositions and densities. These variations are estimated to be 

generally < 10%. On the whole, the total uncertainty, summing each single 

error, is estimated < 30%. 

Detailed FTIR profile analysis performed at the USTC lab of two augite 

megacrysts hosted by Nushan Cenozoic basanites confirmed the homogeneity 

of their water content. These were used as standards to detect potential 

instrument shift during analysis. During the analytical period of all the NCC 

peridotites, the maximum difference for two augites is <4% both for peak 

height and integrated area within OH absorption area. The augites were also 

analyzed ay the LMTG lad (Toulouse, France). The maximum difference of 

peak height and integrated area within OH absorption area between the USTC 

lab and the LMTG [Toulouse, France] lab is <3% during cross-check analysis. 
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Mineral trace element - LA-ICP-MS  

   Trace element compositions of Cpx and a few Opx were carried out at 

LA-ICP-MS laboratory of University of Science and Technology of China. 

FTIR thin sections were broken and minerals grains were selected mounted in 

epoxy pellet and polished. Mineral grains were ablated in situ with Coherent 

company GeoLas pro ArF laser system with beam wavelength 193nm at 10 Hz 

repetition rate and 10J/cm2 energy per plus. The ablation crater diameters are 

60μm, and the sample aerosol was carried to ICPMS by high purity Helium 

with flow rate of 0.3L/min. A typical analysis consists of 80-100 replicates 

within 80-100s. PerkinElmer DRCII ICPMS was used to analysis the aerosol 

samples with the RF power 1350w and nebulized gas flow rate 0.7L/min. 

Sample analysis results processed with LaTEcalc software. The signal 

intensities (counts per ppm) for each element were calibrated against the NIST 

610 silicate glass and the 44Ca content of samples was used as an internal 

standard. Typical analytical precision ranged from 2% to 5%. 

 

Mineral O isotope - LA- MS 

Oxygen isotope data were measured at the CNR-IGG of PISA by laser 

fluorination, reacting 1 to 1.5 mg ol, opx, cpx and sp fragments in F2 gas 

atmosphere. I employed a 25 W CO2 laser operating at a wavelength of 10.6 

μm to irradiate the samples, and pure fluorine desorbed at 290°C from 

hexafluoropotassium-nickelate salt as a reagent. Three pre-fluorination steps 

were made before measuring new sets of analyses, in order to remove the 

moisture in the sample holder and the line. The O2 produced during laser 

fluorination together with excess fluorine were passed through potassium 

chloride salt and excess fluorine was converted into a potassium-fluoride salt 
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and chlorine gas. A cryogenic trap cooled at liquid nitrogen temperature was 

used to freeze chlorine. After purification, O2 was trapped over a cold finger 

filled with 13A zeolites, and then transferred to a Finnigan Delta Plus Mass 

Spectrometer for oxygen isotope analysis. QMS and NBS30 standard samples 

were measured at the beginning of each day of analysis; after the standard 

samples reached the accepted values, minerals samples sequence started. 5 to 6 

standards were measured during each set of analyses. The average δ18O value 

of QMS is 14.05 ±0.17 ‰ (1σ) and the δ18O value of NBS30 is 5.24±0.15 ‰ 

(1σ). All δ18O values are relative to SMOW. At least two fragments were 

analyzed for each mineral, and the variation within the same sample is less than 

the precision of standards. 
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Chapter 4 - Petrography 

 
 

The studied mantle xenoliths come from the three localities of Panshishan, 

Lianshan and Fangshan in Subei basin (Fig. 2.3). They are located in 

northwestern Jiangsu Province. Panshishan and Lianshan are separated by 

about 6 km, while Fangshan is about 20 km southwest of Lianshan. 14 samples 

from Panshishan, 22 from Lianshan, and 17 from Fangshan were investigated. 

Sample description  

The xenoliths from the three localities Panshishan, Lianshan and Fangshan 

are all hosted in alkali basalt lava flows (Fig. 4.1). Most of the xenoliths are 

rounded. Xenoliths from Panshishan and Lianshan are moderate in size 

(typically 5–10 cm in diameter), the largest ones (35cm in diameter) have been 

found in Panshishan and Lianshan (Fig. 4.2). Xenoliths from Fangshan are 

relative smaller than those of Panshishan and Lianshan. Textures vary from 

coarse-grained protogranular (~70% of total samples) through porphyroclastic 

(~20%) to equigranular (~10%) types. No hydrous phase or metasomatic 

secondary phases were observed. Samples from Panshishan are quite fresh, 

while those from Lianshan appear slightly altered in hand specimen. This 

difference is apparent in the olivine color, which varies from light green in the 

freshest samples, towards yellow, brown or even red in the most altered 

samples. The few samples from Fangshan showing textural evidence of host 

basalt infiltrations were disregarded. Fig. 4.3 shows some textures in the 

xenoliths, for each locality detail description are reported below.  
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Fig. 4.1 - General pictures of sample localities, from top to bottom Panshishan, Lianshan and 

Fangshan. 
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Fig. 4.2a - Picture of xenoliths from Panshishan 
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Fig. 4.2b - Picture of xenoliths from Lianshan 

 

Panshishan xenoliths 

The textures of Panshishan xenoliths were mostly protogranular and 

protogranular- porphyroclastic. Olivine (ol) and orthopyroxene (opx) are large 

(5–8mm), while clinopyroxene (cpx) and spinel (sp) are smaller (1–3 mm). 

Cpx and sp are always in direct contact with the large opx grains and sp 

commonly forms vermicular crystals inside opx or between opx and cpx. 

Occasional cpx exsolution lamellae are seen in opx. PSS07 is equigranular (Fig. 

4.3), with small ol (2mm), opx (2mm), cpx (1mm) and sp (<1mm). 

Petrographic evidences for alteration are absent. 
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Lianshan xenoliths 

The protogranular textures typical of most Lianshan xenoliths show no 

preferential orientation and crystals are not elongated. Olivine (ol) and 

orthopyroxene (opx) are large (4–7mm), while cpx and sp are smaller (1–3 

mm). Cpx and sp are always in direct contact with the large opx grains and sp 

commonly forms vermicular crystals inside opx or between opx and cpx. 

Occasional cpx exsolution lamellae are seen in opx (Fig. 4.3). Sample LS05 is 

the only xenolith displaying a preferential orientation, with parallel elongated 

tabular olivine crystals (1*3mm). Holly-leaf sp grains and some triple junctions 

are present. This texture is transitional between porphyroclastic and tabular 

equigranular.  

 

Fangshan xenoliths 

The Fangshan xenoliths are all spinel-facies peridotites, dominantly spinel 

lherzolites with rare spinel harzburgites. Samples are mostly protogranular or 

porphyroclastic. Olivine (ol) and orthopyroxene (opx) are large (4-7mm), while 

clinopyroxene (cpx) and spinel (sp) are smaller (1-3mm). Occasional cpx 

exsolution lamellae are seen in opx, similar to the other localities.  
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Fig. 4.3 - Texture of xenolith PSS07 

 
Fig. 4.3 - Texture of xenolith PSS11: sp adjacent to cpx 
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 Fig. 4.3 - Texture of xenolith PSS20: cpx exsolution lamella in opx 
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Fig. 4.3 - Texture of xenolith LS01 

 
Fig. 4.3 - Texture of xenolith LS01 in crossed light 
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 Fig. 4.3 - Texture of xenolith LS03 

 
Fig. 4.3 - Texture of xenolith FS02 
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Fig. 4.3 - Texture of xenolith FS18 with a possible basalt infiltration 

 
Fig. 4.3 - Texture of xenolith FS19: spinel in opx 
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Mineral mode estimates by point counting 

The polished thin sections are scanned into digital picture, then enlarged and 

marked with a 40 by 40 grid and counted based on the different color of 

minerals (transparent for ol, dark green to brown for opx, green for cpx and 

totally black or dark brown for sp). The point counting resulting in the modal 

percentage of minerals is reported in Table 4.1. As the thin section represents 

just a small part of the xenoliths, it may not perfectly comparable with modal 

estimates obtained by mass balance betwwn whole rock and mineral analyses. 

A petrographic classification diagram was used (Fig. 4.4) for the Subei basin 

xenoliths. The samples which have cpx modal content less or equal to 5% are 

classified as harzburgite, those with cpx modal content from 6 to 9% are named 

cpx-poor lherzolite. Xenoliths with ol mode content < 40% are named olivine 

websterite while those with ol mode content >90% are named dunite. Most of 

the xenoliths are lherzolites (Table 4.1, Fig. 4.1), rarely, harzburgites. Olivine 

websterites and pyroxenites are rare. Among 14 Panshishan xenoliths, just 

PSS17 falls within harzburgite field with cpx mode content of 5% and PSS01, 

PSS10 and PSS20 are cpx-poor lherzolite. Among 22 xenoliths from Lianshan, 

LS 26 is harzburgite while samples LS04 and LS24 are olivine websterite (ol 

content about 40%). LS16 has olivine mode content up to 92%, and classifies 

as dunite, having 3% modal content of cpx, so LS16 is referring as cpx-bearing 

dunite. Six samples (LS03, LS12, LS15, LS17, LS19 and LS21), with cpx 

content range from 6 to 9 are named cpx-poor lherzolites. The rest are 

lherzolites. Xenoliths from Fangshan seems more depleted in cpx mode content, 

three samples FS06, FS25 and FS30 are harzburgites, FS11, FS13, FS16, FS24 

and FS 26 are cpx-poor lherzolites. All the samples from the three localities 

encompass the compositions ascribed to upper mantle peridotite, from fertile 
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lherzolite with cpx mode content up to 23% to cpx-poor lherzolite with cpx 

mode contents about 6-9% and rarer harzburgite with cpx mode content as low 

as 3%.  

 
Fig. 4.4 - Petrographic classification for peridotite xenoliths from Subei basin. 
PSS: Panshishan, LS: Lianshan, FS: Fangshan; lh: Lherzolite, cpx poor-lh: with cpx modal 
content in the range of 6-9%; hz: Harzburgite, ol-wb: Olivine Websterite, Du: Dunite. Light 
blue diamond, Panshishan lherzolite; light blue filled grey diamond, Panshishan cpx-poor 
lherzolite; blue open diamond, Panshishan harzburgite; red dot, Lianshan lherzolite; red filled 
grey dot, Lianshan cpx-poor lherzolite; red open dot, Lianshan harzburgite; red filled pink dot, 
Lianshan olivine websterites; red filled golden dot, Lianshan dunite; green triangle, Fangshan 
lherzolite, green filled grey triangle, Fangshan cpx-poor lherzolite; green open triangle. 
Fangshan harzburgite) 
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Chapter 5 - Geochemistry 
  

This chapter compiles all the geochemical data, including whole rock 

composition, major and trace element analyses of minerals, oxygen isotope 

data determinations of xenoliths minerals. These data are treated separately in 

the following sections. The acquisition of this large data set needs totally 

different sample preparations (see Chapter3 Analytical Methods for details). 

Whole rock major element compositions were obtained with XRF analyses of 

pressed powder disc; in–situ mineral major element measurements were 

performed on polished thin section (30-40μm in thickness) with electron 

microprobe (EMP), whereas mineral trace elements were obtained with 

LA-ICPMS on selected minerals grains (recovered by FTIR sample preparation) 

and mounted in polished epoxy pellets; oxygen isotopic ratios have been 

determined using a laser fluorination on separated mineral grains; finally, in 

situ water contents of peridotitic minerals have been obtained with FTIR 

instrument on ad-hoc prepared double polished thin section (200 μm in 

thickness). Despite the carefulness in limiting the amount of material 

necessarily for the cited analytical work, not all of the xenoliths are big enough 

to sustain the entire analytical protocol. So it is a pity that the analytical results 

reported below do not include all samples originally selected to investigate 

Subei basin lithospheric mantle. 

In order to check the modal percentage, estimated by point counting, a mass 

balance calculation (12 samples), based on the whole rock major elements 

content and minerals major element content (Table 5.1 to Table 5.5) are made. 

No hydrous phases, as well as glassy patches are observed in all samples (see 

chapter 4) and all the xenoliths of three populations investigated are four phase 
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peridotites (ol, opx, cpx and sp). All the main oxides (SiO2, TiO2, Al2O3, Cr2O3, 

Fe2O3, MnO, MgO, CaO, Na2O and K2O) were thus used for the regression 

calculation. The result of the calculations (oxides are recalculate to 100%), and 

the confidence level of regression is 95%. The results are reported in Table 5.1. 

Compared with the mineral modal percentages obtained on the basis of point 

counting estimates, the mass balance method gives the comparable results. The 

difference between the two methods is, as expected, evident just for olivine 

estimation (since olivine is the most abundant phase in peridotite) (e.g. PSS15, 

PSS17, LS06 and LS20). The discrepancy of 5% in olivine modal evaluation 

does not contradict the classification obtained with point counting method, 

applied to the entire sample collection used for this study. I am thus confident 

in considering the modal estimates obtained by counting point reliable to 

classify the entire sample collection. 

 

Whole-Rock  

Four samples of Panshishan, seven samples of Lianshan and one sample of 

Fangshan were selected for XRF analyses. Among these samples PSS17 is the 

only harzburgite, PSS01, LS03, LS17 and FS11 are cpx-poor lherzolithes, all 

the others are lherzolites. Major and minor elements analyses of the Subei 

basin mantle xenoliths of Panshishan, Lianshan and Fangshan are reported in 

Table 5.1.  

The twelve Subei basin mantle samples show Mg# [(MgO/40.3)/((MgO/40.3) 

+ (FeO/70.85)) ×100 %mol] encompassing the entire upper mantle peridotitic 

residual trend, from the most fertile LS22 lherzolite (Mg#=90.17) to most 

residual (Mg#=93.22) LS17 cpx-poor lherzolite (Fig. 5.1). Among the Subei 

basin samples, the highest Mg# values, theoretically well beyond the complete 
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consumption of the clinopyroxenes, are represented by the cpx-poor lherzolite 

LS17 and the lherzolite LS20 of Lianshan population with estimated cpx modal 

5% and 8% contents respectively. 

The lherzolites of the three localities have SiO2 contents (in weight %) ranging 

from 44.2 to 45.6%; the harzburgite of Panshishan PSS17 has a SiO2 content of 

44.3. The TiO2 contents in all the xenoliths are less than 0.15 wt%. TiO2 

contents in Lianshan lherzolites range from 0.01 wt% (LS17) to 0.14 wt% 

(LS22). and the two Lianshan cpx-poor lherzolites are 0.01 wt% (LS17) and 

0.05 wt% (LS03). Among the four samples of Panshishan, the two lherzolites 

have highest TiO2 contents of 0.11 wt% for PSS11 and 0.17 wt % for PSS15. 

and the cpx-poor lherzolite PSS01 has a middle value of (0.08 wt %) TiO2 

contents. The harzburgite PSS17, as expected, present the lowest TiO2 (0.02 wt 

%) among the samples. The only one Fangshan sample (FS11 cpx-poor 

lherzolite) has TiO2 content of 0.07 wt%. 

The entire Subei xenolith population has whole rock Al2O3 contents which 

vary in range from 1.2 (LS17) up to 3.18 wt% (PSS11). On the whole, Al2O3 is 

negatively correlated with Mg# (Fig. 5.1). Panshishan samples seem to align 

along a residual trend from the most fertile lherzolite (PSS11) towards the most 

residual harzburgite (PSS17). The only one Fangshan sample perfectly fit this 

possible residual trend. Lherzolite LS17 and cpx-poor lherzolite LS20 may be 

included in this trend to form the lowermost limit of this alignment. Three 

Lianshan samples LS03, LS05 and LS22 are out from this alignment, showing 

low Mg# compared with the aluminum contents. 
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Fig. 5.1 - Whole-rock major element: SiO2 and Al2O3 contents vs Mg# (symbols are as in Fig. 
4.4. Panshishan lherzolite, light blue diamond; Panshishan cpx-poor lherzolite, light blue filled 
grey diamond; Panshishan harzburgite, blue open diamond; Lianshan lherzolite, red dot; 
Lianshan cpx-poor lherzolite, red filled grey dot; Fangshan cpx-poor lherzolite, green filled 
grey triangle.)  
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The FeOT contents vary between 6.01 wt% (sample LS17) and 7.92 wt% 

(sample LS22). On the whole, Subei basin mantle xenoliths show FeOT 

contents in the range of values (6.8-8.5 wt %) of worldwide spinel-bearing 

peridotites (Griffin et al., 2008). LS17, LS20 lherzolites are excluded by this 

consideration since the they present low to very low FeOt contents, comparable 

to the most restitic cratonic mantle. 

The CaO contents in the xenoliths of the three localities range from 0.89 to 

2.96 wt%. Panshishan lherzolites have CaO contents range from 1.91 to 2.58 

wt%; PSS01 cpx-poor lherzolite has CaO content of 1.90; as expected for 

theoretical residual composition, PSS17 harzburgite show the lowest CaO 

contents. However Ca is anomalously low in this harzburgite, if compared with 

other fusible elements (such us Al, Ti). Fangshan lherzolite FS11 has CaO 

contents (2.11 wt %) in the range of Subei basin lherzolites. 

The Na2O content is very low, for all the analyzed xenoliths from Subei basin 

varied range from 0.03 to 0.13 wt%. The Na2O contents of Lianshan lherzolites 

covered a large range, from 0.03 to 0.13, with cpx-poor lherzolites range from 

0.03 to 0.07, whereas Panshishan lherzolites have a narrower range (0.11 to 

0.13 wt %). As occurred for CaO contents also Na2O in harzburgite PSS17 

(0.03 wt %) is coherent with a residual composition. Fangshan cpx-poor 

lherzolite FS11 has Na2O value (0.09 wt %), is in the range of all the 

lherzolites. 

Among the analyzed xenoliths, LS17 lherzolite from Lianshan, has the highest 

Mg# value up to 93.22, and always has the highest or lowest value of oxides 

except for CaO and Na2O, which the harzburgite PSS17 having the lowest 

values. 
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Whole rock trace elements  

In analyzed Subei basin mantle xenoliths Cr contents vary from 1423 to 

3103 ppm and show a broad negative correlation with Mg# (Fig. 5.2a). Cr 

contents for Lianshan lherzolites range from 1423 ppm to 2756 ppm, two 

cpx-poor lherzolite LS03 and LS17 have Cr content 2425 and 1563 ppm. 

Panshishan lherzolites have Cr contents from 2463 ppm to 3103 ppm. The 

cpx-poor lherzolite PSS01 has Cr content 1561ppm and he harzburgite PSS17 

has Cr content 2171 ppm). The Fangshan cpx-poor lherzolite FS11 has 1731 

ppm of Cr. 

In mantle xenoliths Ni is primary retained in olivine. In Subei mantle 

xenoliths Ni varies from 1870 to 2247 ppm and it is positively correlated with 

Mg# (Fig. 5.2b). Ni contents of Lianshan lherzolites range from 1870 to 2168 

ppm, two cpx-poor lherzolite LS03 and LS17 have Ni content 2226 and 2226 

ppm. Panshishan lherzolites have Ni contents from 1955 to 2055 ppm. The 

cpx-poor lherzolite PSS01 has Ni content 2021ppm. The harzburgite PSS17 

has the highest value of Ni. Fangshan cpx-poor lherzolite FS11 has 2122 ppm 

of Ni 

In Subei peridotites, V, compatible minor element easily accommodated in 

spinel, range from 26.8 to 78.9 ppm, with lherzolites almost encompassing the 

entire range. On the whole, V has good negative correlation with Mg#, at given 

Mg#, lherzolite of Panshishan have V contents higher than those of Lianshan 

and Fangshan. (Fig. 5.2c) 

Sr is an incompatible element in peridotite/basaltic system. In Subei 

xenoliths it varies from 1.8 to 11.7 ppm, with Lianshan and Panshishan 

lherzolites showing with values varying from 1.8 to 11.3 ppm and from 4.3 to 

11.7 ppm respectively. The cpx-poor lherzolites have a narrow rang of 8.3 ppm 
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to 9.3 ppm for Sr content. The harzburgite PSS17 shows relatively high Sr 

content (9.3 ppm), whereas Fangshan cpx-poor lherzolite record lower Sr 

content (6.1 ppm). Sr contents do not show correlation with relative Mg# 

among lherzolite, cpx-poor lherzolite and harzburgite. (Fig. 5.2d). 

Y contents in most of xenoliths vary from 7 to 10 ppm except for harzburgite 

PSS 17 which reach 4.8 ppm. Cpx-poor lherzolite LS17 has the lowest Y 

contents (4.9 ppm). A negative correlation is observed in Y vs Mg# (Fig. 5.2e); 

at given Mg#, lherzolites from Panshishan have higher Y contents than those 

from Lianshan and Fangshan. 

Considering this group of selected minor and trace element, lherzolite PSS15 

have the highest Cr, Sr and Y contents and harzburgite PSS17 the highest and 

lowest Ni and Y contents respectively. 

1000

1500

2000

2500

3000

3500

89 90 91 92 93 94 95

Mg#

Cr (ppm)

 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 57 -

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

89 90 91 92 93 94 95

Mg#

Ni (ppm)

 

0

10

20

30

40

50

60

70

80

90

89 90 91 92 93 94 95

Mg#

V (ppm)

 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 58 -

0

2

4

6

8

10

12

14

89 90 91 92 93 94 95

Mg#

Sr (ppm)

 

3

4

5

6

7

8

9

10

11

89 90 91 92 93 94 95

Mg#

Y (ppm)

 

Fig. 5.2 Whole-rock trace element: Cr, Ni, V, Sr and Y (ppm) vs Mg# (symbols are as in Fig. 

5.1)  
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Major element melting modeling 

The major element relationships identified for the Subei basin xenolith 

groups suggest that these elements are largely governed by stoichiometry and 

phase equilibrium both under subsolidus conditions and during melting (e.g. 

Niu, 1997). Niu (1997) model starts from an initial composition and iteratively 

calculates the major element compositions of successive residua applying 

different melting degrees. The results are represented as melting (residua) 

curves with the major oxides (SiO2, Al2O3, TiO, FeOT, CaO and Na2O) plotted 

against MgO, as melting index. Curves for isobaric batch melting at pressure of 

P=2 GPa (dashed line in Fig. 5.3) and polybaric near fractional melting (1% 

melt porosity) at P=1.5-2.5 GPa (continuous line in Fig. 5.3) are also plotted on 

these diagrams. Two fertile mantle compositions were chosen as starting points: 

the preferred source (PS) proposed by Niu (1997) with SiO2 wt%=45.5, TiO2 

wt%=0.18, Al2O3 wt%=4.20, FeO wt%=7.70, MgO wt%=38.33, CaO 

wt%=3.40 and Na2O wt%=0.30 and the primitive mantle value (PM) proposed 

by McDonough (1995) with SiO2 wt%=45.0, TiO2 wt%=0.20, Al2O3 

wt%=4.45, FeO wt%=8.05, MgO wt%=37.80, CaO wt%=3.55 and Na2O 

wt%=0.36. As usually observed in progressive mantle depletion by extraction 

of basaltic components, SiO2, TiO2 Al2O3 and CaO wt% decrease as MgO wt% 

increase. (Fig. 5.3).  

Peridotite samples of Panshishan, Lianshan and Fangshan are plotted in these 

grids and shown in Fig. 5.3. As theoretically expected, the near fractional 

melting are more efficient to enrich or deplete major elements at certain MgO 

contents, in comparison with batch melting. Cpx-poor lherzolite LS17 has 

MgO content of 44.1 wt%, outside the limit of the theoretical depletion curves 
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starting from both PS and PM sources, which implies unrealistic partial melting 

degrees > 25% for a lherzolite with 9% of cpx modal contents.  

In Fig 5.3a, SiO2 content vs MgO content. Lherzolites LS23 and PSS11 have 

SiO2 content higher than both PS and PM starting point values and above the 

melting curve. Lherzolites LS20, cpx-poor lherzolite LS17 and harzburgite 

PSS17 have highest MgO contents, and, on the whole, all the samples do not 

fit any residual trends, showing higher SiO2 with respect modeled MgO.  

Most samples including harzburgite PSS17 overlap the TiO2 theoretical 

partial melting curves (Fig. 5.3b), except for the Panshishan lherzolite PSS15, 

having TiO2 value (0.18 wt %) close to PS starting point. Excluding the 

lherzolites LS20, cpx-poor lherzolite LS17 and harzburgite PSS17, the rest of 

the samples in TiO2-MgO plot, indicate melting degrees from 6% to 8%.  

The Al2O3 content of the xenoliths, except LS17, LS20 and PSS17, define a 

clear melting trend with MgO, but at higher Al2O3 values, with respect to 

those modeled by the Niu (1997) curves.  

Peridotite melting in sp-bearing system does not impoverish FeO content 

even at highest melting degree (Niu, 1997; Herzberg, 2004). Most all Subei 

xenoliths have FeO contents less than 7 wt%, and negatively correlated with 

MgO; however the trend to not follow the theoretical melting curve.  

Most lherzolites perfectly fit the CaO theoretical partial melting curves, 

except for three high MgO content samples, lherzolites LS20, cpx-poor 

lherzolite LS17 and harzburgite PSS17. By contrast, Fangshan cpx-poor 

lherzolite FS11 plots out from the theoretical trends, having high CaO, with 

respect the MgO contents. 

The melting model suggests that Na2O rapidly decreases, even at very low 

degree of partial melting. In Subei xenoliths Na2O seems to be unaffected by 
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partial melting events, showing almost constant values (0.12 wt %) 

independently by MgO contents. 
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Fig. 5.3 Whole-rock major element compositions (wt %) for the eastern China xenolith suite 
plotted in the Niu (1997) diagram (symbols as in Fig 5.1. Dashed and continuous lines 
represent batch (P= 2 GPa; F < 0.25) and fractional (P =2–0.8 GPa; F < 0.25) melting models, 
respectively, starting from a Primitive Mantle source (large open square; McDonough and Sun, 
1995) and from the ‘preferred source’ (PS) (large black square) proposed by Niu (1997). 
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As it has been previously described, not all the major elements of Subei 

mantle xenoliths fit well with the theoretical partial melting curves of 

spinel-peridotite. This may be caused by the choice of the stating point mantle 

composition, for example SiO2 is richer than the chosen starting point and, 

although Al2O3 have a good negative correlation with MgO, does not fit the 

curves. Post-melting processes may have masqueraded the original melting 

trend, as it seems the case for sample PSS15 which has high TiO2 content at 

certain MgO content. 

