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Introduction

Contents

1.1 Complex Mixtures: Multicomponent Chromatograms . . . . . . . . 3

1.2 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The aim of this Ph.D. project was a study of multicomponent chromatograms of complex

mixtures, using a chemometric approach and to further develop it.

The activity has been concentrated in the study of analytical-separative methods (in particular

Gas Cromatography-Mass Spectrometry, GC-MS) for complex samples of environmental inter-

est, especially for PM (particulate matter) samples.

A fundamental part of this Ph.D. project has been dedicated to the development of mathe-

matical and statistical algorithms for the data treatment of the GC-MS signal obtained from

the analysis, in order to extract relevant information from the complex chromatogram, such as

important indexes involved in the environmental studies.

In particular, the project involved the identification and the characterization of homologous

series of organic compounds (n-alkanes and carboxylic acids) that could be usually found in en-

vironmental samples, because they contain fundamental information to distinguish, for example,

different types of emission sources, anthropic or biogenic.

It has been developed a chemometric approach, which uses the AutoCoVariance Function

(ACVF) computed on the digitized chromatogram, in order to quantificate the number of terms

of the homologous series (nmax) and their distribution, with particular attention to the relative

abundance and, consequently, the prevalance of the odd to even terms of the series (CPI).

2
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This is one of the most important parameters (environmental biomarkers) to perform a study

of source apportionment.

The method has been validated using simulated chromatograms and its applicability has been

tested, with successful results, on real samples of known origin (e.g. gasoil or plant samples)

and, finally, to particulate matter samples, obtained thanks to a collaboration with the research

group of Environmental Sciences Department of the University of Milano Bicocca.

1.1 Complex Mixtures: Multicomponent Chromatograms

Environmental or natural samples often contain hundreds of components. A gasoil or crude

oil products sample, for instance, contains tens of thousand of different components. Gas

Chromatography-Mass Spectrometry (GC-MS) is a powerful tool to qualitatively and quantita-

tively analyze the composition of mixtures, especially the practical complex samples. GC-MS

is being extensively used in scientific research and practical applications but an incomplete GC

separation is a common problem.

Routine one-dimensional (1D) chromatographic methods cannot handle a complete qualitative

and quantitative analysis of complex mixtures. For example, a 450-m long open tubular GC

column with more than 1.3 million effective plates identified 970 compounds in a gasoline stan-

dard, yet that separation still had many unresolved peaks [1].

The complete chromatographic resolution of such complex samples requires tens of millions of

theoretical plates, considering that peak capacity is roughly proportional to the square root of

the number of theoretical plates. Because peaks do not elute equidistantly, analyzing a complex

sample creates many coeluting components even with an extremely high-efficiency separation

system.

The overlapping chromatographic peaks, which are generated by the incomplete separation in

column, are often observed in practical analysis, since the compounds in such systems are com-

plicated and often similar in properties.

These overlapping peaks may affect the qualitative analysis by mass spectral information and

worsen the quantitative measurement by chromatographic peak area, and sometimes even make

the analysis completely impossible.



1. Introduction 4

The severe peak overlap often observed in such multicomponent separations arises mostly be-

cause of the random distribution of retention times and the limited peak capacity of the sepa-

ration system.

To date GC analysis is a very rich source of data for chemical analysis, but extracting relevant

information from the large, complex data sets is a challenge for information technologies. This

is particularly true for hyphenated (GC-MS) and multidimensional (LC-GC, GC-GC, GC/GC)

GC techniques, which generate data sets that are 2 or 3 orders of magnitude larger than for

conventional GC [2,3].

The quantity and complexity of GC data makes human analysis of GC signals difficult and

time-consuming and motivates the need for computer-assisted signal processing to transform

GC data into usable information. Advanced information technologies offer powerful solutions

for many of the problems associated with the GC analysis: data handling, processing, analysis,

and reporting. In particular, a mathematical approach is very useful to deconvolve incompletely

resolved peaks and to interpret the chromatogram, extracting all the analytical information hid-

den therein, in other words decoding the complex chromatogram [4].

In a deconvolution process, a short section of a chromatogram, usually one cluster of several

overlapping peaks, is investigated, and the profiles of the individual Single Component (SC)

peaks are estimated with an algorithm. However, by using a statistical analysis, no specific

information on a particular component is obtained, and the presence or absence of a compound

cannot be determined, nor can its concentration be estimated.

The result is that the total chromatogram is regarded as a statistical ensemble whose common

attributes, such as peak width, peak shape, extent of separation, number of detectable compo-

nents, saturation of the separation space, and order/disorder of the peaks, are estimated [5, 6].

1.2 Signal Processing

When a sample has many compounds, different interval between adjacent peaks, peak clusters

and void spaces are present in the multicomponent chromatogram. In other words, the retention

patterns of complex mixtures can be remarkably different. This is because the distribution of

the standard free energy differences between the stationary and mobile phases define a pseu-

dorandom retention time distribution [7]. Accordingly, a complex chromatogram looks like a
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random series of peaks. Felinger et al. have proposed a method to decode complex multicompo-

nent chromatograms, using Fourier analysis [8, 9]. Fourier transformation has been widely used

for processing signals of analytical instruments, because several calculations are simpler in the

frequency domain than in the time domain. Some models of chromatography also offer simpler

solution in the frequency domain.

Fourier analysis considers the chromatogram as a finite-lenght fraction of a stochastic process;

it means that the chromatogram of a complex mixture can be handled as a random series of

peaks, that are uncorrelated random variables. The power spectrum of such a multicomponent

chromatogram is calculated as either the time or the ensamble average of the random chro-

matogram.

Models have been derived for the power spectrum of various multicomponent chromatograms

[10–12]. Fourier analysis can be applied to either ordered or disordered chromtograms as well [13].

The varying peak width and the peak height dispersion are taken into account by Fourier anal-

ysis theory. By means of the power spectrum or the autocovariance function (ACVF) of the

chromatrograms, the mean peak width and the retention pattern can also be determined. The

power spectrum is the square of the absolute value of the Fourier transformed signal, the ACVF

is better described in the chapter 2.

According to Wiener-Khinchin theorem, the power spectrum and ACVF form a Fourier pair.

Thus, the ACVF and the power spectrum are identical tools to characterize multicomponent

chromatograms. Accordingly, in many instances it’s not necessary to calculate the Fourier trans-

form or the power spectrum of a chromatogram, it’s sufficient to analyze the ACVF [6].
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2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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2.4 Odd/Even Prevalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Theory

The chemometric approach studies the AutoCoVariance Function (ACV Ftot) that can be directly

computed from the experimental chromatogram acquired in digitized form. The Experimental

ACV Ftot (EACV Ftot) at the correlation time Δt is given by the following expression [14]:

EACV Ftot(Δt) =
1

Np

Np−s∑
j=1

(Yj − Ŷ ) · (Yj+s − Ŷ ) (2.1)

s = 0, 1, 2...M − 1

where Yj is the digitized chromatogram signal, Ŷ its mean value, Np the number of points of the

digitized chromatogram, and M the truncation point in the EACV Ftot computation. The cor-

relation time Δt = sτ , where τ is the time interval between the subsequent digitized positions,

and assumes discrete values with s ranging from 0 to M . EACV Ftot represents the correlations

6
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between subsequent peaks in the chromatogram.

Theoretical expressions (theoretical ACVF, TACVF) have been developed to express ACVF

in terms of the hidden separation parameters, i.e., number of SCs, mtot, SC peak standard

deviation, σ, the distribution of the SC retention pattern (Interdistance Model, IM) and abun-

dance (Abundance Model, AM) [10]. They require theoretical models to describe complex chro-

matograms: many functions can be developed to describe the infinity of real cases. There are

two limit cases of retention patterns: a Poissonian (P) distribution that describes a completely

disordered separation where SC retention positions are uniform randomly distributed over the

chromatographic axis, and an ordered (O) distribution [8, 10,12,15].

The simplest approach assumes chromatographic peaks of Gaussian shape with constant width,

i.e. constant standard deviation σ: this assumption is usually true under optimized programmed

temperature conditions.

The original complete procedure is based on the fitting of EACVF to TACVF to obtain infor-

mation on sample complexity, for example the number of components m, and on the separation

system, mean peak width, σ [8,10,12,14–16]. A simplified procedure based on simple computa-

tion on EACVF and graphical inspection of the EACVF plot has also been developed to obtain

the same information [6, 13, 17–23]. The autocorrelation function (EACF), representing the

EACVF normalized to the value computed at Δt = 0, is more frequently used than the EACVF

itself. EACF describes short- and long-range correlation between subsequent peak positions.

When EACF is plotted VS retention interdistance (b), two informative regions are obtained in

the EACF plot [4, 14,16,24]:

• the first part of the EACF contains the shortest-range correlation and depends only on the

shape of the single-component peaks. It resembles the descending half of a Gaussian peak

describing mean peak shape averaged on all the peaks in the chromatogram. Theoretical

expressions have been derived [8,10,12,15] and a simplified procedure has been developed

[13] to extract information from this part of EACVF by a simple graphical inspection i.e.,

the number of components, mtot, and the average peak width σ;

• the second part (i.e., widest-range correlation interdistance) is determined by the retention

pattern: if peak positions are randomly distributed throughout the chromatogram, EACF

assumes a value of nearly 0; if ordered positions are repeated, some positive peaks are
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Figure 2.1: First region of EACF plot

present at the corresponding distance values in the EACF plot. This is the deterministic

part of EACVF, resulting from a non-random retention pattern [4, 14,16,24].

Figure 2.2: EACF plot with deterministic peaks (indicated by arrows)
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2.1.1 Poissonian-Type Chromatogram

A disordered multicomponent chromatogram has mP SCs (the suffix P refers to Poissonian

retention pattern). The corresponding TACVF is given by the following equation [8]

TACV FP (Δt) =
A2

T,P (σ2
h,P /a2

h,P + 1)
2
√

πmP σX
e−[(Δt)2/4σ2] (2.2)

where

AT,P =
√

2πmP ah,P σ (2.3)

is the total area of the chromatogram, ah,P and σ2
h,P are, respectively, the mean and the variance

of SC peak abundance (i.e., peak maximum height of a SC peak), and X is the total time range

of the chromatogram [8].

In the case of Poissonian retention pattern, the first region in the EACV FP plot (0 < Δt ≤ 4σ),

according to equation 2.2, is expected to be half of a Gaussian peak of standard deviation equal

to (2σ)1/2, showing a shape averaged on the shape of all the peaks present in the chromatogram.

From EACV FP half-height peak width, dh/2, the mean peak standard deviation can be simply

estimated [16]:

σ = dh/2/1.665 (2.4)

From the value of EACV FP at the origin (Δt = 0), it’s possible to estimate the number of SCs

of the chromatogram, mP , by rearranging equation 2.2 [16]:

mP =
A2

T,P (σ2
h,P /a2

h,P + 1)
EACV FP (0)dh/22.129X

(2.5)

In this equation, the quantities AT,P and X can be determined from the experimental chro-

matogram and dh/2 can be determined over the experimental EACV FP plot (equation 2.4). On

the contrary, the exact value of the quantity σ2
h,P /a2

h,P cannot be experimentally determined

from the chromatogram due to SC peak overlapping. However, σ2
h,P /a2

h,P can be approximated

by the σ2
M,P /a2

M,P value, which is the peak maximum dispersion ratio, i.e., the dispersion ratio

computed from the observed peak maximums in the chromatogram:

σ2
h,P /a2

h,P ≈ σ2
M,P /a2

M,P (2.6)

Consequently mP can be estimated by using the following equation:

mP =
A2

T,P (σ2
M,P /a2

M,P + 1)
EACV FP (0)dh/22.129X

(2.7)
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The quantity mP is related to the Poisson distribution, and its standard deviation is known to

be equal to m
1/2
P . Consequently, equation 2.7 yields an estimate mest,P = mP ±m

1/2
P .

Equations 2.6 and 2.7 can be used not only in the case of a strictly Poissonian retention pattern

but also to other cases of random patterns [5,8,10,12–16]. A useful form of equation 2.7 can be

obtained if the total area of the chromatogram AT,P is expressed as

AT,P = mP AmP ,P (2.8)

where AmP ,P is the average area of SC peaks in the random multicomponent chromatogram.

By combining equations 2.7 and 2.8, it’s possible to obtain

mP =
EACV FP (0)dh/22.129X

A2
mP ,P (σ2

M,P /a2
M,P + 1)

(2.9)

Equation 2.9 clearly shows the direct proportionality between mP and EACV FP (0) under con-

ditions of constancy of Am,P value [4].

2.1.2 Ordered-Type Chromatogram

An ordered pattern in a multicomponent chromatogram (i.e. an homologous series) is formed

by a sequence of nmax SC peaks where the retention time (tR) of the nth term is described by:

tR(n) = c + bn (2.10)

n = 0, 1, 2, 3...nmax

where c represents the contribution of a specific functional group to the overall retention, and b

is the retention increment between terms of the homologous series, e.g. the CH2 retention time

increment, in the strict case of GC analysis under optimized linearized temperature programming

conditions [4]

If this condition is not met in practice, a linearization algorithm can be applied to rescale

the original signal in order to obtain the same peak width (σ values) and constant retention

increment between subsequent terms of the series.

If the term with n = 0 is absent in the considered homologous series, the number of SCs will

be equal to nmax. The constants c and b are called the phase and frequency indicators of the

sequence, respectively, according to Giddings definition [25]. In this case, the expression of
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TACVF can be obtained from ref [26], under the assumption that the SC term with n = 0 (see

equation 2.10) is absent:

TACV FO(Δt) =
k=nmax−1∑

k=0

A2
T,O

2
√

πσX(nmax − k)

(
σ2

h,O

a2
h,O

+ 1

)
e−[(Δt−bk)2/4σ2] (2.11)

AT,O =
√

2πnmaxah,Oσ (2.12)

where AT,O is the total area of the ordered chromatogram, ah,O and σ2
h,O are respectively the

mean and the variance of SC peak abundance (i.e., peak maximum height of a SC peak) in

the O-type chromatogram. Note that this expression does not contain the phase c, and thus,

information concerning the sequence phase is lost: the ACVF retains only the recursivity of

an ordered structure. According to equation 2.11, the TACV FO, and therefore the EACV FO

plot, shows well-defined Gaussian peaks of standard deviation equal to (2σ)1/2, located at inter-

distances bk, corresponding to repeated interdistances between terms of the homologous series

(equation 2.11). These peaks are called deterministic since they reflect the order of the sequence;

their height decreases on k, but their shape is independent of k. The subscript O identifies that

an ordered retention pattern is present in the multicomponent chromatogram.

Equations similar to equations 2.7 and 2.9 can be derived even in the case of O multicompo-

nent chromatograms. Starting from the same assumptions employed before in deriving those

equations, it’s possible to write:

nmax − k =
A2

T,O(σ2
M,O/a2

M,O + 1)
EACV FO(bk)dh/22.129X

(2.13)

nmax − k =
EACV FO(bk)dh/22.129X

A2
nmax,O(σ2

M,O/a2
M,O + 1)

(2.14)

where the quantity Anmax,O, is the mean area of SC peaks defined by

AT,O = nmaxAnmax,O (2.15)

and σ2
M,O/a2

M,O is the peak maximum dispersion ratio. The different peaks in the EACV FO

plot will be well distinct provided that b > 4σ (see equation 2.11). In this case, the SC number

nmax can be determined by using the peak at the origin, in analogy with equation 2.9:

nmax =
A2

T,O(σ2
M,O/a2

M,O + 1)
EACV FO(0)dh/22.129X

(2.16)
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The first deterministic peak can also be used and in this case

nmax =
A2

T,O(σ2
M,O/a2

M,O + 1)
EACV FO(b)dh/22.129X

(2.17)

Consequently, an experimental check of the ordered character of the chromatogram can be

obtained by comparing the nmax values estimated from equations 2.16 and 2.17. AT,O, X, and

d1/2 values are experimentally accessible parameters [4].

2.2 Homologous Series

A complex mixture, and the relative multicomponent chromatogram, may be formed by one

homologous series of nmax SCs (ordered sequence, equation 2.10) and of an ensemble of uncor-

related mP SCs, (random component), the total number of SCs, mtot, and the total area of the

chromatogram will be given by

mtot = mP + nmax (2.18)

and

AT,tot = AT,P + AT,O (2.19)

respectively. It has been developed a method to estimate mtot, mP , b, and nmax from the

EACV Ftot plot of the chromatogram, under specific conditions. In analogy with equations 2.7

and 2.9:

mtot =
A2

T,tot(σ
2
M,tot/a2

M,tot + 1)
EACV Ftot(0)dh/22.129X

(2.20)

mtot =
EACV Ftot(0)dh/22.129X

A2
mtot,tot(σ2

M,tot/a2
M,tot + 1)

(2.21)

where the quantity Amtot,tot is the mean area of SC peaks defined by

AT,tot = mtotAmtot,O (2.22)

and σ2
M,tot/a2

M,tot is the peak maximum dispersion ratio in the chromatogram. Equation 2.21

can be obtained by combining equation 2.14 with k = 0, equations 2.9 and 2.18, and further by

assuming that

EACV Ftot(0) = EACV FP (0) + EACV FO(0) (2.23)

Amtot,tot ≈ AmP ,P ≈ Anmax,O (2.24)
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σ2
M,tot/a2

M,tot ≈ σ2
M,P /a2

M,P ≈ σ2
M,O/a2

M,O (2.25)

Equations 2.24 and 2.25 mean that SCs in both the ordered and the Poissonian components of

the multicomponent chromatogram have equal average peak areas and peak height dispersion

ratios, respectively. Equation 2.36 expresses the rule of the variance additivity for independent

variables, remembering that EACV F (0) has the meaning of a variance (see equation 2.1). This

condition holds true for the present case since the Poissonian part of the chromatogram is

completely random and thus not correlated with the ordered one. Consequently, mtot can be

estimated from EACV Ftot by using equation 2.20, under the conditions described by equations

2.24 and 2.25.

The nmax value, and therefore also the mP value, can be obtained from EACV Ftot under given

conditions. In fact, assuming that, for k > 0

EACV Ftot(bk) = EACV FO(bk) (2.26)

equation 2.14, together with the conditions expressed by equations 2.36,2.24,2.25 and 2.26 be-

comes:

nmax − k =
EACV Ftot(bk)dh/22.129X

A2
mtot,tot(σ2

M,tot/a2
M,tot + 1)

(2.27)

b ≥ 4σ

Equation 2.27 means that that nmax can be evaluated from EACV Ftot, even if under strict con-

ditions. The condition b ≥ 4σ means that the SC peaks belonging to the homologous series are

each other sufficiently resolved in the chromatogram (equation 2.10) and their correlation does

not interfere with that inside a SC component peak. In this case, the first and the subsequent

deterministic peaks of the EACV FO, for example the EACV FO(bk) peaks for k > 0, are well

separated from the origin (Δt = 0), beyond Δt = 4σ. Under these conditions, equation 2.26

also holds true since the EACV FP ≈ 0, in the region Δt ≥ 4σ, and the EACV Ftot plot is only

made by the EACV FO.

A simple form of equation 2.27 can be obtained for k = 1, by combining equation 2.21 and

equation 2.27:

nmax = mtot
EACV Ftot(b)
EACV Ftot(0)

+ 1 (2.28)

b ≥ 4σ
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The conditions expressed by equations 2.24 and 2.25 require a comment since they are not

very common in the practice. In particular, the hypothesis expressed by equation 2.24, that

means the average SC abundance of the SCs belonging to the total mixture and that to a given

homologous series are the same, seems critical: in fact, it is often possible the condition that

one homologous series can be either predominant or in trace respect to the majority of the other

SCs. Otherwise, equation 2.25 can be more or less met in practice since it establishes that the

degree of randomness on the SC peak height dispersion ratio is similar for either the random

component or the ordered component (homologous series).

It is possible, moreover, that the equation 2.24 is not strictly true. By combining equations 2.20

or 2.21 with equations 2.13 or 2.14, respectively, for k = 1, b ≥ 4σ and under the conditions

described by equations 2.36,2.24,2.25 and 2.26, it’s possible to obtain:

nmax = mtot
EACV Ftot(0)
EACV Ftot(b)

· A2
T,O

A2
T,tot

+ 1 (2.29)

b ≥ 4σ

and

nmax = mtot
EACV Ftot(b)
EACV Ftot(0)

· A
2
mtot,tot

A2
nmax,O

+ 1 (2.30)

b ≥ 4σ

respectively. Consequently, in the general case, when the ratio of the SC area of structured

class, with respect to that of the totality of the SCs is unknown, the sole EACV F ratio and

mtot (obtained from equation 2.20) cannot yield a quantitative estimate of SC number of the

homologous series but only an apparent SC number.

Equations 2.29 and 2.30 suggest that the use of selective detectors combined to universal ones,

could be a useful strategy of study. In fact they make it possible to selectively detect specific

compound classes, and thus, the contribution of the different classes can be decoded from the

total mixture and quantitatively estimated [4].

2.3 Linearization

The study of EACV Ftot to identify the sample chemical composition and extract structural

information regarding the mixture components from the GC signal is based on a strict linear
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relation between the retention time tR(n) and number of repeated units n within a homolo-

gous series (Eq. 2.10). This is true under linear temperature-programmed GC conditions, as

confirmed by both experimental evidence and theoretical studies based on retention thermody-

namics [20,27,28].

However, the strictly homogenous retention pattern yielding constant retention increments be-

tween subsequent terms of homologous series is difficult to be achieved in the practice because

of experimental limitations, i.e., the not strictly linear temperature-programmed GC runs, poor

reproducibility in flow rate or temperature, variations in injection-timing and temperature pro-

gram rate [27,28].

Therefore, in order to usefully apply the EACV Ftot procedure, a data handling algorithm is

required to linearize experimental chromatograms prior to EACV Ftot computation.

If Y (x) represents the chromatographic signal, where x is the retention time, the time axis is

transformed into a new scale by using a function z = g(x) to relate the original time axis to the

new z axis. To preserve the total signal area, the following condition must be fulfilled:

Y1(x)dx = Y2(z)dz (2.31)

Instead of a continuous function z = g(x), it’s possible to use an empirical transformation pro-

cedure based on an equidistant retention position between the subsequent terms of homologous

series Δx (for example the addition of a CH2 group in a n-alkane homologous series). This

means that the applied transformation has the property:

Y1(x)Δx = Y2(z)Δz (2.32)

The use of certified standard homologous series compounds as external reference to build up a

GC retention scale is very common in Gas-Chromatography: in fact, the standards (for example

n-alkanes series) may act as the flexible mile-stone system of the chromatogram, and the relative

position of the analyte compounds can be referred to them [29,30].

A first procedure has been developed [20,24,31] and it worked, through a Fortran77 algorithm,

in this way: a homologous series reference mixture containing the terms displaying retention

values in the same range as the sample was analyzed under the same temperature-programmed

GC conditions used for the unknown sample. Within a given threshold distance, the reference

peaks are matched to the nearest peaks in the sample chromatogram. The sample signal was
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divided into many regions corresponding to the distance Δx = tR between subsequent terms of

the series; a Δx value (usually the average of experimental Δx values) was selected as constant

Δz retention increment in the new scale. Each inter-peak region is taken individually and it is

stretched, or shrunk, to force each Δx interdistance to the constant Δz value.

Recently a new, but similar, procedure has been developed; it’s based on the same property

(equation 2.32). A MATLAB R© algorithm was generated starting from the Fortran77 one, in

order to quickly and more correctly linearize the chromatogram (see Appendix 6 A for the com-

plete algorithm). After the recognition of the homologous series terms in the unknown sample

chromatogram (by a simple comparison between standard references and unknow peaks tR),

the maximum Δxi was chosen by the program itself and all the homologous series terms in-

terdistance (Δxi) were stretched to reach the MAX(Δxi) value. The stretching step uses a

interpolation function in order to preserve the total area of the chromatogram.

If terms of an homologous series are present in the sample, a structured chromatogram character-

ized by retention repetition is obtained after the linearization procedure. The order introduced

into the signal by this tool can be simply singled out by the experimental autocorrelation func-

tion (EACFtot) plot [20, 31]. Figure 2.3 shows a standard mixture containing six subsequent

terms of a n-alkane series (C7 − C12) in addition to 14 organic compounds with uncorrelated

structures. The analysis was performed with this temperature program: 30◦C for 3min, an

increase to 80◦C at 5◦C/min. Figure 2.3(a) shows the original chromatograms of the standard

mixture and the reference C7−C12 n-alkanes (in the inset) and figure 2.3(b) shows the linearized

chromatograms of the standard mixture and the reference in the inset: the arrows indicate the

ΔtR = 2.5min value selected as the constant retention increment [31].
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Figure 2.3: GC-MS chromatogram of a not linearized mixture and the relative linearized one [31]



2. AutoCoVariance Function 18

2.4 Odd/Even Prevalence

The EACVF method has been further developed to extract information about the abundance

distribution of the terms of an ordered pattern in a multicomponent chromatogram, like a

homologous series, present in a complex mixture. A MATLAB R© algorithm has been developed

to estimate a useful index (R) of this abundance distribution (see Appendix 6 B for the complete

algorithm) [32].