Al and Ca element are strongly influenced by partial melting in mantle 

xenoliths when melt extraction occur. In CaO vs Al2O3 content diagram (Fig. 

5.4, Griffin et al., 2008), a general trend from primitive mantle to a depleted 

cratonic peridotite xenoliths can be envisaged for the Subei basin lherzolites. 

The harzburgite PSS17 is little away from this trend.   
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Fig. 5.4 - Whole-rock CaO vs Al2O3 (wt %) daigram. PM: primitive mantle, McDonough and 
Sun (1995) (symbols as in Fig 5.1) 
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Major elements of minerals 
 
Totally 52 xenoliths from Subei basin from the three localities Panshishan, 

Lianshan and Fangshan are chosen for major elements analysis in minerals. 14 

xenoliths from Panshishan: 10 lherzolites, 3 cpx-poor lherzolites and 1 

harzburgite (PSS17). 22 xenoliths from Lianshan: 12 lherzolites, 6 cpx-poor 

lherzolites, 1 harzburgite LS26, 2 olivine websterite LS04 and LS24 and 

1(dunite LS16). 16 xenoliths from Fangshan: 11 lherzolites, 4 cpx-poor 

lherzolites and 1 harzburgite FS06. Most xenoliths have well equilibrated 

protogranular textures with large mineral grain size (see Chapter 4). Major 

element contents have been acquired in both core and rim of single mineral. In 

general all the peridotitic phases, including spinel, result very homogeneous in 

compositions in each sample. This allows to consider the average compositions 

of the mineral phases, as representative of the composition of that phase in that 

sample. The average data for ol, cpx, opx and sp are reported in Tables 5.2, 5.3, 

5.4, and 5.5. Each single analyses for all samples can be found in appendix 

folder EMPA. 

 

Olivine 

Olivine Fo [100×Mg/ (Mg+Fetotal), mol%] ranges from 89.23 to 91.83; the 

lowest and highest value are represented by Lianshan lherzolite LS22 and 

dunite LS16 respectively. Fo values for Panshishan lherzolites range from 

89.45 to 90.55; Panshishan cpx-poor lherzolites range from 89.94 to 90.36. The 

harzburgite PSS17 has a Fo value of 90.58, higher than the Panshishan 

lherzolites and cpx-poor lherzolite. Fo values for lherzolites from Lianshan 

range from 89.23 to 90.38, Lianshan lherzolites have Fo values ranging from 

90.52 to 91.76, with cpx-poor lherzolite group showing the highest values. The 
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harzburgite samples LS26 has Fo = value of 90.93. Olivine websterites LS04 

and LS24 have Fo values (89.56 and 89.89 respectively) in the range of 

lherzolites. The dunite LS16 has the highest Fo value among all xenoliths 

(91.83). Fo value for lherzolites from Fangshan range from 89.72 to 91.09, the 

harzburgite sample FS16 has Fo value of 91.00. Lherzolites and cpx-poor 

lherzolites from Lianshan have a broad range of Fo composition than those 

from Panshishan and Fangshan. Lherzolites from Panshishan have Fo value 

limited to 90.55, while 6 of the 14 Fangshan lherzolites have Fo value higher 

than 90.5. 

CaO content in olivines of studied samples range from 0.01 to 0.13, with the 

lowest and highest values represented by olivines of Panshishan lherzolite 

PSS19 and Fangshan lherzolite FS03. CaO content olivines in lherzolites from 

Panshishan range from 0.01 to 0.05 wt%; the three cpx-poor lherzolites from 

Panshishan have olivines with nearly the same CaO contents of about 0.03. 

CaO content for the harzburgite PSS17 is 0.04 wt%. CaO contents for olivines 

in Lianshan lherzolites and cpx-poor lherzolites have similar range from 0.02 

to 0.05 wt%, the harzburgite sample LS26 has olivine CaO content 0.03 wt%. 

Olivine-websterites LS04 and LS24 show olivines with almost the same CaO 

values (0.04 wt %). CaO content for the dunite LS16 is 0.03. Among the three 

populations, olivines in lherzolites, cpx-poor lherzolites and harzburgites from 

Fangshan show the highest CaO contents (from 0.04 to 0.13 wt %)( Fig. 5.5a).  

NiO contents in olivine for all xenoliths from Subei basin range from 0.21 to 

0.47, which the lowest and highest values represented by the olivines of 

Fangshan lherzolite FS14 and Panshishan lherzolite PSS02. NiO contents for 

Panshishan lherzolites and cpx-poor lherzolites range from 0.21 to 0.47 wt%, 

and from 0.32 to 0.37 wt% respectively. NiO content for olivine in harzburgite 
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PSS17 is 0.43 wt%, which is higher than most of the lherzolites from 

Panshishan. NiO content for olivines in Lianshan lherzolites and cpx-poor 

lherzolites range from 0.29 to 0.38 wt% and from 0.29 to 0.42 wt% 

respectively. The harzburgite LS26 has NiO content of 0.34 wt%, nearly the 

same content recorded in the olivines of the olivine-websterites LS04 and LS24, 

and lower than those from most Lianshan lherzolites. NiO content of olivines 

in dunite LS16 is 0.36 wt%. Most Fangshan olivines in lherzolites present 

lower NiO contents with respect to those of Panshishan and Lianshan xenoliths, 

ranging from 0.20 to 0.25 wt% except olivine one FS18 which has higher 

content 0.36 wt%. NiO content for olivines in cpx-poor lherzolites and 

harzburgite FS06 ranges from 0.23 to 0.43 wt%, with the lowest value recorded 

for the harzburgite. 
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Fig. 5.5 - CaO and NiO in olivines vs Mg# Light blue diamond, Panshishan lherzolite; light 
blue filled grey diamond, Panshishan cpx-poor lherzolite; blue open diamond, Panshishan 
harzburgite; red dot, Lianshan lherzolite; red filled grey dot, Lianshan cpx-poor lherzolite; red 
open dot, Lianshan harzburgite; red filled pink dot, Lianshan olivine websterites; red filled 
golden dot, Lianshan dunite; green triangle, Fangshan lherzolite, green filled grey triangle, 
Fangshan cpx-poor lherzolite; green open triangle. Fangshan harzburgite) 

 

Spinel 

Al, Cr, Fe and Mg are the major component for spinel. Mg# 

[100×Mg/(Mg+Fetotal), mol%] and Cr # [100×Cr/(Cr+Al) mol%] can give us 

important information of the spinel evolution and, on the whole, on the nature 

of the mantle. 

Cr# in sp for all xenoliths have large range, from the lowest value of 

Panshishan lherzolite PSS19 (7.95), to the highest value of Lianshan cpx-poor 

lherzolite LS21 (48.35). Sp Cr# values for Panshishan lherzolites range from 

7.95 to 16.01; Cr# value for cpx-poor lherzolites from 12.01 to 22.45; whereas 

spinel in harzburgite PSS17 has the highest Cr# value than in Panshishan 
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lherzolites (23.78); Sp-Cr# values of Lianshan lherzolites and cpx-poor 

lherzolites range from 8.63 to 22.81; from Lianshan it ranges from 24.35 to 

48.25. Harzburgite LS26, olivine websterites LS04 and LS24 08 and dunite 

LS16 have Sp-Cr# 40.71, 9.83-9.08 and 47.28 respectively. Cr# values for 

Fangshan lherzolites and cpx-poor lherzolites range from 9.6 to 19.58 and from 

18.09 to 34.08, respectively. Harzburgite FS06 has Sp-Cr# value of 37.38. On 

the whole, spinels of harzburgites and most cpx-poor lherzolite have higher 

Cr# values compared with those of lherzolites. 

Mg# values in spinels of Panshishan lherzolites range from 75.21 to 78.91, 

Mg# value in spinels of Panshishan cpx-poor lherzolites range from 74.64 to 

77.94 whereas spinels of harzburgite PSS17 have on average Mg# value of 

74.32, lower than those of Panshishan lherzolites and cpx-poor lherzolites. 

Sp-Mg# values for lherzolites and cpx-poor lherzolites from Lianshan range 

from 73.33 to 77.84 and from 65.97 to 74.24 respectively. The harzburgites 

LS26 has spinel with Mg# value of 66.00. The Mg# values of the olivine 

websterites LS04 and LS24 are 77.02 and 77.52 respectively and for the dunite 

LS16 Sp-Mg# is 66.96. Sp-Mg# value for Fangshan lherzolites most range 

from 75.94 to 78.70 except FS23 has a low value of 69.17, Sp-Mg# value for 

Fangshan cpx-poor lherzolites range from 73.64 to 76.42. The harzburgite 

FS06 has spinel at Mg# value of 69.24. Lherzolites in the three xenolith 

populations have always spinels with higher Mg# values with respect to the 

cpx-poor lherzolites and harzburgite. The sole exceptions are for the lherzolite 

FS23. 

In Subei mantle xenoliths Sp-Cr# is positively correlated with Sp-Mg# as 

expected for a residual trend (Fig. 5.6). Most lherzolites and the olivine 

websterites have high Sp-Mg# and low Sp-Cr# values; in contrast cpx-poor 
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lherzolites, harzburgites and dunite have low Sp-Mg# and high Sp-Cr# values. 
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Fig. 5.6 - Diagram of Mg# vs Cr# in spinels. Symbols are as Fig. 5.5 

 

Orthopyroxene 

Orthopyroxenes in all xenoliths have Mg# compositions ranging from 89.73 to 

92.30, which the lowest and highest value represented by Lianshan lherzolite 

LS31 and Lianshan dunite LS16 respectively. Mg# value for opx in Panshishan 

lherzolites range from 89.98 to 90.81, Mg# value for opx in Panshishan 

cpx-poor lherzolites range from 90.45 to 90.63, the harzburgite PSS17 has opx 

with Mg# value of 91.34, higher than those of the Panshishan lherzolites and 

cpx-poor lherzolites. Mg# value in opx from Lianshan lherzolites and cpx-poor 

lherzolites range from 89.73 to 90.99 and. from 90.93 to 92.05 respectively. 

Harzburgite LS26 has opx with Mg# value of 91.58, and for the olivine 

websterites LS04 and LS24 are 90.18 and 90.30. Opx of dunite LS16 shows the 

highest value (92.30) among the three xenolith populations. Mg# values for 
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lherzolites from Fangshan range from 89.90 to 91.43. Mg# value for cpx-poor 

lherzolite from Fangshan range from 90.52 to 92.16, the harzburgite FS06 has 

Mg# values of 91.64. On the whole, Lherzolites from Panshishan, Lianshan 

and Fangshan have Mg# values less than 91.5 and always have lower value 

compared with harzburgites from the same locality. Cpx-poor lherzolites from 

Lianshan have a higher Mg# value than lherzolites.   

SiO2 contents of the opx in all xenoliths range from 53.70 to 57.72 wt%, 

with the lowest and highest values of the Lianshan cpx-poor lherzolite LS19 

and Panshishan lherzolite PSS16 respectively. SiO2 contents of opx in 

lherzolites from Panshishan range from 54.96 to 57.72 wt%, the harzburgite 

PSS17 has an opx-SiO2 content of 56.84 wt%. Opx-SiO2 content in lherzolites 

and cpx-poor lherzolites from Lianshan range from 54.61 to 56.74 wt% and 

from 53.70 to 57.27 wt% respectively. The harzburgite LS26 have Opx-SiO2 

content of 56.01 wt% and for the olivine websterites LS04 and LS24 54.93 and 

54.97 wt% respectively. Opx-SiO2 content for the dunite LS16 is 57.13 wt%. 

SiO2 content of opx in Fangshan lherzolites range from 53.78 to 55.72 wt%, 

SiO2 content of opx in Fangshan cpx-poor lherzolites range from 54.93 to 

56.34, wt%; the opx in harzburgite FS06 have SiO2 contents of 55.93. In 

Fig.5.7a, the Fangshan lherzolites show relatively low Opx-SiO2 contents 

compared with Panshishan and Lianshan lherzolites at given Mg#. Lherzolites 

PSS19 and PSS16 have very high Opx-SiO2 contents compared with xenoliths 

in of Panshishan.   

Orthopyroxenes, on the whole, show TiO2 contents in the range of 0-0.22 

wt%, with the lowest and the highest values represent by Lianshan harzburgite 

LS26 and Fangshan lherzolite FS18. Opx-TiO2 contents for lherzolites from 

Panshishan range from 0.07 to 0.15 wt%, for cpx-poor lherzolites from 
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Panshishan range from 0.11 to 0.16 wt%. The harzburgite PSS17 has Opx-TiO2 

content of 0.06, lower than the lherzolites. Opx-TiO2 contents for Lianshan 

lherzolites and cpx-poor lherzolites range from 0.05 to 0.15 wt%. and from 

0.02 to 0.05 wt% respectively. Harzburgite sample and LS26 has opx with 

TiO2 contents very low (close to EMP detection limit) and. Opx in olivine 

websterites LS04 and LS24 contain 0.13 and 0.10 wt% of TiO2, and opx- TiO2 

in dunite LS16 lower content (0.07 wt%). TiO2 contents in lherzolites and the 

four cpx-poor lherzolites from Fangshan range from 0.07 to 0.22 wt%; and 

from 0.01 to 0.13 wt%. Opx in harzburgite FS06 has TiO2 content negligible. 

A negative correlation exists (Fig. 5.7b) between TiO2 content and Mg# in opx 

for xenoliths which have having Mg# value < 91.5. By contrast, the correlation 

becomes positive for those samples with Opx-Mg# higher than 91.5.  

Al2O3 contents of opx in all xenoliths range from 1.82 to 6.33 wt% with 

most samples (46 of 52) having opx with Al2O3 content less than 5 wt%. The 

lowest value is from by Lianshan dunite LS16 and highest value is from 

Fangshan lherzolite FS18. Al2O3 content in opx of lherzolites from Panshishan 

range from 3.65 to 4.60 wt%. Al2O3 content in opx of cpx-poor lherzolites 

from Panshishan range from 3.58 to 4.31 wt%, the harzburgite PSS17 has an 

Al2O3 content of 3.37 wt%, lower than the lherzolites and cpx-poor lherzolites. 

Opx- Al2O3 contents lherzolites and cpx-poor lherzolites from Lianshan range 

from 3.49 to 4.49 wt%; and from 1.88 to 3.37 wt% respectively, lower than the 

values of lherzolites. HarzburgiteLS26 have opx with Al2O3 contents of 2.29, 

the olivine websterites LS04 and LS24 4.50 and 4.39 wt% respectively. Opx- 

Al2O3 content for Fangshan lherzolites and cpx-poor lherzolites from range 

from 3.81 to 6.33 wt% and from 2.84 to 4.61 wt% respectively; the harzburgite 

FS06 has Al2O3 content of 3.11 wt%. On the whole, opx of Fangshan 
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lherzolites show higher Al2O3 contents, at comparable Mg# with respect to 

those of Panshishan and Lianshan (Fig. 5.7c). 

Cr2O3 content of opx in all xenoliths range from 0.21 (Panshishan PSS18 

lherzolite) to 0.82 (Fangshan FS23 lherzolite) wt%, Opx- Cr2O3 content for 

Panshishan lherzolites range from 0.21 to 0.37 wt%, Cr2O3 content for 

Panshishan cpx-poor lherzolites range from 0.30 to 0.39 wt% the harzburgite 

PSS17 has a Cr2O3 content of 0.45 wt%, higher than opx of Panshishan 

lherzolites and cpx-poor lherzolites. Opx Cr2O3 content for Lianshan 

lherzolites range from 0.21 to 0.51 wt% and for Lianshan cpx-poor lherzolites 

range from 0.24 to 0.54 wt%. LS26 harzburgite has opx Cr2O3 content 0.47 

wt% whereas, for the olivine websterites LS04 and LS24 are 0.30 and 0.26 

wt% respectively. Opx in dunite LS16 has on average Cr2O3 0.44 wt% Cr2O3 

contents. Opx- Cr2O3 contents in Fangshan lherzolites range from 0.37 to 0.82 

wt%, whereas in cpx-poor lherzolites range from 0.30 to 0.63 wt%, the 

harzburgite FS06 has opx with 0.67 wt% Cr2O3 content. As shown in Fig. 5.7d, 

opx of Panshishan lherzolites and cpx-poor lherzolites have a narrow range of 

Cr2O3 contents, whereas lherzolites and cpx-poor lherzolites from Lianshan 

and Fangshan are much scatter.(Fig. 5.7d). 

Expect opx in PSS18 (where Na2O content is not detected by the instrument), 

the rest of xenoliths have opx with Na2O contents range from 0.01 to 0.19 wt%; 

the lowest and highest values in Fangshan cpx-poor lherzolite FS24 and 

lherzolite FS18 respectively. Na2O content of opx in Panshishan lherzolites 

range from 0.07 to 0.11 wt%; Na2O content of opx in Panshishan cpx-poor 

lherzolites range from 0.03 to 0.11 wt%; the harzburgite PSS17 has opx with 

0.03 wt% Na2O content, lower than those of  lherzolites and cpx-poor 

lherzolites. Na2O contents of opx from Lianshan lherzolites range from 0.03 to 
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0.13 wt%. Na2O contents of opx from Lianshan lherzolites range from 0.04 to 

0.07wt% The harzburgite LS26 has opx with Na2O content 0.01 wt%. The 

olivine websterites LS04 and LS24 contain opx with 0.11 and 0.09 wt% of 

Na2O contents, and is 0.08 wt% for the dunite LS16. Na2O contents in opx 

from Fangshan lherzolites range from 0.08 to 0.19 wt%; Na2O contents in opx 

from Fangshan lherzolites range from 0.01 to 0.11 wt%; opx in harzburgite 

FS06 has Na2O content of 0.08 wt %.( Fig. 5.7e) 
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Fig. 5.7 - SiO2, TiO2, Al2O3, Cr2O3, and Na2O in orthopyroxene vs Mg# diagrams. Symbols are 
as Fig. 5.5  
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Clinopyroxene 

Cpx-Mg# compositions in all xenoliths range from 88.64 to 93.81, with the 

lowest and the highest values from Fangshan lherzolite FS19 and Lianshan 

dunite LS16. Cpx-Mg# values for Panshishan lherzolites and cpx-poor 

lherzolites range from 89.17 to 92.46, and from 91.32 to 92.49 respectively; the 

harzburgite PSS17 has opx-Mg# value of 92.84. Opx-Mg# of cpx in Lianshan 

lherzolites and cpx-poor lherzolites range from 90.50 to 92.62. and from 92.72 

to 93.46 respectively; on the whole higher than those recorded in Lianshan 

lherzolites. The harzburgite LS26 has cpx with Mg# value of 93.72. Mg# 

values in the olivine websterites LS04 and LS24 are 90.04 and 90.50 

respectively. Cpx Mg# values of Fangshan lherzolites and cpx-poor lherzolites 

range from 88.64 to 91.40, and from 90.89 to 93.76 respectively; the 

harzburgites FS06 has cpx with Mg# value of 92.00. Fangshan lherzolites have 

cpx with Mg# value less than 91.5, and have lower values compared with the 

opx of the cpx-poor lherzolites and the harzburgite. Cpx of Panshishan 

lherzolites have a narrow range of Mg# compared with Lianshan lherzolites. 

The dunite shows cpx which records the highest Mg# values whereas those in 

olivine websterites record the lowest Mg# value. 

Cpx-TiO2 contents in all xenoliths range from 0.01 to 0.72 wt%, with the 

lowest and highest values in Lianshan harzburgite LS26 and Lianshan 

lherzolite LS22 respectively. Cpx-TiO2 contents in Panshishan lherzolites 

range from 0.28 to 0.62 wt%, Cpx TiO2 contents in Panshishan cpx-poor 

lherzolites range from 0.53 to 0.65 wt%, the harzburgite PSS17 shows cpx with 

TiO2 contents of 0.21 wt%, lower than those in lherzolites and cpx-poor 

lherzolites. Cpx of Lianshan lherzolites have large range of TiO2 contents (0.19 

to 0.72 wt %), Cpx TiO2 contents in Lianshan cpx-poor lherzolites range from 
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0.03 to 0.22 wt%. The harzburgite LS26 have cpx with TiO2 content of 0.01 

wt%, and for the olivine websteritesLS04 and LS24 is near a same (0.63 wt %). 

TiO2 content in cpx of the dunite LS16 is 0.25 wt%. TiO2 contents of cpx in 

Fangshan lherzolites and cpx-poor lherzolites from range from 0.15 to 0.52 

wt% and; from 0.03 to 0.56 wt% respectively; the harzburgite FS06 has cpx 

TiO2 content of 0.03 wt%. A negative correlation can be observed between 

TiO2 and Mg# in cpx of Lianshan xenoliths (Fig. 5.8a); this correlation is not 

clear for Panshishan and Fangshan samples. 

Cpx Al2O3 contents in all xenoliths range from 2.11 to 7.94 wt%. The lowest 

value is representing by Lianshan harzburgite LS26 and highest value is 

represent by Fangshan lherzolite FS18. Al2O3 content for cpx in Panshishan 

lherzolites and cpx-poor lherzolites from range from 4.91 to 7.48 wt%, and 

from 4.55 to 6.53 wt% respectively. Cpx in the harzburgite PSS17 has an 

Al2O3 content of 4.23 wt%, lower than those the lherzolites and cpx-poor 

lherzolites. Cpx Al2O3 contents for lherzolites from Lianshan range from 4.99 

to 7.05 wt%. Cpx Al2O3 contents for cpx-poor lherzolites from Lianshan range 

from 2.99 to 4.36 wt%. The harzburgite LS26 has Al2O3 content of 2.01 wt%, 

cpx in the olivine websterites LS04 and LS24 7.01 wt% and 6.79 wt%. Al2O3 

content in cpx of Fangshan lherzolites range from 5.39 to 7.94 wt%; Al2O3 

content in cpx of Fangshan cpx-poor lherzolites range from 2.50 to 6.88 wt%; 

the harzburgite FS06 has cpx containing Al2O3 4.18. In the Fig, 5.8b, except 

for three lherzolites from Panshishan (PSS02, PSS12 and PSS19) and one from 

Fangshan (FS23), the other xenoliths show cpx with a good correlation 

between Al2O3 and Mg#. FS24 has very low Al2O3 content compare to other 

Fangshan xenoliths. 
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Cpx Cr2O3 content in all xenoliths range from 0.41 to 1.60 wt%, the lowest 

and highest values in Panshishan lherzolite PSS18 and Fangshan lherzolite 

FS23 cpx. Cr2O3 contents of cpx from Panshishan lherzolites and cpx-poor 

lherzolites range from 0.41 to 0.91 and from 0.85 to 0.89 respectively, the 

harzburgite PSS17 has a Cr2O3 content of 1.05, higher than the Panshishan 

lherzolites and cpx-poor lherzolites. Cr2O3 contents for lherzolites from 

Lianshan range from 0.59 to 1.28. Cr2O3 contents for lherzolites from Lianshan 

range from 0.54 to 1.29. The harzburgite LS26 has Cr2O3 content of 0.63 wt%, 

for the olivine websterites LS04 and LS24 are 0.76 and 0.50 respectively. 

Cr2O3 content for the dunite LS16 is 1.48, the highest value among Lianshan 

xenoliths. Cr2O33 content for lherzolites from Fangshan range from 0.75 to 

1.60, Cr2O3 content for lherzolites from Fangshan range from 0.60 to 1.28, the 

harzburgite sample FS06 has Cr2O3 content of 1.38. No correlation is observed 

between Cr2O3 content and Mg# value (Fig. 5.8c). 

Cpx CaO content in all xenoliths range from 17.63 to 24.12 wt%, whit the 

lowest value in Fangshan lherzolite FS18 and the highest value in cpx-poor 

lherzolite FS24. Cpx-CaO contents in Panshishan lherzolites and cpx-poor 

lherzolites range from 19.59 to 22.45 wt%. and from 20.37 to 22.63 wt%. 

respectively. The harzburgite PSS17 has a cpx-CaO content of 22.30 wt%. 

CaO contents for lherzolites from Lianshan range from 20.22 to 22.32 wt%., 

whereas in cpx-poor lherzolites range from 20.89 to 22.42 wt%. The 

harzburgite LS26 has cpx-CaO content of 23.85 wt%, and the olivine 

websterites LS04 and LS24 have 20.03 and 20.41 wt%. and the dunite LS16 

has 21.08 wt%. CaO contents in cpx of Fangshan lherzolites and cpx-poor 

lherzolites range from 17.63 to 20.14 wt% and from 20.16 to 24.12 wt%. The 

harzburgite FS06 has cpx-CaO content of 20.53 wt%. A good correlation 
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between CaO content and Mg# value is shown in Fig. 5.8d. Fangshan 

lherzolites show lower cpx-CaO content and Mg# values compared to 

lherzolites from the other two localities.  

Cpx Na2O contents in all xenoliths range from 0.16 to 2.19 wt%: which the 

lowest and highest value are represent by Lianshan harzburgite LS26 and 

Panshishan lherzolite PSS19 respectively. Cpx-Na2O contents for from 

Panshishan lherzolites and Cpx Na2O content for cpx-poor lherzolites range 

from 0.89 to 2.19 wt%, and from 1.07 to 1.57 wt% respectively; the 

harzburgite PSS17 has cpx-Na2O content in cpx of 0.85 wt%, lower than 

lherzolites and cpx-poor lherzolites of Panshishan. Na2O contents in cpx for 

from Lianshan lherzolites and from cpx-poor lherzolites are in the range of 

1.16 -1.96 wt% and 0.94 to 1.65 wt% respectively. The harzburgite sample 

LS26 has Na2O contents in cpx of 0.16 wt%, and for the olivine websterites 

LS04 and LS24 are 1.76 and 1.65 wt%. Na2O contents in cpx of dunite LS16 is 

1.93 wt%. Na2O contents in cpx for lherzolites from Fangshan are in the range 

of from 0.80-1.92 wt%., for lherzolites are 0.26 to 1.62 wt% and in the 

harzburgite FS06 are 0.99 wt %.( Fig. 5.8e). 
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Fig. 5.8 - TiO2, Al2O3, Cr2O3, CaO and Na2O in clinopyroxene vs Mg# diagrams. Symbols are 
as Fig. 5.5 Light blue diamond, Panshishan lherzolite; light blue filled grey diamond, 
Panshishan cpx-poor lherzolite; blue open diamond, Panshishan harzburgite; red dot, Lianshan 
lherzolite; red filled grey dot, Lianshan cpx-poor lherzolite; red open dot, Lianshan harzburgite; 
red filled pink dot, Lianshan olivine websterites; red filled golden dot, Lianshan dunite; green 
triangle, Fangshan lherzolite, green filled grey triangle, Fangshan cpx-poor lherzolite; green 
open triangle. Fangshan harzburgite
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Trace elements 
Cpx is the most important phase that controls the incompatible trace element 

whole rock budget in anydhrous spinel peridotite. Trace element compositions 

of cpx and one opx are carried out by LA-ICP-MS. Totally 47 samples from 

Subei basin for cpx are chosen for trace elements analysis. 12 xenoliths from 

Panshishan: 9 lherzolites, 2 cpx-poor lherzolite and 1 harzburgite PSS17. 22 

xenoliths from Lianshan: 12 lherzolites, 6 cpx-poor lherzolites, 1 harzburgite 

LS26, 2 olivine websterites LS04 and LS24 and 1 dunite LS16. 13 xenoliths 

from Fangshan: 8 lherzolites, 4 cpx-poor lherzolites and 1 harzburgite FS06. 