In order to build the model, the chromatogram of the homologous series (equation 2.10) is

described as the combination of two sequences of peaks representing odd and even terms of the

homologous series; they are located at a double repeated interdistance Δt = 2b shifted by the

quantity b (odd (o) and even (e) sequences containing no and ne peaks, respectively, see Figure

2.4(a).

In this simplified approach the series contains the same number of odd and even terms no =

ne = n to yield a total number of terms of the series nmax = 2n. The EACV F is computed

on the signal of each sequence (EACV Fo and EACV Fe): their plots show deterministic peaks

at the constant interdistance values Δt = 2bk according to the following equations (see Figure

2.4(b)):

EACV Fo(2bk) =

√
πσa2

o,h

X

[
σ2

o,h

a2
o,h

+ 1

]
(no − k) (2.33)

EACV Fe(2bk) =

√
πσa2

e,h

X

[
σ2

e,h

a2
e,h

+ 1

]
(ne − k) (2.34)

where ao,h, ae,h and σ2
o,h, σ2

e,h are the mean value and the variance of the SC peak heights of the

odd and even sequences, respectively.

The whole series containing nmax = 2n terms is obtained by superimposing the o and e sequences

and the EACV Ftot computed on the total chromatogram can be investigated as a combination

of EACV Fo and EACV Fe. To handle the EACV Ftot, new equations are derived in order to

extract information on the odd/even prevalence of the sequence terms (see the Appendix of [32].

It is assumed that both the odd and even terms display the same peak abundance distribution,

described by peak height dispersion ratio σ2
h/a2

h:

σ2
o,h

a2
o,h

=
σ2

e,h

a2
e,h

=
σ2

h

a2
h

(2.35)
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This condition is usually met in real samples since the compound abundances generally follow

the most probable Exponential distribution, yielding: σ2/a2 = 1.

It can be demonstrated that EACV Ftot(bk) values at Δt = bk for even k terms are obtained by

combining EACV Fo(bk) and EACV Fe(bk) values to yield an equation related to the addition

of the two series abundances [32]:

EACV Ftot(bk) =

√
πσ(a2

o,h + a2
e,h)(n− k)

X

[
σ2

h

a2
h

+ 1

]
(2.36)

k = 0, 2, 4, .....2n− 2

At Δt = bk for odd k values, the EACV Ftot(bk) values are given by the cross-correlation term

between components of the o and e sequences:

EACV Ftot(bk) =
√

πσ2(ao,h · ae,h)(n− k)
X

[
σ2

h

a2
h

+ 1

]
(2.37)

k = 1, 3, 5, .....2n− 1

Therefore, the EACV Ftot(bk) peaks computed at subsequent k values give information on the

specific abundance distribution pattern of the odd/even terms of the homologous series (Figure

2.4(b)). In fact, if the odd and even terms display the same mean abundance distribution

(ao,h ≈ ae,h) equation 2.36 and 2.37 are identical and the EACV Ftot(bk) values are proportional

to the values of the sequence (2n−k) for k = 1, 3, ...(2n−1). Any deviation from such a pattern

is diagnostic of the presence of odd/even prevalence among the terms of the series.

To describe a specific odd/even distribution pattern for the terms of the homologous series, the

R value is defined as the ratio between the mean value of the SC peak height of odd vs. even

terms:

R =
ao,h

ae,h
(2.38)

By computing equation 2.36 and 2.37 for k = 2 and k = 1, respectively, and introducing the R

parameter, it’s possible to write:

EACV Ftot(2b) =
√

πσ

X
(a2

o,h)
(

1 +
1

R2

)[
σ2

h

a2
h

+ 1

]
(n− 2) (2.39)

EACV Ftot(b) =
√

πσ

X
2a2

o,h

1
R

[
σ2

h

a2
h

+ 1

]
(n− 1) (2.40)
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By dividing equation 2.40 by equation 2.40, the following expression can be obtained as a

function of R:

EACV Ftot(b)
EACV Ftot(2b)

=
2
R(nmax − 1(

1 + 1
R2

)
(nmax − 2

=
2R(nmax − 1)

(R2 + 1)(nmax − 2)
(2.41)

The equation can be simplified by introducing the approximation that the ratio between (nmax−
1) and (nmax − 2) is equal to 1: this is strictly true for large nmax values (n →∞), otherwise it

can be applied once nmax is known.

With this assumption equation 2.41 can be simplified into:

EACV Ftot(b)
EACV Ftot(2b)

==
2R

(R2 + 1)
(2.42)

This is a simple quadratic equation, that can be solved to obtain the R value, considering Y as

the ratio between the two EACV Ftot values:

R =
2±√4− 4Y 2

2Y
(2.43)

Equation 2.42 shows that the odd/even prevalence of the terms of the homologous series, ex-

pressed by the R value, can be directly estimated from the whole chromatogram by computing

the EACV Ftot values at Δt = b and Δt = 2b on the total signal [23,32]. Figure 2.4 shows a sim-

ulated chromatogram of a mixture formed by 5 odd and 5 even terms of a sequence, displaying

abundance values generated according to an Exponential AM: mean abundance distributions

were simulated for odd and even terms, to yield R = 2. Each series is formed by 5 terms located

at a repeated interdistance Δt = 2b = 3.60min shifted by a quantity Δt = b = 1.80min.

Figure 2.4(a)is a PC-generated chromatographic signal; figure 2.4(b) is the EACV Ftot plot com-

puted on the signal: the EACV Ftot peaks diagnostic of the sequence at Δt = b = 1.80min and

Δt = 2b = 3.60min are identified by the arrows [32]. If the general model based on the following

equation

EACV Ftot(bk) =
√

πσa2
h(nmax − k)

X

[
σ2

h

a2
h

+ 1

]
(2.44)

k=0,1,2,3,....nmax-1

is applied to estimate nmax, it may yield misleading results in the case of an odd/even prevalence:

in fact, at Δt = bk for odd k values, the EACV Ftot values strongly depend on the presence of

the odd/even prevalence in the peak abundance since it is related to the product (ao,h · ae,h)
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(equation 2.37)). Otherwise, at Δt = bk for even k values, the EACV Ftot values are independent

of the peak abundance distribution of the odd and even terms since it is related to the quantity

(a2
o,h +a2

e,h) (equation 2.36): therefore, at Δt = bk for even k values, EACV Ftot values are used

to obtain a correct estimation of nmax. In order to make the procedure more robust, for even k

values, the computation is based on two subsequent EACV Ftot deterministic peaks at Δt = bk

and Δt = b(k + 2) according to the following equation:

nmax = 2
EACV Ftot(bk)

EACV Ftot(b(k + 2))
+ k (2.45)

The correct estimation of nmax based on equation 2.45 makes it possible to achieve an accurate

estimation of R by using the rigorous equation 2.41 to remove the approximation introduced

in equation 2.42. It must be underlined that the mathematic model developed on the basis of

equations 2.41 and 2.45, strictly derived for a chromatogram that only contains homologous series

terms, is applicable to the general case of complex mixtures containing random uncorrelated

compounds in addition to the homologous series. In fact, the Poissonian component yields

EACV Ftot values significantly different from 0 only for Δt ≤ 4σ, so that, at the repeated

interdistances (Δt = bk), the EACV Ftot values are mainly due to the contribution of the

homologous series (equation 2.44) and can be used to evaluate its properties [23].
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Figure 2.4: Simulated chromatogram and the relative EACV Ftot with a R value equal to 2 [31]
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Particulate matter (PM) is a complex mixture which includes many different types of com-

pounds. A comprehensive and correct characterization of the chemical composition of the PM is

one of the most important steps in a pollution or, generally, in an environmental study. Because

of its complexity, it’s very difficult to separate, using traditional analytical methods, all the sin-

gle components of a particulate matter sample. It is necessary to find out classes of compounds

or specific components in order to use them as molecular tracers or biomarkers for a determined

environmental study, such as a source apportionment study.

Air pollution associated to aerosols has recently gained the concern of scientific institutions and

Public Agencies since an additional health risk for humans has been proven to arise from expo-

sure to fine particles in general and specifically to their organic components [33].

Various epidemiological studies have shown associations between daily ambient concentrations

of particulate matter and morbidity and mortality [34–36]. The observed effects became par-

ticularly clear when the mass concentrations of particles with aerodynamic diameter less than

23
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2.5μm (PM2.5, fine particles) were considered.

Apart from the particle number and/or mass concentration the chemical composition of particles

may also be important for assessment of health effects, for example by determining the reaction

pattern in the respiratory tract or the response of the whole body.

The results of epidemiological studies together with animal toxicology and in vitro experimental

studies support the hypothesis that both physical (particle size, shape, surface) and chemical

(dissolved and adsorbed chemicals, surface catalytic reactions) properties of the particles are

involved in toxic, genotoxic and carcinogenic mechanisms of inhaled particulates [37].

It was recently recognised that inhaled ultra fine particles (Dp < 100nm) are more toxic than

PM10 particles [38–40]. Their relative large surface area and the ability to be absorbed into

tissues might be important factors in cardiopulmonary toxicity. However, the number of ultra

fine particles in the air is often poorly correlated with PM2.5 and even less with PM10. Thus,

ultra fine particles are unlikely to explain much of the association between particulate mass and

health conditions. Also the impact of surface absorbed compounds on health outcomes is not

well understood yet.

Epidemiological investigations of the influence of individual, particle bound chemical pollutants

were done only for few inorganic species [41]. The role of transition metals (Fe, V, Zn) for

acute reactions is under discussion [42]. However, little is known on the influence of the organic

chemicals present in ambient particulate matter (PM) on the health outcomes. The influence of

organic substances was evaluated by measurement of the concentration of elemental and organic

carbon (EC/OC) [43]. But so far, the association of individual specific organic pollutants or

groups of pollutants with health effects, occurring in the fine dust, was not examined in epi-

demiological studies.

For a time-series study, on the influence of organic aerosol compounds, it is necessary to have

data of several compounds or groups of compounds at least with a daily resolution. Because

most of the organic compounds occur in low concentrations in ambient aerosol, time-consuming

analytical methods are required for their analysis.

Several studies address the organic composition of ambient PM, using gas chromatography-mass

spectrometry (GC-MS) for separation and identification of semi volatile organic compounds

(SVOC). GC-MS is a well established technique for the separation and analysis of complex mix-

tures [44,45].
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Investigations of the origin of air pollution, its major sources and the import of pollution from

distant regions (Source Apportionment) become increasingly important due to the new stan-

dards which were set for particle mass less than 10μm (PM10) in the EC-Directive 99/30/EC

(EC Directive, 1999). Together with the Air Quality Framework Directive 96/92/EC (EC Di-

rective, 1996) authorities in non-attainment zones are required to assess PM10 pollution [46].

3.1 Organic Fraction of PM

The atmosphere is a processing unit for organic compounds. They are ubiquitous and abundant

in ambient aerosols. They typically account for 20-50% of the fine particle mass [47–51] and are

often internally mixed in the same particles with inorganic aerosols [52–54]. Organic compounds

play important roles in the formation, growth, and removal of ambient aerosols [55]. They also

significantly affect the hygroscopicity [56], toxicity [57], direct radiative properties [58, 59], and

indirect effects [60] of atmospheric aerosols and therefore have major implications for climate,

visibility, and human health.

Elucidating the urban-to-global roles as well as the sources and fate of atmospheric aerosols

inherently must rely on a thorough understanding of the chemical and microphysical properties

of particulate organics. However, it is extremely difficult to obtain a complete description of

the molecular composition of aerosol organics because of the number, complexity, and extreme

range of physical and chemical properties of these compounds [61].

Organic compounds are important atmospheric components. The formation of organic aerosols

represents one of the removal processes of volatile organic compounds (VOC). Thus, organic

compounds play an important role in photochemical reactions leading to ozone formation [62].

On the other hand, they compete with inorganic compounds for oxidising species such as ozone,

hydroxyl and nitrate radicals [63]. If organic aerosols occur in the submicron range they can

originate cloud condensation nuclei [64]. Organic aerosols have been associated with indirect cli-

mate forcing, because they have optical properties and contribute to visibility degradation [65].

Organic aerosols may change chemical, optical and hygroscopic properties of inorganic aerosols

[56]. The presence of some components (e.g. polyaromatic hydrocarbons) is a cause of concern

since they have proven carcinogenic and/or mutagenic properties [66–68]. A large fraction of
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organics is associated with particles smaller than 3 mm, which can reach the respiratory sys-

tem [69].

Secondary organic aerosols (SOA) are formed from both biogenic and anthropogenic gaseous

precursors. The major biogenic compounds involved in aerosol formation are considered to be

monoterpenes, which constitute more than 80% of the VOC emissions from conifers [69]. Ap-

proximately 50% of anthropogenic VOC are emitted by mobile sources, while industrial sources

represent the second greatest VOC emitter [63]. The formation of SOA can follow complex

chemical pathways, many of which remain unknown. Despite the uncertainties, it is recognised

that organic aerosol formation is typically dominated by C5 − C10 species, because compounds

with more than 10 carbons tend to be present at low concentration and species with small molec-

ular weights have high saturation vapour pressures [63]. Organic species can form new aerosols

by condensation or react heterogeneously on pre-existing aerosols [70]. Even when products

are present at less than their saturation vapour pressure, they may still condense onto existing

aerosols [71,72]. Species such as the hydroxyl radicals and ozone are expected to be atmospheric

oxidants of hydrocarbons leading to products containing carbonyl (-C=O), carboxy (-COOH),

and hydroxy (-OH) functional groups. OH radicals attack alkanes. C4 initiating their oxidation.

Alkoxy radical intermediates are formed, which through isomerisation leads to the formation of

carbonyl products. For hydrocarbons containing double bonds (alkenes for example) hydroxyl

radical or ozone can start oxidation. The next reactions form products such as carbonyls, hy-

droxy carbonyls, dicarbonyls, carboxylic acids, and oxocarboxylic acids [47,73].

A detailed understanding of SOA formation in the atmosphere is essential to characterise the

chemical composition of ambient organic aerosols, to accurately incorporate such processes in air

quality models, and to be able to attribute the ambient organic aerosol mass to the appropriate

man-made and natural sources.

Long chain n-alkanes, n-alkanols, n-alkanals, 2-alkanones, n-alkanoic acids, n-alkanoic acids salts,

α − ω−dicarboxylic acids, polycyclic aromatic hydrocarbons (PAHs), and their oxygenated

and nitrated derivatives have been detected in urban and rural, as well as in remote marine

aerosol [74].
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Figure 3.1: Organic fraction of Particulate Matter [75]

3.2 Markers and Source Apportionment

The organic chemical composition of airborne fine particles is an important, multidisciplinary

research area for several reasons.

First, controlling fine-particle atmospheric concentrations requires an understanding of the emis-

sion sources. Organic complex mixtures contain molecular tracers that can be linked to specific

emission sources or are byproducts from dominant atmospheric photochemical reactions. Identi-

fying the mass contribution of key source markers in PM2.5 complex mixtures and coupling this

information with chemical mass balance (CMB) models, for example, provides a quantitative

approach for estimating individual emission source inputs to urban atmospheres [75–77].

Second, full chemical descriptions of organic mixtures collected as PM2.5 have not been achieved.

Approximately 20% of the masses of organic complex mixtures are resolved quantitatively as

individual compounds [75,76,78,79]. The remaining 80% of this organic complex mixture mass

may contain individual compounds with great significance as ambient indicators representing



3. Particulate Matter 28

particulate matter exposure. Incomplete chemical descriptions of fine-particle complex organic

mixtures have slowed progress in establishing critical links between specific toxic constituents of

airborne particles with health indicators [80].

Two chemical classes of compounds have been mainly investigated in this thesis, due to their rel-

evance in environmental chemistry as molecular tracers: n-alkanes (section 3.2.1) and carboxylic

acids (section 3.2.2).

3.2.1 n-Alkanes

Identification and quantification of specific compounds as chemical markers is a convenient

approach to characterize the samples formed by a complex mixture of organics. Extensive

studies have demonstrated that n-alkanes are especially suited for studies to characterize the

origin and fate of different samples; this is because they are widespread components of the

environmental carbon cycle and are highly resistant to biochemical degradation and diagenesis

in the sedimentary record [81].

n-Alkanes is a group of non-polar and photo catalytically stable organic compounds and their

bulk characteristics in suspended particle extract can be used to identify two major sources:

biogenic and anthropogenic, and provide useful information for the identification of particle

sources [76].

In particular, two parameters are mainly relevant as the chemical signature:

• the chain length, the average value and maximum carbon number (Cmax);

• the abundance distribution of the odd/even terms of the series.

One common parameter derived from this predominance is the carbon preference index, CPI:

it is computed as the ratio of the sum of odd carbon number n-alkanes vs. the sum of even

carbon number n-alkanes [32,82].

The CPI is a key diagnostic parameter to determine the biogenic and anthropogenic na-

ture of sources of n-alkanes: hydrocarbons composed of a mixture of compounds originat-

ing from terrestrial plant material show a predominance of odd-numbered carbon chains with

CPI ≈ 5 − 10 [83, 84] whereas petrogenic inputs have a CPI approximating 1.0 [85–88]. CPI

values close to one are also thought to indicate greater input from marine microorganisms and/or
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recycled organic matter [89].

The CPI has proved of great value in environmental and paleo-environmental biomarker-based

research in qualitatively and semi-quantitatively apportioning sources of hydrocarbons found

in aquatic sediments: the n-alkane distribution pattern is a biomarker which proves helpful in

tracking the origins of organic inputs (biogenic or anthropogenic) and identifying hot spots of

hydrocarbon contamination [90].

In petrochemistry, n-alkanes are important constituents of petroleum crudes and their transfor-

mation products and thus they are useful tools in oil-oil correlation studies because they provide

information regarding an oil, its source rock, genetic associations and alteration [91]. In organic

geochemistry, the CPI is used to indicate the degree of diagenesis of straight-chain geolipids,

and to numerically represent how much of the original biological chain length specificity is pre-

served in geological samples [85,86,90].

Moreover, the chemical characterization of n-alkane constituents of leaf wax coatings has proved

to be a quick, reliable and inexpensive method for assessing preliminary chemotaxonomic rela-

tionships for systematic classification of plant groups, in combination with other chemical and

molecular data: the chemotaxonomic significance of wax alkanes has been demonstrated in stud-

ies of many plants groups [92–96].

CPI is strictly correlated to the R index calculated through the EACV Ftot computation [32].

The CPI can be calculated by using the different n-alkane terms present in the mixture to

describe the different nature of the n-alkane component of the sample [82,97]. The whole range

of n-alkanes is used to describe the whole n-alkane component:

CPItot =
∑

C13 − C35∑
C12 − C34

(3.1)

To describe the petrogenic fraction, only C12 to C25 n-alkanes have to be considered (CPIpet).

The heavier C25 − C35 n-alkanes are used to describe the biogenic contribution (CPIbio).

The R value, which is based on the mean peak height of odd vs. even terms (equation 2.38), can

be properly used to estimate CPI: the contribution of selected n-alkanes can be identified by

computing the EACV Ftot over a partial region of the chromatogram which has been correctly

chosen so that it contains a specific range of n-alkanes [32,98].
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3.2.2 Carboxylic Acids

Dicarboxylic acids are among the most abundant organic constituents of ambient particulate

matter [75]. Discussion of their potential as tracers for secondary organic aerosol dates back to

some of the earliest mass spectral observations of atmospheric aerosols [99].

Dicarboxylic acids are formed in the atmosphere from gas phase photochemical reactions in-

volving a wide range of both anthropogenic and biogenic precursors. They have been identified

in smog chamber experiments as atmospheric oxidation products of cyclic olefins [100,101], and

proposed as atmospheric oxidation products of aromatic hydrocarbons, fatty acids, and larger

dicarboxylic acids [102]. Their aqueous phase formation in cloud and fog water is also plausi-

ble [103] and may be linked with photochemically generated radicals [104]. The relatively high

concentrations of dicarboxylic acids and their identification as atmospheric reaction products

from a variety of different precursors make it useful to investigate their potential as indicators

of secondary organic aerosol formation.

Dicarboxylic acids are an important group of water-soluble organic compounds (WSOC) in the

atmospheric aerosols [48, 75, 100, 102, 105]. They have received much attention because of their

potential roles in affecting the global climate. Because of the low vapor pressures and high water

solubility, diacids have an influence on the chemical and physical properties of aerosols [106].

Consequently, they may have direct and indirect effects on the earth’s radiation balance by scat-

tering incoming solar radiation, which counteracts the global warming caused by the increase of

greenhouse gases [107].

Among these dicarboxylic acids, oxalate is generally the most abundant, followed by malonate

and succinate in atmospheric aerosols [102, 108, 109]. Total diacids account for about 1-3% of

the total particulate carbon in the urban areas and even above 10% in the remote marine envi-

ronment [102,109–112].

The use of atmospheric dicarboxylic acids as indicators of secondary formation is complicated

by the occurrence of both biogenic and anthropogenic primary sources. Biogenic sources include

plant emissions of metabolic products and soil particles. Anthropogenic sources include exhausts

from gasoline and diesel powered automobiles [113].

In particular, low molecular weight dicarboxylic acids (C3−C9) may yield relevant information

on the source strength of anthropogenic vs. biogenic precursors [102,107,113–115]. It has been
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suggested that the C3/C4 ratio is an indicator of enhanced photochemical production of dicar-

boxylic acids in the atmosphere since succinic acid (C4) is a precursor of oxalic (C2) and malonic

(C3) acids. On the other hand, the C3/C4 ratio has been used as an indicator of the relative

source strength of anthropogenic and biogenic diacid precursors: adipic acid was proposed as a

product of the oxidation of anthropogenic cyclohexen, while azelaic acid was thought to come

from the oxidation of biogenic unsaturated fatty acids [102,107,113,116].

To date, GC-MS is the method of choice for characterizing individual organic compounds within

aerosol samples, primarily because of its high sensitivity and resolving power. The high polarity

and low levels (approximately 1ng/m3) of these compounds pose special challenges for their

identification and quantification because they must first be derivatized, converted to less polar

compounds, before they can be eluted through a GC column [102,113–128].

Two derivatization processes [129] are the ones mainly used to analyze dicarboxylic acids in PM

samples because they offer easy sample preparation and display good analytical characteristics:

• esterification of the acid groups using methanol or 1-butanol as derivatizing agent in the

presence of a relatively strong acid (BF3 or BCl3) (Figure 3.2) [102,107,116,118,119,122,

126,130];

• silylation based on a silylation reagent N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA)

to form trimethylsilyl (TMS) derivatives (Figure 3.3 [4, 102,114,121,124–126,128,131].

Figure 3.2: BF3/Buthanol Derivatization Procedure

The two methodologies differ in terms of the stability of the derivatives formed, the presence

of interfering by-products and speed. Moreover, a combination of the two procedures has been

employed to yield a multistep derivatization by which -COOH groups are initially derivatized

with BF3/alcohol and then the remaining hydroxy or keto groups are silylated with a sylilation
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Figure 3.3: BSTFA Derivatization Procedure

reagent [126].

Not only the dicarboxylic acids are markers for PM studies, fatty acids (long-chain mono-

carboxylic acids) have been studied too. Fatty acids are emitted to the atmosphere from many

sources: the lower molecular weight n-alkanoic acids (< C20) are mainly emitted by petroleum

based sources and meat cooking, while the heavier C20 − C30 terms, which display a strong

even-to-odd carbon number preference, are mostly derived from plant waxes [116].

C16 (hexadecanoic) and C18 (octadecanoic) saturated acids are the two most abundant in the

PM [102, 116], and they accounted for 50-70% of the total fatty acids. The strong even carbon

number predominance (CPI > 10) suggests that the fatty acids are mainly biogenic [132].
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The developed method’s robustness and reliability in estimating the nmax and R parameters

were verified on simulated chromatograms with a known distribution of the sequence terms. All

the results obtained from the EACV Ftot calculation and from the EACF plot inspection, show

a good agreement between the theoretical values and the calculated ones [32].

The attention of the present thesis has been mainly focused on chemical characterization of

environmental complex samples, in particular the applicability of the EACV F method was

tested on experimental chromatograms of samples of known origin (anthropogenic or biogenic),

such as oil samples and plant extracts. The parameters obtained are useful molecular markers

for comparing known sources and observed atmospheric samples to identify sources of organic

matter emissions [32].

33
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4.1 N-alkanes

4.1.1 Application to samples of known origin

As a preliminary step of this study, the reliability of the method has been tested on real samples

of known origin.

Gasoil Sample (Anthropogenic origin) - As an example, the GC-MS signal of the volatile

components of a commercial diesel fuel was studied (Figure 4.1a): the SIM signal for monitoring

the n-alkanes at m/z values of 57, 71 and 85 is reported. The n-alkanes were identified using the

GC retention times of the reference standards (C10−C30): the main components are mid-chain

n-alkanes C10 − C25, C17 and C19 being dominant.

A visual examination of the chromatogram shows a typical chromatographic profile of pet-

rogenic n-alkanes characterized by no odd-to-even predominance. The EACV Ftot was com-

puted on the whole chromatogram (lower solid line in Figure 4.1c): its plot clearly shows a

monomodal distribution of the EACV Ftot peak height suggesting a homogeneous distribution

of the odd/even terms. Such a pattern can be quantified by computing CPItot according to

equation 2.43: by selecting the proper retention region containing C13 − C25 n-alkane ranges,

CPIpet (petrogenic) can be estimated to characterize the petrogenic fraction present in the sam-

ple: CPItot and CPIpet values close to 1 were obtained (estimated values, 2nd and 3rd columns

in Table 4.1). With the developed algorithm the nmax n-alkanes present in the sample can be

directly estimated from the EACV Ftot peaks at Δt = bk, even k [32] (estimated values, 5th

column in Table 4.1).

The accuracy of the results was checked by comparing them with results obtained using the

traditional procedure. It requires identification of the n-alkanes by comparison to reference

standards and MS spectra, integration of the identified peaks, computation of CPI as a ratio of

the sum of concentrations of the odd-numbered carbon alkanes vs. that of the even-numbered

terms. The obtained results (traditional calculations, 6th and 7th columns in Table 4.1) show a

close similarity with data estimated by EACV Ftot: this agreement is a proof of the usefulness

of the procedure for a simple and quick characterization of the n-alkane distribution pattern as

a molecular biomarker in complex samples.

The ability of the EACV Ftot procedure to handle complex signals can be emphasized by ex-

tending the investigation to involved TIC signals. The TIC chromatogram of the oil sample
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was studied (Figure 4.1b): it displays the typical chromatographic profile characterized by the

UCM band (Unresolved Component Mixture) formed by a cluster of unresolved peaks. The

EACV Ftot plot (Figure 4.1c, upper bold line) is strongly affected by the specific pattern of the

UCM band which is superimposed on the deterministic EACV Ftot peaks, displaying monomodal

height distribution.

Nevertheless, the EACV Ftot model makes it possible to single out the n-alkane sequence prop-

erties by computing the nmax and CPItot values using equations 2.45 and 2.43 on EACV Ftot

computed over the whole original signal. The obtained results (4th row in Table 4.1) show a

close similarity to the data obtained from the SIM signal (3rd row in Table 4.1) and from the

traditional calculation method. This result confirms the robustness of the developed method

in extracting reliable information from the direct handling of complex chromatograms, such as

SIM and TIC GC-MS involved signals [32].

Plant samples (Biogenic origin) - Dichloromethane extract of flowers of Mimosa plant was

submitted to GC-MS analysis: the SIM chromatogram was monitored at m/z = 57 + 71 + 85

to represent the aliphatic hydrocarbon fraction. The chromatogram of hydrocarbons extracted

from Mimosa flower are pictured in Figure 4.2a. The main components are mid- and long-chain

n-alkanes C21 − C33. C23, C25, C27 and C29 are the dominant long-chain n-alkanes in the GC

profiles. A visual examination of the chromatogram shows a typical chromatographic profile of

n-alkanes from vascular land plants characterized by a high odd-to-even predominance of long

chain C25 − C35 with CPI ≈ 5− 10.

The EACV Ftot plot computed on the whole chromatogram (Figure 4.2b) clearly shows a bimodal

distribution of the EACV Ftot(bk) peak height with lower values at odd k values (combination

term, equation 2.37) and higher values at even k (addition term, equation 2.36). Such a pattern

is diagnostic of an odd/even prevalence that can be quantified by computing CPItot accord-

ing to equation 2.43: a CPItot value close to 5 was estimated (estimated values, 5th row in

Table 4.1). To better characterize the plant chemical composition, the CPIbio index was also

computed by selecting the chromatographic region containing the long chain C24 − C33 terms

(estimated values, 4th column in Table 4.1). The developed algorithm also yields an estimation

of the nmax n-alkanes present in the sample (estimated values, 5th column in Table 4.1) directly

from EACV Ftot peaks at Δt = bk even k (equation 2.45).

To check the accuracy of the obtained results, the traditional procedure based on calculation
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on each identified and integrated peak was applied to compute CPItot, CPIbio and nmax val-

ues (traditional calculations, 6th − 9th columns in Table 4.1). The close similarity between the

computed and the estimated EACV Ftot data proves the reliability of the developed method to

identify and characterize the abundance distribution of biogenic n-alkanes, and this may also be

useful in extracting information for a chemotaxonomic approach [32].

EACV Ftot Estimation Traditional Calculation

CPItot CPIpet CPIbio nmax CPItot CPIpet CPIbio nmax

Fuel (SIM) 1.60 1.67 - 19.4 0.97 0.96 - 20

Fuel (TIC) 1.52 1.56 - 19.0 1.03 1.00 - 20

Mimosa 5.30 - 5.80 12.4 5.80 - 4.67 11

Table 4.1: Parameters of real samples [32]
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Figure 4.1: GC-MS chromatograms (SIM and TIC) and relative EACV Ftot plots of a Fuel

sample [32]



4. Results and Discussion 38

Figure 4.2: GC-MS chromatogram and relative EACV Ftot plot of a Mimosa flower extract [32]
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4.1.2 Application to real samples of PM

The developed signal processing procedure, based on the AutoCoVariance Function computa-

tion, was applied to handle GC-MS signals of PM samples collected in northern Italy (Milan):

thanks to the method, information on the relative contribution of the homologous series, series%

(percentage of homologous series terms over the total chromatogram area) and the CPI values,

can be directly estimated from the EACV Ftot and the PC computation takes just a few min-

utes [98].

The chemometric method was applied to all chromatographic signals from GC-MS analysis of

the PM samples. The aim was to test the method’s ability to characterize the n-alkane contri-

bution, in terms of CPI, and its applicability as an high-throughput method for analysis of the

huge amounts of data from environmental monitoring.

After the GC-MS analysis, the n-alkanes series terms, ranging from C14 to C32 can be identified

in the investigated PM samples. However, the lighter C14 − C19 terms were found at a low

concentration level, lower than the detection limit for more than 50% of the samples. The first

region of the chromatogram, where C14−C19 n-alkanes elute, was quite disturbed due to coelu-

tion of other interfering compounds. Moreover, the lighter n-alkanes with C ≤ 19 are generally

considered too volatile to be accurately determined in PM samples as they incur evaporative

losses during the sampling and analytical procedures [133–135].

For all the above reasons, the terms ranging from C20 to C32 were investigated as potential

tracers for biogenic/antropogenic emissions: they were detected in all the analyzed PM samples,

displaying a concentration level higher than the detection limit for most of the samples (> 80%).

The first step of data handling consisted of a procedure to linearize the chromatographic sig-

nal to obtain constant retention increments between subsequent terms of the homologous series

(see section 2.3). The Autocovariance Function was then numerically calculated from the lin-

earizated chromatogram, according to equation 2.1. Then, the MATLAB R© algorithm has been

used to directly estimate the parameters nmax and CPIEACV F from the EACVF computed on

a properly selected region of the chromatogram corresponding to the C20 − C32 n-alkanes [98].

The EACVF method was tested and compared with the traditional one for 22 samples (see Ta-

ble 4.2) The CPITrad parameter was computed using the traditional procedure based on peak

integration of the C20−C32 n-alkane GC-MS signal to describe their abundance distribution [82]
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(2nd column in Table 4.2). Most of the analyzed samples show CPI ≈ 1 values indicating strong

contribution of emissions from urban winter sources, such as domestic heating (for example

natural gas, oil, and wood combustion) generating a random distribution of odd/even terms of

the series. On the other hand, the summer samples show higher CPI values (1.5-3.5) due to the

higher contribution of the odd terms C27, C29 and C31 originating from plant material which

yield maximum emissions during the vegetative season [136,137].

The EACVF was directly computed on the GC-MS signal (SIM signal at m/z values of 57, 71

and 85): the region 30-60 min was selected, since it contains the C20−C32 n-alkanes (Figure 4.3,

sample MI-17). In comparison with the complex original GC signal, the EACVF plot (Figure

4.4) shows a simplified pattern characterized by a sequence of deterministic peaks located at

Δt = 2.8min, the retention incrementen between subsequent terms of the the n-alkane series

(Δt = b, equation 2.10) under the experimental GC conditions used. Such EACVF peak is

diagniostic, directly identifying the presence of n-alkanes and hence there is no need to compare

them with the GC retention times of the reference standards (C20−C32). The main information

Figure 4.3: GC-MS chromatogram of the Sample MI-17 [98]

on n-alkanes series are directly extracted from the values of the EACVF computed at Δt = bk,

for chracteristic k values. The number nmax of n-alkanes present in the sample can be directly

estimated from the EACVF peaks at Δt = bk for even k: for all the investigated GC-MS signals

the nmax values were correctely estimated as nmax = 13. The abundance distribution of the

odd/even terms, can be quantified by computing CPIEACV F values directly from EACVF using
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Figure 4.4: EACV Ftot plot of the Sample MI-17 [98]

the values at Δt = b and Δt = 2b (CPIEACV F , 3rd column in Table 4.2).

The accuracy of the obtained results was checked by comparing the CPIEACV F with CPITrad

values obtained using the two procedures (CPITrad vs. CPIEACV F , 2nd, 3rd columns in Table

4.2) and estimating the relative estimation error (ε%, 4th column in Table 4.2).

In general, a good agreement was achieved between the two procedures: the relative error ε%

was lower than 15% for 70 of the 76 investigated samples and lower than 5% for 22 of them.

The exceptions are 6 PM samples for which different CPITrad and CPIEACV F values were es-

timated (% ≥ 15%). They correspond to the samples containing the lowest n-alkane abundance

and which generate complex GC signals showing coeluting components and superimposed UCM

band: this makes it very difficult to integrate the n-alkane peaks and to deconvolute the EACVF

plot to prevent an unbiased estimation of the CPITrad and CPIEACV F values.

Many investigated signals display a high contribution of the UCM hump because, in an effort

to obtain a fast analytical procedure for n-alkane determination, the samples were obtained by

a simple solvent extraction, without any extract purification. These conditions may yield an

ambigous n-alkane characterization as a consequence of the coelution yielding of complex super-

imposed signals: this is particularly true for samples containing low abundance n-alkanes. These

chromatograms were handled with the complete procedure for deconvolving the UCM contri-

bution from EACV Ftot (* data in the Table 4.2). It must be noted that the whole procedure

is reliable in estimating accurate parameters, since it also includes retention time rescaling and

UCM component subtraction.
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Sample CPITrad CPIEACV F ε%

MI-1 1.48 1.70* 14.50

MI-2 1.47 1.02* 30.50

MI-3 1.27 1.36 7.10

MI-4 1.38 1.00* 27.60

MI-5 1.61 1.87* 15.90

MI-6 1.43 1.60* 11.70

MI-7 1.56 1.50* 3.95

MI-8 1.48 1.38 6.67

MI-9 1.20 1.05 12.50

MI-10 1.64 1.48 9.75

MI-11 1.69 1.45* 14.20

MI-12 1.89 1.71* 9.60

MI-13 1.88 1.61* 14.10

MI-14 1.31 1.17* 10.70

MI-15 1.77 1.71* 3.25

MI-16 1.59 1.62 1.64

MI-17 1.23 1.13 8.10

MI-18 1.76 1.53* 13.00

MI-19 1.68 1.54* 8.20

MI-20 3.01 2.70* 10.20

MI-21 3.38 2.98* 11.90

MI-22 1.18 1.14 3.31

Table 4.2: Comparison between CPI values calculated through the traditional method and the

EACV Ftot one [98]
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4.2 Carboxylic acids

Carboxylic acids in general, represent one of the biggest part of the organic fraction of partic-

ulate matter. There are different types of acids; low molecular weight acids (LMW) are the

water soluble part of the carboxylic acids and they are usually studied in source apportionment

investigation. In a GC-MS analysis they are hard detectable compounds, because of their re-

quirement of preliminary derivatization step.

N-alkanoic acids are very useful to characterize and to identify the biogenic contribution to en-

vironmental pollution, through the investigation of the homologous series (usually the C14−C24

terms) and the calculation of the relative CPI values.

4.2.1 Low Molecular Weight (LMW) dicarboxylic acids

The determination of LMW dicarboxylic acids (C3 − C9) is very important because they con-

tain relevant chemical information to distinguish primary vs. secondary sources as well as

anthropogenic vs. biogenic precursors. Preference was given to a faster one-step derivatization

procedure to determine selected target compounds: the advantages and drawbacks of the meth-

ods using BF3/alcohol and BSTFA are investigated and compared in terms of precision and

accuracy of the results, sensitivity and detection limit of the procedure [129].

BF3 esterification - The BF3/alcohol reagent converts either carboxyl groups into butyl es-

ters or aldehyde groups into dibutyl acetals [138, 139]. Starting from the original Kawamura

paper [130], different modifications have been reported and widely applied to make BF3/alcohol

derivatization the most widely used procedure for determining LMW oxygenates in atmospheric

samples [102, 107, 116, 118, 119, 122, 126]. In particular the BF3/butanol procedure has distinct

advantages for quantifying LMW compounds because the resulting butyl derivatives are less

volatile and more resistant to evaporative losses than the BF3/methanol scheme [118,119]. Be-

cause of the presence of residual acid, the products cannot be directly injected into the GC,

rather a purification step is required before injection [113]. The distinct advantage is that envi-

ronmentally safe esters are formed.

Silylation - Silylation is another common derivatization technique used to derivatize polar com-

pounds prior to GC-MS analysis. The usual reagents for PM analysis are trimethylchlorosilane

(TMCS), N-methyl-trimethylsilyltrifluoroacetamide (MSTFA), N,O-bis-(trimethylsilyl)trifluoro
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acetamide (BSTFA) and N-(t-butyldimethylsilyl)-Nmethyltrifluoroacetamide (MTBSTFA) [4,

102,114,121,124–126,128,131]. During the silylation reaction, all the hydroxyl groups are con-

verted into their corresponding trimethylsilyl derivatives via a substitution reaction which yields

one main product for each compound and with high conversion efficiency [4, 128].

The reaction is low moisture sensitive and requires mild conditions to complete the derivatiza-

tion needed to achieve GC-MS detection at very low concentrations [4, 128, 131]. In opposition

to alkylation, silylation normally does not require a purification step and the derivatives can

be injected directly into the GC system [4,113,128,131]. However, it presents some drawbacks,

such as the fact that the silylation reagent is dangerous and some artifacts can be produced in

the reaction [126].

The two most common derivatization procedures were compared for quantitative analysis of

dicarboxylic acids in PM samples by focusing attention on two challenging conditions:

1. Quantification of lighter C3 and C4 dicarboxylic acids, since they contain relevant infor-

mation for source apportionment and secondary organic aerosol formation [102, 107, 113–

116,118];

2. analysis of PM samples collected by low-devices (55m3 air volume sampled over 24h)

requiring the highest method sensitivity at the trace level.

The method sensitivity and linearity were evaluated by computing calibration curves with stan-

dard solutions [129]. Different experimental derivatization conditions have been widely ap-

plied to derivatize LMW oxygenate compounds for subsequent GC determination in PM sam-

ples [114, 115, 121, 124–126, 128]. An optimization study was performed on the derivatization

conditions that most affect analytical responses: reaction temperature and duration time. This

study brought to the following reaction conditions: 75◦C (reaction temperature) and 90 min

(reaction time) [129]. The precision and accuracy of the procedure were assessed through three

replicate measurements of blank quartz fiber filters spiked with C3 − C9 target acids at three

concentration levels. Good recoveries were found for all the target compounds ranging from 78%

for malonic acid to 115% for azelaic acid. The procedure also displays good reproducibility as

evaluated by RSD% values on three replicates lower than 10% [129].

The obtained results confirm that both the methods are rapid, reproducible, trace level proce-

dures suitable for environmental monitoring of dicarboxylic acids. However, some differences
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can be singled out when the two procedures are compared for the challenging application of

quantitative determination of lighter C3 − C9 di-carboxylic acids at trace levels.

In general, the analytical response obtained for BSTFA derivatives was higher than the one

for the butyl esters. This can be explained by the silylation reaction yield or by the stability

of the derivatives during handling. As a consequence, the silylation procedure displays higher

sensitivity with lower detection limit values for all the investigated C3 −C9 di-carboxylic acids,

compared to butyl esterification. On the other hand, the sensitivity of the BF3/BuOH method

strongly depends on the acid molecular weight: it is unreliable for the lower C3 −C4 terms and

it significantly increases with the acid molecular weight to achieve detection limits comparable

to those of silylation for the heavier C7 −C9 acids. The low sensitivity for C3 −C4 acids is also

due to the concomitant higher volatility of their derivatives which yields evaporative loss during

the derivatization procedure.

In order to confirm the findings obtained upon standard solutions, the two methods were applied

to environmental PM matrices. To obtain comparable results on the same aerosol sample, each

sample (PM sample 1, 2 in Table 4.3) was obtained by two consecutive sets of samples (2 quartz

fiber filters) combined for extraction and then halved to separately perform derivatization prior

to GC-MS analysis. The TIC chromatogram of the BF3/BuOH derivatized sample (Sample 1)

is reported in Figure 4.5: the SIM signals at specific m/z values for the [M − 73]+ ions of each

butyl ester were selected for identification and quantification of the target dicarboxylic acids.

The silyl derivatives obtained with BSTFA reagents on the same aerosol sample (Sample 1) were

analyzed under SIM detection mode at m/z = 74 + 147 + 149 (SIM chromatogram in Figure

4.6).

The concentrations of the target dicarboxylic acids were measured with both the procedures

using the calibration curves: the obtained results are reported in Table 4.3 for both the samples.

As verified on standards, the lighter C3 and C3 acids escaped detection by the BF3/BuOH

method, because of their high susceptibility to evaporative loss. For the other acids, a good

agreement (within 4%) was found between the results obtained from the two procedures: this

result proves that both derivatization procedures produce repeatable quantification of the target

acids for the investigated samples, even when operating at, or close to, their detection limits.

Similar abundance was found for the individual species, independently of the carbon chain

length, with malonic and azelaic acids predominant. These results are consistent with literature



4. Results and Discussion 46

Figure 4.5: GC-MS chromatogram of a PM sample (BF3/BuOH derivatization procedure) [129]

on dicarboxylic acids in PM2,5 for a rural sampling site [117, 121, 124, 125, 128]. The predomi-

nance of the C9 diacid is expected since it is an oxidation product of biogenic unsaturated fatty

acids. Accordingly, a low value, close to 0.5, was computed for the C6/C9 ratio to indicate a high

biogenic input for aerosol diacids: 0.53 and 0.54 for both samples and using both procedures.

Moreover, BSTFA derivatization also makes it possible to compute the C3/C4 ratio as an-

other marker of diacid origin: both samples yield a value of 1.3 as it is commonly observed

in atmospheric aerosols with low anthropogenic sources (combustion of fossil fuels produces

C3/C4 ≈ 0.35) and reduced photo-induced secondary formation of dicarboxylic acids (that

would yield higher C3/C4 ≥ values) [102,107,113,115,116].

The BSTFA procedure is preferable when comparison is performed under the most limiting con-

ditions concerning analysis of lighter C3 − C4 terms in PM filters collected by low volume air

samplers: it provides lower detection limits (≤ 3ng/m3) and higher reproducibility (RSD% ≤
10%).
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Figure 4.6: GC-MS chromatogram of a PM sample (BSTFA derivatization procedure) [129]

BF3/BuOH derivatization BSTFA derivatization

Sample 1 Sample 2 Sample 1 Sample 2

Malonic Acid (C3) – – 5.2 ± 1.4 5.4 ± 1.5

Succinic Acid (C4) – – 3.8 ± 1.2 4.0 ± 1.6

Glutaric Acid (C5) 2.6 ± 3.3 2.8 ± 3.2 2.5 ± 1.6 2.7 ± 1.4

Adipic Acid (C6) 3.1 ± 2.0 3.3 ± 3.8 3.0 ± 1.2 3.2 ± 1.6

Pimelic Acid (C7) 2.7 ± 1.8 3.0 ± 2.6 2.6 ± 1.8 2.9 ± 1.4

Suberic Acid (C8) 2.6 ± 2.7 3.0 ± 3.9 2.5 ± 1.4 2.9 ± 1.3

Azelaic Acid (C9) 5.8 ± 2.8 6.1 ± 3.4 5.6 ± 1.8 6.0 ± 2.0

Table 4.3: Concentrations (reported in ng/m3) of the target dicarboxylic acids measured on two

experimental PM samples after derivatization [129]
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4.2.2 N-alkanoic acids

The EACV Ftot method was also applied to characterize n-alkanoic acids, as an homologous

series of organic components useful in discriminating the relative extent to which various sources

contribute to the aerosol burden of organics. After derivatization based on a BSTFA procedure

[4, 129], the urban and rural PM samples were submitted to GC-MS analysis: the n-alkanoic

acids present in the samples were identified in the SIM signal monitoring the typical fragments

of the TMS derivatives at m/z = 75 + 147 (Figure 4.7).

Under the experimental conditions used [132], the retention increment for subsequent n-alkanoic

Figure 4.7: GC-MS chromatogram (n-alkanoic acids) of PM2.5 rural sample [132]

acids is b = 2.5min. The EACV Ftot was computed on the whole signal (Figure 4.8: solid

line): deterministic peaks at Δt = 2, 5min and multiple values are diagnostic for the presence

of this homologous series. All the data set to characterize the series are estimated (Table 4.4,

2nd−5th columns, EACV Ftot estimation) and compared to results obtained with the traditional

procedure (Table 4.4, 6th − 9th columns, traditional calculations). The EACV Ftot plot shows a

marked bi-modal distribution with a predominant peak at Δt = 2, 5min = 2b: this is consistent

with predominant contribution of hexadecanoic and octadecanoic acids that are known to be

the most abundant species in most of the PM samples [102, 116]. The even/odd prevalence of
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Figure 4.8: EACV Ftot plot of n-alkanoic acids homologous series in a PM2.5 rural sample [132]

acid isomers was confirmed by high CPI = 9.8 value (Table 4.4).

To extract information on the biological sources of n-alkanoic acids, the selected chromatographic

region containing the C20 − C26 terms was separately investigated by computing EACV Fplant.

The obtained EACV Fplant plot (Figure 4.8, bold line) clearly identifies the contribution of

biogenic sources, since it displays the strong bi-modal distribution (EACV Fplant(bk) peaks are

low for odd k and high for even k) characteristic of a strong odd/even prevalence. This is

confirmed by the high CPI value (CPIplant = 18.7) computed from subsequent EACV Fplant

peaks, reflecting the stronger vascular plant wax signatures.

The contribution of biogenic n-alkanoic acids in PM samples can also be directly estimated by

the ratio between EACV Ftot(5min) and EACV Fplant(5min) computed on each chromatogram:

the plant fraction (≥ C20 congeners) accounted for about 25% of the total measured n-alkanoic

acids levels in the rural sample [132].

EACV Ftot Estimation Traditional Calculation

nmax CPItot nplant CPIplant nmax CPItot nplant CPIplant

PM2,5 (rural) 13.6 9.8 7.5 18.7 14 9.4 8 17.2

Table 4.4: Parameters of a rural PM2,5 sample (n-alkanoic acids series) [132]
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Conclusions

The EACVF procedure developed in this Ph.D. project proves to be a simple data process-

ing method to efficiently handle a multicomponent chromatogram in order to characterize the

chemical composition of the complex sample. The method is particularly powerful in identifying

the presence of an ordered sequence of compounds, singling it out from the complexity of the

disordered chromatogram; the two components, ordered and disordered, can be separated and

quantitatively evaluated; that is, number of compounds of each pattern can be estimated. Such

information can be extracted by handling the simple GC signal, without any information on the

chemical structure of the components.

Moreover, the power of the method is significantly magnified if combined with the SIM detection.

In fact, the EACVF essentially singles out structure retention correlation of thermodynamics

origin, whereas SIM provides further selectivity to the method related to selected molecular

structures.

The information obtained by the method makes it possible to analytically characterize the sam-

ple not only in terms of identification and quantification of selected SCs but also of identification

and quantification of the specific SC homologous series building up the total mixture. Therefore,

the present procedure seems to be not merely a powerful chemometric tool for handling com-

plex chromatograms but also a new approach for a comprehensive characterization of a complex

multicomponent chromatogram.

In fact, the EACVF plot can be really considered as a SC class chromatogram for the separation,

the identification, and the quantification by classes, which is additional information, compared

to the overall and sometime indistinct sequence of overlapping peaks.
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In comparison with the traditional procedure based on computation performed on integrated

chormatographic peaks, the EACVF method displays three fundamental advantages:

• it saves time and labor in data handling, thus increasing throughput and flexibility;

• it increases result reliability by deconvolving complex signals into its components;

• it reduces the subjectivity of human intervention, thus improving data quality [98].

The introduction of the data pre-processing step to linearize retention time axis increases the

EACVF method applicability and robustness to investigate complex chromatograms obtained

under usual experimental conditions.

The reported results [31] constitute only an example of the wealth of information that can be

obtained using the present approach.

The method can be proposed to investigate the chemical composition of complex samples of

environmental interest: structural class information can be quite useful in monitoring steps in

industrial processes and controlling environmental quality, analyzing biomarkers and environ-

ment pollutants in air, water and soil.

The procedure then has been focused on a description of the chemical pattern of n-alkanes

homologous series, in particular, on the reliable computation of the CPItot index, as a de-

scriptor of characteristic n-alkane distributions to be used as a signature of specific organic

sources. It has proved suitable for the study of long chain n-alkane distributions dominated by

odd carbon-numbered homologs, reliable indicators of terrigenous inputs in environmental and

paleo-environmental studies.