Some opx from FS16 are also measured. Differences between individual 

analyses of the same minerals were all within analytical precision, except for 

high variable element such as Pb, Zr, Nb, Hf. Average trace element 

abundances of Panshishan, Lianshan and Fangshan mantle xenolith minerals 

are thus reported in Table 5.7. A C1 chondrite values (Sun and McDonough, 

1989) are used to normalization for the REE (Rear Earth Element), and 

primitive mantle values (McDonough and Sun 1995) are used to normalization 

for trace elements (Fig. 5.9, 5.10, 5.11).  

All the xenoliths from Subei basin have cpx with very variable trace elements 

contents (La from 0.1 to 80 X C1 chondrite and Yb from 2.3 to 12 X C1 

chondrite). Based on the REE pattern (LREE, Light Rare Earth Element; 

MREE, Middle Rare Earth Element; HREE Heavy Rare Earth Element) and 

(La/Sm )N (N indicate C1 Chondrite normalization) and (Sm/Yb)N, the cpx are 

subdivided into five different groups.  
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Group I, with LREE-depleted pattern; 

Group II, with upward convex pattern; 

Group III, with flat REE pattern;  

Group IV, with LREE-enriched pattern; 

Group V, with spoon-shaped pattern. 

 

Panshishan 

Group I - LREE-depleted pattern  

Among the Panshishan cpx, those of lherzolites PSS01, PSS07, SS12, PSS13 

and PSS19 are included in this group (Fig. 5.9). Panshishan cpx of this group, 

are characterized by strong depleted LREE (compared with MREE and HREE) 

pattern, accompanying with high Mg#, Al2O3 contents, and low Cr2O3 contents. 

The (La/Sm)N ratios are low, ranging from 0.13 to 0.88. MREE and HREE 

were distributed in a near flat pattern with (Sm/Yb)N from 0.63 to 1.03 (Fig. 

5.11), associated with a weak Zr (Zr*=ZrN/((Nd+Sm)N/2)), 0.61 to 0.93) and 

strong Ti (Ti*=TiN/((Eu+Gd)N)/2) 0.38 to 0.61) negative anomalies (Fig. 5.11). 

Cpx of lherzolite PSS19 has a strong Eu positive anomaly 

(Eu*=Eu/(Sm+Gd)/2=1.61) associated with remarkable Sr positive anomaly. 

Strong Zr (and Hf) negative anomaly also occurs (Zr*=0.29) and weak Nd and 

Ti anomalies are also observed.  

Group II - Upward convex pattern  

Lherzolites PSS05, PSS11, PSS15 and ol-websterite PSS16 cpx are referred to 

this group. Group II Panshishan cpx are characterized by a flat distribution of 

Tm, Yb, Lu (HREE), MREE convex upward and slightly LREE distributions 

(Fig. 5.9). Most samples of this group have (La/Sm)N less than 0.9 and 

(Sm/Yb)N 1.05 - 1.35, except PSS05 which has the convex upward profile 
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smother than the other PSS Group II cpx. In this group strong Nb, Ti and weak 

Zr (and Hf) negative anomalies are also observed. Sample PSS05 shows strong 

Th and U and Th enrichments (10 times PM).  

 

Group III - Flat REE pattern  

Among Panshishan samples just the harzburgite PSS17 cpx are referring to this 

group. They are characterized by low REE contents (about 5 X C1 values, 

HREE compatible with residual cpx expected to find in a harzburgite), a flat 

distribution in REE pattern with (La/Sm)N and (Sm/Yb)N near 1. PSS17 show a 

weak Zr (and Hf) and Ti negative anomalies. 

 

Group IV - LREE-enriched pattern  

Lherzolite PSS02 is the only sample of the Panshishan xenoliths suite having 

LREE enriched cpx (Fig. 5.9). They are characterized by LREE strong 

enrichment; but also MREE and HREE reflect a slight enrichment (Fig. 5.11). 

The lherzolite PSS02 shows (La/Sm)N and (Sm/Yb)N 3.31 and 1.34 

respectively. PSS02 cpx has remarkable Ti (Ti* = 0.30) and less pronounced 

Zr (and Hf) negative anomalies, as well as strong Th and U enrichments (10 X 

PM) (Fig. 5.9). 

 

Group V - Spoon-shaped pattern  

Lherzolite PSS10 cpx are referred to this group. They are characterized by a 

LREE spoon-shaped pattern. La and Ce are enriched, whereas other LREE 

depleted. Cpx PSS10 have (La/Sm)N and (Sm/Yb)N 1.27 and 3.35 respectively. 

Zr and Ti negative anomalies are also observed. 
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Fig. 5.9 - REE and trace element patterns of clinopyroxenes from peridotite xenoliths from 

Panshishan.  From Group I to group V. 
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LianShan 

Group I - LREE-depleted pattern 

Cpx of lherzolites LS01, LS05, LS06, LS07, LS09, LS12, LS23, LS31 and 

ol-websterites LS04, LS24 are referred to this group.  

They show (La/Sm)N ranging from 0.06 to 0.42 and (Sm/Yb)N from 0.3 to 1.05 

respectively(Fig. 5.10). All LianShan cpx of group I show YbN around 10, 

except LS09 and LS12 cpx that have Yb contents proximal to values 

theoretically assigned to cpx in residual lherzolites (and cpx bearing 

harzburgite). Depleted LS12 lherzolite with 8% modal cpx, is coherent with Yb 

contents of its clinopyroxenes (YbN=5.67), conversely the fertile LS 09 

lherzolite, having 22% modal cpx, is difficult to account cpx with YbN=7.92. 

Ti negative and weaker (almost absent) Zr (and Hf) anomalies are observed in 

PM incompatible trace element diagram. LS09 and LS12cpx show more 

pronounced Zr negative anomalies (Ti*=0.25 -0.2) than other cpx of this 

group. 

 
Group II - Upward convex  
Only cpx of LS22 lherzolite among the 22 Lianshan xenoliths analyzed, 

presents this profile. It is characterized by a slight LREE-depleted 

[(La/Sm)N=0.72] and MREE- [(Sm/Yb)N =1.64] enriched pattern (Fig. 5.10). 

Sr, Ti and Zr (Hf) negative anomalies are observed, in PM normalized 

incompatible trace element pattern (Fig. 5.12). 

 

Group III - Flat REE pattern  

 Only cpx from the harzburgite LS26 (cpx< 5%) represents the group III for 

the Lianshan xenolith suite. It is strongly depleted in all REEs (Fig. 5-12) as 
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well as other incompatible trace elements (Fig. 5.10). The REE contents 

(mainly MREE and HREE) and distribution recall opx REE profile rather than 

cpx REE profile ((Yb)N=1.56) as expected from the residual (close to the 

complete cpx consumption) harzburgite.  

 

Group IV - LREE-enriched pattern 

Cpx of LS02, LS15, LS17, LS20 lherzolites, LS21 harzburgite and LS16 

dunite, are referred to this group. They are characterized by strong enrichment 

in both LREE and MREE, and low to very low HREE contents (La, 20-60 XC1 

chondrite; (La/Sm)N =1.97-10 and (Sm/Yb)N=1.57-4.24). LS21 harzburgite 

(modal cpx 6%), LS 15 cpx-poor lherzolite (modal cpx 6%) and LS16 

cpx-bearing dunite (modal cpx 3%) have (almost) coherently low to very low 

Yb contents (YbN=2.91,4.23 and 4.05 respectively). By contrast the fertile 

LS02 lherzolite (modal cpx 23%), contains cpx with the lowest Yb contents of 

this group (YbN =2.65).A strong Th and U enrichments and prominent Ti and 

Nb negative anomalies are observed in all the cpx of this group. 

 

Group V - Spoon-shaped pattern  

Four Lianshan lherzolites (LS03, LS08, LS19 and LS30) belong to this 

group. Cpx of this group are characterized by a slight enriched in LREE, and a 

near flat to flat MREE-HREE pattern [(La/Sm)N ratios 0.68-4.69, and 

(Sm/Yb)N ratios 0.69-0.95] (Fig. 5.10). Only weak Ti negative anomaly is 

observed in the entire group V Lianshan cpx with the exception of LS03 cpx, 

which are richer in La (and Ce) and show a remarkable Zr (and Hf ) negative 

anomaly, together with evident Sr positive anomaly (Fig. 5.10). 
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Fig. 5.10 - REE and trace element patterns of clinopyroxenes from peridotite xenoliths from 

Lianshan 
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FangShan 

Just three cpx groups have been recognized in Fangshan xenoliths. Group II 

and group III are missing. 

 

Group I - LREE-depleted pattern  

Cpx of lherzolites FS03, FS07, FS12 and FS26 referred to this group. They 

are characterized by strongly LREE depleted and flat MREE – HREE pattern: 

(La/Sm)N 0.61-0.81 and (Sm/Yb)N 0.75-1.03 (Fig.5.11), associated with 

ubiquitous strong Ti negative anomalies, and feeble to absent Zr (and Hf) 

negative anomaly. Interesting to note the most fertile lherzolite of this group 

(FS03, modal cpx 13%) show the lowest HREE contents (YbN=6.55) 

 

Group IV - LREE-enriched pattern 

Only FS06 and FS16 harzburgites show cpx belonging to group IV. Both are 

enriched in LREE (La, 70 X C1 chondrite) with respect to MREE and HREE, 

but they differ in term of MREE and HREE distribution [(La/Sm)N, 0.70-1.42 

and (Sm/Yb)N, 4.38-2.26] (Fig. 5.11). FS06 and FS16 cpx have almost the 

same U-Th contents (U, 20 X PM). Both harzburgites show cpx with strongly 

negative anomalies in Nb, Zr (Hf) and Ti, more pronounced in sample FS16.  

 

Group V - Spoon-shaped pattern  

A large number of FangShan samples (all lherzolites: FS01, FS11, FS14, FS17, 

FS19, FS21 and FS23) have cpx referring to this group. They present a slight 

LREE and flat to feeble convex upward MREE- HREE distribution 

[(MREE-HREE ~ 10 times C1 chondrite; (La/Sm)N and (Sm/Yb)N, 1.42-4.04 

and 0.96-1.71 respectively]. All samples show Th and U enrichment (amplified 
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in FS14 and FS21 cpx) associated with remarkable Ti, and weak to absent Zr 

(Hf) negative anomalies. 

1

10

100

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

m
in

er
al

/C
1 

ch
on

dr
ite

lh FS03 (13)
lh FS07 (12)
lh FS12 (7)
lh FS26 (9)

 

0.001

0.01

0.1

1

10

100

Rb Ba Th U Nb Ta La Ce Pb Pr Sr Nd Zr Hf Sm Eu Ti Gd Tb Dy Y Ho Er Yb Lu

m
in

er
al

/p
rim

iti
ve

 m
an

tle

FS03
FS07
FS12
FS26

 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 101 -

1

10

100

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

m
in

er
al

/C
1 

ch
on

dr
ite

hz FS06 (5)
hz FS16 (6)

 

0.001

0.01

0.1

1

10

100

Rb Ba Th U Nb Ta La Ce Pb Pr Sr Nd Zr Hf Sm Eu Ti Gd Tb Dy Y Ho Er Yb Lu

m
in

er
al

/p
rim

iti
ve

 m
an

tle

FS06
FS16

 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 102 -

1

10

100

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

m
in

er
al

/C
1 

ch
on

dr
ite

lh FS01 (18) lh FS11 (9) lh FS14 (11)

ls FS17 (16) ls FS19 (14) lh FS21 (10)

lh FS23 (12)

 

0.001

0.01

0.1

1

10

100

Rb Ba Th U Nb Ta La Ce Pb Pr Sr Nd Zr Hf Sm Eu Ti Gd Tb Dy Y Ho Er Yb Lu

m
in

er
al

/p
rim

iti
ve

 m
an

tle

FS01
FS11
FS14
FS17
FS19
FS21
FS23

 

 Fig. 5-13 REE and trace element patterns of clinopyroxenes from peridotite xenoliths from 

Fangshan 
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Regardless the localities, in the simplified REE diagram with (La/Sm)N versus  

(Sm/Yb)N ratios (Fig. 5.12) the five cpx groups are plotted. Most of samples of 

LREE-depleted group I fall in the third quadrant, whereas samples of 

LREE-enriched group IV are in the opposite first quadrant. The upward convex 

group II show a little differences among them, three samples are in second 

quadrant, and the other two samples are in the third quadrant having (Sm/Yb)N 

less than 1. The flat REE pattern Group III are clustered around the one-one 

coordinates, and the spoon-shaped pattern group V are distributed along the 

x-axis in the first and the fourth quadrant. 
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Fig. 5.12 - Simplified REE pattern with (La/Sm)N vs (Sm/Yb)N of Subei basin clinopyroxenes 

 

The cpx HREE abundances suggest that the samples have experienced various 

degree of melting, for example YbN varied from 4.60 to 12.12 for Panshishan 
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xenoliths, 1.56 to 13.04 for Lianshan xenoliths and 2.78 to 11.27 for Fangshan 

xenoliths. The modelling of melting process is discussed below (see Chapter 

8). 
 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 105 -

Mineral Oxygen isotopes 

The isotope composition of oxygen in peridotite xenoliths can provide 

important information on mantle region.  

Oxygen isotope ratios are reported as permil deviations from SMOW (standard 

mean ocean water) according to the conventional δ-notation: 

δ18O=[((18O/16O)sample - (18O/16O)ref)/ (18O/16O)ref)]×103. 

The fractionation factor between two phases A and B is defined as “αA-B”, 

where αA-B=RA/RB , and R is the 18O/16O ratio. The O-isotope fractionation 

between two phases is reported as ΔA-B=103 ln αA-B, often approximated to 

ΔA-B=δA -δB.  

Mattey et al. (1994) reported oxygen isotopic composition of 76 samples of 

olivine in spinel-, garnet- and diamond-facies peridotites, and as sin-genetic 

inclusions within diamond. The laser fluorination method of O2 extraction was 

used to obtain quantitative extraction, otherwise hardly achieved with 

conventional fluorination. Accordingly, the δ18O values of olivine are almost 

invariant: they average 5.18±0.28‰ (2σ), with an overall variation from 4.8 to 

5.5‰. The δ18O values of opx range from 5.48 to 6.1‰, and coexisting 

clino-pyroxenes from 5.28 to 5.9‰. The Δ18Ocpx-ol values are positive and 

always close to 0.4‰, consistent with isotopic equilibrium at typical mantle 

temperatures (>1100 °C). The bulk compositions of spinel-, garnet- and 

diamond-facies mantle peridotites are similar, with a calculated bulk mantle 

δ18O of +5.5‰. 

Ionov et al. (1994) studied spinel and garnet–bearing peridotites from the 

Vitim Volcanic Field in Siberia. These rocks define a suite of fertile mantle 

xenoliths that are LREE-depleted and have strongly depleted strontium and 

neodymium isotopic compositions. Determination of 18O/16O ratios by 
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conventional and laser-assisted fluorination techniques yield a very narrow 

range of whole-rock δ18O values for both spinel peridotites (+5.4 to +5.8‰) 

and garnet lherzolites (+5.5 to +5.8‰ ). Mineral δ18O values for the xenoliths 

are: ol =5.1 to 5.8‰, opx= 5.7 to 6.0‰, cpx =5.5 to 6.2‰, grt=5.5 to 6.0‰, 

and sp=4.9 to 5.5‰. Similarly, δ18O ranges for silicate mineral pairs vary from 

only 0.5 to 0.7‰. The sixteen peridotite xenoliths analysed exhibit equilibrium 

O-isotope fractionations between minerals of a magnitude expected from 

theoretical and experimental considerations, which may be possibly ascribed to 

temperature-controlled 18O distribution between olivine and pyroxenes in 

spinel-bearing peridotites. On chemical bases they also define a possible source 

rock for MORB-like melts with δ18O values varying from ca. + 5.7 to + 6.1‰.  

Chazot et al. (1997) determined oxygen isotope ratios of minerals from 

anhydrous and hydrous (amphibole-bearing) spinel lherzolites from Yemen, as 

well as from hydrous spinel lherzolites and amphibole megacrysts from 

Nunivak Island, Alaska, using the laser fluorination technique. Oxygen isotopic 

compositions of olivine vary from 5.1 to 5.4‰ and δ18O values of opx, cpx and 

sp range from 5.68 to 5.98‰, from 5.53 to 5.77‰, and from 4.0 to 4.75‰, 

respectively. 

Harmon and Hoefs (1995) measured the O-isotope composition of 743 

Neogene volcanic rocks worldwide in order to define possible systematic 

variations in the δ18O values of basalts (historic lavas, submarine glasses, and 

lavas with < 0.75 wt% H2O) from different geodynamic settings. They find that 

Mid-ocean-ridge basalts (MORB) have uniform O-isotope composition, with 

δ18O=+5.7±0.2‰. Basalts erupted in different tectonic settings show 18O/16O 

ratios that are both lower and higher than MORB, with continental basalts 

enriched in 18O by ca. 1‰ over oceanic basalts. 
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Totally 32 samples from Subei basin for cpx are chosen for oxygen isotopic 

analyses.10 xenoliths from Panshishan: 8 lherzolites, 1 harzburgite PSS17 and 

1 olivine websterite PSS16. 10 xenoliths from Lianshan, all are lherzolites. 12 

xenoliths from Fangshan: 10 lherzolites, and 2 harzburgite FS06 and FS16. The 

stable oxygen isotope composition of minerals from mantle xenoliths studied in 

this thesis, are reported in Table 5.6 and shown in Fig. 5.13. The mineral are 

olivine, orthopyroxene, clinopyroxene and spinel of peridotite xenoliths from 

Panshishan, Lianshan and Fangshan. Analyses were duplicated for each 

mineral, and some samples with no consistent δ18O values were measured 

several times. The oxygen isotope shows no relationship with the different rock 

types (lherzolite, harzburgite, olivine websterite and dunite). In Panshishan 

xenoliths, the δ18O values range 5.28 to 5.78 ‰ for olivine, from 5.87 to 6.53 

‰ for opx, from 5.18 to 6.15 ‰ for cpx, and 4.11 to 5.37 ‰ for sp. The results 

are similar to those reported by Yu et al. (2005), although these authors refer a 

broader range of δ18O values for for ol, opx and cpx. In Lianshan xenoliths, the 

δ18O values range from 5.42 to 5.96 ‰ for olivine, from 6.01 to 6.67 ‰ for 

opx, from 5.77 to 6.34 ‰ for cpx, and 4.52 to 5.58 ‰ for sp. In xenoliths from 

Fangshan area, the δ18O values range from 5.12 to 6.32 ‰ for olivine, from 

5.79 to 6.57 ‰ for opx, from 5.33 to 6.31 ‰ for cpx, and from 4.37 to 5.39 ‰ 

for sp. Most of the samples have δ18O values within the range of the worldwide 

mantle xenoliths. Fractionation between opx and ol are always positive in 

Panshishan and Lianshan xenoliths, as expected for mantle phases in O-isotope 

equilibrium. Also most xenoliths from Fangshan area have opx δ18O values 

higher than ol, with the exception of samples FS12 and FS13, showing clear 

disequilibrium fractionation. The observed positive fractionation between 

pyroxene and olivine satisfies the theoretical calculations of Zheng (1993), 
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who modeled the oxygen isotope fractionation among anhydrous silicate 

minerals by means of the modified incremental method, and described the 

following order of 18O-enrichment: quartz > albite ≥ K-feldspar > sillimanite 

≥leucite > andalusite > Jadeite > kyanite > anorthite ≥ cordierite > diopside 

> wollastonite > zircon ≈ garnet > olivine. Because the equilibrium constant 

is temperature-dependent, we can express the general formula of this relation 

for geological conditions as:  

1000 ln α (xy) =  a (xy)× 106 / T2 + c (xy) 

Where a and c are temperature coefficients for minerals x and y. 

As a function of δ, the equation above becomes: 

1000ln[(1000 + δx)/(1000 + δy)] = a (xy) ×106 / T2 + c (xy). 

For O-isotope exchange between anhydrous phases, the value of b = 0 

(Bottinga and Javoy, 1973).As for the latter case, the graphical expression of 

this equation is a straight line passing for the origin: (y = mx + 0), with Δ18Ox - y 

= y; a = x; 106/ T2 = m (angular coefficient), the so-called “pseudo-isotherm”. 

Accordingly, we can draw δ−δ diagrams where the O-isotope composition of 

one phase is plotted vs. the O-isotope composition of another phase, assuming 

the system is bi-mineralic. Although several minerals may contribute to the 

paragenesis of a rock, the δ−δ plots can be conveniently used to infer the 

behavior of a mineral, likely the phase with the lowest diffusivity and/or 

highest modal abundance vs. the behavior of another phase, which is modally 

subordinate and has higher diffusivity. In the case of mantle peridotites, it is 

convenient to plot the δ18O values of olivine (> 50% volume) vs. those of the 

other phases, which are modally subordinate and have slightly higher 

diffusivities at mantle conditions.  
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In the δ18Oolivine vs. δ18Oorthopyroxene plot, samples from Panshishan and Lianshan 

lie along two pseudo-isotherms, defined by the Δol-opx = 0.5 and Δol-opx = 0.9 ‰ 

fractionation. O-isotope equilibrium at temperatures of 900 and 1200°C have 

been calculated on the basis of these fractionation values (Chiba et al., 1989; 

Zheng, 1993; Fig. 5.13). Olivine and opx are the most abundant and 

“refractory” phases of the studied xenoliths and more likely preserve the 

primary O-isotope record at mantle conditions. The data of FangShan are more 

scattered and likely reflect a disturbed O-isotope equilibrium condition. 

Similarly, the δ18Ool vs. δ18Ocpx plot shows very large variations in sample 

distribution. This may be due to the occurrence of cpx with possible 

re-crystallized cpx crystal 
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Fig. 5.13 - Oxygen isotope composition for olivine, orthopyroxene and clinopyroxene in 
xenoliths from Subei basin. Δ=0 are also shown. Light blue diamond, Panshishan lherzolite; 
light blue filled grey diamond, Panshishan cpx-poor lherzolite; blue open diamond, Panshishan 
harzburgite; red dot, Lianshan lherzolite; red filled grey dot, Lianshan cpx-poor lherzolite; red 
open dot, Lianshan harzburgite; red filled pink dot, Lianshan olivine websterites; red filled 
golden dot, Lianshan dunite; green triangle, Fangshan lherzolite, green filled grey triangle, 
Fangshan cpx-poor lherzolite; green open triangle. Fangshan harzburgite) 
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Chapter 6 – P-T and Oxygen fugacity estimates 

 

 

Temperature and Pressure estimates 

Since all xenolith investigated in this thesis show none evidence of textural 

intra-mineral disequilibrium, they represent good examples for 

thermo-barometric evaluation. Within individual sample both opx and cpx have 

homogeneous major element compositions, particularly regarding mg-number, 

and, together with ol, they show mutual equilibrium relationships, as indicated 

by the Fe/Mg exchange equilibrium of Brey and Köhler (1990)(Fe/Mg 

opx/cpx=1.08, Fe/Mg ol/cpx=1.22 and Fe/Mg ol/opx=1.09). To reinforce the 

validity of such estimates, temperatures were calculated using only cpx and 

opx cores. The obtained temperatures when plotted against Fe/Mg opx/cpx 

follow a general trend included between the 10 and 50kbar of Brey and Köhler 

experimental curves.  

Nominal equilibration temperatures (for a pressure arbitrarily assumed to be 15 

Kbar, see below), for PSS, LS and FS xenoliths are reported in Table 6.1. 

The Panshishan and Lianshan lherzolites record very similar range of 

temperatures varying on average from 816°C to 1014°C and from 823°C to 

1001°C respectively (Table 6.1, Fig. 6.1). The harzburgite PSS17 from 

Panshishan show a temperature of 922°C and the olivine websterite PSS16 has 

a temperature of 1033°C. The harzburgite LS21 and LS26 from Lianshan show 

a temperature of 855 °C and 821°C and the olivine websterite LS04 and LS24 

985°C and 961°C. Among each sample only calculated temperatures with 

values differing maximum 70°C are considered for geothermal considerations 

and for the subsequent pressure calculation. This limit has been determinated 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 112 -

considering the propagating errors combining EMP data, nature of the sample 

together with the error of the thermometer formula itself. Despite the textural 

and (apparent) geochemical equilibrium of both Panshishan and Lianshan 

xenoliths, in a few samples the calculated temperatures may differ up to 126°C 

(PSS13) and 141°C (LS05), with Panshishan mantle population showing the 

largest number of disequilibria samples. I consider disequilibrium evident in 

samples with differences in temperatures > 70 °C. Fangshan lherzolites record 

temperatures ranging from 1002°C to 1208°C, with just one sample (FS24) 

recording much lower values (811°C; Table 6.1, Fig. 6.1). Fangshan 

harzburgites FS06 and FS16 record temperatures of 1057°C and 1073°C. 

Fangshan xenoliths result thermally well equilibrated (in all samples T values 

differ less then 41°) with the highest temperatures among the three xenolith 

populations. 