In addition, the method may be applicable for diagnostic fingerprinting ratios in relation to

forensic oil spill identification or bioindicating of the general degree of environmental pollution.

EACV F procedure has been studied not only for n-alkanes homologous series, but even for

n-alkanoic acids. Both the series are present in environmental samples (even if with different

percentage values [75]) and they both could be investigated to perform a source apportionment

study.
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Future Perspectives

At present, the application of the developed procedure is limited by fulfilling the severe condi-

tions of the SC concentration, in particular, the average abundance of the SCs belonging to the

homologous series compared to that of the total mixture. However, the good data obtained from

the benzin sample and the possibility to check their availability by handling the SIM signal seem

to be a very promising result concerning the applicability of this simple method to unknown

real samples [32]. It is clear that the present procedure must be extended to the general, most

usual condition, where the concentration of the homologous series is different from that of the

majority of the other SCs. For this aim, further theoretical development and application to real

cases are under study.

Moreover, the method robustness toward experimental limitations is under study: how the pro-

cedure is powerful in overcoming problems related to experimental chromatograms obtained

in unfavorable conditions acquisition, such as nonlinear temperature programming conditions

and noisy signals. Another limit of the present procedure may be the high concentration of

the sample components yielding overloading effects with consequent peak shape distortions and

a wide concentration range (over several orders of magnitude) of the detectable components:

EACVF may be mostly affected by the predominant components obscuring the least abundant

compounds.

At present, the procedure has been tested on a limited number of classes of compounds, but it

is obvious that it is general and can be extended to different classes of compounds, if specific

fragments for SIM detection are selected, and to more complex mixtures.

The whole signal processing procedure makes it possible to achieve a systematic characterization
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of complex samples by compound class (homologous series, polarity, or functionality): this is

the only reliable information that can be drawn from many real-world samples, natural, indus-

trial or environmental samples where, because of matrix complexity, the separation of all the

components is far from being achieved in 1D separations. In such complex samples, given its

suitability for group separations, the best technique for analysis of organics is a two-dimensional

system, like GCxGC: it is ideal for complex samples containing thousands of compounds but a

relatively low number of chemical classes.

The method may be extended to different homologous series in order to characterize specific

organic markers for identifying sources and tracing inputs in the environment. The results di-

rectly obtained by computing EACV Ftot on the whole multicomponent chromatographic signal

can constitute the basis for further data analysis using multivariate statistical methods, such as

discriminant analysis (DA), cluster analysis (CA) or principal component analysis (PCA) to gain

a better understanding the organic component contribution of inputs in the environment [32].

The method has been further extended to handle the huge amount of data obtained from 2D

separations [26, 140, 141]: study of the 2D-EACVF may form the basis for a comprehensive in-

terpretation of the data matrix acquired in full scan GC-MS analysis containing the whole MS

information on component chemical structure.

In this case, the bidimensional investigation gives two different kind of information, starting

from the 2D-EACVF plot: as for the 1D-EACVF, it’s possible to obtain the main parameters

of the homologous series, nmax and CPI, directly from the Δt profile; but when a GC-MS

matrix data is under investigation, another information is obtainable, directly from the Δm/z

profile: a fingerprint of the homologous series present in the sample. In other words, peaks on

the Δm/z profile give a qualitative information about the series because organic compounds

series, such as n-alkanes or n-alkanoic acids, have characteristic Δm/z values (for example

Δm/z = 14, 28, 42, ... for n-alkanes), depending on the characteristic fragments of the mass

spectra.

The sample preparation is another critical aspect that could influence the goodness of the anal-

ysis results. Usually, a simple solvent extraction, starting from the PM filter, has been used

for the sample preparation and, if necessary, a derivatization procedure, directly on the extract.

New methods are under study, such as the DTD method (Direct Thermal Desorption). This

innovative technique uses a little piece of the filter, directly ”injected” in the GC-MS system. A
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thermal desorption procedure is then executed on the filter and all the components are immedi-

atly injected in the GC column. This DTD method increases the sensibility of the analysis and

severely reduces the time of sample preparation.



Appendix

Appendix A

function [dref,MZS,YS] = mattia(MZ,Y,spikes,spikesWidth,badSpikes,badSpikesWidth,badMZ)

% INPUT

% MZ = array delle ascisse (caso 1D: tempi di ritenzione,

% caso 2D: spettri di massa)

% Must be given as column vector or column-major matrix

% Y = array delle ordinate (intensità)

% Assumed to be a nY x nMS matrix

% spikes = array delle ascisse in cui sono individuati i picchi di

% intensità da equispaziare

% spikesWidth = halfwidth of each spike in number of ascissa points.

% Can be a constant or a vector

% of the same length as spikes

% badSpikes (optional) = spikes to be replaced

% badSpikesWidth = halfwidth of each bad spike in number of ascissa points.

% Can be a constant or a vector of the same length as badSpikes

% badMZ (optional) = mass spectra to be replaced

%

% OUTPUT
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% MZS = array delle nuove ascisse

% YS = array delle nuove ordinate con picchi equidistanti

if (size(MZ,1) ~= size(Y,1))

error(’FATAL ERROR: mismatching sizes of MZ and Y’);

end

[nY,nMS] = size(Y);

% eventuale rimozione dei bad spikes

if (nargin > 4 & ~isempty(badSpikes))

nbS = numel(badSpikes);

if (nargin < 6 | isempty(badSpikesWidth))

if (prod(size(spikesWidth)) == 1)

badSpikesWidth = spikesWidth;

else

error(’Inconsistent data for bad spikes’);

end

end

badSpikesWidth

if (prod(size(badSpikesWidth)) == 1)

badSpikesWidth = badSpikesWidth*ones(size(badSpikes));

end

rightEnds = badSpikes + badSpikesWidth;

leftEnds = badSpikes - badSpikesWidth;

% controllo sulla sovrapposizione

overlaps = leftEnds(2:end) - rightEnds(1:end-1);

overlapsInd = find(overlaps < 0);

if (~isempty(overlapsInd))

newEnds = floor( (rightEnds(overlapsInd) - leftEnds(overlapsInd+1)) / 2 );

rightEnds(overlapsInd) = newEnds;

leftEnds(overlapsInd+1) = newEnds;

end
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% controllo su compatibilita’ delle distanze

leftEnds(1) = max( leftEnds(1), 1 );

rightEnds(end) = min( rightEnds(end), nY );

% Calcolo dei valori di rimpiazzo

newValues = (Y(leftEnds-1,:) + Y(rightEnds+1,:)) / 2; % (2 * nMS);

for k = 1:length(badSpikes)

for j = leftEnds(k):rightEnds(k)

Y(j, :) = newValues(k, :);

end

end

end

% eventuale rimozione dei bad MZ

if (nargin > 6 & ~isempty(badMZ))

Y(:, badMZ) = 0;

end

% allineamento

nS = size(spikes,1);

if (prod(size(spikesWidth)) == 1)

spikesWidth = spikesWidth*ones(size(spikes));

end

deltad = diff(spikes);

[dref,drefpos] = max(deltad); % reference distance

rightEnds = spikes - spikesWidth;

leftEnds = spikes + spikesWidth;

rightEnds = rightEnds(2:nS);

leftEnds = leftEnds(1:nS-1);

addPoints = dref - deltad;

newRightEnds = rightEnds + cumsum(addPoints);

newLeftEnds = leftEnds + [0;cumsum(addPoints(1:end-1))];

newSpikes = spikes + [0;cumsum(addPoints)];

nYS = nY + sum(addPoints);
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YS = zeros(nYS,nMS);

MZS = zeros(nYS,1);

YS(1:leftEnds(1)-1,:) = Y(1:leftEnds(1)-1,:);

MZS(1:leftEnds(1)-1) = MZ(1:leftEnds(1)-1);

oldX = [1:nY]’;

np = length(addPoints);

for i = 1:np

n0 = rightEnds(i) - leftEnds(i);

oldY = Y(leftEnds(i):rightEnds(i),:);

oldMZ = MZ(leftEnds(i):rightEnds(i));

posOldY = [2:n0+1]’;

n = n0;

if (addPoints(i))

nPoints = addPoints(i);

while( nPoints )

m = min(nPoints,n);

newY = [oldY(1,:); zeros(m+n,nMS)];

newMZ = [oldMZ(1); zeros(m+n,1)];

m1 = floor((n-m)/2);

newInd = [1:m1, m1+2:2:2*m+m1, 2*m+m1+1:n+m]’+1;

posOldY = newInd(posOldY-1);

newY(newInd,:) = oldY(2:end,:);

newMZ(newInd) = oldMZ(2:end);

newY(m1+2:2:2*m+m1,:) = (oldY(m1+1:m+m1,:) + oldY(m1+2:m+m1+1,:)) / 2;

newMZ(m1+2:2:2*m+m1) = (oldMZ(m1+1:m+m1) + oldMZ(m1+2:m+m1+1)) / 2;

nPoints = nPoints - m;

n = n + m;

oldY = newY;

oldMZ = newMZ;

end

else
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newY = oldY;

newMZ = oldMZ;

end

if (posOldY(end) ~= n0+addPoints(i)+1)

error(’Wrong number of added points’);

end

newX = [1:posOldY(end)]’; % questa dovrebbe non servire

oldX(leftEnds(i)+1:rightEnds(i)) = newLeftEnds(i) + posOldY - 1;

MZS(newLeftEnds(i):newRightEnds(i)) = newMZ;

YS(newLeftEnds(i):newRightEnds(i),:) = newY;

if (i < np)

oldX(rightEnds(i)+1:leftEnds(i+1)) = newRightEnds(i)+1:newLeftEnds(i+1);

MZS(newRightEnds(i)+1:newLeftEnds(i+1)-1) = MZ(rightEnds(i)+1:leftEnds(i+1)-1);

YS(newRightEnds(i)+1:newLeftEnds(i+1)-1,:) = Y(rightEnds(i)+1:leftEnds(i+1)-1,:);

end

end

YS(newRightEnds(end)+1:nYS,:) = Y(rightEnds(end)+1:nY,:);

MZS(newRightEnds(end)+1:nYS) = MZ(rightEnds(end)+1:nY);

oldX(rightEnds(end)+1:nY) = newRightEnds(end)+1:nYS;

newX = [1:nYS]’;

Appendix B

function [pr,xa,hpr1,ntc,rapc,rapc2] = matty(dati,d)

if ( nargin < 1 | nargin > 2 )

error(’call is: [ac,nc] = autocorr(x,np)’);

end;

x=dati;

np=length(x);

x2=[0:1:np];

[n,m] = size(x);
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xac=xcorr(x); % acf symm

xa=xac(m:2*m-1); % acf da zero

pr = xa./xa(1); % normalizzazione

h1=pr(1:d:m-1); % max della acf ad interdistanza d

nn=ceil(length(h1));

hpr1=h1; % considera i primi 10 valori

nt=ceil(np/d); % numero totale di componenti ideali

nt4=ceil(nt/2);

hpr=hpr1*(nt)/(nt-1); % correzione acf mac per numero di componenti

rac=(2-(4-4*hpr(2)*hpr(2))^0.5)/(2*hpr(2)); %ratio t 2t

rap=real(rac);

nttc=2*([1:nt4-1]./(1-hpr(3:2:(nt)))); % numero componenti calcolato su 4 massimi acf

ntc=mean(nttc(nt4-3:nt4-1));

racc=(2-(4-4*hpr(4)*hpr(4)/(hpr(5)*hpr(5)))^0.5)/(2*hpr(4)/hpr(5));

rapc=real(racc);

racc2=(2-(4-4*hpr(2)*hpr(2)/(hpr(3)*hpr(3)))^0.5)/(2*hpr(2)/hpr(3));

rapc2=real(racc2);

pr=pr’;
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Abstract

Identification and characterization of homologous series by GC–MS analysis provide very relevant information on organic compounds in
complex mixtures. A chemometric approach, based on the study of the autocovariance function, EACVFtot, is described as a suitable tool for
extracting molecular–structural information from the GC signal, in particular for identifying the presence of homologous series and quantifying
the number of their terms. A data pre-processing procedure is introduced to transform the time axis in order to display a strictly homoge-
nous retention pattern: n-alkanes are used as external standard to stretch or shrink the original chromatogram in order to build up a linear
GC retention scale. This addition can be regarded as a further step in the direction of a signal processing procedure for achieving a system-
atic characterization of complex mixture from experimental chromatograms. The EACVFtot was computed on the linearized chromatogram: if
the sample presents terms of homologous series, the EACVFtot plot shows well-defined deterministic peaks at repeated constant interdistances.
By comparison with standard references, the presence of such peaks is diagnostic for the presence of the ordered series, their position can be
related to the chemical structure of the compounds, their height is the basis for estimating the number of terms in the series. The power of
the procedure can be magnified by studying SIM chromatograms acquired at specific m/z values characteristic of the compounds of interest:
the EACVFtot on these selective signals makes it possible to confirm the results obtained from an unknown mixture and check their reliabi-
lity.
The procedure was validated on standard mixtures of known composition and applied to an unknown gas oil sample. In particular, the paper

focuses on the study of two specific classes of compounds: n-alkanes and oxygen-containing compounds, since their identification provides
information useful for characterizing the chemical composition of many samples of different origin. The robustness of the method was tested in
experimental chromatograms obtained under unfavorable conditions: chromatograms acquired in non-optimal temperature program conditions and
chromatographic data affected by signal noise.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Multicomponent mixtures; Homologous series; Time axis linearization; Hydrocarbons

1. Introduction

Real world samples submitted to chromatographic analysis
are usually very complex matrices made up of thousands of
components which display a wide range of concentrations. It is
practically impossible to achieve chromatographic characteri-
zation of all the compounds in a sample in a single separation

Abbreviations: ACVF, autocovariance function;EACVF, experimental auto-
covariance function; EACF, experimental autocorrelation function; SC, single
component
∗ Corresponding author. Tel.: +39 0532291152.

E-mail address: mpc@unife.it (M.C. Pietrogrande).

step. Indeed, even when hyphenation with mass spectrometry
is employed, it is only possible to identify and quantify a lim-
ited number of compounds belonging to different group types
[1,2]. For this reason, methods that separate organics into com-
pound classes (as opposed to individual compounds) are often
able to characterize a large fraction of the organic components
[3,4]. The chromatograms thus obtained are complex signals
characterized by strong peak overlapping (in particular for 1D
separations) and formed by an extensive amount of data (in par-
ticular for 2D and hyphenated separations) [5,6]. Even if the
mixture is not sufficiently well separated in any one dimension,
a great deal of chemical information regarding the mixture can
be obtained from the chromatographic data by applying spe-

0003-2670/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.aca.2007.05.020
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cific signal processing procedures devoted to extracting all the
analytical information on separation and sample [7–11].
This paper presents a mathematical–statistical approach

developed to single out information from a complex 1D chro-
matogram. It is a chemometric approach based on the study of
the autocovariance function (ACVF) which has proved itself a
helpful tool in decoding complex chromatograms, i.e., extracting
information on themixture—number of components, abundance
distribution – and separation—separation performance, reten-
tion pattern [12–22]. In particular, it is powerful in magnifying
any ordered retention patterns present in the chromatogram, and
singling them out from the “disordered forest” of random peaks
[16–18]. Such an order can be related to chemical structure of
the sample components under a strictly homogenous retention
pattern.
The present paper describes a linearization algorithm using

n-alkanes as external standard to stretch or shrink the origi-
nal chromatogram in order to build up a linear GC retention
scale. The introduction of this data pre-processing algorithm
can be regarded as a further step in the direction of a signal
processing procedure for achieving a systematic characteriza-
tion of complex mixture from experimental chromatograms.
The study is focused on the characterization of organics
present in the sample in terms of structural group analy-
sis, e.g., chemical class identification by homologous class,
polarity, or functionality. This provides useful information for
the characterization of many different types of samples. For
example, the presence of organics in complex environmental
samples can be quite useful in understanding source contribu-
tions (e.g., biogenic versus anthropogenic), sample evolution
and sample environmental fate as related to health impact
[23–28].
In particular, this paper is devoted to the study of two spe-

cific classes of compounds: n-alkanes and oxygen-containing
compounds, whose identification provides relevant informa-
tion in evaluating the contribution that local emission sources,
naturally produced aerosols, transportation, and industrial activ-
ities make to local air quality [26,29,30]. A petrochemical
matrix was studied, since it represents a sample that can be
characterized by the structural group analysis: detailed struc-
tural information in terms of paraffinic, olefinic, naphthenic
and aromatic carbon and hetero-compounds is relevant to
characterize crude oil and oil products, and it can be used
in monitoring petroleum industrial processing steps and in
investigating the presence of petrochemical pollutants in air,
water and soil. It could also be advantageous in analyzing
the space-, time- or particle size-dependent variability of the
chemical fingerprints as well as for source characterization
[23–25].

2. Theory

2.1. Autocovariance function method

The chemometric approach studies the autocovariance func-
tion that can be directly computed from the experimental
chromatogram acquired in digitized form (Experimental ACVF,

EACVF), using the following expression [12]:

EACVF(Δt) = 1

M

M−k∑

j=1
(Yj − Ŷ )(Yj+k − Ŷ )

k = 0, 1, 2, . . . M − 1 (1)

where Yj is the digitized chromatogram signal, Ŷ its mean value
andM the truncation point in the EACVF computation.
Theoretical models have been developed to describe ACVF

(theoretical ACVF, TACVF) in terms of the complex chro-
matogram parameters, i.e., number of single components (SC),
mtot, SC peak standard deviation, σ, peak abundance distribution
[12].
The most general case is a disordered multicomponent chro-

matogram containingmtot SCs displaying a Poissonian retention
pattern. Assuming chromatographic peaks of Gaussian shape
with constant width, i.e., optimized programmed temperature
conditions, the value of EACVFtot at the origin (�t= 0) is
described by a simple equation from which the number of SCs
of the chromatogram, mtot can be estimated as [15]:

mtot =
A2T,tot(σ

2
M,tot/a

2
M,tot + 1)

EACVFtot(0)dh/22.129X
(2)

where AT,tot is the total area of the chromatogram, dh/2 the
half height width of the EACVFtot peak—it can be simply
related to the mean peak standard deviation, σ —, X is the
total chromatogram time range, σ2M,tot/a

2
M,tot the peak maxi-

mum dispersion ratio derived from the mean, aM,tot, and the
variance, σ2M,tot, of peak maxima computed from the observed
peak maxima in the chromatogram [15].
Another model is an ordered chromatogram formed by a

sequence of nmax SC peaks where the retention time of the n-th
term is described by:

tR(n) = c + bn, n = 0, 1, 2, 3, . . . , nmax (3)

This is the case of terms of a homologous series submitted
to GC analysis under optimized, linearized temperature pro-
gramming conditions: c represents the contribution of a specific
functional group to the overall retention, b the retention incre-
ment between terms of the homologous series, e.g., the CH2
retention time increment [31,32].
For the ordered retention pattern (indicated by the subscript

O), the TACVFO, and therefore the EACVFO, plot displays
well-defined Gaussian peaks located at interdistances bk, corre-
sponding to repeated interdistances between terms of the ordered
series (Eq. (3)). These peaks are diagnostic and identify the pres-
ence of terms of the homologous series in the sample. The value
of EACVFO at the repeated interdistances (�t= bk) can be used
to estimate the number of SCs belonging to the ordered series,
nmax, according to the following equation [22]:

nmax − k = A2T,O(σ
2
M,O/a2M,O + 1)

EACVFO(bk)dh/22.129X
(4)

In themost general case, amulticomponentmixture is formed
by combining SCs with uncorrelated chemical structures, mP,
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displaying Poissonian retention pattern, with nmax SCs belong-
ing to homologous series yielding an ordered pattern. This
means that the total number of SCs present in the mixture is
mtot =mP + nmax and the complex chromatogram is the combi-
nation of a random retention pattern yielded by mP SCs (Eq.
(2)) and an ordered component due to the nmax terms of the
homologous series (Eq. (3)) [22]. The EACVFtot computed on
the complex chromatogram may be handled as the superimpo-
sition of a Poissonian EACVFP and an ordered EACVFO: this
is the consequence of the variance additivity for independent
variables, since the Poissonian and ordered parts are not corre-
lated. Therefore, a combination of Eqs. (2)–(4) can be applied
to estimate the mixture composition [22].
Eq. (2) can be used to estimate the total number of compo-

nents mtot in the mixture. In the EACVFtot plot, the presence
of deterministic peaks at repeated interdistances (�tR = bk) is
mainly due to the contribution of the ordered component (Eq.
(4)) since EACVFP assumes values close to 0 for�t≥ 4σ. Such
deterministic peaks indicate that the sample contains terms of
homologous series and Eq. (4) can be used to evaluate the nmax
value fromEACVFtot (bk): the parametersAM,O and σ2M,O/a2M,O
in Eq. (4) — concerning the ordered component only — can-
not be experimentally determined and must be approximated by
AM,tot and σ2M,tot/a

2
M,tot values computed on the whole chro-

matogram. This assumption is possible if the two following
equations are true:

σ2M,tot/a
2
M,tot ≈ σ2M,O/a2M,O (5)

Am,tot = AT,tot

mtot
≈ Am,O = Anmax,O

nmax
(6)

The first condition (Eq. (5)) assumes that the SCs belonging
to a given homologous series display the same peak maximum
dispersion ratio, σ2M/a2M, as that of all the SCs in the mixture:
it is usually met in real samples, since the SC abundances gen-
erally follow the most likely exponential distribution, yielding:
σ2M/a2M ≈ 1.
Eq. (6) concerns the average peak areas Am: the hypothesis

assumes that the Anmax,O value, computed on the nmax compo-
nents of the ordered series, is the same as Am,tot determined on
the total chromatogram. This condition is not usually met in the
practice: in general one homologous series is predominant or in
trace versus most of the other SCs [1,23,25].
In the simplest case, when both the Eqs. (5) and (6) are strictly

true, for k= 1 a combination of Eqs. (2) and (4) yields a simple
equation able to estimate the nmax value:

nmax = mtot
EACVFtot(b)

EACVFtot(0)
+ 1 (7)

Conditions: Eqs. (5) and (6); b≥ 4σ.
In the most general case, when only Eq. (6) holds true, by

combining Eqs. (2) and (4), one can obtain:

nmax = mtot × EACVFtot(b)
EACVFtot(0)

× A2m,tot

A2nmax,O
+ 1 (8)

Conditions: Eq. (6); b≥ 4σ.

Since the two quantities Am,tot and Am,O are not experimen-
tally accessible, from EACVFtot it is possible to estimate an
“apparent” nmax, given by:

nmax,ap = nmax ×
A2m,O

A2m,tot
(9)

It is the apparent nmax value computed under the hypothesis
of the samemean peak area displayed by the terms of the ordered
series and all the components. It represents a relative estimation
of nmax, depending on the relative mean area of the ordered
components, Am,O, compared to the mean area of the whole
mixture, Am,tot.
A simplified procedure can be obtained by computing

the autocovariance function EACFtot (�tR), i.e., the ratio
EACVFtot(�tR)/EACVFtot(0): theEACFtot (b) value canbe sim-
ply related to nmax (Eq. (7)) or to nmax,ap (Eq. (8)) in the most
general case:

EACF(b) = EACVFtot(b)

EACVFtot(0)
= nmax,ap

mtot
− 1 (10)

Therefore, the study of EACVFtot makes it possible to esti-
mate the complexity of the whole mixture (mtot, Eq. (2)) and
identify the presence, and the specific contribution, of the com-
ponents belonging to the ordered series (nmax or nmax,ap, Eqs. (7)
and (8)), singling it out from the disordered pattern. Note that the
described approach is general, since EACVFtot (�tR) is a quan-
tity which can be numerically computed from the chromatogram
without any a priori assumption or theoretical model.

2.2. Linearization procedure

The study of EACVFtot to identify the sample chemical
composition and extract structural information regarding the
mixture components from the GC signal is based on a strict
linear relation between the retention time tR(n) and number of
repeated units n within a homologous series (Eq. (3)). This is
true under linear temperature-programmed GC conditions, as
confirmed by both experimental evidence and theoretical stud-
ies based on retention thermodynamics [18,31,32]. However, the
strictly homogenous retention pattern yielding constant reten-
tion increments between subsequent terms of homologous series
is difficult to be achieved in the practice because of experimental
limitations, i.e., the not strictly linear temperature-programmed
GC runs, poor reproducibility in flow rate or temperature, varia-
tions in injection-timing and temperature program rate [31,32].
Therefore, in order to usefully apply theEACVFtot procedure,

a data handling algorithm is required to linearize experimental
chromatograms prior to EACVFtot computation. If Y(x) repre-
sents the chromatographic signal, where x is the retention time,
the time axis is transformed into a new scale by using a func-
tion z= g(x) to relate the original time axis to the new z axis.
In this transformation the total signal area must be preserved:
this means transforming the signal Y1(x) at a given x position in
the original chromatogram into the corresponding Y2(z) value
at the z position in the transformed chromatogram so that the
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following condition is fulfilled:

Y1(x)dx = Y2(z)dz (11)

Instead of a continuous function z= g (x), the present paper
proposes an empirical transformation procedure based on an
equidistant retention position between the subsequent terms of
n-alkane homologous series. This means that the applied trans-
formation has the property:

Y1(x)Δx = Y2(z)Δz (11a)

over finite �x and �z regions of the chromatograms between
subsequent terms of a homologous series, i.e., CH2 addition
retention increment.
The use of n-alkanes as external standard to build up a GC

retention scale is very common in GC: in fact, the n-alkanesmay
act as the flexible “mile-stone” system of the chromatogram, and
the relative position of the analyte compounds can be referred
to them [33,34]. An n-alkane reference mixture containing the
terms displaying retention values in the same range as the sam-
ple was analyzed under the same temperature-programmed GC
conditions used for the unknown sample. Within a given thresh-
old distance, the n-alkane reference peaks are matched to the
nearest peaks in the sample chromatogram. The sample signal
was divided into many regions corresponding to the distance
�x=�tR between subsequent terms of n-hydrocarbons; a �x
value (usually the average of experimental �x values) was
selected as constant �z retention increment in the new scale.
Each inter-peak region is taken individually and it is stretched,
or shrunk, to force each �x interdistance to the constant �z
value.

3. Experimental

3.1. Organic mixtures

The standard mixtures contained known amount of organic
compounds: C6–C32 n-hydrocarbons, and some organic com-
pounds with uncorrelated molecular structures (alcohols,
ketones, esters and aromatics with carbon atomic numbers rang-
ing from3 to 11)were purchased fromAldrich and fromSupelco
(Milan, Italy) (99% min). The standard solutions of organic
acids contained 16 n-alkanoic acids (from C8 to C23), benzene
carboxylic acids (1,2 and 1,3 benzenedicarboxylic, 1,2,3 and
1,3,5 benzenetricarboxylic acids) and amino acids (20 small
molecules); they were purchased from Aldrich (99% min). The
mixtureswere prepared bymixing proper concentrations of stan-
dard compounds so that all the terms of the homologous series
display nearly the same mean peak area values (Eq. (6)) and the
same peak maxima dispersion ratios (Eq. (5)).
The unknown sample studied was an ASTM D2887 Refer-

ence Oil (C6–C44, b.p. 115–475 ◦C) that is the basis for standard
test method for boiling range distribution of petroleum fractions
by GC. It was delivered from Supelco (Milan, Italy).

3.2. Derivatization procedure of organic acids

Before GC analysis, the carboxylic acids were submitted
to chemical derivatization with MTBSTFA (N,N-Methyl-tert-
butyl(dimethyl-silyl)trifluoroacetamide (Interchim, France):
30�l of MTBSTFA was added as reactant to the sample in
pyridine (10�l) as previously described [21]. N,N-Methyl-
tert-butyl(dimethyl-silyl)trifluoroacetamide (MTBSTFA) and
pyridine were obtained from Interchim (France) and from Fluka
(France), respectively.

3.3. Instrumentation

TheGC–MS analyseswere performed on aMega Series 5160
gas chromatograph (Fisons Instruments, Milan, Italy) coupled
with a QMD1000 quadrupole mass spectrometer (Fisons Instru-
ments, Milan, Italy). The column used was a DB-5 column
(L= 30m, I.D. 0.25mm, df 0.25�m) (J&W Scientific, Ran-
cho Cordova, CA, USA). The analyses were performed under
different programming conditions according to the specific sam-
ple analyzed. The carrier gas was helium at a flow rate of
1.2mlmin−1. Split conditions (1:400 split ratio) were used for
injection (injection temperature: 200 or 300 ◦C; injected sample:
1�l of mixture). The mass spectrometer operated in EI mode
(positive ion, 70 eV): mass spectra were acquired with repetitive
scanning from 40 to 400 m/z in 1 s.
To analyze the carboxylic acids, the split/splitless injector

was operated at 300 ◦C (mean split ratio: 1:20). The source
was heated to 270 ◦C and helium was used as carrier gas [34].
Temperature-programmed analysis was performed increasing
from 100 to 280 ◦C, at a rate of 3 ◦Cmin−1 [34].

3.4. Computation

All the programs are written in Fortran and run on a 2GHz
(512 RAM), Pentium III personal computer.

3.4.1. EACVF calculation
The EACVF was numerically calculated from the digitized

chromatogram, according to Eq. (1) [12]. The developed algo-
rithm concerns the calculation of some separation parameters
reported in Eqs. (2) and (4) [22]: the total area of the chro-
matogram, AT, was computed by numerical integration. The
peak maxima were detected in the chromatogram by using an
algorithm that compares five successive points and a threshold
level to filter out the noise. The average peak maximum abun-
dance aM, and its standard deviation σ2M, were computed from
these values. According to Eq. (2), the number of SCs, mtot,
can be estimated as mtot ±√mtot because of the Poissonian
character of this variable.

3.4.2. Linearization procedure
A temperature GC analysis program was chosen to yield

nearly linear retention behavior for n-alkane reference mixture
containing the terms displaying retention values close to the
sample: the n-alkane reference and the sample were analyzed
under the same GC conditions.
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The linearization algorithm identifies the n-alkane peaks
in the reference mixture and matches them in the sample
chromatogram by comparing the appearance surrounding their
retention time, i.e.,±5points. If ann-alkane peak is notmatched,
the retention value of the reference chromatogram is assumed in
the sample chromatogram. Then, on the basis of the identified
n-alkane peaks, the algorithm divides the sample chromatogram
time axis into a number of regions corresponding to reten-
tion increment �x=�tR between subsequent n-alkane terms.
A �x value (usually the average of experimental �x values) is
selected as constant�z retention increment in the new scale. The
linearization algorithmworks on each retention interval individ-
ually: to force each �x interdistance to the constant �z value,
each �x interval is compressed, by deleting signal points, or
expanded, by adding signal data, to reach the same �z interval.
A proper data handling algorithm was developed for the addi-
tion, or deletion, of data points in order to preserve the total area
of the original chromatogram in the re-scaled signal (Eq. (11a)).

4. Results and discussion

The reliability of the proposed method was verified on stan-
dard mixtures containing homologous series terms plus some
uncorrelated compounds of known abundance and distribution.
The unknown sample selected to test the method applicability
was a petrochemical sample, since it represents a complex sam-
ple where the structural group analysis is quite relevant, able to
provide information for the sample composition characteriza-
tion.

4.1. Validation using standard mixtures

4.1.1. Analysis of n-alkanes
The method was validated by using standard mixtures of

n-alkanes. Structural information on these compounds char-
acterize the chemical nature of petrochemical matrices, e.g.,
paraffinic, olefinic, naphthenic and aromatic carbon [5–7,24].
Such information is relevant in monitoring the industrial
processes used by the petroleum industry and in analyzing
petrochemical-derived air, water and soil pollution [23–28].
The standard mixture studied contained six subsequent terms

of n-alkane series (C7–C12) in addition to 14 organic compounds
with uncorrelated structures. It was analyzed under a tempera-
ture program that started at 30 ◦C for 3min and then increased
to 80 ◦C at 5◦min−1, as this was found to approach the optimal
temperature programming conditions.
The original chromatogram (Fig. 1a) was submitted to the

linearization procedure using the signal obtained from the refer-
ence C7–C12 n-alkanes analyzed under the same experimental
conditions (inset in Fig. 1a): a value�tR = 2.5min was selected
as constant retention increment between subsequent terms of
the series (b in Eq. (2), arrows in the chromatograms in Fig. 1b).
The EACVFtot was computed on the linearized chromatogram
(Fig. 1b). The number of the mixture components, mtot, was
estimated from the EACVFtot(0) by using Eq. (2): the obtained
valuemtot = 19± 4 fully agreed with the real experimental value
mtot = 20. The EACVFtot plot (Fig. 2a, plain line) clearly shows

Fig. 1. GC–MS TIC chromatogram of a standard mixture containing six subse-
quent terms of n-alkane series (C7–C12) in addition to 14 organic compounds
with uncorrelated structures. Temperature program: 30 ◦C for 3min, an increase
to 80 ◦Cat 5◦min−1. (a)Original chromatograms of the standardmixture and the
reference C7–C12 n-alkanes (in the inset) and (b) linearized chromatograms of
the standardmixture and the referenceC7–C12 n-alkanes (in the inset): the arrows
indicate the �tR = 2.5min value selected as the constant retention increment.

deterministic peaks at repeated positions, i.e., 2.5, 5.0min.These
peaks are diagnostic for the presence of an ordered series, sin-
gling it out from the disordered pattern of peaks present in the
chromatogram (Fig. 1a). The presence of the homologous series
can be inferred by the coincidence with EACVFtot determin-
istic peaks obtained from the linearized chromatogram of the
reference mixture (Fig. 2a, dotted line). From the EACVFtot
computed at�tR = 2.5min it is possible to estimate the number
of terms of the homologous series, nmax, by using Eq. (7): the
obtained value nmax = 6 is exactly the real experimental value. It
must be underlined that Eq. (7) can be correctly applied in this
case: proper concentrations of standard compounds were added
to prepare a mixture fulfilling the conditions on SC abundance
distribution described by Eqs. (5) and (6).
The effect of the linearization procedure can be shown by

comparing the EACVFtot (Fig. 2a, plain line) obtained from



M.C. Pietrogrande et al. / Analytica Chimica Acta 594 (2007) 128–138 133

Fig. 2. EACVFtot plot computed on the chromatograms (Fig. 1). (a) EACVFtot
plot computed on the chromatogram of a standardmixture containing 20 organic
compounds. Plain line: linearized chromatogram; bold line: original chro-
matogram under temperature programming conditions close to linearity; dotted
line: linearized chromatogram of the reference mixture and (b) EACVFtot plot
computed on the chromatogram of the reference C7–C12 n-alkanes. Plain line:
linearized chromatogram; bold line: original chromatogram under temperature
programming conditions close to linearity.

the linearized chromatogram (Fig. 1b) to that (Fig. 2a, bold
line) computed on the original chromatogram obtained under
temperature programming conditions that are close to linearity
(Fig. 1a). In this last EACVFtot plot, the deterministic peaks at
repeated positions, i.e., 2.5, 5.0min which are diagnostic for
the presence of the homologous series – are still present, but
lower thus making it difficult to identify them in the complex
signal. These results underline the fact that signal lineariza-
tion, performed using a mathematical procedure, is necessary
to simply single out the retention repetitivities and therefore
fully extract chemical information contained in the retention
pattern.

4.1.2. Analysis of organic acids
The proposed procedure was tested on standard solutions of

organic acids: the presence of oxygen-containing compounds
(aldehydes, ketones, alcohols, and carboxylic acids) in envi-
ronmental samples is diagnostic for secondary gas-phase and
particle-phase organicmatter resulting fromphotochemical con-

version of primary biogenic and anthropogenic atmospheric
compounds. As they undergo photochemical reactions, atmo-
spheric organic matter becomes oxidized via reactions with
several major oxidizing species in the atmosphere: the hydroxyl
radical, the nitrate radical, and ozone [26,28–30].
Prior to GC injection, these polar organics must be con-

verted into non-polar compounds that will then elute through the
GC column. The studied mixture contained 16 n-alkanoic acids
(C8–C23 terms) and other mono-carboxylic acids with uncor-
related molecular structures (benzene carboxylic and amino
acids). The MTBSTFA derivatization procedure was selected
to yield derivatives suitable to GC analysis [21]. The TIC
chromatogram of a standardmixture containing 50 organic com-
pounds is reported in Fig. 3a. The signal was linearized on the
basis of a reference n-alkanoic acid mixture (C8–C23 terms)
analyzed under the same analytical conditions (inset in Fig. 3a):
a constant interdistance �tR = 3min was selected as retention
contribution for CH2 increment in the series.
The EACVFtot was computed on the linearized chro-

matogram (Fig. 3b, bold line). The number of components,mtot,
was estimated from the EACVFtot(0) (Eq. (2)): the obtained
value was mtot = 49± 7 showing an excellent agreement with
the effective number of components, 50, present in the standard
mixture.
Information on the chemical composition of the sample

can be extracted by a simple inspection of the EACVFtot plot
(Fig. 3b, bold line): it clearly shows deterministic peaks at 3min
and repeated interdistances, diagnostic for the presence of a
homologous series. Under the applied experimental conditions,
comparison with the EACVFtot plot (Fig. 3b, plain line) com-
puted on the n-alkanoic acid reference mixture (inset in Fig. 3a)
identifies the series as n-alkanoic acids. From the EACVFtot
value computed at �tR = 3min the number of terms in the
homologous series, nmax, can be estimated by using Eq. (7):
the obtained value is nmax = 16, which corresponds exactly to
the real number in the sample. In this case Eq. (7) can be prop-
erly applied since the standardmixture was properly prepared “a
priori” to meet the assumptions on SC peak height distribution
(Eqs. (5) and (6)). It must be underlined that the information
on the presence and number of n-alkanoic acids can be simply
extracted from the experimental MS-TIC chromatogram, with-
out any time-consuming investigation on MS spectra of each
peak.
In the case of a totally unknownmixture, the reliability of the

results obtained with the EACVFtot may be checked by studying
the SIM chromatogram acquired by selecting a specific mass
fragment characteristic of the n-alkanoic acid derivatives. It has
been found that theMS spectra of the n-alkanoic acid derivatives
show a characteristic fragment at m/z= 75 which is due to the
group [OSi-(CH3)2]+ resulting from fragmentation of the silyl
derivative [21].
The SIM chromatogram of the complex mixture was moni-

tored at m/z= 75: the obtained signal (Fig. 3c) is simpler than
the TIC chromatogram, since it mainly retains the signal of
the n-alkanoic acids. In the case of unknown samples, such
a chromatogram can prove helpful in verifying “a posteri-
ori” the assumptions regarding the quantities σ2M,tot/a

2
M,tot and
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Fig. 3. GC–MS chromatograms of standard mixtures of organic acids. (a) Lin-
earized GC–MS chromatogram of a standard mixture containing 50 organic
acids; inset: chromatogram of a reference n-alkanoic acid mixture (C8–C23
terms); (b) EACVFtot plots computed on the chromatograms. Bold line:
EACVFtot on the chromatogram of organic acid mixture (Fig. 3a); solid line:
EACVFtot on the chromatogram of the n-alkanoic acid reference mixture (inset
in Fig. 3a) and (c) GC–MS SIM chromatogram of a standard mixture contain-
ing 50 organic acids at m/z= 75 mainly displaying n-alkanoic acid signal; inset:
EACVFtot plot computed on the chromatogram.

σ2nmax,O/a2nmax,O (Eq. (5)), Am,tot and Anmax,O (Eq. (6)) which
serve as the basis for applying Eqs. (7) and (8). In fact, the TIC
chromatogram represents the whole complex mixture (suffix
tot) and the SIM signal selectively shows the ordered com-
ponent (suffix O), assuming uniform response factors for the
n-alkanoic acids in both acquisition modes. For the ordered
component, the SC abundance distribution σ2nmax,O/a2nmax,O can
be computed from the SIM signal and compared to the cor-
responding value for the whole mixture,σ2M,tot/a

2
M,tot. Thus,

the values obtained—σ2nmax,O/a2nmax,O = 0.03 and—indicate that
both abundance distributions are described by the same uniform
function and therefore the condition described by Eq. (5) is ful-
filled. Otherwise, the parameterAnmax,O for an unknown sample
cannot be estimated from the SIM signal; thus the condition
Am,tot ≈ Anmax,O (Eq. (6)) is not experimentally verifiable and
the relative quantity nmax,ap can be estimated (Eq. (8)).
The EACVFtot calculated on the SIM chromatogram (inset in

Fig. 3c) clearly shows the deterministic peaks at 3min andmulti-
ple values diagnostic for n-alkanoic acids. The value nmax,ap = 16
is obtained from the EACVFtot value at �t= 3min and corre-
sponds precisely to the value calculated from the TIC signal. The
coincidencebetween the results independently obtained from the
TIC and SIM chromatograms may be a cross-check of proce-
dure reliability for unknown samples, i.e., the estimated nmax,ap
values coincide with the real nmax value.

4.2. Method robustness

The method was applied to experimental chromatograms
obtained under unfavorable conditions in order to verify the
robustness of the method, i.e., its power to overcome problems
related to signal acquisition and to obtain reliable results. The
first case concerns the effect of deviation from strictly linear
retention conditions; the second study is devoted to the contri-
bution of signal noise present in the chromatographic data.

4.2.1. Non-linear chromatographic retention
The relevance of the chromatogram linearization prelimi-

nary to the EACVFtot study has previously been discussed.
An incomplete linearization of the time axis is a usual feature
in experimental signals, since some slight difference in �tR
between subsequent terms of the homologous series is often
displayed, even if operating conditions are close to the optimal
temperature program.
To test the robustness of the EACVFtot procedure in a moder-

ate deviation from retention linearity, EACVFtot was computed
on the original signal from the reference mixture containing
C7–C12 n-alkanes (temperature programming conditions close
to the linearity, inset in Fig. 1a) and the obtained plot (Fig. 2b,
bold line) was compared with the EACVFtot obtained from
the linearized chromatogram (Fig. 2b, plain line). At repeated
positions, i.e., 2.5, 5.0min, the deterministic peaks, which are
diagnostic for the presence of the homologous series, are still
present, but their maximum values are significantly lower which
leads to underestimation of the nmax value: a value nmax = 4
(Eq. (7)) is estimated from Fig. 2b, EACVFtot computed at



M.C. Pietrogrande et al. / Analytica Chimica Acta 594 (2007) 128–138 135

�tR = 2.5min and this value is lower than the experimental
nmax = 6. However, the EACVFtot procedure also provides the
means for overcoming this drawback.A close examination of the
EACVFtot plot obtained from the non-linearized signal (Fig. 2b,
bold line) shows a larger peak (larger d1/2 value) than the one
computed on the linearized signal (Fig. 2b, plain line). This dis-
crepancy can be fully explained by close examination of Eq. (4),
which lies at the basis of Eq. (7) for computing nmax: Eq. (4)
contains the product EACVFO (bk) d1/2 and therefore a decrease
in the EACVFO (bk) value may be compensated by an increase
in d1/2 to obtain a correct estimation of nmax. For example, at
�tR = 2.5min, the EACVFtot peak computed on the original sig-
nal (Fig. 2b, bold line) shows a maximum value of 0.47 and d1/2
of 0.26min. The corresponding peak computed on the linearized
signal (Fig. 2b, plain line) shows an EACVFtot value of 0.83 and
d1/2 value of 0.15min. The relative underestimation error due to
lower EACVFtot value, 0.47/0.83 = 0.57, corresponds precisely
to the ratio between the respective d1/2 values, 0.15/0.26 = 0.57.
Therefore, a correct estimation of nmax can be obtained by intro-
ducing the real d1/2 value into Eq. (10). The present results show
that the EACVFtot procedure can take into account, and compen-
sate for, moderate deviation from retention linearity. However,
it is clear that a preliminary linearization of the experimental
chromatogram is the simplest and most reliable procedure to
obtain accurate results.

4.2.2. Signal noise
Another example of unfavorable conditions concerns the

presence of baseline noise in the chromatographic signal. Here
the simplest case of white noise is considered [35]: noisy chro-
matographic signals are simulated by adding to the experimental
signalwhite noisewith different signal-to-noise ratios (S/Ncom-
puted by dividing the maximum peak height by three times the
noise standard deviation). As an intrinsic property of EACVFtot,
its value is additive for such independent variables as noise and
signal. Therefore, the components of noise and chromatographic
signal can be identified in the EACVFtot of the noisy chro-
matogram: the noisy component can be subtracted to obtain
a reliable estimate of the chromatographic parameters. White
noisewith different S/N ratio values (5, 10, 20, 100)was added to
the chromatogram of the standardmixture containing 20 organic
compounds (Fig. 1a) to obtain noisy chromatographic signals; as
an example, the noisy chromatogram with S/N= 10 is reported
in Fig. 4a. The EACVFtot was computed on different noisy chro-
matograms and their plots are reported in Fig. 4b. The EACVFtot
plots show that all the disturbing effects of the noise accumulate
at the origin of the EACVFtot yielding a significant increase in
EACVFtot for�tR values close to 0: the additive contribution of
the noise signals with S/N= 5 and 10 is reported in the inset in
Fig. 4b, showing the highest effect for the noisiest signal. There-
fore, the contribution of baseline noise can be simply eliminated
by extrapolating the EACVFtot value to�tR = 0 from EACVFtot
values at �tR≥ 0.1min and by using this extrapolated value to
compute mtot value.
Moreover, the EACVFtot values for the deterministic peaks

at�tR≥ 0.1min are completely unaffected by noise and can be
used in computations to filter out the noise and obtain a correct

Fig. 4. Noise effect on GC–MS chromatograms of standard mixtures containing
20 organic compounds (Fig. 1b). (a) Noisy chromatogram obtained by super-
imposition of a white noise with S/N= 10 to the linearized signal (Fig. 1b) and
(b) EACVFtot plots computed on the chromatograms. Inset: first region of the
EACVFtot for �tR values close to 0. Bold line: original chromatogram; dashed
line: noisy chromatogram with S/N= 5; plain line: noisy chromatogram with
S/N= 10.

estimate of nmax. For both the noisy chromatogramswith S/N= 5
and 10, the EACVFtot value at�tR = 2.5min (Fig. 4b, plain and
dashed lines) yields a correct estimate of the number ofn-alkanes
nmax = 6. The feature of this procedure offers great promise to
overcome the drawbacks in processing noisy signals and can
also be extended to handling more complex signal noise present
in the experimental chromatograms.

4.3. Application to unknown samples

The applicability of the method was tested on a sample con-
taining an unknown number of organics. An ASTM D2887
Reference Oil (b.p. 112–475 ◦C) was selected as petrochemical
sample to represent very complex multi-class mixtures: the total
number of compounds has been estimated to exceed onemillion,
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Fig. 5. GC–MS chromatogram of the ASTMD2887 Reference Oil. (a) GC–MS
linearized chromatogram. Inset: chromatogramof the referencemixture contain-
ing C6–C32 n-alkanes. (b) EACVF plots computed on the chromatograms. Plain
line: EACVFtot computed on the total signal (Fig. 5a); bold line: EACVFUCM
computed on the signal corresponding to UCM; lower dotted line: EACVFres
computed on the signal corresponding to the resolved components. Inset: decon-
voluted signals corresponding to UCM (bold line) and the resolved components
(plain line).

of course many of them are below the detection limits of normal
analytical separations [36,37]. The chemical composition char-
acterization of the hydrocarbons, broken down into classes (i.e.,
paraffinic, olefinic, naphthenic and aromatic), and the amount
of hetero-atoms are the basic characteristics that determine the
properties of the product [23–25].
The ASTM D2887 Reference Oil was submitted to GC–MS

analysis under the temperature-programmed conditions found
to be close to the optimal temperature program: 30 ◦C for
2min, an increase to 180 ◦C at 15◦min−1, then to 350 ◦C at
10◦min−1. The obtained TIC chromatogram (Fig. 5a) clearly
shows the typical feature of petrochemical products character-
ized by the unresolved complex mixture envelope of branched,
cyclic and unsaturated hydrocarbons [25,27,28]. A standard

mixture containing C6–C32 n-alkanes was analyzed under the
same chromatographic conditions and the obtained signal (inset
in Fig. 5a) served as the basis for the linearization procedure,
selecting a value �tR = 0.8min as constant retention increment
between subsequent terms of the series (b in Eq. (3)). The
EACVFtot was computed on the linearized signal (Fig. 5b, upper
plain line). From the EACVFtot(0) value the SC number present
in the mixture was estimated (Eq. (2)): a value mtot = 115± 10
was obtained assuming a threshold level of 1% of the highest
peak (Table 1, 1st row).
The EACVFtot plot (Fig. 5b, upper plain line) shows well-

defined deterministic peaks at�tR = 0.8min andmultiple values
that are diagnostic for the presence of homologous series
displaying a CH2 group increment under these experimental
conditions. Moreover, the EACVFtot plot shows a specific pat-
tern since it retains information on the UCM band present in
the original chromatogram. In order to investigate the chemi-
cal composition of the mixture, the baseline corresponding to
the UCM signal was subtracted from the total chromatogram
(Fig. 5a) with commercial chromatogram processing software
[38]: two separated signals corresponding to the UCM (inset in
Fig. 5b, bold line) and the resolved components (inset in Fig. 5b,
plain line) were obtained. The area of the chromatograms were
computed and used to determine the relative abundance of the
UCM component versus the total mixture, UCM%: a value of
UCM%=44% was obtained.
On both the signals the EACVF was separately computed

to obtain EACVFUCM on the UCM (Fig. 5a, bold line) and
EACVFres on the resolved components (Fig. 5b, lower dot-
ted line). The obtained plots clearly show that the EACVFtot
computed on the total signal (Fig. 5b, upper plain line) is a com-
bination of EACVFUCM and EACVFres. They were then studied
to extract quantitative information on the mixture composition
(results reported in Table 1, 2nd row). The number of compo-
nents can be estimated (Eq. (2), using σ2M,tot/a

2
M,tot and dh/2

from the total chromatogram) from EACVFUCM(0) (bold line in
Fig. 5b): a valuemUCM = 35± 6 is obtained. From EACVFres(0)
computed on the resolved components signal (dotted line in
Fig. 5b) a value of mres = 80± 9 is estimated. The determin-
istic peaks of EACVFres at �tR = 0.8min and multiple values,
diagnostic for terms of the homologous series, were studied in
order to obtain quantitative information on the mixture com-
position. From EACVFres (0.8min) the number of terms in the
homologous series, nmax,ap, is estimated as nmax,ap = 56.
The obtained results (Table 1, 1st and 2nd rows) show that

a full characterization of the gas oil chemical composition can
be obtained by applying the EACVF method on the original,
EACVFtot, and on the deconvoluted signals, EACVFUCM and
EACVFres.
In order to check the results obtained from the EACVF

method, the standard procedure, conventionally used to obtain
information on the quantitative composition of petrochemicals,
was also applied to the experimental chromatogram. This pro-
cedure is very laborious and time-consuming since it requires
integration of thewhole chromatogram and any separated peaks,
identification of peaks formed by n-alkanes, computation of the
total area of the different components, i.e., Atot, Ares, AUCM and
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Table 1
Comparison of the results obtained from gas oil chromatogram (Fig. 5a) computed with different calculation methods

Method mtot mUCM mUCM% mres nmax,ap nmax

EACVFtot 115± 10
EACVFUCM and EACVFres 35± 6 80± 9 56
Conventional 45 86a 54 31

a Number of peaks counted.

the area of n-alkanes. From it mUCM% can be computed as the
relative area of UCM versus the total area; nmax can be counted
from the detected peaks identified by MS spectra as terms of
the homologous series and nmax,ap can be estimated from the
relative area of the terms of the homologous series compared to
the total peak area (results reported in Table 1, 3rd row).
The agreement between the results independently obtained

with the EACVFmethod, based on EACVFtot, EACVFUCM and
EACVFres, and the conventional method (compare 1st–3rd rows
in Table 1) provides experimental evidence of the reliability of
the procedure.Onemust note the discrepancy between the appar-
ent nmax,ap and the true nmax values: this is due to the deviation
from reality of the assumption Am,tot ≈ Anmax,O (Eq. (6)) that
is the basis to compute nmax,ap. The advantage of the EACVF
procedure is its ability to extract relevant parameters characteriz-
ing a petrochemical sample by computation on the experimental
MS-TIC chromatogram.
It must be noted that the obtained parameters concern global

information on the chemical composition of the mixture, but the
structure elucidation of each peak present in the chromatogram
is far from being achieved.