Pressures were estimated based on the Ca distribution between olivine and 

clinopyroxene (Kohler and Brey, 1990). Considering that Ca contents in 

olivine is proximal to detection limit in EMP analyses, as well as the high 

diffusion rate of Ca in olivine compared with that in pyroxenes the reliability 

of this barometer is strongly dependent on the state of equilibrium for each 

ol–cpx pair (Witt-Eickschen and Kramm, 1997). For this reason pressure 

estimates were calculated for the ol cores, combined with the opx–cpx BandK 

thermometer, to yield realistic pressures for ‘equilibrated’ parageneses. In 

addition, since spinel is the only aluminous phase, it is reasonable to consider 

the range of 12–18 Kbar as the barometric conditions at the time of the xenolith 

entrainment. 

Pressure estimates range between 12 to 25, 11 to 23 and 11 to 33 Kbar for 

Panshishan, Lianshan and Fangshan lherzolites, respectively. The harzburgite 
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PSS17 from Panshishan has a pressure of 25Kbar. Harzburgite LS21 and LS26 

from Lianshan have a pressure of 17 and 16Kbar, and olivine websterite LS04 

and LS24 has a pressure of 21 and 21.5 Kbar. Harzburgite FS06 and FS16 from 

Fangshan have a pressure of 24 and 32kbar. There is no significant pressure 

difference between rock types. The results are shown in Table 6.1. Most of the 

calculate pressures for Panshishan, Lianshan and Fangshan exceed the sp 

stability field. This could be due to the weakness of the thermo-barometric 

method applied, that however have been taken into account in estimating the 

errors, reported in the P-T diagrams as error bars (Fig. 6.1). Notwithstanding 

the calculated errors, we are confident in consider that xenoliths sampling the 

mantle beneath Subei basin record high deep lithospheric mantle condition. In 

P-T diagram, only Lianshan xenolith population seems to trace a trend, which 

recalls a possible geotherm. The few (and heterogeneous) P-T data of 

Panshishan, seem to recall the Lianshan geothermometric condition. On the 

other hand, Fangshan xenoliths seem to reflect a mantle domain well 

constrained between 17 and 23 Kbar, and hotter with respect to Lianshan and 

Panshishan. 
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Fig. 6.1 - Pressure vs equilibrium temperature of Subei basin xenoliths. Light blue diamond, 
Panshishan lherzolite; light blue filled grey diamond, Panshishan cpx-poor lherzolite; blue 
open diamond, Panshishan harzburgite; red dot, Lianshan lherzolite; red filled grey dot, 
Lianshan cpx-poor lherzolite; red open dot, Lianshan harzburgite; red filled pink dot, Lianshan 
olivine websterites; red filled golden dot, Lianshan dunite; green triangle, Fangshan lherzolite, 
green filled grey triangle, Fangshan cpx-poor lherzolite; green open triangle. Fangshan 
harzburgite 
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Oxygen fugacity  

Oxygen fugacity (fO2) values, reported in Table 6.1, were obtained from the 

equilibrium:  

  6Fe2SiO4 + O2 = 2Fe3O4 + 6FeSiO3    

log (fO　 2)P,T = - 6logaOLFe2SiO2 + 3logaOPXFe2Si2O6 + 2logaSPFe3O4 

Calculated following the protocol of Woodland et al. (1992).  

A crucial point for fO2 estimates is the determination of the Fe3+/Fe2+ ratios of 

the various phases. The Fe3+ content of the orthopyroxenes and spinels has 

been calculated using the Carswell and Gibbs (1987) and O'Neill and 

Navrotsky (1983) methods respectively, assuming all the iron in olivine to be 

Fe2+. The amount of Fe3+ in the spinel solid-solution is difficult to evaluate, 

considering the high dilution of Fe3O4 component in the upper mantle spinels. 

The Fe3O4 activity has been calculated using experimental data from Nell and 

Wood (1991). 

P–T differences have a significant effect on the calculated oxygen fugacity 

expressed relative to the fayalite-magnetite-quartz buffer [FMQ] (log fO2). A 

difference of 100°C in the calculated temperature produces a variation in the 

(log fO2) of 0.15-0.2; pressure has a larger effect, producing differences of 

0.3-0.5 log bar units for an assumed error of 5 Kbar in pressure calculation.  

However, Fe3+ content of spinel contributes to the greatest uncertainty in fO2. 

Propagating counting errors yield an uncertainty in Fe3+/Fe of 0.025. For the 

calculated [FMQ] log fO2 the uncertainty in fO2 is 0.3-0.4 log units. At very low 

Fe3+ contents, the uncertainty can become a significant proportion of the total 

concentration and the corresponding uncertainty in fO2 is greater. For example, 

a [FMQ] log fO2 of -2.5 will have an associated uncertainty of about 0.8 log 

units. 
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The fO2 conditions of the xenoliths have no correlation with the rock type 

(dunite, harzburgite, lherzolite and olivine websterite). Based on the obtained 

results the fO2 conditions calculated for Panshishan and Fangshan samples 

range over four orders of magnitude from log fO2~ 0.25 to -4.12 FMQ and from 

2.26 to -2.13 FMQ, respectively (Table 6.1); Lianshan samples present a more 

restricted range, with log fO2 from 0.55 to -2.4 FMQ.   

As shown in Fig. 6.2, no correlation between equilibrium temperature and 

oxygen fugacity is observed. A general negative correlation between oxygen 

fugacity and pressure exist (Fig. 6.3). Interesting to note the Panshishan mantle 

domain, which record the lower pressure estimates, present also fO2 values 

which extend the range of log fO2 (FMQ), calculated for garnet-bearing 

peridotite xenoliths in many cratons, to both more oxidized and more reduced 

values (Creighton et al., 2009 and reference therein)  
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Fig. 6.2 - Oxygen fugacity vs equilibrium temperature of Subei basin xenoliths. (Symbols are 
as Fig. 6.1) 
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Fig. 6.3 - Oxygen fugacity vs Pressure of Subei basin xenoliths. (Symbols are as Fig. 6.1) 
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Chapter 7 - Water content in opx and cpx 

  

 

Hydrogen is one of the most pervasive elements in the lithosphere. It is a 

mobile, reactive component which can cause major changes in the chemical 

and physical properties of the Earth’s crust and mantle, thus strongly affecting 

their rheological behavior (Hirth and Kohlstedt, 2003; Yang et al., 2008; van 

der Lee et al., 2008; Hirschmann et al., 2005). The evolution of this element 

along with its distribution with respect to tectonic settings is far from being 

fully understood. Most of the mantle petrologists’ interest in hydrous 

components has, so far, been focused on the volatile reservoirs in the upper 

mantle and on the role these components may play in understanding and 

characterizing mantle processes, such as melting and metasomatism. 

Hydrogen, in the chemical form of OH and H2O, enters the structure of major 

minerals which are usually formulated as anhydrous. Initial studies were 

focused on water in quartz because of its weakening effect upon the 

mechanical strength of this mineral (e.g. Paterson, 1982). Hydroxide groups 

have subsequently been found in other nominally anhydrous minerals, such as 

feldspars, nepheline, garnets, sillimanite (and other aluminosilicates), rutile and 

zircon. These molecules and ions are structurally bounded in definite sites with 

distinct orientations and often persist in the minerals even at temperatures as 

high as 1200° C. Numerous studies were developed on the H2O storage 

capacity of peridotitic minerals, namely olivines, orthopyroxenes, 

clinopyroxenes and garnet. Measurements of OH concentrations in these 

nominally anhydrous minerals (NAMs) indicate that a large quantity of “water”, 

amounting to about a third of the water in the oceans, is stored within the upper 
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mantle (Ingrin and Skogby, 2000). In this respect the upper mantle may 

represent the most important “water” reservoir on Earth. These mantle minerals 

can be brought up to the Earth’s surface as xenoliths or xenocrysts in volcanics, 

probably not in chemical equilibrium with the surrounding melt (Nazzareni et 

al., 2008; Wade et al, 2008). Geochemical evidences support the retention of 

primary hydrogen concentrations in mantle minerals (Bell and Rossmann, 

1992b), and these concentrations may also be modified during eruption, 

especially by reduction-oxidation reactions in iron-rich mantle minerals 

(Skogby and Rossman, 1989; Ingrin and Skogby, 2000). 

Olivine is definitely the most abundant phase within the upper mantle, thus in 

order to model the Earth’s mantle H2O budget, measurements of water contents 

in mantle olivines would be essential. However, diffusion profiles of hydrogen 

across olivine grains in mantle xenoliths suggest that olivine can loose 

significant portions of its water during transportation to the surface (Peslier and 

Luhr, 2006). This fact, together with the crystallographic inability to 

incorporate those key trace elements (i.e. alkalis, HFSE, REE) relevant for the 

comprehension of mantle melting and magma differentiation processes, 

strongly limit the use of this mineral. On the other hand, calculations of water 

content of melts in equilibrium with mantle pyroxenes (i.e. Bell et al., 2004), 

and initial calculations of the total amount of hydrous species stored in the 

mantle (200 to 550 ppm H2O; Bell and Rossman, 1992) leads to the assumption 

that the OH in pyroxenes from mantle xenoliths is not incorporated or removed 

during the journey to the surface (Peslier et al., 2002). Pyroxenes, particularly 

clinopyroxenes, are also the most suitable and abundant upper mantle phase 

that can incorporate trace elements from the environment, thus marking the 

petrological processes. Besides T-P-X, many factors, such as water and oxygen 
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fugacity, crystallographic charge-coupled substitutions and diffusive properties 

of hydrogen within the mineral structures, play an important role in 

determining the concentration of hydrous species preserved in a mineral. 

Petrologists are gathering an increasing number of data from pyroxenes in 

intraplate (cratonic and off-cratonic) and suprasubduction settings in order to 

evaluate if water content in NAMs may be related to the geological evolution, 

thus somehow representing a fingerprint of the various processes which affect 

the lithosphere with time. 

 

Hydrogen species and water content 

All analyzed pyroxene grains in these peridotite xenoliths exhibit several 

absorption bands in the typical OH-stretching vibration region (3000-3800 

cm-1); the representative infrared spectra are shown in Fig. 7.1a, Fig. 7.1b, Fig. 

7.2a, Fig. 7.2b, Fig 7.3a, and Fig. 7.3b for Panshishan, Lianshan and Fangshan 

xenoliths. By contrast, the coexisting olivine in these samples generally 

displays very weak, if any, H absorption (Fig. 7.4). The relative absorbance of 

these bands are highly variable for different grains even within the same 

sample, which is attributed to different orientations of different grains with 

respect to the infrared beam direction. The position and shape of these 

absorption bands are mostly similar to available results for the corresponding 

minerals (Skogby and Rossman, 1989; Skogby et al., 1990; Peslier et al., 2002; 

Stalder and Skogby, 2002, 2003; Grant et al., 2007b; Yang et al., 2008; Li et al., 

2008; Bonadiman et al., 2009), while slight differences for some spectra may 

be associated with the chemical composition and crystal structure of the hosted 

phases. Correspondingly, it is suggested that these absorption bands are mainly 

related with the stretching vibration of structural hydroxyl. 
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Base on the position, the IR absorption bands of pyroxenes can be divided into 

different groups for each mineral: 1) clinopyroxene: 3600-3635 cm-1, 

3510-3550 cm-1, 3445-3470 cm-1; 2) orthopyroxene: 3570-3595 cm-1, 

3500-3525 cm-1, 3390-3415 cm-1, 3300-3315 cm-1. The last one is very rare. 

This hypothesis is further supported by the polarized analysis of some oriented 

grains: the absorption intensity of each peak varied according to the polarizing 

direction. Hydrogen profile measurements performed on many pyroxene grains 

in each suite of samples along various crystallographic directions show no 

obvious variations between core and rim regions (Fig. 7.5), indicating that 

diffusion loss of H in clinopyroxene and orthopyroxene during their ascent is 

insignificant. For olivine grains with weak OH absorption bands (Fig. 7.4), the 

main peaks are at 3572 cm-1 and 3525 cm-1 which are typical for mantle olivine 

(Bell and Rossman, 1992a; Berry et al., 2005; Demouchy et al., 2006; Peslier 

and Luhr, 2006; Grant et al., 2007b). 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 122 -

 

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.10

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

Ab
so
rb
an
ce

 2600   2800   3000   3200   3400   3600   3800   4000  

Wavenumbers (cm-1)  
Fig. 7.1a - Representative IR spectra for cpx in Panshishan peridotite xenolith (The spectra are 
shown in a full scale) 
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Fig. 7.1b - Representative IR spectra for opx in Panshishan peridotite xenolith. 
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Fig. 7.2a - Representative IR spectra for cpx in Lianshan peridotite xenolith. 
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Fig. 7.2b - Representative IR spectra for opx in Lianshan peridotite xenolith 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 124 -

 0.055

 0.060

 0.065

 0.070

 0.075

 0.080

 0.085

 0.090

 0.095

 0.100

 0.105

 0.110
Ab
so
rb
an
ce

 2600   2800   3000   3200   3400   3600   3800   4000  

Wavenumbers (cm-1)  

Fig. 7.3a - Representative IR spectra for cpx in Fangshan peridotite xenolith 
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Fig. 7.3b - Representative IR spectra for opx in Fangshan peridotite xenolith 
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Fig. 7.4 - Representative IR spectra for ol in Panshishan peridotite xenolith 
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Fig. 7.5 - Profile analyses of H absorption in Lianshan opx 
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Water content in minerals 

The determined water content for cpx and opx of Subei basin peridotite are 

reported in Table 7.1. Water content varies from 37 to 183 ppm for cpx and 13 

to 74 ppm for opx in these peridotite xenoliths. Water contents range from 64 

to 183 ppm for cpx and from 16 to 61 ppm for opx in Panshishan peridotites; 

from 37 to 102 ppm for cpx and from 13 to 45 ppm for opx in Lianshan 

peridotites; from 41 to 177 ppm for cpx and from 21 to 74 ppm for opx in 

Fangshan peridotites. As shown in Fig. 7.6a, as more than 50% of the sampled 

xenoliths are lherzolites, they cover the whole range of water content in opx 

and cpx. Compare to lherzolites, the cpx-poor lherzolites have a lower up 

limited water content with less than 100ppm for cpx and less than 50ppm for 

opx. Two harzburgites PSS17 and FS06 have high water content and 

harzburgite LS26 have low water content of 57 ppm for cpx and 19 ppm for 

opx. The two Lianshan olivine websterite have water content of 56 to 80 ppm 

for cpx and 28 to 34 ppm for opx. The water content of cpx correlates with opx 

(R2=0.58) with a ratio cpx/opx of 2.34 (Fig. 7.6a), cpx/opx ratio is 2.01 and 

R2=0.63 for Panshishan, cpx/opx ratio is 1.97 and R2=0.77 for Lianshan and 

cpx/opx ratio is 2.79 and R2=0.95 for Fangshan. Taking into account all the 

peridotites from the NCC (Aubaud et al., 2007; Yang et al., 2008; Bonadiman 

et al., 2009; this study), this ratio is 1.97 (R2=0.77, Fig. 7.6b). These values 

agree well with the reported H-partition coefficient between cpx and opx from 

both experimental and natural mantle samples (Bell and Rossman, 1992a; 

Peslier et al., 2002; Koga et al., 2003; Aubaud et al., 2004, 2007; Bell et al., 

2004; Grant et al., 2007b; Tenner et al., 2009). The pyroxenes from Subei basin 

peridotites thus achieved equilibrium for hydrogen in the mantle and preserved 
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their initial water content. The latter is confirmed by the homogeneous 

distribution of water within individual pyroxene grains revealed by core-rim 

profile analyses (Fig. 7.5). 
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Fig. 7.6a - Water content of cpx and opx in Panshishan, Lianshan and Fangshan xenoliths. (Symbols are as Fig. 4.4. Light blue diamond, Panshishan lherzolite; light blue 

filled grey diamond, Panshishan cpx-poor lherzolite; blue open diamond, Panshishan harzburgite; red dot, Lianshan lherzolite; red filled grey dot, Lianshan cpx-poor lherzolite; red 
open dot, Lianshan harzburgite; red filled pink dot, Lianshan olivine websterites; red filled golden dot, Lianshan dunite; green triangle, Fangshan lherzolite, green filled grey 
triangle, Fangshan cpx-poor lherzolite; green open triangle. Fangshan harzburgite) 
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Fig. 7.6b - Water content of cpx and opx in Panshishan, Lianshan, Fangshan and NCC peridotites (Yang et al., 2008; Xia et al., 2010; Bonadiman et al., 2009)
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Whole rock water content 

Generally, water content of olivine from peridotite xenoliths hosted by alkaline 

basalts is very low (mostly <10 ppm, Bell and Rossman, 1992a; Peslier and Luhr, 

2006; Grant et al., 2007b). In addition to their initial low water contents, this could 

partly be caused by loss of H in olivine during ascent due to its very fast velocity (e.g. 

Demouchy et al., 2006; Peslier and Luhr, 2006). By contrast, the coexisting pyroxenes 

usually preserve their initial H-information (Peslier et al., 2002; Bell et al., 2004; 

Grant et al., 2007a; Yang et al., 2008; Bonadiman et al., 2009; this study), which are 

possibly related with their slower H diffusion rates (H may diffuses 1-3 orders of 

magnitude faster in olivine than in pyroxenes: Wade et al., 2008). In our case, the OH 

contents measured in ol (~ 0 ppm) cannot represent their source value. Instead, an 

initial H2O content can be calculated for ol by considering equilibrium partitioning 

between pyroxenes and ol. The H2O partition coefficients between pyroxene and 

olivine determined by experiments are highly variable. The values obtained at low 

pressure (<3 GPa) are much higher than those at high pressure (>8GPa): At low 

pressures, Koga et al. (2003) obtained a value of 12±2 for Dopx/ol from a single 

experiment at P=1.8 GPa; Aubaud et al. (2004) (revised according to the new 

calibration of Aubaud et al. 2007) determined Dcpx/ol and Dopx/ol of 28±2 (n=2) and 

14±2 (n=4) respectively at P=1-1.5 GPa; Hauri et al. (2006) reported Dcpx/ol and 

Dopx/ol of 15±5 (n=5) and 10±3 (n=8) respectively at P=0.5-1.6 GPa; Grant et al. 

(2007a) determined Dopx/ol=25±1 (n=2) at 289 P=1.5 GPa; Tenner et al. (2009) 

obtained Dcpx/ol of 27 (n=1) at P=3 GPa. In contrast, at higher pressures, Withers 

and Hirschmann (2007) reported Dopx/ol of 1.3±0.2 (n=4) at P=8.0-12 GPa; Withers 

and Hirschmann (2008) obtained Dopx/ol of 1.5±0.2 (n=3) at P=8.0 GPa. The 

difference between low-pressure and high-pressure experiments is probably related to 

reduced pyroxene Al content at P>3 GPa, it has been confirmed by experiments 294 

that Al could enhance water solubility in pyroxene. Grant et al. (2007a) have shown 

that ol, opx and cpx from 8 peridotite xenoliths preserved the H2O contents of their 

mantle source and had Dcpx/ol values of 88±48 and 22±24 for spinel peridotites 

(P=1.1-2.8 GPa) and garnet peridotites 
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298 (P=3.7-7.4 GPa) respectively. The Subei basin xenoliths hosted by Cenozoic 

basalts are from relatively thin 300 lithospheric mantle (<80-100 km; Menzies et al. 

2007), and the partition coefficient of H2O between pyroxene and olivine should be 

similar to those determined by low-pressure experiments (i.e. Dcpx/ol>10; Koga et al. 

2003; Hauri et al. 2006; Aubaud et al. 2007, 2009; Grant et al. 2007a; Tenner et al. 

2009). In the following, we use a Dcpx/ol = 10 to calculate the H2O content of 

coexisting ol; the calculated values should therefore represent maximum estimates. 

The recalculated whole-rock H2O contents based on mineral modes should also 

represent maximum estimates. The calculated H2O content of whole rocks (table 7.1) 

are between 8-58 ppm and mostly less than 40 ppm. 
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Chapter 8 - Discussion and conclusions 
 
 
Depletion event/s 

In spinel-bearing peridotites clinopyroxene is the major host for most trace 

elements and commonly its incompatible-element pattern control that of the peridotite 

with the exception of Ba, Nb, and Ti (Chalot-Prat and Boullier, 1997; Zangana et al., 

1999; Gregoire et al., 2000). Melting and enrichment processes have been modelled 

using major element whole rock and mineral geochemistry, as well as REE patterns 

(e.g. Johnson et al, 1990; Norman, 1998; Gregoire et al., 2000; Xu et al., 2000; Wang 

and Gasparik, 2001; Neumann et al., 2004)(Fig. 5.9, 5.10, 5.11). 

The group I xenoliths from Panshishan, Lianshan and Fangshan can be considered as 

residues from partial melting processes. The ubiquitous presesence of these 

LREE-depleted cpx in the three populations indicate that partial melting played an 

important role in the history of Subei basin lithospheric mantle. Trace element 

abundances can be used to illustrate the extent of the partial melting process. To 

assess the extent of partial melting, we applied the trace element non-modal partial 

melting equations of Johnson et al. (1990). 

Three melting models, based on batch, fractional and incremental melting equations, 

have been formulized (Johnson et al., 1990; Norman, 1998; Yang et al., 1998; Xu et 

al., 2000). In batch melting, solid and liquid fractions remain together throughout the 

entire melting interval, while in fractional melting infinitesimal increments of melting 

occur, accompanied by instantaneous segregation (and separation) of the melt from 

the solid residue. Incremental melting is intermediate to these two theoretical 

end-members, in which small, but finite, increments of melting and segregation occur, 

with a new starting composition applied after each segregation event. Equilibrium 

partitioning of elements is maintained in all models. Fractional melting depletes the 

residue in the most incompatible elements (i.e LREE) far more effectively than batch 

melting and the two processes are easily distinguished in REE and incompatible 

element diagrams (Johnson et al., 1990; Norman, 1998). Although infinitesimal melt 
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fractions produced by fractional melting are quite different from large melt portions 

produced by batch melting, liquids produced by the two melting models are virtually 

indistinguishable if fractional melts are integrated or aggregated following 

segregation from source (Johnson et al., 1990). Cpx REE melting models are 

subsebently compared with GroupI cpx, in order to evaluate the degree of melting for 

the Subei Basin mantle domain.   

 In general, minerals do not enter the melt in their modal proportions, thus 

non-modal partial melting is necessary to model the pattern. The important input 

parameters in the models are starting bulk composition, partition coefficients, 

proportions of minerals in the bulk solid, and those contributing to the liquid, and 

melting equations. The proportions of minerals in the bulk solid were assumed to be 

55 vol% olivine, 25 vol% orthopyroxene, 18 vol% clinopyroxene and 2 vol% spinel 

for spinel-bearing peridotite and 55 vol% olivine, 20 vol% orthopyroxene, 15 vol% 

clinopyroxene and 10 vol% garnet for garnet-bearing peridotites at the beginning of 

the melting processes. The proportions of minerals contributing to the liquid were 10 

vol% olivine, 20 vol% orthopyroxene, 68 vol% clinopyroxene and 2 vol% spinel in 

spinel facies phase and 13 vol% olivine, 12 vol% orthopyroxene, 25 vol% 

clinopyroxene and 50 vol% garnet in garnet facies (Table 8.1). The cpx is rapidly 

consumed when melting process occurs in both spinel and garnet facies. 

The partition coefficients between mineral and melt for REE and other trace 

element are chosen from literature (Database of Geochemical Earth Reference Model 

GERM, http://earthref.org/GERM, Fujimaki et al., 1984; McKenzie and O'Nions, 

1991; Nielsen et al., 1992; Hart and Dunn., 1993; Dunn and Sen, 1994; Zack et al., 

1997; Johnson 1994,1998; Takazawa et al., 2000; Adam et al., 1994,2006; Elkins et 

al., 2008), which were obtained in both experimental and natural samples. In the 

former, two phases are equilibrated at the temperature and pressure of interest and the 

concentration of the element is subsequently measured in both. In the latter, the 

concentration of element is simply measured in two natural phases thought to be in 

equilibrium. The range of partition coefficient for element changes, thus we choose a 

set of data which give a smooth REE pattern (Table 8.2). The starting bulk 
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composition was a primitive mantle value (McDonough and Sun, 1995), and using the 

mineral/melt partition coefficient for each element, we calculate the element 

distribution in cpx in spinel and garnet facies (Table 8.3).  

The equations are those given by Johnson et al. (1990) : 

Ci=C0×[D0/(D0+F×(1-P))   

for non-modal batch melting, and 

Ci=C0×[1-P×F/D0](1/P-1) 

For nor-modal fractional melting, in which C0 and Ci are the concentrations of REE 

elements (such as La, Ce, ……Lu) in cpx in the initial source and residue, 

respectively; D0 is the bulk partition coefficient of element for all the phase in the 

initial source; P is the sum of the partition coefficient of phases in the proportions 

they enter the melt; and F is the extent of depletion (incremental melting, each 

increment of melt was produced by 1% batch melting. Because melt presumably 

would segregate from its source after 1% batch melting, resulting residue from each 

increment becomes the source for the next 1% batch melt). 

Use the parameter set and equation above, we model the melting process in both 

spinel and garnet facies for batch melting and fractional melting (Fig. 8.1, 8.2). 

In both spinel and garnet peridotites, fractional melting are much more efficient to 

decrease the LREE content in cpx than batch melting at comparable degree of melting. 

I compare the data from the Subei basin peridotites with the calculated model of 

melting, the batch melting fails to produce the REE exhibited by the highly depleted 

cpx in peridotite, both the petrography and REE abundances of this xenolith are 

inconsistent with it being a residue of batch melting. The fractional melting model fits 

the data better than batch melting.
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Fig. 8.1 - Melting modelling using both batch and fractional melting in spinel facies. The extent of melting F is from 0 to 25%. Red line is the REE distribution in a 

primitive mantle cpx (McDonough and Sun, 1995). Blue continuous line are batch melting and black dashed line are fractional melting.  
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Fig. 8.2 - Melting modelling using both batch and fractional melting in garnet facies. The extent of melting F is from 0 to 15%. Red line is the REE distribution in a 

primitive mantle cpx (Bonadiman et al., 2005). Blue continuous line is batch melting and black dashed line is fractional melting. 
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Samples of group I from each localities show depleted LREE pattern, other 

groups show either LREE or MREE enrichment, which can not produced by 

melting, so only group I REE pattern in fractional melting model are shown 

below (Fig. 8.3). In each locality, we chose the samples which have the lowest 

and the highest value of REE to represent the REE ranges in the samples of this 

group. For Lianshan cpx in group I, LS09 is also shown in the plot as it has 

depleted LREE compare to LS24. 
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Fig. 8.3 - Modelling of REE patterns in spinel facies for clinopyroxenes from Subei basin 

xenoliths. 
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For Group I cpx from Panshishan, Fractional melting produces a matching 

REE pattern for the depleted lherzolite at 6% melting, although some samples 

(e.g. PSS13 and PSS19) have LREE which do not match the melt curve 

possibly due to later enrichment process.  