5. Conclusions

Thedata handlingmethodbased on the studyof theEACVFtot
has proved to beveryuseful in classifying compounds into chem-
ical class groups, identifying the presence of homologous series
and quantifying the number and abundance of their terms. The
introduction of the data pre-processing step to linearize reten-
tion time axis increases the method applicability and robustness
to investigate complex chromatograms obtained under usual
experimental conditions. The whole signal processing proce-
duremakes it possible to achieve a systematic characterization of
complex samples by compound class (homologous series, polar-
ity, or functionality): this is the only reliable information that can
be drawn from many real-world samples, i.e., natural, industrial
or environmental samples where, because of matrix complexity,
the separation of all the components is far from being achieved
in 1D separations. In such complex samples, given its suitability
for group separations, the best technique for analysis of organics
is a two-dimensional system, like GC×GC: it is ideal for com-
plex samples containing thousands of compounds but a relatively
low number of chemical classes.
If 2D separation equipment is not available, the EACVFtot

data handling method is powerful in extracting relevant infor-
mation on chemical composition from the resulting, complex
1D chromatogram. In particular, the combination of a proper
retention time axis alignment and selective SIM detection mag-

nifies the power of the method in characterizing a much larger
fraction of organic compounds.
The above reported results constitute only an example of the

wealth of information that can be obtained using the present
approach. The method has been further extended to handle the
huge amount of data obtained from 2D separations [19,39,40]:
study of the 2D-EACVFtot may form the basis for a compre-
hensive interpretation of the data matrix acquired in full scan
GC–MS analysis containing the wholeMS information on com-
ponent chemical structure.
The method can be proposed to investigate the chemical

composition of complex samples of environmental interest:
structural class information can be quite useful in monitoring
steps in industrial processes and controlling environmental qual-
ity, i.e., analyzing biomarkers and environment pollutants in air,
water and soil.
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Abstract 

A description is given of a chemometric approach used to extract information on 
the characteristics of n-alkane and n-alkanoic acid homologous series as useful 
markers for PM source identification and differentiation. The key parameters of 
the homologous series -- number of terms and Carbon Preference Index -- are 
directly estimated by the Autocovariance Function ( EACVF ) computed on the 
acquired chromatogram. The homologous series properties ⎯ relevant as 
chemical signature of specific input sources ⎯ can be efficiently extracted from 
the complex CG-MS signal thus reducing the labour and time consumption and 
the subjectivity introduced by human intervention. 
Keywords: aerosol chemical composition/homologous series/GC-MS analysis/ 
signal processing/ multicomponent mixtures /  

1 Introduction 

Atmospheric aerosols consist of a complex mixture of hundreds of compounds 
belonging to many different compound classes: despite this complexity, in 
environmental monitoring and assessment studies, the sample chemical analysis 
is usually limited to selected compounds to adequately represent a chemical 
signature of the possible input sources [1-3]. Homologous series of n-alkanes 
and n-alcanoic acids are especially suited for use as molecular tracers: they are 
common to multiple sources and they give information relevant to differentiating 
aerosols of anthropogenic origin (i.e. associated with industrial and urban 



activities) from those of natural, biogenic origin [4-6]. The key parameters to 
characterize specific sources are the number of terms and the carbon preference 
index ( CPI , i.e., the sum of the concentrations of the odd/even carbon number 
terms divided by the sum of the concentrations of the even/odd carbon number 
terms). This parameter makes it possible to identify the biogenic contribution 
(that exhibits a strong odd/even carbon number predominance and thus, a high 
CPI  value) versus petroleum-derived fuels (displaying CPI  values close to 1). 

Gas chromatography-mass spectrometry (GC-MS), the best analytical technique 
for these organics, generates extensive amounts of data when applied to such 
complex mixtures as polluted environmental samples, which are complicated by 
a vast amount of noise, artefacts, and data redundancy. This motivates the need 
for computer-assisted signal processing procedures to transform GC data into 
usable information by extracting all the analytical results hidden in the complex 
chromatogram [7].  

In the present paper, a signal processing procedure based on the AutoCovariance 
Function ( ACVF ) is applied to GC-MS signals of atmosferic aerosols. The case 
of n-alkanes and n-alkanoic acids is discussed as useful markers for PM source 
identification and differentiation. As molecular marker -- number of terms and 
the CPI  value -- the key parameters of the homologous series are directly 
estimated from the ACVF  computed on the acquired chromatogram, thus 
reducing the labour, time requirements and the subjectivity introduced by human 
intervention.  

1.1 Theory 

The chemometric approach studies the Autocovariance Function, totACVF , that 
can be directly computed from the experimental chromatogram acquired in 
digitized form, Experimental totACVF , totEACVF  [7]. The totEACVF is plotted 
vs. the interdistance between subsequent points in the chromatogram tΔ  to 
obtain the totEACVF  plot (inset in Fig.1 shows the totEACVF  plot computed on 
the chromatogram of Fig.1). Theoretical models have been developed to extract 
information on sample complexity and chromatographic separation from the 

totEACVF . The mathematical description is reported elsewhere [7-9]: here the 
main parameters relevant for environmental analysis are discussed: 

1. Information on sample complexity and separation performance is 
contained in the first part of the totEACVF  plot: the number of compounds 
present in the mixture is estimated from the totEACVF  peak height, and the mean 
separation performance, σ , from the totEACVF  peak width at half height [7]. 

2. Information on the separation pattern is contained in the second part of the 



totEACVF  plot. In particular, the totEACVF  plot is specifically useful to single 
out the presence of ordered sequences of peaks appearing in the chromatogram 
[7]. This is the case of homologous series: if n compounds belonging to a 
homologous series are present in the sample, they will appear in the 
chromatogram as an ordered sequence of n peaks located at a constant 
interdistance value between subsequent terms in the series, e.g., bt =Δ  where 
b is the 2CH retention time increment (signed by arrows in the chromatogram of 
Fig.1) in GC analysis under linearized temperature programming conditions [7]. 
In this case, the totEACVF  computed on the acquired signal displays well 
defined deterministic peaks located at the interdistances bkt =Δ , where 

121 −= n,...,k (arrows in the inset of Fig.1): their appearance identifies the 
presence of the series, even if the corresponding chromatographic peaks are 
hidden within the complex signal [7]. 

3. Number of terms of the homologous series. The height of the totEACVF
peaks ( totEACVF  values at bkt =Δ ) can be quantitatively related to the 
abundance of the terms of the homologous series, i.e., the combination of the 
number of terms in the series, n , and their concentration in the sample, according 
to the following equation: 

12101
2

22
−=�

�

�
�
�

� +−= n......,k
aX

)kn(a)bk(EACVF
h

hh
tot

σσπ

(1) 

where all the reported parameters can be directly estimated from the 
chromatographic signal: X  is the total chromatogram time span, 22

hh aσ is the 
peak height dispersion ratio describing the relative abundance distribution of the 
n  terms of the series: it derives from the mean, 2

ha , and the variance, 2
hσ , of 

peak height computed from the observed peak maxima in the chromatogram [7].   

4. Abundance distribution of the homologous series terms A random 
distribution of the series terms (no odd/even prevalence) yields a monomodal 
distribution of the subsequent )bk(EACVFtot  peaks. If the terms of the series 
display an odd/even prevalence, the obtained )bk(EACVFtot peaks show a 
bimodal height distribution with lower values at bkt =Δ  for odd k  values and 
higher values at even k  values. This pattern is the basis for extracting 
quantitative information on the odd/even prevalence of the terms by computing 
the preference index CPI [9]. Such a parameter can be related to the  

)bk(EACVFtot  values at bt =Δ  and at bt 2=Δ  according to the equation:  
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This is a quadratic equation, and can be solved to estimate CPI . The 
totCPI value is obtained from totEACVF  by evaluating all the n-alkane 

components, i.e., the 3512 CC −  range. Otherwise, the CPI  index can be 
calculated on selected n-alkanes in order to describe specific contribution of the 
n-alkane terms of the sample, i.e., the plantCPI  parameter is computed on the 
heavier 3525 CC −  n-alkanes to describe the contribution of plant waxes. plantCPI
is directly estimated from the plantEACVF computed on the partial region of the 
chromatogram containing the selected terms [9]. 

All these key parameters, used to characterize the homologous series as source 
chemical signature, can be directly obtained from the totEACVF  computed on 
the acquired chromatogram, thus reducing the labour, data handling time and 
removing the subjective step of peak integration. The big advantages of the 
present procedure becomes obvious when compared with the traditional 
procedure which requires identification of the homologous series terms by 
comparison with retention times and MS spectra of the reference standards, 
integration of the identified peaks, and computation of CPI  from the 
concentrations of the odd and even carbon numbered terms. It must be 
underlined that labour and time saving in GC-MS signal processing is especially 
relevant for environmental analysis requiring high-throughput chemical 
monitoring.  

2 Experimental 

The aerosol samples ( 52.PM  and 10PM ) were collected daily on quartz-fibre 
filters in an urban (city centre of Bologna, Italy) and rural sites (San Pietro 
Capofiume, located on a flat, homogeneous terrain of harvested fields, about 
40km north east of Bologna) during Spring 2008.  

The PM filters were submitted to the traditional approach of solvent extraction 
and GC-MS analysis for n-alkane determination (procedure reported in [8]). 
Then the solution was submitted to the derivatization procedure for n-alkanoic 
acid analysis: lμ30 of bis(trimethylsilyl) trifluoroacetamide (BSTFA) plus 1% 
trimethylchlorosilane (TMCS) were added to form trimethylsilyl (TMS) 
derivatives (reaction at 70 °C for 2h) [7].   The GC-MS system was a Scientific 
Focus-GC (Thermo-Fisher Scientific Milan, Italy) coupled with PolarisQ Ion 
Trap Mass Spectrometer (Thermo-Fisher, Scientific, Milan, Italy). The column 
used was a DB-5 column ( mL 30= , mmDI 25.0.. = , md f μ25.0= =0.25) 



(J&W Scientific, Rancho Cordova, CA, USA). Proper temperature program 
conditions were selected for n-alkanes and n-alkanoic acids to obtain linearized 
temperature programming conditions, i.e., constant 2CH  retention time 
increment. The mass spectrometer operated in EI mode (positive ion, eV70 ).  
Three different samples were analyzed for each PM type: the obtained mean 
values are reported (Table 1) and discussed below. 

3 Results and Discussion 

3.1 n-alkane series 

The aliphatic hydrocarbons present in the PM samples were identified from the 
SIM (Selected Ion Monitoring) signal using the typical fragments of these 
compounds at 857157 ++=zm  (Figs 1 and 2a for urban and rural samples, 
respectively). The investigated n-alkanes showed a distribution profile resulting 
from the contribution of vehicular exhaust and lubricant residues ( 24C  or 25C n-
alkanes) and inputs of biological sources ( 27C , 29C , and 31C  terms displaying 
odd carbon number preference). 
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Figure 1. n-alkanes in urban 52.PM : GC-MS chromatogram (SIM 
at 857157 ++=zm ); inset: totEACVF plot (solid line) and 

plantEACVF plot (bold line). 

To extract information on the PM chemical composition, the totEACVF was 
computed on the whole chromatographic signal ( totEACVF  plots reported in 
inset of Fig 1 and in Fig. 2b: solid lines). The totEACVF  plots show well-
defined deterministic peaks at min9.1=Δt  and multiple values that are 

diagnostic for the presence of the n-alkane homologous series ( min9.1=b  in 
these experimental conditions).  The number of n-alkanes present in the mixture, 
n , can be estimated from the min)9.1(totEACVF  values (eq.1): the same value 

16=n  is obtained from both the chromatograms (Table 1, EACVF estimation).   

The totEACVF values of subsequent peaks give quantitative information on the 
distribution of the odd/even terms: both the plots show a monomodal distribution 
of the totEACVF  peak heights suggesting a homogeneous distribution of the 
odd/even terms. Such a pattern can be quantively described by computing totCPI
(eq. 2): 11.CPItot =  and 61.CPItot =  were estimated for urban and rural 
samples, respectively. These values close to 1 suggest, for both the samples, a 
major contribution from petroleum residues derived from vehicular emissions as 
compared to biological inputs. 
For all the studied chromatograms, the totEACVF plots clearly show diagnostic 
peaks: this behavior highlights the power of the EACVF procedure in extracting 
information on homologous series, singling them out from the involved signal of 
the complex chromatograms. In fact, the totEACVF  pattern is independent of the 
concentration level of n-alkanes, i.e., total concentrations of n-alkanes in the 
urban 52.PM are nearly four times higher than those in the rural 52.PM sample, 
and nearly three times lower than those in the urban 10PM  [4]. Moreover, the 
chromatographic signal of urban PM samples is further affected by a  cluster of 
unresolved peaks (UCM band) (Fig 1): the totEACVF  of the urban sample (inset 
in Fig 1, solid line) retains the shape of the UCM band, but clearly displays the 

totEACVF  peaks characteristic of the homologous series.  

To distinguish the role played by the biogenic vs. anthropogenic sources on the 
atmospheric n-alkanes, the plantEACVF was separately computed on the

chromatographic region where the biogenic 3527 CC −  n-alkanes are eluted 
( mint 5532−= ). For both samples, the number of terms 9=plantn  is estimated 
from the plantEACVF  values at min.t 91=Δ  ( plantEACVF  plots in inset of Fig 



1 and in Fig 2a, bold lines). The differences in plant contribution to the two 
samples can be simply identified by visual inspection of the plantEACVF plots 
obtained. For the rural sample, the plantEACVF (Fig. 2b, bold line) shows a 
bimodal distribution of subsequent peak heights that is diagnostic for the 
presence of odd/even prevalence, as revealed by the high estimated value of

42.CPI plant =  that characterizes the contribution of biogenic sources (i.e., 
higher plant waxes). Otherwise, a lower 31.CPI plant = value is estimated for the 
urban sample, as typical for urban environments. 

Figure 2. n-alkanes in rural 52.PM .  
a): GC-MS chromatogram (SIM at 857157 ++=zm );  
b): totEACVF plot (solid line) and  plantEACVF plot (bold line). 

The EACVF  value at min.bt 832 ==Δ is related to the total amount of the 
terms of homologous series (eq.1): therefore, for each sample, the ratio between 

min).(EACVFtot 83  and min).(EACVFplant 83  can be used to estimate the 
relative contribution of plant waxes ( plantEACVF ) to the overall n-alkane 
components ( totEACVF ). Such a contribution was quantified as percentages of 
plant wax fraction in the total n-alkanes: 23% and 10% for the rural and urban 
samples, respectively.  

To check the accuracy of the results obtained (Table 1, 1st-4th columns, EACVF
estimation), the traditional procedure, based on computation on the integrated 
peaks, was applied to the PM chromatograms (Table 1, 5th-8th columns, 
traditional calculations). A comparison between the independently computed 
values show a close agreement, validating the reliability of the information 
obtained by the EACVF  procedure. This result confirms the usefulness of the
EACVF mehod as a simple, time saving approach to characterize the n-alkane 
series as molecular biomarker in complex environmental samples. 
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3.2 n-alkanoic acid series  

The totEACVF method was also applied to characterize n-alkanoic acids, as
another homologous series of organics useful in discriminating the relative 
extent to which various sources contribute to the aerosol burden of organics: the 
lower molecular weight n-alkanoic acids ( 20C< ) are mainly emitted by 
petroleum based sources, while the heavier 3020 CC −  terms, which display a 
strong even-to-odd carbon number preference, are mostly derived from plant 
waxes [6]. 

After derivatization, the urban and rural PM samples were submitted to GC-MS 
analysis: the n-alkanoic acids present in the samples were identified in the SIM 
signal monitoring the typical fragments of the TMS derivatives at 

14775 +=z/m  (Fig 3a: rural sample).   Under the experimental conditions 
used, the retention increment for subsequent n-alkanoic acids is min.b 52= . 
The totEACVF  was computed on the whole signal (Fig 3b: solid line): 
deterministic peaks at min.t 52=Δ  and multiple values are diagnostic for the 
presence of this homologous series. All the data set to characterize the series are 
estimated (Table 1, 1st-4th columns, EACVF  estimation) and compared to 
results obtained with the traditional procedure (Table 1, 5th-8th columns, 
traditional calculations).  

Table 1: CPI  and n  parameters estimated by using EACVF  method (1st-4th

columns, EACVF  estimation) and  traditional calculations (5st-8th  columns: 
traditional method). 



The totEACVF plot shows a marked bi-modal distribution with a predominant 
peak at minbt 52 ==Δ : this is consistent with predominant contribution of 
hexadecanoic ( 16C ) and octadecanoic ( 18C ) acids that are known to be the most 
abundant species in most of the PM samples [3, 6]. The even/odd prevalence of 
acid isomers was confirmed by high 89.CPItot =  and  96.CPItot =  values 
found for rural and urban samples, respectively (Table 1). 

Figure 3: n-alkanoic acids in rural 52.PM . 
a): GC-MS chromatogram (SIM at 14775 +=z/m );  
b): totEACVF plot (solid line) and plantEACVF plot (bold line). 

To extract information on the biological sources of n-alkanoic acids, the selected 
chromatographic region containing the 2620 CC − terms ( min6035− ) was 
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separately investigated by computing plantEACVF . The obtained plantEACVF
plot (Fig 3b, bold line) clearly identifies the contribution of biogenic sources, 
since it displays the strong bi-modal distribution ( )kb(EACVFplant  peaks are 
low for odd k  and high for even k ) characteristic of a strong odd/even 
prevalence. This is confirmed by the high CPI value ( 718.CPI plant = ) 
computed from subsequent plantEACVF  peaks, reflecting the stronger vascular 

plant wax signatures. Otherwise, a lower 18.CPI plant =  value was obtained for 
the urban PM, indicating that plant waxes make a weaker contribution (Table 1).  

The contribution of biogenic n-alkanoic acids in PM samples can also be directly 
estimated by the ratio between min)(EACVFtot 5  and min)(EACVFplant 5
computed on each chromatogram: the plant fraction ( 20C≥  congeners) 
accounted for about 25% and 8% of the total measured n- alkanoic acids levels in 
rural and urban samples, respectively.  

4 Conclusions 

The described results reveal the effectiveness of the totEACVF procedure for 
handling complex GC-MS data of PM samples in order to characterize the 
homologous series as molecular marker to trace the origin and fate of 
atmospheric aerosols. The key parameters -- number of terms and the odd/even 
prevalence -- are efficiently extracted from the EACVF computed on the 
acquired chromatogram, with low labor and time consumption. This seems a 
promising method for high-throughput analysis of the large data sets generated 
by chemical monitoring in environmental analysis: the obtained chemical 
information can serve as useful tracers for source apportionment and processes 
involving organic carbonaceous aerosols when coupled with receptor models.
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The paper describes a signal method for processing GC–MS signals to extract usable information

hidden in the chromatogram thus reducing the labour and time required to handle the data and

increasing the quality and objectivity of the results. The method is focused on two relevant parameters

for identification and characterization of the n-alkane series present in complex samples (in particular

the C14–C33 terms): the number of n-alkanes, nmax, and the Carbon Preference Index (CPI) describing

the odd/even carbon-number predominance. This is a key diagnostic parameter to determine the

biogenic and anthropogenic nature of n-alkane sources, useful as chemical markers in source

identification and differentiation. The method is a further extension of the approach based on the

AutoCovariance Function (ACVFtot): new mathematical equations have been derived and a new

computation algorithm implemented to extract information on the n-alkane series – nmax and CPI –

directly from the EACVFtot computed on the acquired chromatographic signal. The procedure was

validated on simulated chromatograms where the distribution of the terms of the series describing

experimental GC signals was known: the obtained results prove that the parameters nmax and CPI of

the homologous series can be estimated with good accuracy and precision. The method applicability

was tested on experimental chromatograms of real samples: gasoils and plant extracts were studied to

identify n-alkane distribution patterns characteristic of petrogenic and natural samples.

Introduction

Identification and quantification of specific compounds as

chemical markers is a convenient approach to characterize the

samples formed by a complex mixture of organics. Extensive

studies have demonstrated that n-alkanes are especially suited

for studies to characterize the origin and fate of different samples;

this is because they are widespread components of the environ-

mental carbon cycle and are highly resistant to biochemical

degradation and diagenesis in the sedimentary record.1

In particular, two parameters are mainly relevant as the

chemical signature: (i) the chain length, i.e., average value and

maximum carbon number (Cmax), and (ii) the abundance distri-

bution of the odd/even terms of the series. One common param-

eter derived from this predominance is the carbon preference

index, CPI: it is computed as the ratio of the sum of odd carbon

number n-alkanes vs. the sum of even carbon number n-alkanes.2

The CPI is a key diagnostic parameter to determine the

biogenic and anthropogenic nature of sources of n-alkanes:

hydrocarbons composed of a mixture of compounds originating

from terrestrial plant material show a predominance of odd-

numbered carbon chains with CPIz 5–10,3,4 whereas petrogenic

inputs have a CPI approximating 1.0.5–8 CPI values close to

one are also thought to indicate greater input from marine

microorganisms and/or recycled organic matter.9

The CPI has proved of great value in environmental and

paleo-environmental biomarker-based research in qualitatively

and semi-quantitatively apportioning sources of hydrocarbons

found in aquatic sediments: the n-alkane distribution pattern

is a biomarker which proves helpful in tracking the origins of

organic inputs (biogenic or anthropogenic) and identifying ‘hot

spots’ of hydrocarbon contamination.10

In petrochemistry, n-alkanes are important constituents of

petroleumcrudes and their transformationproducts and thus they

are useful tools in oil–oil correlation studies because they provide

information regarding an oil, its source rock, genetic associations

and alteration.11 In organic geochemistry, the CPI is used to

indicate the degree of diagenesis of straight-chain geolipids, and

to numerically represent how much of the original biological

chain length specificity is preserved in geological samples.5,7,10

Moreover, the chemical characterization of n-alkane consti-

tuents of leaf wax coatings has proved to be a quick, reliable and

inexpensive method for assessing preliminary chemotaxonomic

relationships for systematic classification of plant groups, in

combination with other chemical and molecular data: the

chemotaxonomic significance of wax alkanes has been demon-

strated in studies of many plants groups.12–16

Gas chromatography coupled with mass spectrometry (GC–

MS) is the well-established technique of choice for identifying

and quantifying the hydrocarbon fraction in complex mixtures of
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organics such as those present in polluted environmental samples

(e.g. soil, water, aerosol and biota).17–19 Given the complexity of

the samples, complete resolution of all compounds is extremely

rare – even when optimum selectivity and extremely high

performance separation columns are used; also, GC–MS anal-

yses generate extensive amounts of data. Despite this inherent

complexity, only a small percentage of the total number of

compounds is usually considered for environmental monitoring

and assessment studies: consequently, computer-assisted signal

processing is needed to transform GC data into usable infor-

mation by extracting all the analytical information hidden in the

chromatogram, in other words by ‘decoding’ the complex chro-

matogram.20–22 Among the many signal processing procedures

developed for this problem, a chemometric approach based on

the AutoCovariance Function (ACVF) has been developed and

widely applied to experimental chromatograms, a powerful tool

for interpreting chromatograms of complex mixtures.23–27

Here, this method is further extended: new mathematical

equations have been derived and a new algorithm implemented

to extract information on the n-alkane distribution pattern. The

number of terms and the CPI value are directly computed from

the ACVF computed on the acquired chromatogram, reducing

the labour and time required as well as the subjectivity intro-

duced by human intervention.