For group I cpx from Lianshan, 1% melting of PM cpx can produce the most 

fertile sample LS24, 5% melting of PM cpx can produce the same HREE 

pattern of LS09, but not match for the LREE pattern. and the most depleted 

sample LS12 require a near 10% fractional melting to produce the HREE 

pattern, while the LREE are more enriched compare to the melting curve. For 

Fangshan group I samples, to match the patterns for REE, an extent F about 

1-5% fractional melting can cover the sample REE pattern.  

As shown in chapter 5 (Fig. 5.9, 5.10), the group II xenoliths have an 

upward convex REE pattern. Melting modeling in garnet facies can raise the 

MREE and HREE content, which may possibly produce the REE pattern in 

group II (Fig. 8.4). Since there are no sample in Fangshan and only one sample 

for Lianshan within this group, we put all the samples including PSS05, PSS11, 

PSS15, PSS16 and LS22 in one figure. Sample PSS10 in group V from 

Panshishan is also plot in the melting grids, as it has MREE upward convex. 

Despite element La, which may be affected by later host magma interaction, 

the cpx in PSS10 have the same M-HREE pattern as the PM cpx melting at 

3% , but near 2 times higher.  
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Fig. 8.4a - Modelling of REE patterns in garnet phase for clinopyroxenes from Subei basin 

xenoliths 
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Fig. 8.4b - Modelling of REE patterns in garnet phase for PSS10 clinopyroxenes 
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The simple melting model applied to sp-bearing system is not able to 

re-produce the observed group II cpx upward convex trace element pattern; 

therefore I tested the hypothesis that Group II trace element profile could be 

consistent with a prior partial melting in the garnet stability field. Subsequently, 

the xenoliths would be re-mobilized towards shallower lithospheric domains 

(sp-stability field) and the residual garnet would break up, and subsolidus 

reactions take places. The starting mineral proportions are 55 vol% ol, 20 vol% 

opx, 15 vol% cpx and 10 vol% grt (the same set as previous calculation) at the 

initial stage of melting. The proportions of minerals contributing to the liquid 

were 13 vol% ol, 12 vol% opx, 25 vol% cpx and 50 vol% grt for garnet phase. 

For melting occurred in the range of degree (F) of 1%-20%, the residue will 

have a proportion of minerals of 0.55-0.13F, 0.2-0.12F, 0.15-0.25F and 

0.1-0.5F % for ol, opx, cpx and sp, respectively. Subsequently I model the 

passage of this theoretical grt-peridotite in sp-stability field. I apply the fellow 

reaction: 

0.261 ol+grt=0.765 opx+0.222 cpx+0.264 sp (Takazawa et al., 1996) 

As the spinel appear, the original grt trace element contents will be 

distributed among the other peridotite minerals and until grt disappears. Fig. 

8.5 shows REE patterns at F of 1, 3, 5, 10, 15, and 20 %. 20% of melting is 

ideally the maximum degree of melting for the complete consumption of the 

grt. The results show an almost flat constant MREE-HREE pattern, and slight 

depleted in LREE applied the batch melting equation; a large LREE 

fractionation is modelled with the fractional melting equation.(Fig. 8.5) 

I compare REE pattern of group II cpx, including PSS05, PSS11, PSS15, 

PSS16 and LS22, with the calculated model of melting. The grt/sp transfer 
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model is able to accont for the profiles of GROUP II cpx, with the exception of 

lherzoliteLS22. (Fig. 8.6) 

F=1,3,5,10,15,20%

1

10

100

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

1

3
5

10 2015

 Fig. 8.5 - Melting modelling in garnet facies and re-equilibration in spinel facies. Batch 
melting: Continued line. Fractional melting: dashed line. 
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Fig. 8.6 - Modelling of REE patterns in garnet facies for Group II cpx 

Zr and Sr modeling 

Zr and Sr concentrations of clinopyroxenes were used by Yang et al. (1998) 

to model melting processes, because they may more effectively distinguish 

batch melting from fractional melting models. However, Sr is affected easily 

by metasomatism, so possible metasomatic effects must be ruled out before 

modelling. The Zr–Sr plots of cpx from Subei basin peridotites (Fig. 8.7) show 

that depleted and slightly metasomatized clinopyroxenes result in a consistent 

correlation whereas more strongly metasomatized samples, such as samples in 

group II and group III in each localities, deviate significantly and are more 

enriched in Sr at given Zr levels.  Melting trends based upon batch melting 

and fractional melting are shown in Fig. 8.7. The compositional variations for 

Zr and Sr in the cpx from Subei basin peridotites can be successfully modelled 

using a Sr content of 108 ppm and Zr content of 47 ppm for the source, rather 

than Sr content of 38.1 ppm and Zr content of 39.4ppm used in the modelling 

of Yang et al. (1998). Although both batch melting and fractional melting 

models reproduce the natural trends in Sr and Zr of the cpx, different melting 

degrees are required for each melting style. To reproduce Zr and Sr contents of 

the most depleted sample LS09, which have the lowest Zr and Sr values, more 

than 25% batch melting would be required, which is unrealistic (Fig. 8.7). In 

contrast, fractional melting produce residual peridotite with the Sr and Zr 

values of LS09 with reasonable degrees of melting of about 9%.  

The xenoliths we studied undergo a melt extracting event to have the HREE 

pattern we observed. I did not have our date to constrain the time this event 

happen, use Reisberg et al. (2005) Re-Os isotope data, an age of 1.8Ga can be 

aspect. 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 144 -

 

0
5

10
15
20
25
30
35
40
45
50

0 50 100 150
Sr (ppm)

Zr
 (p

pm
)

Source
Sr=108ppm;
Zr=47ppm

1

2

3

4

5

10

15

1

2

3
4

5

10
15

2520

            Add Sr

Source 2
Sr=38.1ppm;
Zr=39.4ppm

 

 

Fig. 8.7 - Batch and fractional melting models for Zr and Sr contents in clinopyroxenes 
from Subei basin. Samples with Sr content more than 150ppm are not shown. Batch melting, 
Dashed line; Fractional melting, continued line. Soure Zr, Sr conents are best fitting the data. 
Source2 Zr, Sr contents are from Yang et al., 1998. Symbols are as Fig. 4.4. Light blue 
diamond, Panshishan lherzolite; light blue filled grey diamond, Panshishan cpx-poor lherzolite; 
blue open diamond, Panshishan harzburgite; red dot, Lianshan lherzolite; red filled grey dot, 
Lianshan cpx-poor lherzolite; red open dot, Lianshan harzburgite; red filled pink dot, Lianshan 
olivine websterites; red filled golden dot, Lianshan dunite; green triangle, Fangshan lherzolite, 
green filled grey triangle, Fangshan cpx-poor lherzolite; green open triangle. Fangshan 
harzburgite 
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Enrichment process (metasomatism) 

Using the trace element composition of depleted peridotites, the partial 

melting style and degree of melting occurring in mantle peridotites have been 

modelled. In this paragraph the composition of the metasomatized peridotites 

has been used to reveal the nature of enrichment processes and the geochemical 

signature of the metasomatic agent/s (O’Reilly and Griffin, 1988; Gorring and 

Kay, 2000; Wang and Gasparik, 2001). In fact, many lithospheric mantle 

regions record several episodes of both partial melting and metasomatic 

overprints (Zangana et al., 1999; Xu et al., 2000). In addition, highly depleted 

peridotites record generally stronger metasomatism in their clinopyroxene (e.g. 

Frey and Green, 1974; O’Reilly and Griffin, 1988; Gregoire et al., 2000). For 

the samples from Subei basin, the entire cpx group IV have Mg# large than 91 

coupled with YbN less than 8 (down to 2.6 for LS02). In such cases, modelling 

partial melting processes using these elements without consideration of 

metasomatic effects may lead to false conclusions, so we should treat this 

carefully. 

  The melting calculations detailed above explain REE pattern of 

depleted-REE group xenoliths as due to different degrees of depletion (Fig. 

8.7). However, all the enriched xenoliths in group IV have geochemical 

signatures (Fig. 5.9, 5.10, 5.11) that cannot be interpreted by melt depletion 

processes and reflect subsequent metasomatic events. In xenoliths from Subei 

basin, although no hydrous minerals occurred and metasomatized texture are 

very rare, the large range of (La/Ce)N (0.34-4.04) indicate that metasomatic 

processes have affected the three xenolith populations. Highly depleted 

(indices of melt extraction such as YbN or Al2O3 content, Mg# in mineral major 

element content) samples have a strong enrichment in the LREE pattern.  
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Nature of metasomatic agents 

Differences in clinopyroxene compositions between enriched discrete 

lherzolite and composite lherzolite document distinct metasomatic agents and 

variations in the degree of metasomatism. Previous studies have demonstrated 

various metasomatic agents occurring in mantle peridotites, including 

carbonatitic melts (e.g. Yaxley et al., 1998; Gorring and Kay, 2000; Wang and 

Gasparik, 2001), siliceous melts (e.g. Vannucci et al., 1998; Zangana et al., 

1999; Gregoire et al., 2000), adakitic (Kepezhinskas et al., 1995, 1996; Schiano 

et al., 1995; Coltorti et al., 2007), melilitic or melanephelinitic melts 

(Chalot-Prat and Boullier, 1997) and fluids (CO2-, H2O-, halogen- or P-rich) 

(Gorring and Kay, 2000; Larsen et al., 2003; Frezzotti et al., 2010). These 

metasomatic agents may give rise to distinct chemical variations within the 

mantle minerals. Using the partition coefficients between mineral and melt (see 

detail in appendix), the nature of the metasomatism agent/s can be rebuilt. Fig. 

8.8 show the equilibrium melts for group IV cpx in Subei basin xenoliths. For 

these samples, except FS06, the equilibrium metasomatic melt has a strong 

negative anomaly of Ti and positive anomaly of Zr. The equilibrium 

metasomatism melt of FS06 do not has positive anomaly of Zr. In Fig. 8.9 

(La/Yb)N vs Ti/Eu plot (Coltorti et al., 1999), FS06 fall in the carbonatitic 

metasomatism field. Samples of PSS02 and LS20 fall in the silicate 

metasomatism field. For group IV cpx, the metasomatism agent is a mixture of 

carbonatitic metasomatism and silicate metasomatism 
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Fig. 8.8 – Inferred metasomatic melts in equilibrium with Group IV cpx.  
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Fig. 8.9 - (La/Yb)N vs Ti/Eu ratios of clinopyroxene from Subei basin xenoliths



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 - 148 -

Hydration/dehydration processes  
 
Preservation of initial water content of the mantle source 

The premise to investigate the possible relationship between water content in 

mantle minerals with other geochemistry parameters is whether the water 

content I measured is the initial water content of the mantle source. The 

solubility of hydrogen in nominally anhydrous minerals (NAMs) increases 

with increasing pressure (Keppler and Bolfan-Casanova, 2006, and references 

therein); thus, when peridotite xenoliths are transported to the surface by their 

host magmas, hydrogen can potentially diffuse escaping from the NAMs as the 

pressure abruptly decreases. Hydrogen diffusion experiments predict that at 

1000ºC hydrogen undergone towards a complete resetting (in a millimeter 

scale), in individual grains of olivine and pyroxene in a few tens of hours 

(Kohlstedt and Mackwell, 1998; Hercule and Ingrin, 1999; Carpenter et al., 

2000; Stadler and Skogby, 2003). In contrast, studies on natural samples 

suggest that pyroxenes preserve their mantle-derived equilibrium OH contents, 

but olivines do not (Bell and Rossman, 1992a; Bell et al., 2004; Peslier et al., 

2002; Grant et al., 2007a; Gose et al., 2009). Possible explanations for the 

discrepancy may be related to the facts that (1) the diffusion loss of hydrogen 

depends on the H-content of co-existing minerals and melt, as well as water 

and oxygen fugacities of the system; (2) the incorporation of hydrogen into 

minerals does not only depend on diffusion rate of hydrogen, but also on 

diffusion rate in point defects, slower of at least several orders of magnitude 

with respect to other mineral lattice regions (Kohlstedt and Mackwell, 1998). 

(3) Experiments are usually made at H2O-saturation conditions, which 

probably do not prevail in natural systems. 
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The following evidences suggest that the pyroxenes of Subei basin peridotite 

samples have largely preserved their initial water content in the mantle source: 

(1) All the samples are chemically homogeneous for individual phases, and no 

major element compositional zoning was observed for each studied grain 

(EMPA). 

(2)  The FTIR analyses were usually performed in the core region of clean, 

crack- and inclusion-free grains of relatively large size. It is thus inferred that 

the loss of hydrogen caused by diffusion during the quick ascent would be very 

small (Peslier and Luhr, 2006). 

(3) Homogeneous distribution of H2O in pyroxenes demonstrate by core-rim 

profile analysis for cpx and opx grains of the NCC peridotites (Fig. 6.5) have 

not revealed significant heterogeneities in H2O distribution within single grains, 

the latter normally being ascribed to diffusion. The H-related IR absorption is 

usually homogeneous between their core and rim region, indicating negligible 

depletion or enrichment of H from diffusion or exchange. 

(4) The studied samples are usually very fresh, and all the spectra show no 

signal of any evident hydrous phases, which would produce sharp bonds in the 

region of >3660 cm-1. In this case, there is no evident interference from other 

H-bearing phases, neither any exchange of H between them. 

(5) H2O correlations between cpx and opx. As shown in Fig. 6.6, H2O content 

of cpx and opx shows good positive correlation. The partition coefficient 

between cpx and opx (Dcpx/opx) of 2.34 has been calculated for the cpx/opx 

pairs of Subei basin samples. If we include in the H2O opx vs H2O cpx space 

all published data NCC peridotite (Panshishan, Lianshan, Fangshan, Nushan 

and Hannuoba from Yang et al., 2008; Penglai, Qixia, Changle, and Hebi from 

Xia et al., 2010) the positive correlation remains, but the calculated partition 
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coefficient becomes 1.97 (Fig. 6.6b) This values is proximal to the range of 

values reported in literatures for natural peridotite xenoliths: Dcpx/opx 

=2.3±0.5 (n=38, Bell and Rossman, 1992a; Peslier et al., 2002; Grant et al., 

2007b; Li et al., 2008). The range of partition coefficients between cpx and opx 

for H2O measured in natural peridotites is also close to that experimentally 

determined by low-blank SIMS method: Aubaud et al. (2004) report Dcpx/opx 

=1.8±0.3 (n=1, the value is revised according to new calibration of Aubaud et 

al. 2007); Hauri et al. (2006) obtain Dcpx/opx =0.9-1.4 (n=6); finally Tenner et 

al. (2009) report Dcpx/opx =1.2-2.0 (n=3).  

The relationships between Al2O3 (%) and H2O (ppm) as evidence in opx of 

Subei basin xenoliths (Fig. 8.10), are also found in sub-arc mantle wedge 

samples (Peslier et al., 2002; Grant et al., 2007a), as well as in off-craton 

intraplate mantle (Grant et al., 2007a; Yang et al., 2008), with different slopes 

due to the higher values of water contents in the mantle wedge with respect to 

the intraplate setting. This correlation is also supported by experimental results 

of Rauch and Keppler (2002) which show that water solubility increases with 

increasing of Al2O3 contents (up to 1 wt%) in synthetic enstatite. This implies 

that the hydrogen dissolution in these minerals is combined with that of Al3+, 

because the Al2O3 diffusion coefficient is so low that significant loss is 

unlikely. Preservation of cpx and opx equilibrium also implies that pyroxenes 

from the Subei basin peridotites have comparable geochemical behavior of 

other localities and have not undergone significant change of hydrogen during 

the ascent of the xenolith. 

Based on heterogeneous distribution of H2O within olivine single grain (higher 

content in the core and lower content in the rim), several studies suggested 

significant loss of hydrogen in olivines caused by H diffusion in this phase 
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during xenolith ascent to the surface (Demouchy et al., 2006; Peslier and Luhr, 

2006); however, other studies did not observe any water heterogeneity in 

olivines (Bell et al., 2004; Grant et al., 2007b). I can not unravel this issue on 

the basis of olivine measurements of Subei basin peridotite xenoliths because 

their water content is too low to be detected. 
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Fig. 8.10 - Correlation between H2O (ppm) and Al2O3 (%) in peridotite opx Symbols are as Fig. 
7.6. Light blue diamond, Panshishan lherzolite; light blue filled grey diamond, Panshishan 
cpx-poor lherzolite; blue open diamond, Panshishan harzburgite; red dot, Lianshan lherzolite; 
red filled grey dot, Lianshan cpx-poor lherzolite; red open dot, Lianshan harzburgite; red filled 
pink dot, Lianshan olivine websterites; red filled golden dot, Lianshan dunite; green triangle, 
Fangshan lherzolite, green filled grey triangle, Fangshan cpx-poor lherzolite; green open 
triangle. Fangshan harzburgite 
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Possible role on water content  

Besides T-P-X, many other factors, such as water and oxygen fugacities, 

crystallographic charge-coupled substitutions and diffusive properties of 

hydrogen within the mineral structures play an important role in determining 

the concentration of hydrous species preserved in a mineral (Johnson et al., 

2002; Johnson and Rossmann, 2003). I investigate the relationship between 

different geochemical parameters and water content in minerals in order to 

better constrain the effects and controls of H2O distribution in mantle 

peridotites. As shown in Fig. 7.6a, water content has no clear differences 

among the rocktype, regardless of lherzolites, cpx-poor lherzolites, 

harzburgites and olivine websterites.  

In this section we discuss and compare pyroxene water contents with the 

geochemical parameters that are commonly used to characterize mantle 

processes such as melting and enrichment related to recent metasomatism. In 

particular we focused our attention on the MgO and Al2O3 contents in 

pyroxene and REE abundances of clinopyroxenes. I preferred to use the MgO 

content of pyroxenes instead of the most popular geochemical parameter Mg# 

to represent the mantle depletion degree, because MgO is a better indicator of 

the degree of melt extraction with respect to chemical-physical components 

(e.g., Lee et al., 2003; Niu, 2004). There is no correlation between water 

content with major element oxides such as SiO2, TiO2, FeO, CaO, NiO and 

Na2O (not shown in the Figs). Because of water behaves incompatibly during 

mantle processes (e.g., Dixon et al., 1988; Michael, 1988; Michael, 1995.), we 

can expect the water content to decrease with increasing MgO. In this respect 

we could explore the processes which enrich or deplete the lithospheric mantle 

in hydrous species with time. Among each population of Panshishan, Lianshan 
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and Fangshan, no clear correlation with the MgO content in a single mineral 

apparently exists (Fig. 8.11a, b). The same if we consider different group of 

cpx REE pattern, there is no clear correlation between water content with MgO 

content in the group or between the groups.     
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Fig. 8.11 - MgO (wt%) versus (a) orthopyroxene H2O and (b) clinopyroxene H2O content. 
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Fig. 8-12 CeN (a), YbN (b) and (La/Yb)N (c) versus clinopyroxene H2O content 
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To further explore possible relationships between water contents and different 

geochemical parameters, we looked at pyroxene trace element contents. I 

limited the comparison to the REE (in clinopyroxenes), since they are 

commonly used to investigate melting (HREE) and/or enrichment processes 

(LREE) (see discussion above). Element Ce is chosen as a representative of 

incompatible LREE and element Yb is chosen as a representative of 

compatible HREE, to exam possible relationship with water contents in Fig. 

8.12a,b and the (La/Yb)N represent LREE/HREE ratio with water content in 

cpx are also shown in Fig. 8.12c. As shown in last two discuss sections, the 

group I LREE depleted samples are the production of mantle melting process 

and not undergone metasomatism event and in the contrast group IV LREE 

enriched samples are strongly affect in metasomatism event. If the water 

content of the minerals is controlled by melting event, a correlation of MgO 

with water content, and CeN and YbN with water content for samples in group 

should be observed. If the water content of the minerals is affected by later 

metasomatism event, a correlation of (La/Yb)N ratio and CeN with water 

content for samples in group IV should be observed. In my study more than 80 

samples from Subei basin, no such expected correlation are shown, the water 

content of the minerals are neither only controlled by melting event nor 

metasomatism event. 

 

Based on the negative correlation between water content of pyroxenes and 

oxygen fugacity observed in Mexican and Simcoe (WA, USA) spinel peridotite 

xenoliths, Peslier et al (2002) suggested that pyroxene water contents are 

mainly controlled by the redox state of peridotites. In order to test this model in 

the Subei basin xenoliths, I compare the H2O contents of both cpx and opx 
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with the calculated fO2 values. As already stated in Chapter 6, the majority of 

the sample are not characterized by oxidized signature (ΔFMQ>0) and no 

correlation between pyroxene H2O content and peridotite ΔFMQ values can be 

observed (Fig. 8.13). Therefore, the water content of the Subei basin samples is 

not related to high oxygen fugacity as has been argued in the case of some 

subduction zone peridotites (Simcoe, Peslier et al., 2002). 

The possible correlation between water content with oxygen isotopic 

compositions is also check, shown in Fig. 8.14. There are no clear correlation 

regard localities or REE group. 
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Fig. 8.13 - Opx H2O content (a) and cpx H2O content (b) versus ΔFMQ 
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Fig. 8.14 - Cpx H2O content versus δ18O
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8.4 Low water content of Subei basin xenoliths and Comparison with 

continental lithospheric and oceanic mantle 

Yang et al. (2008) noticed that the Nushan and Hannuoba peridotites have 

much lower water contents compared with peridotites from worldwide craton 

and off-craton areas. I based my study on the water contents in NCC 

lithospheric mantle on the original results obtained from NAM H2O 

measurements of three xenoliths localities, main objects of this thesis, 

combined with those reported in the previously published data (Aubaud et al., 

2007; Yang et al., 2008;). The interpretation is based on a total of 105 

peridotites hosted by Cenozoic basalts from 9 localities (Panshishan, Lianshan, 

Fangshan, Nushan, Hannuoba, Penglai, Qixia, Changle, and Hebi) of the 

eastern part of the NCC. As described below, the Cenozoic lithospheric mantle 

of the NCC (at least the eastern part of it) appears to have lower water content 

compared to the continental craton and off-craton lithospheric mantle 

worldwide as well as the oceanic mantle. 

 

Comparison with the continental craton and off-craton lithospheric 

mantle 

Water contents of peridotites from the NCC (Aubaud et al., 2007; Yang et 

al., 2008; Bonadiman et al., 2009; this study) and other continental regions 

worldwide (Bell and Rossman, 1992a; Peslier et al., 2002; Demouchy et al., 

2006; Grant et al., 2007b; Li et al., 2008; Bonadiman et al., 2009) are compiled 

in Fig. 8.11. Tectonically, continental mantle peridotite can be classified as: on 

craton peridotites, such as samples from South Africa and Colorado Plateau 

(Bell and Rossman, 1992a; Grant et al., 2007b; Li et al., 2008) and off-craton 

peridotite, such as samples from Basin and Range (USA), Massif Central 
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(France), Patagonia (Chile) and Antarctic samples (Bell and Rossman, 1992a; 

Peslier et al., 2002; Demouchy et al., 2006; Grant et al., 2007b; Li et al., 2008; 

Bonadiman et al., 2009).  

Water contents of cpx of the NCC peridotites range between 5 and 355 

ppm; 85 of the 92 analyzed samples contain less than 200 ppm, and the average 

value is 108±61 ppm. In contrast, H2O contents of cpx of the craton peridotites 

data set range between 370 and 950 ppm with the average value of 577±209 

ppm (397±61 ppm if slab-influenced Colorado Plateau samples (Li et al., 2008) 

are excluded). On the whole, the cpx of the off-craton peridotites range 

between 5 and 528 ppm with the average value of 316±151 ppm (Fig. 8.15a). 

H2O content of opx of the NCC peridotites range between 5 and 140 ppm, 96 

of the 106 analyzed samples contain less than 80 ppm and the average value is 

42±27 ppm. Differently, H2O content of opx of the on-craton peridotites range 

between 180 and 400 ppm and the average value is 297±94 ppm (244±107 

ppm if slab-influenced Colorado Plateau samples (Li et al., 2008) are excluded); 

that of the off-craton peridotites range between 9 and 300 ppm and the average 

value is 125±77 ppm (Fig. 8.15b). 

The estimated whole rock water content (calculated H2O contents of ol by 

assuming Dcpx/ol=10 for all the samples) of the NCC peridotite xenoliths 

range between 6 and 85 ppm with the average value of 25±18 ppm. In contrast, 

with that recorded in on- craton peridotites is more than 60 ppm (except one 

dunite from Colorado with 27 ppm) and the average values is 119±54 ppm 

(124±62 ppm if slab-influenced Colorado Plateau samples (Li et al., 2008) are 

excluded); that of off-craton peridotites is between 10 and 154 ppm, and the 

average value is 78±45 ppm (Fig. 8.15c). The comparison of the water contents 

in the NCC pyroxenes listed above and tghose from the two different tectonic 
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setting, show consistent differences. Among the off-craton” peridotites only a 

few have water contents similar to those of NCC mantle xenoliths (Fig. 8.15c). 

These are harzburgite and dunite samples which have experienced high degrees 

of partial melting (Peslier et al., 2006; Li et al., 2008; Bonadiman et al., 2009): 

as H2O behaves as a highly incompatible element during partial melting of a 

mantle source (in solid/liquid system H2O has the almost the same geochemical 

behavior of La; Hauri et al., 2006; Tenner et al., 2009), the peridotite residues 

undergoing higher degrees of partial melting are expected to be more depleted 

in water. Moreover, lherzolites from San Carlos Cenozoic basalts have a 

similar low water contents (171 to 178 ppm for cpx, 53 to 82 ppm for opx, and 

2 to 4 ppm for ol, Li et al., 2008) to those of the NCC lherzolites. The low 

water contents of these rocks have been interpreted as the result of water loss 

during partial melting (Li et al., 2008). 

 

Comparison with the oceanic mantle 

The available data for oceanic peridotites are very scarce; they are limited 

to  three abyssal peridotites from Gakkel ridge, Arctic Ocean (Peslier et al. 

(2007) ) and  Cape Verde mantle xenoliths, Atlantic Ocean (Bonadiman et al., 

2009) the H2O content are <1-5 ppm for ol 25-60 ppm for opx and 130-200 for 

cpx. The low water content of these samples is likely the consequence of water 

loss during the slow adiabatic decompression; thus they do not necessarily 

represent the mid-oceanic basalt (MORB). Gose et al. (2009) investigated a 

suit of abyssal peridotites from the Mid-Atlantic Ridge; the measured H2O 

contents of opx range between 160 and 270 ppm and suggest to reflect the 

original mantle contents. This range is much higher than that of opx of the 
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NCC peridotites (between 5 and 140 ppm, with 96 out of 106 samples being 

<80 ppm; Fig. 7.7). 

In contrast to oceanic peridotites and xenoliths, the H2O content of MORB 

and OIB have been well constrained from melt inclusion and glass (Dixon et al., 

1988, 1997, 2002; Michael, 1988, 1995; Stolper and Newmann, 1994; Sobolev 

and Chaussidon, 1996; Danyushevsky et al., 2000; Nichols et al., 2002; Saal et 

al., 2002; Simons et al., 2002; Wallace, 2002; Asimow et al., 2004; Seamon et 

al., 2004; Workman et al., 2006). Based on these data, the H2O content of the 

source of MORB and OIB is calculated to be about between 50 to 250 ppm and 

between 300 to 1000 ppm respectively. Consequently, the H2O contents of the 

NCC peridotites are lower than the oceanic mantle represented by the source of 

MORB and OIB.  



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 163

 

Fig. 8.15 - Comparison of H2O content of cpx, opx and whole rock of the NCC peridotite xenoliths with that of craton and off-craton peridotites
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Implications from the low water content of the eastern NCC 

As I mentioned in Chapter 2, the mechanisms responsible for lithospheric 

thinning of the NCC have been extensively debated (Menzies and Xu, 1998; 

Griffin et al., 1998; Zheng et al., 1998, 2001, 2006; Xu et al., 2001, 2008b; 

Gao et al., 2002, 2004, 2008; Zhang et al., 2002, 2008, 2009; Zhang, 2005; 

Wu et al., 2003, 2006; Niu, 2005; Menzies et al., 2007). Several models have 

been proposed, that can be grouped into two end-members: “top-down” rapid 

(<10 Ma) delamination model versus “bottom-up” protracted (possibly up to 

100Ma) thermo-mechanical-chemical erosion model. Delamination would 

have produced the removal of the entire lithospheric mantle and probably part 

of the lower crust (Wu et al., 2003, 2005; Gao et al., 2004, 2008); thus the 

resulting (present) lithospheric mantle beneath the NCC would be 

asthenospheric mantle newly accreted and cooled during the late 

Mesozoic-Early Cenozoic thinning. On the other hand, thermal erosion models 

predict that most of the present lithospheric mantle should be relict of 

Archean-Protorozoic mantle after the thinning (Griffin et al., 1998; Menzies 

and Xu, 1998; Xu et al., 2001).  

According to the delamination model, the newly formed lithospheric 

mantle should be directly cooled asthenosphere because there was no 

significant asthenosphere-derived basaltic magmatism accompanied by the 

NCC lithospheric thinning (Menzies et al., 2007 and references therein). If the 

delamination model is accepted, the water content of the present lithospheric 

mantle should be similar to that of the source of MORB (50-250 ppm), which 

is not the case for the majority of the eastern NCC peridotites. Moreover, the 

fact that the NCC peridotites display much lower water content than the 
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oceanic peridotites from Mid-Atlantic Ridge (Gose et al., 2009) also argues 

against the asthenosphere source. 

Therefore, we suggest that the low water contents of the eastern NCC 

samples result from the reheating from below by an upwelling asthenosphere 

flow that occurred in concert with lithospheric thinning. If so, most of the 

Cenozoic lithospheric mantle of the eastern NCC should be considered the 

relict mantle after lithospheric thinning during late Mesozoic-Early Cenozoic. 

A few peridotite xenoliths from Nushan and Changle (Yang et al., 2008; Xia et 

al., 2010) having H2O content more than 50 ppm (up to 85 ppm) may actually 

represent newly accreted lithospheric materials from upwelling asthenosphere. 

This scenario is in agreement with the available age constraints from Re-Os 

isotopic data on the peridotite xenoliths hosted by Cenozoic basalts from the 

eastern NCC (including whole rock and sulfides) (Meisel et al., 2001; Gao et 

al., 2002; Xia et al., 2004; Reisberg et al., 2005; Wu et al., 2005; Zhi et al., 

2007; Xu et al., 2008a; Xu et al., 2008b; Zhang et al., 2009). Using the Os 

proxy isochron (187Os/188Os vs. Al2O3 or Yb etc), the melting age of the 

eastern NCC lithospheric mantle is early Proterozoic to Mesoproterozoic. 

Calculate the Re depleted model age (TRD) and considering the maximum TRD 

in a suite of peridotite xenoliths as the minimum lithospheric mantle formation 

age of that area, we also obtain a Proterozoic age. Even if we consider TRD of 

each sample (or individual sulfide), Phanerozoic age are still rare and only a 

few Mesozoic ages exist. 
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Conclusion  

 

The main purpose of my thesis was to investigate the water content at 

mantle condition and possible relationship with mantle processes. More than 

50 xenoliths are sampled in three localities from Subei basin, Panshishan, 

Lianshan and Fangshan, within North China Craton. A series of experiment 

are performed, including whole rock major and trace element analysies by 

XRF, minerals major elements analyses by EMP, cpx trace elements analyses 

by LA-ICP-MS, water content in ol, cpx and opx by FTIR and oxygen isotopic 

composition in ol, opx, cpx and sp by LF-MS.  

Based on the REE pattern in cpx, they were subdivided into five different 

groups. Group I, with LREE-depleted patterns; Group II, with upward convex 

patterns, Group III, with flat REE patterns; Group IV, with LREE-enriched 

patterns; and Group V, with spoon-shape patterns. 

The xenoliths underwent a major melt extraction event. Group I samples in 

fact can be produced by mantle melting <10%. On the other hand Group IV 

samples have been strong modified during mantle metasomatism event. The 

water content in all the three localities together with other peridotites hosted 

by Cenozoic basalts from 9 localities in the eastern part of the NCC show low 

levels compared to other craton and off-craton xenoliths in continental and 

oceanic settings. The comparison of water content with the main geochemical 

parameters, including major element composition of minerals, melting index 

of MgO content and Mg# for minerals, temperature, pressure and oxygen 

fugacity of the xenoliths, REE in cpx and oxygen isotope composition do not 

show any significative correlations. There is no correlation among localities, 

different REE group and water content. At least for my data, water contents in 
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the NAMs are not related to main mantle depletion/enrichment process. The 

indication, although needs to be confirmed by further studies, is that water 

content may represent a pristine feature of different mantle domains even 

within similar tectonic settings.  
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 Appendix 
All the tables show in the thesis and the detailed information with respect to the 
EMPA, LA-ICP-MS and oxygen isotope measurements for xenoliths from Subei 
basin are compiled and provided below. 
 
 
Table 2.1 Mineral mode of Panshishan, Lianshan and Fangshan peridotite xenoliths 

       Mode(%) point counting        Mode(%) mass balance
ol opx cpx sp ol opx cpx sp

Panshishan PSS01 cpx-poor lh 69 19 9 3 71 17 10 2
PSS02 lh 68 21 10 1
PSS05 lh 58 24 13 5
PSS07 lh 60 22 14 4
PSS10 cpx-poor lh 74 17 7 2
PSS11 lh 60 26 11 3 56 30 12 2
PSS12 lh 57 22 16 5
PSS13 lh 54 25 17 4
PSS15 lh 66 22 10 2 61 27 9 2
PSS16 lh 55 25 18 2
PSS17 hz 71 22 5 2 76 17 5 2
PSS18 lh 58 26 13 3
PSS19 lh 53 27 15 5
PSS20 cpx-poor lh 62 27 8 3

Lianshan LS01 lh 55 28 12 5
LS02 lh 52 30 14 4
LS03 cpx-poor lh 72 20 6 2 70 20 8 2
LS04 ol-wb 39 35 23 3
LS05 lh 56 29 13 2 60 28 11 1
LS06 lh 60 26 11 3 65 24 10 2
LS07 lh 57 27 14 2
LS08 lh 66 20 10 4
LS09 lh 48 31 17 4
LS12 cpx-poor lh 74 15 8 3
LS15 cpx-poor lh 69 21 7 3
LS16 du 90 5 3 2
LS17 cpx-poor lh 73 18 8 1 75 16 7 1
LS19 cpx-poor lh 66 26 7 1
LS20 lh 74 14 11 1 79 10 10 1

Locality Sample Rock Type

 
Lh lherzolite 
cpx-poor lh: cpx poor lherzolite with 5<cpx% <10 
Hz harzburgite 
Ol-wb olivine websterite 
Du dunite 
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Table 2.1 continued 
       Mode(%) point counting        Mode(%) mass balance

ol opx cpx sp ol opx cpx sp
Lianshan LS21 cpx-poor lh 78 13 6 3

LS22 lh 59 26 13 2 63 24 12 2
LS23 lh 60 24 14 2 62 22 15 2
LS24 ol-wb 38 41 17 4
LS26 hz 72 20 4 4
LS30 lh 62 24 12 2
LS31 lh 53 27 17 3

Fangshan FS01 lh 53 27 18 2
FS03 lh 58 27 13 2
FS06 hz 72 22 5 1
FS07 lh 57 28 12 3
FS11 cpx-poor lh 69 21 9 1 68 21 10 1
FS12 lh 51 32 15 2
FS13 lh 60 25 12 3
FS14 lh 66 20 11 3
FS16 hz 76 17 6 1
FS17 lh 56 26 16 2
FS18 lh 62 24 12 2
FS19 lh 49 30 19 2
FS21 lh 68 20 10 2
FS23 lh 71 15 12 2
FS24 cpx-poor lh 65 24 7 4
FS25 hz 72 19 5 4
FS26 cpx-poor lh 70 20 9 1
FS30 hz 77 18 5 0

Locality Sample Rock Type
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Table 5.1 - Whole rock composition of peridotite xenoliths from Subei basin  

Sample PSS01 PSS11 PSS15 PSS17 LS03 LS05 LS06 LS17 LS20 LS22 LS23 FS11
SiO2 44.88 45.22 44.39 44.11 43.94 44.81 45.01 43.48 43.94 44.32 44.22 44.55
TiO2 0.08 0.11 0.17 0.02 0.05 0.07 0.08 0.01 0.04 0.13 0.12 0.07

Al2O3 2.22 3.15 2.86 1.73 2.10 2.52 2.66 1.18 1.55 2.82 2.88 1.88
Fe2O3 7.27 7.79 7.86 7.26 8.55 8.34 7.72 6.59 6.97 8.72 7.64 7.37
MnO 0.12 0.13 0.13 0.12 0.13 0.13 0.13 0.11 0.12 0.14 0.12 0.12
MgO 42.96 40.42 41.74 45.35 42.52 41.28 41.99 45.67 44.98 40.38 38.88 43.34
CaO 1.89 2.56 2.00 0.88 1.80 2.36 1.99 1.49 1.73 2.48 2.85 2.09

Na2O 0.10 0.13 0.11 0.03 0.07 0.10 0.10 0.03 0.07 0.09 0.12 0.09
K2O 0.03 0.03 0.04 0.01 0.02 nd nd 0.01 0.02 0.03 0.02 nd
P2O5 0.02 0.03 0.03 0.01 0.01 nd nd 0.01 0.01 0.01 0.01 nd
LOI 0.43 0.43 0.68 0.48 0.80 0.38 0.31 1.42 0.56 0.87 3.14 0.48

TOTALE 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SiO2 45.07 45.42 44.70 44.33 44.30 44.98 45.16 44.11 44.19 44.71 45.65 44.77
TiO2 0.08 0.11 0.17 0.02 0.05 0.07 0.08 0.01 0.04 0.14 0.12 0.07

Al2O3 2.23 3.16 2.88 1.73 2.12 2.53 2.66 1.20 1.56 2.84 2.98 1.89
Fe2O3 7.30 7.83 7.91 7.30 8.62 8.38 7.75 6.68 7.01 8.80 7.89 7.41
MnO 0.12 0.13 0.13 0.12 0.13 0.13 0.13 0.12 0.12 0.14 0.13 0.12
MgO 43.14 40.60 42.03 45.57 42.87 41.44 42.13 46.33 45.23 40.73 40.14 43.56
CaO 1.90 2.58 2.01 0.88 1.82 2.37 2.00 1.52 1.74 2.51 2.94 2.10

Na2O 0.10 0.13 0.11 0.03 0.07 0.10 0.10 0.03 0.07 0.09 0.13 0.09
K2O 0.03 0.03 0.04 0.01 0.02 nd nd 0.01 0.02 0.03 0.02 nd
P2O5 0.02 0.03 0.03 0.01 0.01 nd nd 0.01 0.02 0.01 0.01 nd

TOTALE 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  
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Table 5.1 continued 
Sample PSS01 PSS11 PSS15 PSS17 LS03 LS05 LS06 LS17 LS20 LS22 LS23 FS11

Ba nd nd 1.2 nd nd nd nd nd nd nd nd nd
Ce 4.60 5.91 4.98 4.45 3.42 5.74 5.20 1.90 4.35 3.52 2.76 4.11
Co 118 110 116 129 119 116 115 125 129 113 107 118
Cr 1562 3103 2464 2172 2425 2275 2756 1563 1424 2328 2047 1732
La nd nd nd nd nd nd nd nd nd nd nd nd
Nb nd nd 0.2 0.1 nd nd nd nd nd nd nd nd
Ni 2022 1955 2056 2247 2117 2003 1978 2226 2168 1921 1871 2123
Pb 1.62 2.70 2.00 1.17 1.01 1.35 1.08 1.25 0.96 1.68 nd 1.11
Rb 2.67 2.84 3.48 1.58 0.93 0.65 0.26 0.93 1.27 1.23 0.78 0.85
Sr 4.34 9.26 11.67 9.34 9.03 1.76 6.60 8.28 11.30 6.90 9.41 6.13
Th nd nd 0.20 nd nd nd nd nd nd 0.14 0.23 nd
V 54.9 78.9 72.9 39.5 48.7 61.8 64.0 26.8 34.8 77.1 73.7 53.1
Y 9.44 10.46 10.12 4.83 7.34 9.53 8.75 4.92 8.27 10.48 8.80 8.70
Zn 45.3 64.6 60.6 51.3 53.8 47.8 55.6 46.0 48.6 53.8 50.5 42.8
Zr nd nd 0.6 nd nd nd nd nd 0.3 nd nd nd
Cu 17.1 28.0 18.9 4.6 10.8 16.2 15.6 1.5 12.4 19.5 20.6 26.4
Ga 11.68 19.06 6.38 27.65 2.76 3.25 2.61 1.76 3.02 4.86 9.05 3.79
Nd nd nd 1.5 0.5 0.8 1.2 1.0 0.2 0.3 0.2 nd 0.2
S nd nd nd 166.6 nd nd nd 177.1 140.4 nd nd nd
Sc 5.36 8.56 6.31 2.89 4.83 8.19 5.92 2.64 3.51 7.92 6.93 6.84  

nd: not determined 
LOI: Lost on ignition 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 190

Table 5.2 - Olivine major element composition in peridotite xenoliths from Subei basin 

Location Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO TOTAL Mg#
Panshishan PSS01 41.98 0.03 0.00 0.01 9.99 0.16 49.58 0.04 0.00 0.00 0.28 102.08 89.85

PSS02 41.31 0.03 0.00 0.04 10.00 0.14 49.59 0.06 0.00 0.00 0.50 101.67 89.84
PSS05 41.07 0.00 0.02 0.01 9.55 0.13 48.82 0.03 0.01 0.00 0.21 99.85 90.11
PSS07 40.89 0.00 0.00 0.00 10.38 0.14 49.40 0.02 0.01 0.01 0.31 101.16 89.46
PSS10 40.75 0.00 0.00 0.01 9.43 0.13 49.58 0.03 0.01 0.00 0.32 100.28 90.36
PSS11 40.77 0.00 0.01 0.01 9.54 0.16 50.24 0.03 0.00 0.01 0.39 101.15 90.38
PSS12 40.97 0.01 0.00 0.02 9.95 0.18 48.80 0.04 0.00 0.00 0.22 100.18 89.74
PSS13 40.97 0.00 0.00 0.00 9.24 0.13 49.69 0.03 0.01 0.01 0.32 100.40 90.55
PSS15 40.54 0.01 0.01 0.01 9.64 0.16 50.04 0.04 0.00 0.00 0.39 100.82 90.25
PSS16 40.47 0.00 0.03 0.02 10.04 0.16 48.72 0.05 0.00 0.00 0.29 99.78 89.64
PSS17 41.91 0.02 0.00 0.04 9.38 0.12 50.18 0.04 0.00 0.01 0.42 102.11 90.51
PSS18 41.03 0.00 0.00 0.02 9.37 0.16 48.99 0.02 0.00 0.00 0.25 99.85 90.31
PSS19 40.93 0.01 0.01 0.01 9.80 0.13 49.63 0.01 0.01 0.01 0.25 100.78 90.03
PSS20 40.74 0.00 0.00 0.02 9.81 0.14 50.05 0.03 0.01 0.00 0.37 101.18 90.09

Lianshan LS01 40.62 0.01 0.01 0.00 9.61 0.13 49.05 0.02 0.01 0.00 0.32 99.77 90.10
LS02 41.16 0.01 0.01 0.00 10.05 0.13 49.59 0.02 0.01 0.00 0.33 101.31 89.79
LS03 42.19 0.01 0.00 0.02 8.47 0.13 50.71 0.04 0.01 0.01 0.42 102.02 91.43
LS04 40.79 0.00 0.02 0.01 10.18 0.17 48.98 0.04 0.01 0.00 0.28 100.49 89.56
LS05 39.86 0.01 0.01 0.01 9.48 0.14 49.93 0.03 0.02 0.00 0.38 99.85 90.38
LS06 40.74 0.00 0.01 0.02 9.83 0.13 48.79 0.04 0.00 0.00 0.31 99.87 89.85
LS07 40.86 0.00 0.01 0.01 9.78 0.13 49.20 0.05 0.01 0.00 0.31 100.37 89.97
LS08 41.04 0.00 0.00 0.00 9.68 0.14 49.57 0.03 0.01 0.01 0.31 100.79 90.13
LS09 40.88 0.00 0.01 0.01 9.54 0.16 49.88 0.02 0.01 0.00 0.29 100.79 90.31
LS12 41.31 0.01 0.01 0.01 7.99 0.14 49.89 0.03 0.01 0.00 0.25 99.65 91.76
LS15 41.27 0.00 0.00 0.01 8.54 0.13 50.43 0.04 0.01 0.00 0.34 100.76 91.33
LS16 40.63 0.01 0.00 0.02 8.05 0.12 50.75 0.03 0.01 0.01 0.36 99.99 91.83  
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Table 5.2 continiued 

Location Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO TOTAL Mg#
LS17 40.89 0.01 0.01 0.01 8.21 0.14 51.20 0.04 0.00 0.00 0.39 100.90 91.75
LS19 40.67 0.01 0.01 0.00 9.32 0.12 49.89 0.02 0.00 0.00 0.31 100.36 90.52
LS20 41.93 0.03 0.00 0.03 9.59 0.13 49.91 0.04 0.00 0.00 0.36 102.03 90.27
LS21 40.89 0.00 0.00 0.01 8.20 0.12 49.50 0.02 0.02 0.01 0.29 99.06 91.50
LS22 40.52 0.01 0.01 0.01 10.44 0.14 48.51 0.04 0.01 0.01 0.29 99.99 89.23
LS23 41.79 0.01 0.01 0.03 10.17 0.14 49.25 0.03 0.02 0.03 0.36 101.82 89.62
LS24 40.84 0.01 0.00 0.00 9.86 0.12 49.20 0.04 0.01 0.00 0.28 100.37 89.90
LS26 40.89 0.01 0.01 0.02 8.96 0.12 50.38 0.03 0.01 0.00 0.34 100.76 90.93
LS30 40.56 0.01 0.02 0.02 9.77 0.14 48.10 0.05 0.00 0.00 0.32 99.00 89.78
LS31 40.76 0.00 0.00 0.00 10.35 0.13 48.55 0.02 0.01 0.00 0.34 100.15 89.32

Fangshan FS01 41.37 0.00 0.03 0.04 9.00 0.15 49.29 0.07 0.01 0.00 0.22 100.19 90.71
FS03 40.92 0.01 0.01 0.01 9.22 0.13 49.67 0.03 0.01 0.01 0.32 100.33 90.57
FS06 40.89 0.01 0.01 0.01 8.84 0.14 49.26 0.05 0.01 0.01 0.23 99.45 90.86
FS07 40.47 0.00 0.01 0.01 9.82 0.15 48.71 0.08 0.01 0.00 0.23 99.50 89.84
FS11 40.57 0.01 0.01 0.01 9.21 0.13 50.32 0.12 0.04 0.00 0.39 100.82 90.69
FS12 41.16 0.01 0.04 0.00 9.23 0.14 48.79 0.11 0.00 0.01 0.26 99.75 90.40
FS13 40.95 0.02 0.04 0.03 9.69 0.15 48.88 0.09 0.01 0.00 0.24 100.08 90.00
FS14 40.91 0.01 0.04 0.02 9.73 0.13 48.55 0.07 0.02 0.01 0.21 99.70 89.89
FS16 41.21 0.01 0.03 0.03 8.42 0.14 50.02 0.04 0.01 0.00 0.24 100.16 91.37
FS17 40.87 0.00 0.02 0.02 8.88 0.16 48.95 0.05 0.03 0.01 0.26 99.24 90.77
FS18 40.09 0.02 0.04 0.04 10.07 0.15 49.52 0.12 0.00 0.00 0.36 100.42 89.76
FS19 40.94 0.01 0.04 0.01 9.68 0.14 48.70 0.10 0.01 0.01 0.23 99.85 89.97
FS21 40.93 0.01 0.03 0.02 9.80 0.14 48.51 0.05 0.02 0.00 0.25 99.76 89.82
FS23 41.15 0.00 0.02 0.04 9.14 0.12 48.99 0.09 0.01 0.01 0.24 99.82 90.52
FS24 40.48 0.00 0.01 0.01 8.82 0.14 50.61 0.04 0.00 0.00 0.43 100.56 91.09
FS26 40.84 0.00 0.01 0.02 9.89 0.14 48.40 0.04 0.00 0.00 0.23 99.58 89.72  
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Table 5.3 - Orthopyroxene major element composition in peridotite xenoliths from Subei basin 

Location Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO TOTAL Mg#
Panshishan PSS01 56.10 0.11 4.29 0.39 6.22 0.15 33.27 0.61 0.08 0.00 0.08 101.31 90.51

PSS02 56.49 0.08 4.24 0.37 6.25 0.16 33.59 0.61 0.08 0.00 0.10 101.97 90.55
PSS05 55.50 0.07 4.48 0.34 5.86 0.14 32.61 0.63 0.12 0.01 0.08 99.83 90.84
PSS07 57.71 0.11 3.66 0.21 6.57 0.17 31.51 0.43 0.06 0.00 0.07 100.49 89.53
PSS10 57.27 0.16 3.63 0.52 6.02 0.18 31.93 0.61 0.02 0.00 0.08 100.40 90.43
PSS11 55.34 0.10 3.66 0.31 6.19 0.16 34.30 0.43 0.05 0.00 0.11 100.66 90.81
PSS12 54.96 0.12 4.60 0.35 6.07 0.17 32.53 0.60 0.06 0.01 0.05 99.51 90.52
PSS13 57.85 0.06 3.61 0.24 5.75 0.15 31.39 0.51 0.05 0.00 0.09 99.71 90.68
PSS15 55.66 0.15 3.88 0.33 6.33 0.14 34.10 0.46 0.05 0.00 0.09 101.19 90.57
PSS16 56.67 0.11 4.82 0.34 6.36 0.16 30.48 0.78 0.13 0.00 0.08 99.93 89.52
PSS17 56.84 0.06 3.37 0.45 5.74 0.08 33.99 0.60 0.03 0.00 0.06 101.23 91.34
PSS18 55.58 0.10 3.65 0.21 6.52 0.17 33.07 0.37 0.00 0.00 0.06 99.73 90.04
PSS19 57.80 0.04 4.22 0.24 6.39 0.14 31.50 0.34 0.07 0.00 0.07 100.83 89.79
PSS20 55.79 0.16 3.58 0.39 6.33 0.14 34.31 0.46 0.03 0.00 0.09 101.28 90.63

Lianshan LS01 54.73 0.08 3.96 0.38 6.29 0.12 32.66 0.51 0.08 0.01 0.05 98.87 90.24
LS02 55.34 0.09 4.09 0.31 6.40 0.16 32.86 0.47 0.08 0.00 0.06 99.87 90.15
LS03 57.21 0.07 2.86 0.47 5.39 0.10 34.63 0.58 0.05 0.01 0.13 101.49 91.97
LS04 54.93 0.13 4.50 0.30 6.34 0.15 32.62 0.65 0.11 0.00 0.08 99.81 90.18
LS05 55.23 0.08 3.79 0.26 6.38 0.16 34.01 0.47 0.06 0.02 0.07 100.54 90.48
LS06 55.01 0.11 4.29 0.41 5.95 0.13 32.74 0.64 0.10 0.01 0.07 99.47 90.75
LS07 55.08 0.11 4.30 0.32 6.19 0.15 32.99 0.63 0.10 0.00 0.08 99.95 90.48
LS08 55.46 0.10 4.02 0.23 6.11 0.15 33.28 0.53 0.08 0.01 0.07 100.04 90.66
LS09 55.75 0.05 3.49 0.31 6.11 0.14 33.79 0.46 0.03 0.00 0.06 100.21 90.79
LS12 56.09 0.03 3.37 0.50 5.51 0.13 34.57 0.60 0.04 0.00 0.09 100.94 91.79
LS15 56.32 0.02 2.65 0.33 5.39 0.16 34.26 0.60 0.05 0.00 0.08 99.84 91.89
LS16 57.13 0.07 1.82 0.44 5.22 0.18 35.11 0.48 0.08 0.01 0.05 100.59 92.30
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Table 5.3 continued 