The method was validated using PC-generated chromato-

grams to simulate experimental GC signals of real samples with

known odd/even prevalence of the ordered series. The method

applicability was tested on real samples representing known

anthropogenic and biogenic sources: the results obtained are

discussed in terms of the concentration and distribution of

n-alkanes as a useful marker for n-alkane source identification

and differentiation.

Theory

The chemometric approach studies the AutoCovariance

Function (ACVFtot) that can be directly computed from the

experimental chromatogram acquired in digitized form. The

Experimental ACVFtot (EACVFtot) at the correlation time Dt is

given by the following expression:24

EACVFtotðDtÞ ¼ 1

Np

PNp�s

j¼1

�
Yj � �Y

�
,
�
Yjþs � �Y

�
s ¼ 0; 1; 2.M � 1

(1)

where Yj is the digitized chromatogram signal, �Y its mean value,

Np the number of points of the digitized chromatogram, and M

the truncation point in the EACVFtot computation. The corre-

lation time Dt ¼ ss, where s is the time interval between the

subsequent digitized positions, and assumes discrete values with s

ranging from 0 to M.

EACVFtot represents the correlations between subsequent

peaks in the chromatogram. Theoretical expressions have been

developed to express ACVFtot in terms of the separation

parameters, i.e. the number of Single Components (SCs), mtot,

the SC peak standard deviation, s, the distribution of the SC

retention pattern (Interdistance Model, IM) and abundance

(Abundance Model, AM). Therefore, the EACVFtot computed

on the whole chromatographic signal is the basis for a direct

estimation of these parameters, according to the mathematical

expressions derived in the previously published studies.23,28–31

This study requires theoretical models to describe complex

chromatograms: many functions have been developed to

describe the infinity of real cases.28–31 In particular they can

be considered as various combinations of the two-limit cases

of retention patterns, i.e. a Poissonian (P) distribution –

a completely disordered separation where SC retention positions

are uniform and randomly distributed over the chromatographic

axis – and an ordered (O) distribution. SC retention positions

are an ordered sequence displaying constant interdistances

between subsequent peaks. The simplest approach assumes

chromatographic peaks of Gaussian shape with constant width,

i.e. constant standard deviation s: this assumption is usually true

under optimized programmed temperature conditions.

In the most general case a multicomponent mixture contains

mtot SCs with uncorrelated chemical structures that display

a Poissonian retention pattern.23,28 If some of them, nmax, belong

to a homologous series, they will appear in the chromatogram as

an ordered sequence of nmax SC peaks where the retention time

(tR) of the nth term is described by:

tR(n) ¼ c + bn n ¼ 0,1,2,3.nmax (2)

where c represents the contribution of a specific functional group

to the overall retention, and b is the retention increment between

terms of the homologous series, e.g. the CH2 retention time

increment, in the strict case of GC analysis under optimized

linearized temperature programming conditions.26 If this condi-

tion is not met in practice, a linearization algorithm can be

applied to rescale the original signal in order to obtain the same

peak width (s values) and constant retention increment between

subsequent terms of the series.25

In this case the EACVFtot method has proved particularly

efficient in identifying the presence, and quantify the relative

abundance, of the terms of the homologous series. In fact, the

EACVFtot plot displays well-defined deterministic peaks located

at interdistances bk, where b¼ 1,2,.(nmax� 1): their appearance

is diagnostic for the presence of the series and their height

(EACVFtot(bk), i.e. the EACVFtot value computed at Dt ¼ bk), is

the basis for estimating the number of SCs belonging to the

ordered series, nmax, according to the equation:

EACVFtotðbkÞ ¼
ffiffiffi
p

p
sa2hðnmax � kÞ

X

s2
h

a2h
þ 1

� �

k ¼ 0; 1; 2; 3.nmax � 1

(3)

where s is the standard deviation of the Gaussian SC peak shape,

X the total time range of the chromatogram, ah and s2
h are the

mean value and the variance of the SC peak heights in the

chromatogram to yield the ratio s2
h/a

2
h, called the SC peak height

dispersion.26

It must be noted that the present procedure makes it possible to

identify and characterize the terms of the series only using reten-

tion time data, not requiring any information onmass spectra.24,26

Abundance distribution of the terms of a homologous series

Here the mathematical model is developed to relate the

EACVFtot, computed on the whole chromatogram, to the
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abundance distribution of the terms of a homologous series

present in the mixture: an algorithm has been developed to

estimate the carbon preference index (CPI) from EACVFtot.

In order to develop the model, the chromatogram of the

homologous series (eqn (2)) is described as the combination of

two sequences of peaks representing odd and even terms of the

homologous series; they are located at a double repeated inter-

distance Dt ¼ 2b shifted by the quantity b (odd (‘o’) and even

(‘e’) sequences containing no and ne peaks, respectively, see

Fig. 1a). In this simplified approach the series contains the same

number of odd and even terms no ¼ ne ¼ n to yield a total

number of terms of the series nmax ¼ 2n. The EACVF is

computed on the signal of each sequence, i.e. EACVFo and

EACVFe: their plots show deterministic peaks at the constant

interdistance values Dt ¼ 2kb according to the following

equations (see Fig. 1b):

EACVFoð2bkÞ ¼
ffiffiffi
p

p
sa2o;h

X

"
s2
o;h

a2o;h
þ 1

#
ðno � kÞ

k ¼ 1; 2; 3.no � 1

(4)

EACVFeð2bkÞ ¼
ffiffiffi
p

p
sa2e;h

X

s2
e;h

a2e;h
þ 1

" #
ðne � kÞ
k ¼ 1; 2; 3.ne � 1

(5)

where ao,h, ae,h and s2
o,h, s

2
e,h are the mean value and the variance

of the SC peak heights of the odd and even sequences,

respectively.

The whole series containing nmax ¼ 2n terms is obtained by

superimposing the ‘o’ and ‘e’ sequences and the EACVFtot

computed on the total chromatogram can be investigated as

a combination of EACVFo and EACVFe. New equations are

derived to handle the EACVFtot in order to extract information

on the odd/even prevalence of the sequence terms: the main

equations are reported in the following and their mathematical

derivation is described in detail in the Appendix.†

It is assumed that both the odd and even terms display the

same peak abundance distribution, described by peak height

dispersion ratio, s2
h/a

2
h, i.e.:

s 2
o;h

a 2
o;h

z
s 2
e;h

a 2
e;h

z
s 2
h

a 2
h

(6)

This condition is usually met in real samples since the compound

abundances generally follow the most probable Exponential

distribution, yielding: s2/a2 z 1. It can be demonstrated that

EACVFtot(bk) values at Dt¼ bk for even k terms are obtained by

combining EACVFo(bk) and EACVFe(bk) values to yield an

equation related to the addition of the two series abundances

((a2o,h + a2e,h) term: eqn (a26) in the Appendix†):

EACVFtotðbkÞ ¼
ffiffiffi
p

p
s
�
a2o;h þ a2e;h

�
ðn� kÞ

X

s2
h

a2h
þ 1

� �

k ¼ 0; 2; 4.2n� 2

(7)

At Dt ¼ bk for odd k values, the EACVFtot(bk) values are given

by the cross-correlation term between components of the ‘o’ and

‘e’ sequences ((ao,h$ae,h)term: eqn (a28) in the Appendix†):

EACVFtotðbkÞ ¼
ffiffiffi
p

p
s2ðao;h,ae;hÞðn� kÞ

X

�
s2
h

a2h
þ 1

�

k ¼ 1; 3; 5.2n� 1

(8)

Therefore, the EACVFtot(bk) peaks computed at subsequent k

values give information on the specific abundance distribution

pattern of the odd/even terms of the homologous series (Fig. 1b).

In fact, if the odd and even terms display the same mean abun-

dance distribution (i.e. ao,h z ae,h) eqns (7) and (8) are identical

and the EACVFtot(bk) values are proportional to the values of

the sequence (2n � k) for k ¼ 1,3.(2n � 1). Any deviation from

such a pattern is diagnostic of the presence of odd/even preva-

lence among the terms of the series.

For the sake of simplicity, the first EACVFtot(bk) peaks for

k ¼ 1 and k ¼ 2 are considered below.

Fig. 1 Simulated chromatogram of a mixture formed by odd and even

terms of a sequence (no ¼ ne ¼ 5) displaying abundance values generated

according to an Exponential AM: mean abundance distributions were

simulated for odd and even terms, ao,h and ae,h, to yieldR¼ 2. Each series

is formed by 5 terms located at a repeated interdistance Dt ¼ 2b ¼
3.60 min shifted by a quantity Dt ¼ b ¼ 1.80 min. (a): PC-generated

chromatographic signal; (b): EACVFtot plot computed on the signal: the

EACVFtot peaks diagnostic of the sequence at Dt ¼ b ¼ 1.80 min and Dt

¼ 2b ¼ 3.60 min are identified by the arrows.
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To describe a specific odd/even distribution pattern for the

terms of the homologous series, the R value is defined as the ratio

between the mean value of the SC peak height of odd vs. even

terms:

R ¼ ao;h

ae;h
(9)

By computing eqns (7) and (8) for k ¼ 1 and k ¼ 2, respec-

tively, and introducing the R parameter, the following equations

are obtained:

EACVFtotð2bÞ ¼
ffiffiffi
p

p
s

X

�
a2o;h

�	
1þ 1

R2


�
s2
h

a2h
þ 1

�
ðn� 2Þ (10)

EACVFtotðbÞ ¼
ffiffiffi
p

p
s

X
2a2o;h

1

R

�
s2
h

a2h
þ 1

�
ðn� 1Þ (11)

By dividing eqn (11) by eqn (10), the following expression can be

obtained as a function of R:

EACVFtotðbÞ
EACVFtotð2bÞ ¼

2

R
ðnmax � 1Þ�

1þ 1

R2

�
ðnmax � 2Þ

¼ 2Rðn� 1Þ�
R2 þ 1

�ðn� 2Þ (12)

The equation can be simplified by introducing the approximation

that the ratio between (n � 1) and (n � 2) is equal to 1: this is

strictly true for large n values, i.e. n / N, otherwise it can be

applied once n is known. With this assumption eqn (12) can be

simplified into:

EACVFtotðbÞ
EACVFtotð2bÞ ¼

2R�
R2 þ 1

� (13)

This is a simple quadratic equation, that can be solved to obtain

the R value:

R ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4Y

p

2Y
(14)

where

Y ¼ EACVFtotðbÞ
EACVFtotð2bÞ (15)

Eqn (13) shows that the odd/even prevalence of the terms of

the homologous series, expressed by the R value, can be directly

estimated from the whole chromatogram by computing the

EACVFtot values at Dt ¼ b and Dt ¼ 2b on the total signal.

Number of the terms of a homologous series

Applying the general model based on eqn (3) to estimate nmaxmay

yield misleading results in the case of an odd/even prevalence: in

fact, at Dt ¼ bk for odd k values, the EACVFtot values strongly

depend on the presence of the odd/even prevalence in the peak

abundance since it is related to the product (ao,h$ae,h) (eqn (8)).

Otherwise, at Dt ¼ bk for even k values, the EACVFtot values are

independent of the peak abundance distribution of the odd and

even terms since it is related to the quantity (a2o,h + a2e,h) (eqn (7)):

therefore, at Dt¼ bk for even k values, EACVFtot values are used

to obtain a correct estimation of nmax. In order to make the

procedure more robust, for even k values, the computation is

basedon two subsequentEACVFtot deterministic peaks atDt¼ bk

and Dt ¼ b(k + 2) according to the following equation:

nmax ¼ 2
EACVFtotðbkÞ

EACVFtot

�
bðk þ 2Þ�þ k (16)

The mathematical derivation of eqn (16) is reported in detail in

the Appendix.† The correct estimation of nmax based on eqn (16)

makes it possible to achieve an accurate estimation of R by using

the rigorous eqn (12) to remove the approximation introduced in

eqn (13). It must be underlined that the mathematic model

developed on the basis of eqns (12) and (16), strictly derived for

a chromatogram that only contains homologous series terms, is

applicable to the general case of complex mixtures containing

random uncorrelated compounds in addition to the homologous

series. In fact, the Poissonian component yields EACVFtot values

significantly different from 0 only for Dt # 4s, so that, at the

repeated interdistances (Dt ¼ bk), the EACVFtot values are

mainly due to the contribution of the homologous series (eqn (3))

and can be used to evaluate its properties.27

Computation of the CPI value

The CPI can be calculated by using the different n-alkane terms

present in the mixture to describe the different nature of the n-

alkane component of the sample:2,17 the whole range of n-alkanes

is used to describe the whole n-alkane component:

CPItot ¼
PðC13 � C35ÞPðC12 � C34Þ (17)

the C13–C25 n-alkanes are the basis for describing the petrogenic

fraction:

CPIpet ¼
PðC13 � C25ÞPðC12 � C24Þ (18)

the heavier C25–C35 n-alkanes are used to describe the biogenic

contribution:

CPIbio ¼
PðC25 � C35ÞPðC24 � C34Þ (19)

It must be noted that all the computation procedures are based

on the same number of odd and even terms of the n-alkanes, i.e.

no ¼ ne. Therefore, the R value, which is based on the mean peak

height of odd vs. even terms (eqn (9)), can be properly used to

estimate CPI: the contribution of selected n-alkanes can be

identified by computing the EACVFtot over a partial region of

the chromatogram which has been correctly chosen so that it

contains a specific range of n-alkanes.

Experimental

Material and methods

Chemicals and supplies. The standard mixtures of C12–C34

n-hydrocarbons were purchased from Supelco (Milan, Italy)

(99% min).

The petrogenic samples studied were a commercial diesel fuel

containing C10–C29 n-alkanes and an ASTM D2887 Reference

Oil (Supelco, Milan, Italy). This sample is the basis for the
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standard test method for the boiling range distribution of

petroleum fractions by GC (C6–C44, bp 115–475 �C).
The natural samples investigated were leaves and flowers

derived from three different plants. One was formed by the

florist’s ‘Mimosa’: racemose inflorescences made up of numerous

smaller, bright yellow globose flowerheads produced by Acacia

dealbata (Silver Wattle).32 Another sample was chrysanthemum

flowers (Chrysanthemum coronarium): a genus of a perennial

flowering plant. The third sample was formed by the leaves and

flowers of Hypericum perforatum. This is a shrub that grows in

the wild in temperate regions and is widely used in traditional

and official medicine because of its antidepressant, antiviral, and

antimicrobial activity.33,34

Analytical procedure. The studied oil samples were a commer-

cial diesel fuel and an ASTM D2887 Reference Oil: the samples

were properly diluted in iso-octane prior to injection into the

GC–MS system.

The studied plant samples were: Mimosa dry flowers, chry-

santhemum fresh flowers and H. perforatum fresh leaves and

flowers. 500 mg of material were extracted twice with 5 mL of

dichloromethane (Sigma-Aldrich, Milan, Italy) using ultrasonic

agitation for 20 minutes. The extracts were combined, filtered

with a PTFE filter (0.45 mm) and then evaporated to dryness by

a gentle stream of N2. The sample was then dissolved in iso-

octane (50 mL) and injected into the GC–MS system. A total of

three extractions and injections was performed for each sample.

The GC–MS system was a Scientific Focus-GC (Thermo-

Fisher Scientific Milan, Italy) coupled with PolarisQ Ion Trap

Mass Spectrometer (Thermo-Fisher, Scientific, Milan, Italy).

The column used was a DB-5 column (L ¼ 30 m, I.D.¼0.25 mm,

df ¼ 0.25 mm film thickness) (J&W Scientific, Rancho Cordova,

CA, USA). High purity helium was the carrier gas with a velocity

of 1.0 mL/min. The temperature program for n-alkane analysis

was set as follows: the initial temperature (35 �C) was raised to

120 �C at 7 �C/min, then it was increased to 240 �C at 5 �C/min,

then further raised to 320 �C at 3 �C/min. All samples were

injected in splitless mode; the injector temperature was 300 �C.
The mass spectrometer operated in EI mode (positive ion,

70 eV): mass spectra were acquired with repetitive scanning from

40 to 400 m/z in 1 s. Ion source and transfer-line temperatures

were 250 �C and 320 �C, respectively. In addition to TIC chro-

matograms the SIM signals were also monitored by selecting m/z

values of 57, 71 and 85 which are characteristic ion fragments for

n-alkanes.

All the n-alkanes were identified by comparison with retention

times and mass spectra of reference n-alkane standards

(C10–C34).

Computation

The algorithms used for the calculation and for the signal

processing of GC–MS data are written in Fortran77 and

MATLAB and run on a 1.53 GHz (256 RAM), AMD Athlon

personal computer.

Chromatograms simulation. Chromatograms were generated

with aMATLAB routine, written in-house to simulate noise-free

GC–MS signals. The simulated chromatograms were generated

by setting four vector values (time, peakint, peaksig and peaktr)

where time is the time axis vector, peakint a vector with peak

height, peaksig is peak standard deviation vector and peaktr the

retention time vector.

In order to generate a GC signal of homologous series with

known odd-to-even predominance, each chromatogram was

computed as a combination of two ordered sequences of deter-

ministic peaks representing the odd and the even components of

a homologous series. They are located along the retention time

axis at constant interdistance (Dt¼ 2b¼ 3.60 min) and shifted by

a quantity (Dt ¼ b ¼ 1.80 min).

Peak shape was described by a Gaussian function (12 points

per peak): a s value of 0.03 min was assumed as a constant width

for all the chromatographic peaks to provide a good description

of the experimentally obtained GC signals. Peak height values

were generated according to an Exponential AM, where SC

abundances are randomly distributed around the mean value �ah.

Moreover, peaks are sorted according to their increasing or

decreasing height to obtain a ‘self-structured’ distribution

resembling the peak height pattern commonly present in real

samples.18,35

The peak height values for the odd/even sequences were

properly generated in order to obtain different mean values ao,h
and ae,h, thus yielding different ratio values (eqn (9)): the

R-instigated values were 2, 3, 4, and 5.

The reliability of the procedure was verified on two types of

simulated chromatograms formed by 50 SCs (each sequence

contains 25 terms) or 10 SCs (each sequence contains 5 terms).

The latter case closely represents the experimental chromato-

grams of real samples, where the hydrocarbon fraction is domi-

nated by n-alkanes ranging fromC13 to C34.
17–19For eachR value

and peak height distribution, 25 simulated chromatograms were

generated with the same R and nmax parameters: computations

were performed on them to evaluate the accuracy and precision

of the mathematical procedure, expressed as relative error (3%)

and variation coefficient (CV%) of the obtained results.

EACVFtot calculation. The first step in data handling consists

of linearizing the chromatographic signal to obtain constant

retention increments between subsequent terms of the homolo-

gous series (eqn (2)). It is a retention time alignment procedure

based on comparison vs. a set of n-alkane standards.25,31 The

AutoCovariance Function was then numerically calculated from

the linearized chromatogram, according to eqn (1). A MATLAB

algorithm based on eqns (12) and (16) was implemented to

directly estimate the two parameters nmax and R from the

EACVFtot computed on the whole chromatographic signal: by

a proper selection of different regions of the chromatogram the

computed R value corresponds to parameters CPItot, CPIpet and

CPIbio.

Results and discussion

The proposed method’s robustness and reliability in estimating

the nmax and R parameters was verified on simulated chro-

matograms with a known distribution of the sequence terms.

Different peak height distribution models were assumed to

generate chromatographic signals describing experimental

chromatograms of real samples. The applicability of the method
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was tested on experimental chromatograms of real samples of

anthropogenic and natural origin. The parameters obtained are

useful molecular markers for comparing known sources and

observed atmospheric samples to identify sources of organic

matter emissions.

Validation on PC-generated chromatograms

PC signals were generated to describe chromatograms of

mixtures containing homologous series: they were computed by

the combination of two sequences of peaks representing odd and

even terms of the homologous series. For each series, peak height

values were generated according to an Exponential AM, where

SC abundances are randomly distributed in a given interval (phr)

around the mean value ah: it has been theoretically demonstrated

and experimentally verified that this random function is the most

likely distribution for the maximum complexity of the mixture,

since it contains the maximum entropy. Peak height values are

simulated for the two separated sequences in order to obtain

known odd/even preference values described by the CPI values

drawn from 2 to 5.

Chromatogram with a random peak height distribution.

Different chromatograms were simulated containing a higher

(50) and lower (10) number of homologous series terms

displaying known CPI values.

As an example, Fig. 1a reports a simulated chromatogram

containing 10 terms of a homologous series with a CH2 retention

increment b ¼ 1.80 min: the series is obtained by superimposing

two separated sequences containing 10 SCs, i.e. no ¼ ne ¼ 5 with

an abundance distribution to yield an odd/even preferenceCPI¼
2. The EACVFtot plot computed on the chromatogram (Fig. 1b)

clearly shows a specific pattern of subsequent EACVFtot peaks

related to the odd/even preference. It consists of two decreasing

sequences of peaks: a sequence of lower EACVFtot(bk) peaks at

the odd b values containing information about the cross-corre-

lation between odd/even terms (eqn (8)) and a series of higher

EACVFtot(bk) peaks at even b values related to the addition of

the terms of both the series (eqn (7)).

The implemented algorithm computes the R value directly by

comparing EACVF(1.80 min) and EACVF(3.60 min) values,

according to eqn (14), and computes the number of terms in the

series, nmax, by comparing EACVF(3.60 min) and EACVF(7.20

min) values, according to eqn (16).

Computations were performed on different PC-generated

chromatograms by varying nmax (50 and 10), R values (2, 3, 4, 5)

and the dispersion of peak abundance distribution (phr)

(Table 1, theoretical values, 1st–11th rows). For each parameter

set, 25 simulated chromatograms were independently generated

and computations were performed to estimate R and nmax

values according to eqns (14) and (16). The mean estimated

values and their confidence intervals (at 95% of probability) are

reported in Table 1 (calculated values, 1st–11th rows). The

accuracy of the computation procedure was estimated as the

relative error (3% values, 5th and 8th columns) and precision,

expressed as CV% (CV%, 6th and 9th columns). The good

precision and accuracy of the obtained results may validate the

suitability of the developed method to describe the distribution

of homologous series terms.

Chromatogram with a ‘self-structured’ peak height distribution.

The GC–MS signals of the aliphatic hydrocarbon fraction of

environmental samples are usually dominated by n-alkane peaks

corresponding to terms ranging from C13 to C35 with abundance

normally distributed around a maximum of the most abundant

Cmax term, thus generating a bell-shaped pattern. Chromato-

graphic signals were generated to specifically resemble such

a peak height pattern: in the following, this model is called ‘self-

structured’ distribution. For each homologous sequence, formed

by no ¼ ne peaks, the peak height values were generated

according to a random distribution and then sorted according

to increasing and decreasing heights to yield a bell-shaped

distribution centred around the Cmax value. As an example,

Fig. 2a reports a simulated chromatogram containing 20 terms of

a homologous series (b ¼ 1.80 min) displaying a ‘self-structured’

distribution and an odd/even preference R ¼ 2. The EACVFtot

plot computed on the chromatogram (Fig. 2b) clearly shows the

recursive pattern diagnostic of the presence of the odd/even

preference. The developed algorithm directly computes the R

value by comparing EACVFtot(1.80 min) and EACVFtot(3.60

min) values, according to eqn (14). The EACVFtot peak heights

Table 1 Theoretical and EACVFtot calculated parameters on PC-
generated chromatographic signalsa

Random distribution

phr

Theoretical Calculated

R nmax R 3% CV% nmax 3% CV%

0.66/1.33 2 50 2.1 � 0.16 6.5 3.75 49.0 � 0.78 2.0 0.81
0.61/1.38 2 50 2.2 � 0.25 10.0 5.90 49 � 1.1 3.0 1.19
0.55/1.50 2 50 2.3 � 0.21 15.0 4.78 47 � 1.9 6.2 2.02
0.37/1.62 2 50 2.4 � 0.27 20.0 5.83 45 � 2.3 10.0 2.66
0.66/1.33 3 50 3.2 � 0.29 6.6 4.68 49 � 1.1 2.0 1.16
0.66/1.33 4 50 4.2 � 0.37 5.0 4.52 49 � 1.2 2.0 1.26
0.66/1.33 5 50 5.3 � 0.53 6.0 5.09 49 � 1.3 2.0 1.35
0.66/1.33 2 10 2.1 � 0.80 5.0 17.14 10.4 � 0.65 4.0 2.79
0.66/1.33 3 10 3 � 1.0 16.6 13.14 10 � 1.0 1.0 4.45
0.66/1.33 4 10 4 � 1.1 5.0 10.00 9.9 � 0.80 1.0 3.64
0.66/1.33 5 10 5 � 1.7 0.0 15.20 10.2 � 0.65 2.0 2.84

‘Self-structured’ distribution

phr

Theoretical Calculated

R nmax R 3% CV% nmax 3% CV%

0.66/1.33 2 50 2.0 � 0.27 0.0 7.00 48.6 � 0.94 1.4 0.99
0.61/1.38 2 50 1.9 � 0.21 5.0 5.79 48 � 1.1 4.6 1.17
0.55/1.50 2 50 2.0 � 0.35 0.0 9.00 45 � 2.0 10.0 2.22
0.37/1.62 2 50 1.9 � 0.31 5.0 8.42 42 � 2.1 16.0 2.62
0.66/1.33 3 50 3.0 � 0.35 0.0 6.00 48.6 � 0.80 2.8 0.84
0.66/1.33 4 50 4.0 � 0.33 0.0 4.25 49 � 1.1 2.8 1.19
0.66/1.33 5 50 5.0 � 0.52 0.0 5.40 49 � 1.2 2.4 1.25
0.66/1.33 2 20 1.9 � 0.50 5.0 12.63 20.7 � 0.23 3.5 0.53
0.66/1.33 3 20 3.0 � 0.54 0.0 8.66 20.8 � 0.33 4.0 0.77
0.66/1.33 4 20 4 � 1.0 2.5 12.19 20.8 � 0.27 4.0 0.62
0.66/1.33 5 20 5 � 1.2 6.0 10.56 20.8 � 0.31 4.0 0.72
0.66/1.33 2 10 2 � 1.33 5.0 28.57 9.9 � 0.89 1.0 4.04
0.66/1.33 3 10 3 � 1.7 10.0 23.63 9.8 � 0.93 2.0 4.28
0.66/1.33 4 10 4 � 1.4 0.0 16.25 10 � 1.4 1.0 6.56
0.66/1.33 5 10 5 � 1.8 6.0 15.09 10.0 � 0.82 0.0 3.70

a The confidence intervals at 95% of probability are reported for the
mean R and nmax estimated values (4th and 7th columns).
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depend on the position of the peak along the time axis, displaying

a Gaussian pattern following the bell-shaped distribution of the

original SC peaks. In this case, a critical point for the correct

estimation of nmax (eqn (16)) is the selection of the odd k values

on which EACVFtot(bk) is computed. To overcome this problem,

the computation was performed on different pairs of subsequent

peaks, i.e. EACVFtot(3.60 min) and EACVFtot(7.20 min);

EACVFtot(7.20 min) and EACVFtot(10.80 min), and the nmax

value was estimated as the mean of the results obtained (Table 1,

self-structured distribution, 7th column).