Location Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO TOTAL 92.05
LS17 56.13 0.03 2.72 0.54 5.44 0.15 35.33 0.65 0.04 0.00 0.06 101.08 92.05
LS19 55.63 0.06 2.93 0.48 5.94 0.14 33.95 0.52 0.05 0.01 0.07 99.77 91.06
LS20 56.75 0.05 3.61 0.54 6.05 0.09 33.91 0.64 0.14 0.00 0.12 101.90 90.91
LS21 56.29 0.04 1.88 0.24 5.34 0.13 34.09 0.48 0.07 0.01 0.07 98.64 91.93
LS22 54.61 0.15 4.10 0.22 6.60 0.16 32.47 0.55 0.07 0.01 0.06 98.99 89.77
LS23 56.17 0.13 4.49 0.31 6.45 0.16 33.37 0.59 0.06 0.01 0.05 101.79 90.22
LS24 54.97 0.10 4.39 0.26 6.32 0.15 33.00 0.58 0.09 0.00 0.08 99.94 90.30
LS26 56.01 0.00 2.29 0.47 5.63 0.14 34.33 0.57 0.01 0.00 0.08 99.54 91.58
LS30 54.75 0.10 4.32 0.27 6.32 0.11 31.71 0.67 0.11 0.02 0.08 98.46 89.94
LS31 55.36 0.13 3.71 0.24 6.75 0.14 33.04 0.41 0.06 0.01 0.06 99.90 89.72

Fangshan FS01 55.54 0.09 4.35 0.45 5.71 0.15 32.73 0.64 0.14 0.00 0.03 99.82 91.09
FS03 54.33 0.07 5.78 0.75 5.36 0.14 31.72 1.48 0.08 0.00 0.08 99.79 91.34
FS06 55.93 0.00 3.11 0.67 5.40 0.13 33.19 0.87 0.08 0.00 0.07 99.46 91.64
FS07 54.41 0.13 4.81 0.38 6.25 0.15 32.18 0.72 0.08 0.00 0.07 99.20 90.17
FS11 55.40 0.13 4.20 0.51 6.02 0.12 33.96 0.73 0.11 0.00 0.11 101.29 90.95
FS12 54.21 0.11 5.81 0.55 5.80 0.14 31.37 1.24 0.12 0.00 0.07 99.42 90.60
FS13 54.57 0.11 5.78 0.43 5.95 0.16 31.63 1.05 0.16 0.00 0.07 99.90 90.46
FS14 54.64 0.14 5.06 0.54 6.08 0.17 31.82 0.93 0.12 0.00 0.08 99.57 90.32
FS16 55.62 0.10 3.61 0.63 5.02 0.16 33.11 0.80 0.10 0.01 0.07 99.23 92.16
FS17 55.12 0.11 4.37 0.42 5.71 0.14 32.67 0.62 0.08 0.00 0.05 99.28 91.07
FS18 53.82 0.22 6.33 0.53 6.39 0.15 31.92 1.39 0.19 0.01 0.12 101.08 89.90
FS19 53.78 0.16 5.90 0.44 5.90 0.14 31.57 1.12 0.09 0.00 0.08 99.18 90.51
FS21 54.72 0.13 4.86 0.37 6.09 0.15 32.24 0.78 0.13 0.01 0.06 99.52 90.42
FS23 53.83 0.19 6.25 0.52 6.37 0.14 32.03 1.42 0.19 0.00 0.14 101.09 89.97
FS24 56.34 0.01 2.84 0.40 5.84 0.13 34.94 0.53 0.01 0.00 0.11 101.16 91.43
FS26 54.93 0.13 4.61 0.30 6.06 0.15 32.45 0.62 0.10 0.00 0.07 99.43 90.53  
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Table 5.4 - Clinopyroxene major element composition in peridotite xenoliths from Subei basin 

Location Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO TOTAL Mg#
Panshishan PSS01 53.09 0.58 6.53 0.85 2.56 0.07 15.14 20.38 1.60 0.01 0.05 100.85 91.34

PSS02 53.34 0.44 6.42 0.85 2.62 0.06 15.18 20.25 1.74 0.00 0.04 100.95 91.17
PSS05 52.22 0.42 7.03 0.85 2.46 0.09 14.64 20.13 1.70 0.00 0.02 99.56 91.39
PSS07 54.88 0.55 6.63 0.55 2.46 0.08 13.63 21.04 1.87 0.01 0.04 101.71 90.82
PSS10 54.71 0.53 4.48 0.78 2.27 0.08 14.95 22.13 1.06 0.00 0.05 101.05 92.16
PSS11 52.26 0.58 6.42 0.86 2.45 0.07 15.10 21.33 1.76 0.00 0.05 100.87 91.65
PSS12 51.89 0.57 6.77 0.73 2.62 0.11 14.88 20.38 1.58 0.01 0.01 99.53 91.02
PSS13 54.93 0.28 5.01 0.79 2.25 0.08 14.61 21.81 1.25 0.00 0.03 101.05 92.04
PSS15 52.23 0.62 6.16 0.82 2.41 0.08 15.28 21.71 1.65 0.00 0.04 101.00 91.89
PSS16 53.77 0.61 6.96 0.63 3.08 0.09 14.20 19.59 1.74 0.01 0.05 100.72 89.17
PSS17 53.41 0.21 4.23 1.05 2.25 0.07 16.33 22.30 0.85 0.00 0.03 100.75 92.84
PSS18 52.28 0.56 4.97 0.44 2.25 0.08 15.30 22.37 0.88 0.01 0.02 99.17 92.37
PSS19 54.88 0.30 7.38 0.65 2.08 0.08 13.04 20.82 2.17 0.01 0.02 101.43 91.79
PSS20 52.02 0.65 5.30 0.89 2.29 0.07 15.70 22.63 1.20 0.01 0.04 100.80 92.45

Lianshan LS01 51.88 0.47 5.74 0.78 2.42 0.07 14.76 21.10 1.61 0.01 0.04 98.87 91.59
LS02 52.42 0.51 6.51 0.81 2.53 0.08 14.77 21.05 1.73 0.01 0.04 100.45 91.22
LS03 54.29 0.11 3.87 1.11 2.24 0.09 16.22 21.82 1.14 0.00 0.06 100.96 92.82
LS04 51.76 0.63 7.01 0.76 2.90 0.08 14.72 20.03 1.76 0.01 0.02 99.67 90.04
LS05 51.80 0.48 6.58 0.81 2.41 0.09 14.79 21.23 1.88 0.01 0.04 100.10 91.62
LS06 51.79 0.52 6.40 0.92 2.52 0.08 14.84 20.29 1.69 0.00 0.05 99.10 91.31
LS07 51.88 0.51 6.38 0.75 2.63 0.08 14.94 20.38 1.67 0.00 0.03 99.25 91.01
LS08 52.49 0.42 5.93 0.64 2.31 0.08 14.73 20.60 1.85 0.01 0.04 99.10 91.89
LS09 52.65 0.19 4.99 0.79 2.19 0.08 15.41 22.32 1.16 0.00 0.03 99.81 92.62
LS12 53.01 0.13 4.17 0.88 2.33 0.08 16.52 22.24 0.94 0.00 0.03 100.33 92.65
LS15 53.52 0.03 3.27 0.54 2.12 0.08 16.60 22.42 0.94 0.00 0.04 99.57 93.32
LS16 53.99 0.25 3.65 1.48 1.86 0.06 15.84 21.08 1.93 0.01 0.03 100.18 93.81
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Table 5.4 continued  

Location Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO TOTAL Mg#
LS17 54.06 0.04 3.36 1.16 2.11 0.07 16.94 22.25 1.22 0.00 0.02 101.23 93.46
LS19 52.79 0.22 4.36 1.29 2.18 0.07 15.56 21.52 1.43 0.01 0.04 99.46 92.72
LS20 53.97 0.31 5.54 1.32 2.65 0.13 15.52 20.33 1.79 0.01 0.03 101.61 91.27
LS21 53.50 0.17 2.98 1.38 2.02 0.07 15.76 20.87 1.57 0.00 0.04 98.36 93.28
LS22 51.17 0.72 6.15 0.61 2.62 0.09 14.90 21.09 1.39 0.00 0.04 98.80 91.01
LS23 53.01 0.63 7.05 0.73 2.79 0.03 14.92 20.32 1.71 0.01 0.04 101.24 90.50
LS24 51.69 0.63 6.79 0.50 2.77 0.09 14.81 20.41 1.65 0.00 0.04 99.39 90.50
LS26 53.31 0.01 2.11 0.63 2.10 0.09 17.61 23.85 0.16 0.00 0.04 99.90 93.72
LS30 51.89 0.44 6.30 0.66 2.71 0.08 14.65 20.22 1.63 0.00 0.03 98.61 90.59
LS31 51.78 0.52 6.48 0.57 2.40 0.08 14.32 21.07 1.70 0.00 0.02 98.95 91.37

Fangshan FS01 52.80 0.40 6.47 0.97 2.53 0.09 14.95 19.70 1.92 0.01 0.03 99.86 91.32
FS03 51.61 0.15 6.54 1.18 3.22 0.12 17.16 18.57 0.80 0.01 0.04 99.40 90.48
FS06 53.36 0.03 4.28 1.38 2.47 0.07 16.24 20.44 1.06 0.00 0.04 99.36 92.15
FS07 52.78 0.47 6.67 0.81 2.77 0.07 14.82 19.84 1.29 0.01 0.03 99.56 90.51
FS11 52.42 0.47 6.00 1.05 2.76 0.09 16.03 20.40 1.62 0.01 0.05 100.90 91.18
FS12 51.86 0.34 7.19 0.93 3.15 0.09 16.37 18.34 1.12 0.03 0.04 99.46 90.26
FS13 52.25 0.44 7.58 0.79 3.07 0.13 15.64 18.73 1.47 0.00 0.03 100.14 90.08
FS14 51.56 0.52 7.13 0.95 3.42 0.09 15.30 18.85 1.36 0.00 0.03 99.19 88.87
FS16 52.92 0.27 4.87 1.28 2.59 0.09 16.27 20.10 1.26 0.01 0.04 99.71 91.81
FS17 52.69 0.43 6.60 1.08 2.57 0.08 14.93 20.19 1.55 0.00 0.02 100.13 91.21
FS18 51.38 0.52 7.94 0.86 3.67 0.10 16.76 17.63 1.63 0.02 0.07 100.57 89.06
FS19 51.17 0.52 7.43 0.77 3.56 0.11 15.80 18.83 1.15 0.02 0.02 99.38 88.80
FS21 51.93 0.53 6.98 0.80 2.83 0.09 15.02 19.33 1.79 0.00 0.02 99.32 90.44
FS23 52.62 0.20 5.39 1.60 3.20 0.12 16.29 18.75 1.30 0.00 0.02 99.49 90.09
FS24 53.68 0.03 2.50 0.60 2.11 0.07 17.75 24.12 0.26 0.01 0.05 101.17 93.76
FS26 51.92 0.55 6.97 0.75 2.64 0.08 14.79 20.16 1.57 0.01 0.02 99.46 90.90
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Table 5.5 - Spinel major element compositions in peridotite xenoliths from Subei basin 

Location Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO TOTAL Cr#
Panshishan PSS01 0.29 0.16 56.44 11.48 10.14 0.08 20.10 0.01 0.01 0.00 0.36 99.09 12.01

PSS02 0.28 0.11 56.05 12.07 10.79 0.15 19.78 0.02 0.00 0.01 0.28 99.53 12.62
PSS05 0.06 0.08 59.27 10.50 9.80 0.12 20.57 0.00 0.02 0.01 0.22 100.63 10.62
PSS07 0.04 0.06 58.63 8.94 10.66 0.09 19.67 0.00 0.02 0.00 0.33 98.44 9.27
PSS10 0.06 0.21 48.18 20.79 11.15 0.11 18.41 0.00 0.01 0.01 0.23 99.15 22.44
PSS11 0.02 0.09 56.52 10.57 10.61 0.06 21.85 0.01 0.00 0.00 0.38 100.11 11.15
PSS12 0.03 0.14 58.59 9.90 10.77 0.12 20.34 0.00 0.00 0.01 0.25 100.15 10.18
PSS13 0.05 0.07 53.37 15.16 10.46 0.11 19.18 0.00 0.00 0.00 0.28 98.69 16.00
PSS15 0.00 0.08 57.08 10.72 10.64 0.07 21.52 0.01 0.00 0.00 0.40 100.51 11.18
PSS16 0.07 0.17 57.44 9.11 11.09 0.11 19.61 0.00 0.01 0.00 0.31 97.93 9.62
PSS17 0.25 0.10 46.96 21.85 11.60 0.12 18.83 0.02 0.02 0.01 0.26 100.00 23.78
PSS18 0.01 0.08 55.17 14.30 11.33 0.16 19.28 0.00 0.00 0.01 0.17 100.51 14.81
PSS19 0.02 0.03 60.36 7.77 9.71 0.10 20.10 0.01 0.01 0.00 0.36 98.47 7.95

Lianshan LS01 0.05 0.09 53.62 14.39 11.46 0.13 19.96 0.00 0.01 0.00 0.30 100.02 15.25
LS02 0.07 0.05 58.37 10.12 10.14 0.12 20.95 0.00 0.02 0.01 0.31 100.17 10.42
LS03 0.27 0.13 39.33 28.33 13.20 0.21 17.98 0.01 0.00 0.01 0.23 99.69 32.57
LS04 0.07 0.14 58.01 9.42 11.14 0.09 20.94 0.00 0.00 0.00 0.32 100.14 9.82
LS05 0.05 0.07 57.67 9.57 10.72 0.06 21.11 0.01 0.00 0.00 0.37 99.61 10.01
LS06 0.06 0.11 55.24 12.48 10.53 0.12 20.57 0.00 0.01 0.00 0.31 99.43 13.16
LS07 0.09 0.12 55.78 12.37 10.72 0.12 20.69 0.00 0.01 0.00 0.29 100.19 12.95
LS08 0.04 0.07 54.28 13.83 11.18 0.11 20.35 0.00 0.01 0.01 0.29 100.16 14.59
LS09 0.04 0.03 55.68 12.96 11.09 0.14 20.38 0.00 0.01 0.01 0.29 100.62 13.50
LS12 0.03 0.07 46.28 21.88 12.14 0.08 19.51 0.00 0.01 0.00 0.30 100.29 24.08
LS15 0.08 0.02 36.94 33.18 12.87 0.20 17.50 0.00 0.01 0.00 0.14 100.93 37.60
LS16 0.01 0.24 29.89 39.97 14.05 0.17 15.97 0.01 0.04 0.01 0.14 100.46 47.28
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Table 5.5 continued 

Location Sample SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO TOTAL Cr#
LS17 0.01 0.03 37.07 31.91 12.19 0.00 18.44 0.01 0.00 0.00 0.22 99.89 36.60
LS19 0.04 0.10 44.19 25.97 12.66 0.16 18.71 0.00 0.02 0.00 0.19 102.07 28.27
LS20 0.22 0.10 47.24 20.81 12.11 0.11 18.68 0.00 0.00 0.01 0.25 99.53 22.81
LS21 0.04 0.14 29.62 41.27 13.98 0.23 16.04 0.00 0.01 0.00 0.09 101.41 48.31
LS22 0.06 0.09 57.51 9.76 10.85 0.12 20.21 0.00 0.01 0.00 0.28 98.90 10.22
LS23 0.06 0.13 59.68 8.40 10.56 0.15 20.47 0.00 0.01 0.01 0.39 99.87 8.63
LS24 0.05 0.11 58.78 8.76 10.35 0.12 21.15 0.00 0.01 0.01 0.31 99.65 9.09
LS26 0.04 0.03 34.59 35.70 14.55 0.19 16.82 0.00 0.02 0.00 0.16 102.10 40.90
LS30 0.08 0.10 56.02 11.77 10.59 0.11 20.16 0.00 0.01 0.00 0.32 99.15 12.35
LS31 0.03 0.06 58.10 8.94 11.24 0.12 20.35 0.00 0.00 0.00 0.33 99.19 9.35

Fangshan FS01 0.05 0.14 54.64 14.75 10.87 0.14 20.20 0.01 0.00 0.00 0.22 101.02 15.33
FS03 0.16 0.13 50.42 18.30 10.86 0.13 20.47 0.00 0.01 0.00 0.24 100.72 19.58
FS06 0.04 0.03 36.61 32.58 13.66 0.22 17.24 0.00 0.00 0.01 0.14 100.54 37.38
FS07 0.08 0.13 56.51 11.44 10.30 0.12 20.72 0.00 0.01 0.00 0.24 99.54 11.95
FS11 0.04 0.20 50.70 16.69 11.39 0.05 20.70 0.01 0.00 0.00 0.36 100.15 18.09
FS12 0.12 0.15 56.84 12.27 10.06 0.12 20.85 0.00 0.01 0.00 0.23 100.66 12.65
FS13 0.08 0.19 58.66 9.65 10.66 0.07 20.99 0.00 0.01 0.01 0.25 100.56 9.93
FS14 0.08 0.25 54.25 14.04 11.37 0.15 20.13 0.00 0.02 0.01 0.22 100.53 14.79
FS16 0.06 0.17 43.12 26.20 11.64 0.14 18.84 0.00 0.00 0.01 0.17 100.35 28.95
FS17 0.05 0.12 54.63 14.34 10.53 0.13 19.99 0.01 0.00 0.01 0.22 100.03 14.97
FS18 0.12 0.26 56.99 9.89 10.87 0.06 21.74 0.00 0.00 0.00 0.36 100.27 10.42
FS19 0.11 0.18 57.23 10.01 10.75 0.12 20.85 0.02 0.00 0.00 0.24 99.51 10.50
FS21 0.05 0.15 57.30 10.42 10.96 0.13 20.50 0.00 0.01 0.00 0.25 99.78 10.87
FS23 0.09 0.24 38.47 29.64 14.23 0.17 17.90 0.00 0.01 0.00 0.17 100.90 34.07
FS24 0.01 0.01 44.06 24.15 12.16 0.03 19.06 0.00 0.00 0.00 0.25 99.75 26.88
FS26 0.04 0.14 59.40 9.41 10.21 0.10 20.68 0.00 0.00 0.00 0.24 100.22 9.60  
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Table 5.6 - Clinopyroxene trace element analyses in peridotite xenoliths from Subei basin 

Location Sample n. Sc Ti V Co Ni Ga Rb Sr Y Zr Nb Ba
Panshishan PSS01 6 64.6 2051 3021 20.9 363 4.17 0.01 59.1 19.3 27.6 0.12 0.01

PSS02 4 66.0 1646 2330 20.6 349 4.35 0.01 187 15.4 29.2 0.82 0.07
PSS05 5 62.0 1875 2780 21.0 360 4.35 0.03 81.5 18.2 37.0 0.29 0.00
PSS07 10 73.4 3101 286 19.1 323 4.20 0.21 45.3 19.0 23.9 0.05 0.82
PSS10 8 65.4 2370 1962 20.8 371 3.38 0.23 144 8.9 27.0 0.22 1.45
PSS11 5 61.8 2836 4315 19.3 325 4.64 0.01 95.6 19.5 36.2 0.28 0.07
PSS12 5 64.7 2086 3112 20.5 344 4.44 0.04 67.0 18.6 29.9 0.13 0.00
PSS13 12 73.3 1452 948 19.8 350 3.41 0.08 33.5 13.2 11.5 0.18 0.58
PSS15 9 67.8 3275 2627 20.4 470 4.21 0.14 89.1 19.5 36.9 0.26 0.14
PSS16 13 56.6 2977 1481 23.6 398 4.91 0.02 79.2 19.3 35.3 0.14 0.15
PSS17 8 63.0 1069 693 20.7 351 2.76 0.02 53.2 8.1 9.3 0.28 0.01
PSS19 9 54.0 1836 212 16.6 304 4.58 0.08 95.5 10.9 5.2 0.04 6.68

Lianshan LS01 5 65.6 2465 267 19.0 323 3.99 0.02 60.3 16.2 23.7 0.32 0.04
LS02 6 74.5 472 231 18.7 344 1.87 0.03 109 3.3 40.4 0.28 0.31
LS03 6 64.6 670 208 20.4 396 2.41 0.01 110 8.0 4.2 0.79 0.05
LS04 7 62.0 3498 270 21.3 357 4.70 0.02 81.9 19.5 35.0 0.12 0.03
LS05 9 66.4 2590 271 18.2 296 3.91 0.03 27.0 18.3 14.6 0.02 0.10
LS06 4 63.4 2853 253 21.0 352 4.09 0.02 77.0 17.2 32.4 0.11 0.06
LS07 6 62.2 2882 258 21.1 358 4.06 0.01 79.0 17.6 33.8 0.12 0.02
LS08 9 65.3 2412 265 18.5 312 4.01 0.20 104 15.6 26.0 0.18 0.18
LS09 16 64.9 993 938 18.9 308 3.05 0.02 3.1 11.4 1.4 0.01 0.23
LS12 5 63.0 750 217 21.0 397 2.72 0.01 63.1 8.8 2.5 0.14 0.01
LS15 5 85.8 503 256 20.2 372 2.11 0.02 224 3.4 45.5 0.25 1.88
LS16 5 119 1510 239 17.1 310 2.50 0.01 319 7.0 41.6 0.12 0.07  
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Table 5.6 continued 

Location Sample n. Sc Ti V Co Ni Ga Rb Sr Y Zr Nb Ba
Lianshan LS17 4 84.5 247 221 18.7 346 1.94 0.02 172 3.4 41.6 0.24 8.60

LS19 8 87.0 1221 241 18.6 314 2.89 0.03 47.7 10.1 23.1 0.22 0.15
LS20 4 70.8 1474 250 20.0 351 4.54 0.02 210 14.6 45.8 0.76 0.01
LS21 6 107 1033 228 17.5 321 3.18 0.19 339 8.1 38.7 0.18 0.52
LS22 9 66.3 4325 294 19.4 308 5.02 0.03 91.3 20.5 38.2 0.15 0.22
LS23 4 62.4 3554 272 20.9 339 4.57 0.01 84.5 19.1 34.1 0.11 0.05
LS24 12 65.5 3554 281 21.0 343 5.28 0.14 85.2 19.5 35.2 0.08 0.67
LS26 16 58.5 166 160 20.3 350 1.14 0.05 14.9 1.5 2.0 0.06 0.15
LS30 11 63.6 2460 258 22.0 375 3.98 0.20 68.9 16.7 24.3 0.18 0.47
LS31 11 62.9 3110 272 18.5 306 4.52 0.16 55.4 20.3 27.6 0.07 1.94

Fangshan FS01 5 61.8 1636 2254 20.4 363 4.06 0.02 160 14.3 22.4 0.52 0.04
FS03 4 42.4 869 991 30.1 511 4.08 0.01 24.1 11.2 6.6 0.22 1.06
FS06 4 68.3 401 142 22.5 407 2.55 0.05 256 4.8 12.5 3.63 0.12
FS07 5 59.0 1792 2536 22.3 379 4.28 0.02 50.4 17.3 23.7 0.13 0.05
FS11 5 63.2 1758 2529 22.6 389 3.96 0.02 95.7 15.3 25.0 0.39 0.07
FS12 4 46.6 1306 1728 27.6 449 4.88 0.00 35.2 14.3 13.1 0.17 0.14
FS14 4 58.3 1870 2672 24.6 406 4.73 0.02 117 16.0 37.0 2.45 0.02
FS16 24 57.1 1244 403 21.3 368 2.93 0.03 239 8.7 18.6 2.34 0.15
FS17 4 62.3 1755 2354 20.9 368 4.02 0.01 73.1 15.0 24.2 0.75 0.00
FS19 5 51.9 1867 2689 26.0 411 5.13 0.01 84.1 16.7 28.3 0.88 0.08
FS21 5 60.9 1941 2843 22.3 366 4.18 0.01 118 17.9 29.2 3.79 0.07
FS23 5 52.0 919 1062 26.1 431 4.10 0.01 114 10.6 19.0 0.93 0.02
FS26 5 62.3 2198 3189 21.0 355 4.37 0.02 71.8 19.1 33.2 0.08 0.01

FS16 opx 3 12.7 303 53 98.9 1799 0.09 1.05 0.5 1.6 0.11 0.40  
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Table 5.6 continued 

Location Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb
Panshishan PSS01 0.78 2.53 0.50 3.07 1.36 0.63 2.36 0.48 3.29 0.72 2.04 0.30 2.06

PSS02 9.66 19.9 2.27 9.16 1.88 0.76 2.40 0.43 2.63 0.59 1.58 0.22 1.56
PSS05 2.06 5.01 0.76 4.11 1.51 0.66 2.37 0.44 3.10 0.70 1.86 0.28 1.86
PSS07 0.30 1.66 0.39 2.89 1.44 0.64 2.47 0.47 3.22 0.73 2.04 0.29 1.94
PSS10 4.65 6.93 1.20 7.24 2.36 0.85 2.55 0.36 1.85 0.34 0.83 0.12 0.78
PSS11 2.06 6.15 1.05 6.22 2.25 0.95 3.21 0.54 3.61 0.75 1.98 0.27 1.85
PSS12 0.91 3.27 0.63 4.10 1.75 0.73 2.47 0.46 3.16 0.72 2.06 0.30 1.88
PSS13 0.87 2.25 0.35 1.97 0.84 0.36 1.52 0.31 2.16 0.52 1.54 0.21 1.47
PSS15 1.76 5.48 0.97 5.83 2.20 0.88 3.04 0.52 3.45 0.80 2.17 0.30 2.00
PSS16 1.08 3.86 0.72 4.55 1.83 0.76 2.73 0.52 3.49 0.75 2.03 0.30 1.93
PSS17 1.33 3.97 0.60 3.04 0.83 0.30 0.94 0.18 1.31 0.30 0.94 0.14 0.96
PSS19 0.80 2.62 0.38 1.92 0.77 0.56 1.42 0.29 2.00 0.44 1.22 0.17 1.13

Lianshan LS01 0.97 3.03 0.53 3.37 1.50 0.58 2.27 0.42 2.91 0.66 1.81 0.26 1.67
LS02 7.28 11.1 1.24 4.80 0.74 0.19 0.59 0.08 0.53 0.13 0.38 0.06 0.45
LS03 3.92 4.64 0.39 1.60 0.54 0.24 0.96 0.18 1.34 0.31 0.84 0.13 0.86
LS04 1.08 4.01 0.71 4.48 1.86 0.76 2.70 0.50 3.44 0.75 2.10 0.31 2.03
LS05 0.12 0.88 0.27 2.19 1.25 0.57 2.27 0.45 3.18 0.73 2.06 0.30 2.04
LS06 1.13 4.08 0.71 4.26 1.77 0.67 2.39 0.44 3.09 0.68 1.81 0.27 1.74
LS07 1.11 4.13 0.74 4.42 1.78 0.73 2.47 0.45 3.10 0.66 1.92 0.27 1.79
LS08 2.35 3.91 0.60 3.34 1.38 0.58 2.10 0.40 2.76 0.64 1.67 0.25 1.62
LS09 0.04 0.13 0.03 0.30 0.36 0.20 0.95 0.22 1.77 0.43 1.31 0.19 1.35
LS12 0.27 0.97 0.19 1.16 0.49 0.21 0.93 0.19 1.43 0.33 1.00 0.15 0.96
LS15 13.0 16.0 1.48 5.03 0.84 0.20 0.58 0.09 0.62 0.14 0.38 0.07 0.49
LS16 10.4 22.7 2.49 9.91 1.89 0.69 1.69 0.24 1.38 0.27 0.69 0.09 0.69  
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Table 5.6 continued 

Location Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb
Lianshan LS17 10.8 13.2 1.37 5.20 0.72 0.18 0.60 0.09 0.60 0.13 0.37 0.06 0.51

LS19 0.95 2.21 0.35 2.03 0.79 0.39 1.26 0.24 1.68 0.39 1.13 0.16 1.05
LS20 8.98 20.8 2.70 12.28 2.94 1.05 2.92 0.49 2.85 0.58 1.45 0.21 1.46
LS21 11.6 28.2 3.41 13.90 2.75 0.94 2.27 0.32 1.61 0.31 0.77 0.10 0.72
LS22 3.24 10.4 1.76 9.55 2.92 1.10 3.53 0.58 3.72 0.79 2.14 0.30 1.98
LS23 1.18 4.27 0.77 4.65 1.82 0.77 2.73 0.50 3.38 0.73 2.08 0.30 1.99
LS24 1.23 4.46 0.80 4.96 1.90 0.79 2.68 0.50 3.39 0.76 2.14 0.31 2.07
LS26 0.36 0.86 0.12 0.65 0.17 0.07 0.22 0.04 0.24 0.06 0.19 0.04 0.27
LS30 1.37 2.85 0.49 3.26 1.29 0.58 2.09 0.40 2.93 0.65 1.84 0.26 1.72
LS31 0.33 1.77 0.43 3.30 1.58 0.73 2.76 0.50 3.61 0.81 2.21 0.33 2.22

Fangshan FS01 7.32 13.28 1.40 5.84 1.58 0.60 2.18 0.38 2.58 0.54 1.47 0.21 1.37
FS03 0.24 0.99 0.21 1.43 0.75 0.35 1.36 0.29 1.92 0.45 1.18 0.17 1.11
FS06 18.6 33.9 3.30 11.92 1.87 0.55 1.34 0.17 0.93 0.17 0.46 0.07 0.47
FS07 0.50 2.12 0.45 2.99 1.44 0.59 2.29 0.46 3.08 0.67 1.89 0.27 1.82
FS11 3.99 7.14 0.91 4.26 1.67 0.67 2.34 0.39 2.57 0.58 1.66 0.23 1.51
FS12 0.45 1.43 0.29 1.97 1.04 0.44 1.80 0.35 2.40 0.54 1.61 0.22 1.52
FS14 7.13 8.18 1.06 5.50 1.73 0.75 2.49 0.43 2.88 0.64 1.74 0.25 1.55
FS16 16.1 25.7 2.15 7.59 1.71 0.64 1.63 0.27 1.71 0.35 0.95 0.13 0.84
FS17 2.90 4.87 0.66 3.51 1.34 0.59 2.16 0.39 2.75 0.59 1.66 0.23 1.55
FS19 2.94 4.94 0.68 4.16 1.54 0.63 2.34 0.43 2.91 0.66 1.77 0.24 1.62
FS21 11.7 7.50 0.65 3.85 1.59 0.66 2.42 0.46 3.07 0.71 1.92 0.28 1.78
FS23 3.23 4.92 0.71 4.13 1.42 0.56 1.81 0.31 1.95 0.42 1.10 0.14 0.92
FS26 0.96 3.52 0.69 4.28 1.78 0.72 2.62 0.49 3.43 0.75 2.09 0.29 1.92

FS16 opx 0.07 0.13 0.03 0.11 0.07 0.03 0.02 0.16 0.03 0.07 0.01 0.15  
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Table 5.6 continued 

Location Sample Lu Hf Ta Pb Th U ∑REE (La/Sm)N (La/Yb)N (Sm/Yb)N Ti* Zr* Eu*
Panshishan PSS01 0.30 0.87 0.00 0.03 0.03 0.01 20.41 0.37 0.27 0.73 0.41 0.93 1.06

PSS02 0.22 0.91 0.09 0.21 0.68 0.20 53.30 3.31 4.44 1.34 0.30 0.47 1.10
PSS05 0.27 0.97 0.04 0.12 0.90 0.21 25.00 0.88 0.79 0.90 0.37 1.02 1.07
PSS07 0.31 0.87 0.01 0.70 0.01 0.29 18.80 0.13 0.11 0.82 0.61 0.79 1.02
PSS10 0.11 1.03 0.02 0.22 1.95 0.22 30.17 1.27 4.26 3.35 0.39 0.45 1.06
PSS11 0.25 1.03 0.11 0.12 0.10 0.03 31.14 0.59 0.80 1.35 0.40 0.67 1.08
PSS12 0.29 0.96 0.01 0.24 0.02 0.01 22.73 0.34 0.35 1.03 0.38 0.76 1.08
PSS13 0.22 0.46 0.02 0.41 0.03 0.01 14.60 0.67 0.43 0.63 0.48 0.61 0.97
PSS15 0.29 1.13 0.09 3.80 0.08 0.06 29.68 0.51 0.63 1.23 0.49 0.71 1.04
PSS16 0.28 1.16 0.02 0.19 0.01 0.01 24.82 0.38 0.40 1.05 0.51 0.84 1.04
PSS17 0.13 0.27 0.02 0.06 0.03 0.01 14.94 1.03 1.00 0.97 0.50 0.40 1.03
PSS19 0.16 0.24 0.01 0.42 0.01 0.01 13.87 0.67 0.51 0.75 0.50 0.29 1.61

Lianshan LS01 0.24 0.71 0.03 0.06 0.05 0.02 20.24 0.42 0.42 1.00 0.52 0.72 0.97
LS02 0.08 1.00 0.03 0.23 2.63 0.37 27.62 6.37 11.62 1.82 0.35 1.38 0.84
LS03 0.11 0.19 0.00 0.30 0.58 0.18 16.05 4.69 3.25 0.69 0.34 0.32 1.03
LS04 0.29 1.11 0.02 0.11 0.02 0.01 25.02 0.37 0.38 1.02 0.60 0.83 1.04
LS05 0.28 0.65 0.00 0.13 0.00 0.01 16.58 0.06 0.04 0.68 0.56 0.59 1.03
LS06 0.25 0.98 0.02 0.03 0.01 0.00 23.28 0.41 0.47 1.13 0.56 0.81 0.99
LS07 0.25 1.03 0.01 0.04 0.01 0.00 23.83 0.40 0.45 1.11 0.53 0.83 1.06
LS08 0.24 0.80 0.03 0.89 0.48 0.28 21.84 1.10 1.04 0.95 0.54 0.83 1.04
LS09 0.20 0.10 0.00 0.02 0.00 0.00 7.48 0.06 0.02 0.30 0.55 0.25 0.99
LS12 0.13 0.13 0.01 0.04 0.01 0.00 8.42 0.36 0.20 0.56 0.41 0.22 0.95
LS15 0.09 1.15 0.02 0.40 4.69 0.57 38.95 10.00 18.82 1.88 0.36 1.45 0.82
LS16 0.10 1.09 0.07 1.50 1.21 0.40 53.22 3.55 10.83 3.05 0.34 0.64 1.16  
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Table 5.6 continued 

Location Sample Lu Hf Ta Pb Th U ∑REE (La/Sm)N (La/Yb)N (Sm/Yb)N Ti* Zr* Eu*
Lianshan LS17 0.08 1.02 0.01 0.59 4.26 0.51 33.90 9.65 15.19 1.57 0.18 1.36 0.83

LS19 0.16 0.62 0.02 0.21 0.10 0.04 12.77 0.78 0.65 0.83 0.43 1.26 1.19
LS20 0.21 0.64 0.09 0.35 0.74 0.18 58.91 1.97 4.42 2.24 0.20 0.52 1.09
LS21 0.12 0.87 0.08 2.00 1.20 0.40 66.97 2.73 11.56 4.24 0.17 0.42 1.12
LS22 0.29 1.28 0.06 0.44 0.06 0.01 42.26 0.72 1.17 1.64 0.54 0.50 1.05
LS23 0.29 0.96 0.01 0.07 0.01 0.00 25.46 0.42 0.43 1.01 0.60 0.81 1.05
LS24 0.30 1.09 0.01 0.60 0.02 0.02 26.30 0.42 0.43 1.02 0.60 0.79 1.07
LS26 0.05 0.07 0.01 0.02 0.01 0.01 3.33 1.34 0.96 0.72 0.34 0.42 1.04
LS30 0.25 0.79 0.01 0.78 0.20 0.07 19.99 0.68 0.57 0.83 0.55 0.82 1.08
LS31 0.32 0.99 0.00 1.46 0.02 0.05 20.88 0.13 0.11 0.79 0.54 0.82 1.06

Fangshan FS01 0.20 0.69 0.02 0.17 0.62 0.16 38.95 2.98 3.82 1.28 0.35 0.51 0.98
FS03 0.16 0.29 0.00 0.03 0.01 0.00 10.61 0.21 0.16 0.75 0.31 0.43 1.04
FS06 0.08 0.04 0.54 0.54 1.93 0.43 73.83 6.44 28.20 4.38 0.11 0.17 1.02
FS07 0.26 0.79 0.01 0.13 0.02 0.02 18.82 0.23 0.20 0.88 0.38 0.77 0.99
FS11 0.22 0.77 0.02 0.15 0.32 0.08 28.14 1.54 1.90 1.23 0.34 0.65 1.04
FS12 0.23 0.46 0.01 0.02 0.01 0.00 14.31 0.28 0.21 0.76 0.36 0.61 0.97
FS14 0.22 1.04 0.14 0.11 2.64 0.55 34.54 2.66 3.31 1.24 0.34 0.83 1.10
FS16 0.11 0.47 0.18 0.20 2.03 0.51 59.83 6.05 13.68 2.26 0.30 0.35 1.15
FS17 0.22 0.80 0.03 0.08 0.42 0.13 23.43 1.40 1.34 0.96 0.38 0.77 1.06
FS19 0.23 0.96 0.04 0.02 0.36 0.10 25.09 1.23 1.30 1.06 0.38 0.77 1.01
FS21 0.26 0.99 0.01 0.57 1.72 0.47 36.91 4.77 4.73 0.99 0.38 0.81 1.03
FS23 0.14 0.38 0.02 0.03 0.50 0.10 21.76 1.47 2.50 1.71 0.22 0.54 1.06
FS26 0.28 1.04 0.01 0.02 0.01 0.00 23.82 0.35 0.36 1.03 0.39 0.83 1.02

FS16 opx 0.02 0.06 0.05 0.06 0.02 0.91 0.58 0.33 0.57 2.98 1.15 1.88  

n. numbers of analysis    N indicate C1 chondrite normalization 
Ti*=TiN/((Eu+Gd)N /2)     Zr*=ZrN/((Nd+Sm)N/2)     Eu*=EuN/((Sm+Gd)N/2) 
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Table 5.7 - Oxygen isotopic analyses of xenoliths form Subei basin 

δ18O 2δ δ18O 2δ δ18O 2δ δ18O 2δ
Panshishan PSS01 5.71 0.18 6.36 0.27 5.69 0.20 4.84 0.26 0.65 -0.02 0.67

PSS02 5.28 0.19 6.03 0.19 5.58 0.00 4.73 0.20 0.75 0.30 0.45
PSS05 5.36 0.44 6.29 0.23 5.70 0.41 5.10 0.24 0.93 0.33 0.60
PSS11 5.49 0.17 6.27 0.30 5.57 0.30 5.15 0.22 0.78 0.08 0.71
PSS12 5.30 0.04 5.87 0.21 5.38 0.11 4.36 0.04 0.57 0.09 0.49
PSS13 5.40 0.13 6.04 0.13 5.44 0.01 4.57 0.30 0.64 0.04 0.60
PSS15 5.37 0.17 5.94 0.38 5.47 0.44 5.37 0.11 0.57 0.10 0.46
PSS16 5.49 0.46 6.03 0.16 5.18 0.06 4.92 0.20 0.53 -0.31 0.85
PSS17 5.78 0.25 6.53 0.32 6.15 0.29 4.11 0.47 0.75 0.37 0.38
PSS19 5.58 0.14 6.11 0.01 5.43 0.38 5.23 0.53 -0.15 0.67

Average 5.48 6.15 5.56 4.84 0.67 0.08 0.59
Lianshan LS03 5.96 0.39 6.55 0.33 5.82 0.28 4.52 0.21 0.59 -0.14 0.73

LS05 5.53 0.20 6.34 0.18 5.37 0.08 0.81
LS06 5.94 0.07 6.33 0.15 6.11 0.11 5.05 0.23 0.39 0.17 0.23
LS07 5.45 0.16 6.06 0.13 5.77 0.04 4.79 0.12 0.61 0.32 0.30
LS12 5.58 0.26 6.56 0.06 5.94 0.02 4.71 0.35 0.98 0.36 0.62
LS17 5.42 0.30 6.01 0.18 6.10 0.23 0.60 0.68 -0.08
LS20 5.95 0.10 6.53 0.11 6.05 0.03 4.77 0.39 0.58 0.10 0.48
LS22 5.51 0.10 6.41 0.05 5.92 0.01 5.03 0.21 0.90 0.41 0.49
LS23 5.65 0.25 6.67 0.01 6.16 0.29 5.58 0.25 1.02 0.51 0.52
LS31 5.42 0.33 6.35 0.23 5.96 0.15 5.14 0.30 0.93 0.53 0.40

Average 5.64 6.39 6.02 4.99 0.73 0.37 0.41

Δopx-ol Δcpx-ol Δopx-cpxLocation Sample
OL OPX CPX SP
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Table 5.7 continuied 

δ18O 2δ δ18O 2δ δ18O 2δ δ18O 2δ
Fangshan FS01 5.71 0.04 6.33 0.13 5.95 0.15 4.83 0.20 0.63 0.24 0.38

FS03 5.25 0.07 6.07 0.10 5.33 0.20 0.82 0.08 0.74
FS06 6.32 0.08 6.57 0.16 6.27 0.20 0.26 -0.05 0.30
FS07 5.54 0.10 5.80 0.01 5.91 0.11 5.39 0.07 0.26 0.37 -0.11
FS12 5.91 0.19 5.79 0.11 5.83 0.07 -0.12 -0.08 -0.04
FS13 6.04 0.10 5.86 0.03 5.46 0.05 5.10 0.01 -0.18 -0.59 0.41
FS14 5.12 0.19 4.37 0.20
FS16 5.26 0.11 6.54 0.50 5.46 0.04 1.28 0.20 1.08
FS17 5.79 0.11 6.48 0.41 6.31 0.25 0.69 0.52 0.18
FS19 5.64 0.20 6.00 0.30 5.44 0.20 0.36 -0.20 0.56
FS23 5.37 0.01 5.82 0.05 5.80 0.20 4.84 0.14 0.45 0.43 0.02
FS26 5.44 0.11 6.05 0.08 5.87 0.06 5.07 0.10 0.61 0.43 0.18

Average 5.61 6.12 5.78 4.93 0.46 0.12 0.34

Δopx-ol Δcpx-ol Δopx-cpxLocation Sample
OL OPX CPX SP
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Table 6.1 - Temperature, Pressure and Oxygen fugacity estimates of peridotite xenoliths from Subei basin 
Fo Δlog fO2

min max ΔTmax-min min max
PanshishanPSS01 92.70 89.85 1004 1025 21 20 24 -3.9

PSS02 89.84 979 1040 61 22 28 -1.5
PSS05 90.11 961 1015 54 22 -3.6
PSS07 89.46 823 912 89
PSS10 90.36 849 910 61
PSS11 91.51 90.38 831 905 74 0.0
PSS12 89.74 933 1019 86 -4.1
PSS13 90.55 791 927 136
PSS15 91.82 90.25 833 856 23 12 0.3
PSS16 89.64 1006 1061 55
PSS17 93.03 90.51 917 927 10 26 24 -1.0
PSS18 90.31 819 836 17 21 29 -2.3
PSS19 90.03 805 828 23
PSS20 90.09 760 826 66

Lianshan LS01 90.10 810 870 60 18 23 0.0
LS02 89.79 846 919 73 -1.0
LS03 91.13 91.43 925 949 24 18 20 0.4
LS04 89.56 982 988 6 16 26 0.0
LS05 91.10 90.38 740 881 141
LS06 91.98 89.85 948 980 32 16 25 -0.6
LS07 93.75 89.97 900 993 93
LS08 90.13 858 914 56 18 29 -0.1
LS09 90.31 726 829 103
LS12 91.76 889 906 17 14 27 0.6
LS15 91.33 836 891 55 15 17 -0.6
LS16 91.83 807 840 33 9 16 -0.3

Pressure(kbar)Locality sample WR Mg#
Temperature(℃)
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Table 6.1 continued 
Fo Δlog fO2

min max ΔTmax-min min max
Lianshan LS17 91.75 844 908 64 13 0.2

LS19 90.52 795 853 58 8 15 -0.4
LS20 93.27 90.27 967 997 30 20 26 -1.6
LS21 91.50 832 878 46 11 23 -2.5
LS22 90.57 89.23 891 903 12 16 26 -0.5
LS23 91.42 89.62 981 988 7 19 27 -1.1
LS24 89.90 952 971 19 17 26 -0.1
LS26 90.93 819 822 3 12 20 0.0
LS30 89.78 940 970 30 16 23 -0.7
LS31 89.32 777 909 132

Fangshan FS01 90.71 1009 1013 4 18 23 -1.0
FS03 90.57 1198 1219 21 21 25
FS06 90.86 1056 1059 3 22 26 0.0
FS07 89.84 1058 1081 23 16 19 -0.6
FS11 92.57 90.69 1006 1032 26 10 12 2.2
FS12 90.40 1186 1193 7 15 23
FS13 90.00 1145 1148 3 15 24
FS14 89.89 1130 1135 5 20 26
FS16 91.37 1073 1074 1 31 33 -0.4
FS17 90.77 1025 1026 1 20 25 -1.5
FS18 89.76 1198 1213 15 21 23 0.2
FS19 89.97 1160 15 25
FS21 89.82 1083 1088 5 16 20
FS23 90.52 1154 1156 2 14 24 0.6
FS24 91.09 800 823 23 0.3
FS26 89.72 982 1023 41 11 14 -2.1

Locality sample WR Mg#
Temperature(℃) Pressure(kbar)

 
(a). Temperature were calculated using Brey and Kohler (1990) two pyroxenes geothermometer, with the pairs of 
cpx and opx, which equilibrium with lnKd vs 1000/T in the range of 10 and 50kbar 
(b). Pressure were calculate with average of temperature, using Kohler and Brey (1990) with sample have the 
different of temperature less than 70 degree 
 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 208

Table 7.1 - Minerals and bulk rock water content of peridotite xenoliths from Subei basin 
 

Locality Sample
cpx n. opx n. WR cpx/opx

Panshishan PSS01 95 10 26 13 21 3.59
PSS02 129 17 30 20 34 4.24
PSS05 161 15 34 15 36 4.74
PSS07 147 11 30 15 39 4.86
PSS10 16 14
PSS11 103 13 26 17 26 3.95
PSS12 183 20 56 22 52 3.26
PSS13 112 15 25 17 27 4.41
PSS15 64 14 17 16 15 3.67
PSS16 181 15 61 13 58 2.97
PSS17 177 12 50 17 31 3.54
PSS18 121 13 23 16 31 5.23
PSS19 145 11 23 18 33 6.40
PSS20 150 17 23 16 33 6.39

Lianshan LS01 55 15 18 16 13 3.00
LS02 41 13 13 14 15 3.08
LS03 41 13 17 16 10 2.39
LS04 56 16 28 15 27 1.97
LS05 90 11 34 14 24 2.61
LS06 73 12 32 16 19 2.29
LS07 96 14 30 17 26 3.18
LS08 42 12 15 14 12 2.81
LS12 78 13 32 16 18 2.43
LS17 37 13 17 16 8 2.20
LS19 89 15 45 18 25 1.97
LS20 84 11 34 14 18 2.46

H2O content (ppm, wt)
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Table 7.1 continued 

Locality Sample
cpx n. opx n. WR cpx/opx

LS21 16 18
LS22 102 17 41 13 28 2.49
LS23 73 16 32 15 22 2.29
LS24 80 16 34 13 26 2.33
LS26 57 13 19 15 12 3.01
LS30 92 15 29 13 27 3.18
LS31 55 15 16 13 15 3.38

Fangshan FS01 64 14 25 16 22 2.52
FS03 167 16 68 12 50 2.46
FS06 170 19 61 20 43 2.79
FS07 60
FS11 109 17 43 15 26 2.56
FS12 158 13 54 16 37 2.92
FS13 108 11 41 13 27 2.66
FS14 120 12 53 14 32 2.26
FS16 90 15 33 14 18 2.71
FS17 53 17 28 19 19 1.91
FS18 63
FS19 74
FS21 177 14 69 13 44 2.56
FS23 101 16 39 20 25 2.57
FS24 41 15 21 17 16 1.91
FS26 67 14 28 14 16 2.44

H2O content (ppm, wt)

 
 n. numbers of FTIR spectra which were used to made baseline and calculate the average water content of minerals. 
The whole rock (WR) H2O contents were calculated by assuming 2 ppm H2O for olivine of all samples. 
 
 
 
 
Table 8.1 - Xenolith phase modal proportions (vol %) used in the models 
Phase Start mode Melt mode
olivine 0.55 0.1
opx 0.25 0.2
cpx 0.18 0.68
sp 0.02 0.02

olivine 0.55 0.13
opx 0.2 0.12
cpx 0.15 0.25
grt 0.1 0.5  

 



Petrological features of Subei Basin (Eastern China) lithospheric mantle and their relationships 
with H2O contents in NAMs 

 210

Table 8.2 - Crystal/Liquid partition coefficients for modeling calculations 
 

olivine/melt opx/melt cpx/melt sp/melt grt/melt
La 0.0008 0.0006 0.0536 0.0012 0.0003
Ce 0.0001 0.001 0.086 0.00002 0.005
Pr 0.0008 0.0032 0.14 0.01 0.02
Nd 0.002 0.01 0.1873 0.0008 0.052
Sm 0.0002 0.0082 0.291 0.00006 0.25
Eu 0.003 0.03 0.32 0.0009 0.4
Gd 0.008 0.034 0.4 0.01 0.61
Tb 0.01 0.045 0.42 0.01 1.03
Dy 0.012 0.045 0.442 0.0015 1.65
Ho 0.013 0.048 0.44 0.01 2.66
Er 0.025 0.06 0.467 0.003 3.6
Tm 0.009 0.071 0.449 0.01 5.26
Yb 0.008 0.086 0.43 0.00034 6.6
Lu 0.018 0.09 0.44 0.0007 8.5

Partition coefficients
Element

 
Source of data: Fujimaki et al., 1984; McKenzie and O'Nions., 1991; Nielsen et al., 1992; Hart and Dunn, 1993; Dunn 
and Sen, 1994; Zack et al., 1997; Johnson, 1998; Green et al., 2000 ; Takazawa et al., 2000; Adam et al., 1994,2006; 
Elkins et al., 2008 
 
 
 
Table 8.3 - Primitive mantle source and starting bulk composition (ppm) in spinel and garnet facies 

Sp Grt
C0 D0 P C0 D0 P

La 0.648 3.385 0.010 0.037 4.025 0.009 0.014
Ce 1.675 9.126 0.016 0.059 10.549 0.014 0.024
Pr 0.254 1.335 0.027 0.096 1.477 0.024 0.045
Nd 1.25 6.272 0.037 0.130 6.433 0.036 0.074
Sm 0.406 2.166 0.055 0.200 1.678 0.070 0.199
Eu 0.154 0.738 0.067 0.224 0.515 0.096 0.284
Gd 0.544 2.557 0.085 0.280 1.646 0.132 0.410
Tb 0.099 0.439 0.095 0.298 0.230 0.181 0.627
Dy 0.674 3.057 0.097 0.311 1.207 0.247 0.942
Ho 0.149 0.665 0.099 0.310 0.188 0.349 1.447
Er 0.438 1.812 0.113 0.332 0.449 0.456 1.927
Tm 0.068 0.294 0.104 0.321 0.050 0.613 2.752
Yb 0.441 1.836 0.103 0.310 0.254 0.746 3.419
Lu 0.0675 0.266 0.112 0.319 0.031 0.944 4.373

Primitive mantleElement
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Table A1 EMPA for olivine core and rim 

Table A2 EMPA for opx core and rim 

Table A3 EMPA for cpx core and rim 

Table A4 EMPA for sp core and rim 

Table A5 trace element for average 

FTIR spectra， they are include in CD. 

Available upon request 
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