Computations were performed on different ‘self-structured’

chromatograms containing 10, 20 and 50 SCs with different R

values (2, 3, 4, 5) and different random peak height distribution

(phr) (theoretical values in Table 1, 12th–26th rows). Each esti-

mated result for R and nmax is the mean of the computation

repeated on 25 independently simulated chromatograms with the

same parameter set (calculated values in Table 1, 12th–26th

rows). A good agreement between the theoretical and calculated

values is obtained: the accuracy and precision of the computation

procedure were evaluated as relative error, 3%, and variance

coefficient, CV% (Table 1, 5th, 8th and 6th, 9th columns,

respectively). The results obtained validate the reliability of the

computation procedure in characterizing the properties of

a homologous series distribution that very closely resembles the

experimental pattern.

Applications to real samples

The applicability of the method was tested on real samples of

known anthropogenic and natural origin such as oil samples and

plant extracts. The results obtained are discussed in terms of their

relevance as molecular markers for the characterization of

possible sources of organic inputs.

Fuel sample. Two oil samples were chosen to test the reliability

of the EACVFtot method in investigating the properties of

petrogenic or anthropogenic n-alkanes. A CPI value close to 1 is

a diagnostic indicator of petrogenic hydrocarbon contamination

in marine sediments8 or fossil fuel combustion as primary

emission sources for the urban particulate matter.36

As an example, the GC–MS signal of the volatile components

of a commercial diesel fuel is reported in Fig. 3a: the SIM signal

for monitoring the n-alkanes at m/z values of 57, 71 and 85 is

reported. The n-alkanes were identified using the GC retention

times of the reference standards (C10–C30): the main components

are mid-chain n-alkanes C10–C25, C17 and C19 being dominant.

A visual examination of the chromatogram shows a typical

chromatographic profile of petrogenic n-alkanes characterized

by no odd-to-even predominance. The EACVFtot was computed

on the whole chromatogram (lower solid line in Fig. 3c): its plot

clearly shows a monomodal distribution of the EACVFtot peak

height suggesting a homogeneous distribution of the odd/even

terms. Such a pattern can be quantified by computing CPItot
according to eqn (14): by selecting the proper retention region

containing C13–C25 n-alkane ranges, CPIpet can be estimated to

characterize the petrogenic fraction present in the sample: CPItot
and CPIpet values close to 1 were obtained (estimated values, 2nd

and 3rd columns in Table 2). With the developed algorithm the

nmax n-alkanes present in the sample can be directly estimated

from the EACVFtot peaks atDt¼ bk, even k (eqn (16)) (estimated

values, 5th column in Table 2). The data obtained for ASTM

D2887 Reference Oil show a similar chemical composition of this

sample (3rd row in Table 2).

The accuracy of the results was checked by comparing them

with results obtained using the traditional procedure. It requires

identification of the n-alkanes by comparison to reference stan-

dards and MS spectra, integration of the identified peaks,

computation ofCPI as a ratio of the sum of concentrations of the

odd-numbered carbon alkanes vs. that of the even-numbered

terms. The obtained results (traditional calculations, 6th and 7th

columns in Table 2) show a close similarity with data estimated by

EACVFtot: this agreement is a proof of the usefulness of the

procedure for a simple and quick characterization of the n-alkane

distributionpatternas amolecularbiomarker in complex samples.

Fig. 2 Simulated chromatogram of a mixture formed by odd and even

terms of a sequence (no¼ ne¼ 10) displaying abundance values generated

according to a ‘self-structured’ distribution resembling peak height

pattern commonly present in real samples: mean abundance distributions

were generated for odd and even terms, ao,h and ae,h, to yield R¼ 2. Each

series is formed by 10 terms located at a repeated interdistance Dt ¼ 2b ¼
3.60 min shifted by a quantity Dt ¼ b ¼ 1.80 min (a): PC-generated

chromatographic signal; (b): EACVFtot plot computed on the signal: the

arrows identify the peaks diagnostic of the sequence at Dt ¼ b ¼ 1.80 min

and Dt ¼ 2b ¼ 3.60 min.
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The ability of the EACVFtot procedure to handle complex

signals can be emphasized by extending the investigation to

involved TIC signals. The TIC chromatogram of the oil sample

was studied (Fig. 3b): it displays the typical chromatographic

profile characterized by the UCM band (Unresolved Component

Mixture) formed by a cluster of unresolved peaks. The EACVFtot

plot (Fig. 3c, upper bold line) is strongly affected by the specific

pattern of the UCM band which is superimposed on the deter-

ministic EACVFtot peaks, displaying monomodal height distri-

bution. Nevertheless, the EACVFtot model makes it possible to

single out the n-alkane sequence properties by computing the

nmax and CPItot values using eqns (16) and (14) on EACVFtot

computed over the whole original signal. The obtained results

(2nd row in Table 2) show a close similarity to the data obtained

from the SIM signal (1st row in Table 2) and from the traditional

calculation method (traditional calculation, 1st and 2nd rows in

Table 2). This result confirms the robustness of the developed

method in extracting reliable information from the direct

handling of complex chromatograms, such as SIM and TIC

GC–MS involved signals.

Plant samples. GC–MS chromatograms of plant extracts were

investigated to test the applicability of the developed procedure

to identify and quantify the strong odd/even predominance

displayed by biogenic n-alkanes. In fact, it is known that vascular

plants synthesize epicuticular waxes containing odd carbon-

number n-alkanes.12,14,37–39 The application is particularly rele-

vant since identification and characterization of long-chain

n-alkanes (C27–C35 terms) from leaf wax, where they represent

a minor portion of the overall wax composition, has proved to be

the basis of a taxonomic system for classifying plant groups.40

Dichloromethane extracts of leaves and flowers of different

plant families were submitted toGC–MS: the SIMchromatogram

was monitored at m/z ¼ 57 + 71 + 85 to represent the aliphatic

hydrocarbon fraction. As an example, chromatograms of hydro-

carbons extracted from ‘Mimosa’ flower are pictured in Fig. 4a.

The main components are mid- and long-chain n-alkanes

C21–C33. C23, C25, C27 and C29 are the dominant long-chain

n-alkanes in the GC profiles. A visual examination of the chro-

matogram shows a typical chromatographic profile of n-alkanes

from vascular land plants characterized by a high odd-to-even

predominance of long chain C25–C33 with CPI z 5–10.

The EACVFtot plot computed on the whole chromatogram

(Fig. 4b) clearly shows a bimodal distribution of the

EACVFtot(bk) peak height with lower values at odd k values

(combination term, eqn (8)) and higher values at even k (addition

term, eqn (7)). Such a pattern is diagnostic of an odd/even prev-

alence that can be quantified by computing CPItot according to

eqn (14): aCPItot value close to 5was estimated (estimated values,

4th row in Table 2). To better characterize the plant chemical

composition, theCPIbio index was also computed by selecting the

chromatographic region containing the long chain C24–C33 terms

(estimated values, 4th column in Table 2). The developed algo-

rithm also yields an estimation of the nmax n-alkanes present in the

sample (estimated values, 5th column in Table 2) directly from

EACVFtot peaks at Dt ¼ bk even k (eqn (16)).

The analysis of the H. perforatum sample permits a direct

comparison of the present results with data in the literature since

theHypericum species has been intensely studied, in particular as

regards the composition and abundance of n-alkanes.33,34,41 The

CPIbio and nmax values estimated from the EACVFtot plot

(CPIbio ¼ 15 and nmax ¼ 7, 6th row in Table 2) closely agree with

Fig. 3 Volatile components of a commercial diesel fuel (a): SIM signal of

the GC–MS chromatogram monitored at m/z ¼ 57 + 71 + 85; (b): TIC

signal of the GC–MS chromatogram; (c): EACVFtot plot computed on

the whole chromatogram: lower solid line: EACVFtot on the SIM signal

(chromatogram in Fig. 3a); upper bold line: EACVFtot on the TIC signal

(chromatogram in Fig. 3b). The arrows identify the peaks diagnostic of

the sequence at Dt ¼ b ¼ 1.80 min and Dt ¼ 2b ¼ 3.60 min.
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literature (CPIbio¼ 15 and nmax¼ 741). It must be underlined that

these CPIbio values are considerably higher than in other plant

species and are due in part to the high percentage of the C29

term.15

To check the accuracy of the obtained results, the traditional

procedure based on calculation on each identified and integrated

peak was applied to compute CPItot, CPIbio and nmax values

(traditional calculations, 6th–9th columns in Table 2). The close

similarity between the computed and the estimated EACVFtot

data proves the reliability of the developed method to identify

and characterize the abundance distribution of biogenic

n-alkanes, and this may also be useful in extracting information

for a chemotaxonomic approach.

Conclusions

A method was developed and validated for processing and

calculating data from the analysis of complex chemical mixtures

that otherwise would be cumbersome and time-consuming. The

procedure is specifically devoted to handling the extensive

amounts of data generated by the hyphenated chromatographic

techniques when applied to complex mixtures of contaminants,

as those present in polluted environmental samples (e.g. sedi-

ment, soil, sludge, and biota).

The procedure is focused on a description of the chemical

pattern of n-alkane homologous series, in particular, on the

reliable computation of the CPItot index, as a descriptor of

characteristic n-alkane distributions to be used as a signature

of specific organic sources. It has proved suitable for the study of

long chain n-alkane distributions dominated by odd carbon-

numbered homologs, reliable indicators of terrigenous inputs in

environmental and paleo-environmental studies. In addition, the

method may be applicable for diagnostic fingerprinting ratios in

relation to forensic oil spill identification or bioindicating of the

general degree of environmental pollution.

The method may be extended to different homologous series in

order to characterize specific organic markers for identifying

sources and tracing inputs in the environment. The results

directly obtained by computing EACVFtot on the whole chro-

matographic signal can constitute the basis for further data

analysis using multivariate statistical methods, such as discrim-

inant analysis (DA), cluster analysis (CA) or principal compo-

nent analysis (PCA) to gain a better understanding the organic

component contribution of inputs in the environment.
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Abstract This paper describes methods for the determina-
tion of low-molecular-weight (LMW) dicarboxylic acids in
atmospheric aerosols as important chemical tracers for
source apportionment of aerosol organics and for studying
atmospheric processes leading to secondary organic aerosol
formation. The two derivatization procedures most widely
used in GC analysis of dicarboxylic acids were compared:
esterification using BF3/alcohol reagent and silylation using
N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA). The
advantages and drawbacks of the two methods are
investigated and compared in terms of (1) precision and
accuracy of the results and (2) sensitivity and detection
limit of the procedure. The comparative investigation was
performed on standard solutions containing target C3–C9

dicarboxylic acids and on experimental particulate matter
(PM) samples. Attention was focused on low-volume
sampling devices that collect small amounts of sample for
organic speciation. The results show that, overall, both the
techniques appear suitable for the analysis of LMW
dicarboxylic acids in atmospheric aerosols since they
provide low detection limits (≤4 ng m−3) and satisfactory
reproducibility (RSD%≤15%). Between them, BSTFA
should be the reagent of choice under the most limiting
conditions of PM filters collected by low-volume air
samplers: It provides determination of all the target C3–C9

dicarboxylic acids with lower detection limits (≤2 ng m−3)
and higher reproducibility (RSD%≤10%)

Keywords Low-molecular-weight dicarboxylic acids .

Derivatization procedures . GC–MS analysis . Atmospheric
aerosol . Chemical marker

Introduction

Dicarboxylic acids are an important group of water-soluble
organic compounds. They are ubiquitous in the troposphere
and represent a significant fraction of atmospheric organic
particulate matter (PM): Total diacids account for about 1–
3% of the total particulate carbon in urban areas and even
more than 10% in the remote marine environment [1–4].
They have received a great deal of attention because of their
potential effect on the global climate: Diacids can modify
the surface tension and hygroscopic properties of atmo-
spheric particles, owing to their high water solubility and
low vapor pressure [5]. Dicarboxylic acids have been
extensively measured in total suspended particulate and
PM10 samples collected in urban sites [2–4, 6–10] and
continental background [11–17].

Detailed investigations have demonstrated that the
concentration and relative abundance of these acids are
useful organic tracers for source apportionment and
atmospheric processes leading to secondary organic aerosol
formation [2, 8, 18, 19]. In fact, such polar organics are
emitted directly into the atmosphere as PM by a multiplicity
of different sources and are also produced through
secondary organic aerosol formation initiated by photo-
chemical reactions incurred as ozone, hydroxyl, and nitrate
radicals react with volatile hydrocarbons [1–4, 6]. In
particular, low-molecular-weight dicarboxylic acids (C3–
C9) may yield relevant information on the source strength
of anthropogenic vs. biogenic precursors [2–4, 9, 20]. It has
been suggested that the C3/C4 ratio is an indicator of
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enhanced photochemical production of dicarboxylic acids
in the atmosphere since succinic acid (C4) is a precursor of
oxalic (C2) and malonic (C3) acids. On the other hand, the
C6/C9 ratio has been used as an indicator of the relative
source strength of anthropogenic and biogenic diacid
precursors: Adipic acid was proposed as a product of the
oxidation of anthropogenic cyclohexene, while azelaic acid
was thought to come from the oxidation of biogenic
unsaturated fatty acids [3, 6, 9, 20].

To date, GC–MS is the one of the methods of choice for
characterizing individual organic compounds within aerosol
samples, primarily because of its high sensitivity and
resolving power. The high polarity and low levels (approx-
imately 1 ng m−3) of dicarboxylic acids demand a
derivatization step prior to GC analysis to reduce the
polarity of the compounds. The most common reactions
used to modify compounds containing acidic hydrogens are
alkylation, acylation, and silylation [2–4, 6–16, 20–23];
among them two derivatization processes are mainly used
to analyze dicarboxylic acids in PM samples because they
offer easy sample preparation and display good analytical
characteristics:

1. Esterification of the acid groups using methanol or 1-
butanol as derivatizing agent in the presence of a
relatively strong acid (BF3 or BCl3) [3, 6, 7, 9, 10, 13,
21] (first applied by Kawamura and co-workers [24]).

2. Silylation based on silylation reagents to form trime-
thylsilyl (TMS) derivatives [2, 3, 14–16, 21, 23, 25,
26].

The two methodologies differ in terms of the stability of
the derivatives formed, the presence of interfering by-
products, and speed. Moreover, a combination of the two
procedures has been employed to yield a multistep
derivatization by which –COOH groups are initially
derivatized with BF3/alcohol, and then the remaining
hydroxy or keto groups are silylated with a silylation
reagent [21].

BF3 esterification

The BF3/alcohol reagent converts either carboxyl groups
into butyl esters or aldehyde groups into dibutyl acetals [17,
18]. Starting from the original Kawamura paper [24],
different modifications have been reported and widely
applied to make BF3/alcohol derivatization the most widely
used procedure for determining low-molecular-weight
(LMW) oxygenates in atmospheric samples [3, 6, 7, 9,
10, 13, 21]. In particular the BF3/butanol procedure has
distinct advantages for quantifying LMW compounds
because the resulting butyl derivatives are less volatile
and more resistant to evaporative losses than the BF3/
methanol scheme [7, 10]. Because of the presence of

residual acid, the products cannot be directly injected into
the GC, but rather a purification step is required before
injection [20].

The electron impact (EI) ionization of the butyl
derivatives yields mass spectra including some common
fragment ions m/z=57 ([C4H9]

+), m/z=41 ([CH2CH═CH2])
and m/z=73 ([–OC4H9]

+) arising from –OC4H9 moiety
[21]. Common fragmentation pathways are also the
cleavage of the C–O bond adjacent to the butyl group,
which gives rise to the [M−73]+ fragment, and the
additional loss of an alkene fragment: They give rise to an
[M−129]+ ion fragment, which is the base peak ion for
most C3–C9 dicarboxylic acids.

Silylation

The silylation reaction converts the hydroxyl groups into
their corresponding trimethylsilyl derivatives via a substi-
tution reaction, which yields one main product for each
compound and with high conversion efficiency [23, 26].
The reagents commonly used for PM analysis are trime-
thylchlorosilane (TMCS), N-methyl-trimethylsilyltrifluor-
oacetamide, N,O-bis-(trimethylsilyl)trifluoroacetamide
(BSTFA) and N-(t-butyldimethylsilyl)-N-methyltrifluoroa-
cetamide (MTBSTFA) [2, 3, 14–16, 21, 23, 25, 26].
MTBSTFA should be preferred since its derivatives display
a simplified fragmentation pattern yielding fragments with
very high relative abundances, especially for [M−57]+, that
generates good detection limits. However, it was found that
steric hindrance and molecular mass play a very important
role in the choice of the best suited derivatization reagent:
MTBSTFA derivatization of compounds with sterically
hindered sites produces very small analytical responses or
no signal at all, and BSTFA derivatization of compounds
with high molecular mass produces no characteristic
fragmentation pattern. Therefore, the use of BSTFA is the
best choice for analysis of sugars or saccharides, which are
another class of polar organics commonly determined in
PM samples as molecular tracers in elucidating organic
carbon sources and atmospheric transport pathways [23].
For these reasons, the present study describes the use of
BSTFA for a comprehensive procedure that can be
extended to analysis of a wider range of polar organics
including sugars.

The BSTFA reaction is moisture sensitive and requires
mild conditions to complete the derivatization in order to
achieve GC–MS detection at very low concentrations [23,
25, 26]. In opposition to alkylation, silylation normally
does not require a purification step, and the derivatives can
be injected directly into the GC system [20, 23, 25, 26].
However, it presents some drawbacks, such as the fact that
the silylation reagent is dangerous and some artifacts can be
produced in the reaction [21, 25].
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In the EI mass spectra of TMCS compounds rearrange-
ment reactions of the trimethylsilyl group may occur,
making EI mass spectra quite complex and difficult to
interpret. Generally, the BSTFA derivatives display a
common fragmentation pattern formed by ion fragments at
m/z=73 and 75, [Si(CH3)3]

+ and [HO═Si(CH3)2]
+, respec-

tively, derived by substitution of the active H atom with the
–Si(CH3)3 group. In addition, compounds with two active
H atoms, such as dicarboxylic acids, show abundant ions
with m/z=147, postulated as [(CH3)2Si═Si(CH3)2]

+, and
this is accompanied by m/z=149 ion resulting from the
hydrogenation of m/z=147 that occurs in the ion trap [23,
26].

This paper focuses on the determination of LMW
dicarboxylic acids (C3–C9) because they contain relevant
chemical information to distinguish primary vs. secondary
sources as well as anthropogenic vs. biogenic precursors.
Preference was given to a faster one-step derivatization
procedure to determine selected target compounds: The
advantages and drawbacks of the methods using BF3/
alcohol and BSTFA are investigated and compared in terms
of precision and accuracy of the results, sensitivity, and
detection limit of the procedure.

Experimental

Reagents and standards

Reagents used for the different derivatizations (BF3-1-
butanol and BSTFA 1% trimethylchlorosilane) were
obtained from Aldrich Chemical Co. (Milan, Italy). All
standards and reagents used were of the highest purity
commercially available. Dicarboxylic acid standards
were purchased from Fluka/Aldrich/Sigma (Sigma
Aldrich, Srl, Milan, Italy). All solvents were trace
analysis grade (from 99.7%) from Sigma Aldrich (Milan,
Italy).

Individual stock standard solutions were prepared in
methanol for each C3–C9 dicarboxylic acid at concentra-
tions varying from 500 to 1,000 μg L−1. These solutions
were diluted serially—using water obtained from a Milli-Q
water purification system (Millipore, Vimodrone, Milan,
Italy)—to prepare lower concentration solutions to compute
calibration curves and assess acid recoveries (proper
concentration to obtain an absolute injected quantity
ranging from 1.7 to 28 ng of each acid). These quantity
values were also translated into air volume concentrations
(1.5–25 ng m−3) by assuming the analysis of one filter
collected over 24 h by a low-volume sampler (55 m3 air
volume). The two derivatizing agents, as well as the
individual and composite standard solutions, were stored
at 4 °C.

Extraction of environmental samples

The PM10 samples were collected on a precombusted
quartz fiber filter (20×25 cm) with an automatic outdoor
station consisting of a low-volume sampler (Skypost PM,
TCRTECORA Instruments, Corsico, Milan, Italy) operating
at a flow rate of 38.3 L min−1 for 24 h. The samples were
collected in a rural area (San Pietro Capofiume, Bologna,
Italy) in spring (April 2008). After sampling, the procedure
outlined in European Standard EN 12341 (CEN, 1998) was
applied for equilibration and weighing.

Filter samples were extracted for 30 min in an ultra-
sonication bath with pure Milli-Q water (3×10 mL), and
then the extract aliquots were combined and filtered using a
glass fiber filter (42.5 mm, GF Grade, Whatman, Maid-
stone, UK) to remove insoluble particles. The filtrate was
then evaporated completely using a stream of high-purity
nitrogen.

Procedural blanks were run in order to monitor signif-
icant background interferences in environmental samples.

Derivatization procedures

BF3 esterification

The procedure used is based on a modification [7] of the
Kawamura method [24]. Standard solutions of the acids
were put into a pear-shaped flask and evaporated to dryness
in a gentle nitrogen stream at room temperature. A 14%
BF3–butanol (10 μL) mixture and 0.2 mL of n-hexane were
added to the samples: The flask was capped with a ground-
glass stopper and clamp and sealed with Teflon tape. The
sample was heated for 60 min at 70 °C and then cooled to
room temperature. During the reaction, dicarboxylic acids
were converted into their corresponding butyl esters. After,
0.2 mL of water saturated with sodium chloride was added
to neutralize the BF3 excess, and the solution was allowed
to stand for 2 min. To extract the sample for analysis,
0.5 mL of n-hexane was added to the sample tube, and then
the tube was capped tightly and shaken vigorously for
3 min. The organic layer was transferred into a 2.5-mL tube
and reduced to dryness under high-purity nitrogen stream.
Finally, 100 μL of n-hexane and 5 μL of n-hexadecane
solution (at 0.5 ng μL−1, as an injection internal standard
(IS)) were added, and then 2 μL of the sample was injected
into the GC system.

Silylation

Derivatization of the dicarboxylic acids using BSTFA was
performed following the procedure reported in detail
elsewhere [26]. The sample was transferred into a 2.5-mL
tube, and the solution evaporated to dryness; then 10 μL of
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BSTFA plus 1% TMCS and 85 μL of isooctane were added
to form TMS derivatives; 5 μL of n-hexadecane solution
was added as an injection IS. The tube was sealed with a
Teflon-coated cap, and the reaction was performed at 75 °C
for 90 min. Then 2 μL of the sample was injected into the
GC–MS system.

GC–MS analysis

The GC–MS system was a Scientific Focus-GC (Thermo-
Fisher Scientific, Milan, Italy) coupled with PolarisQ Ion
Trap Mass Spectrometer (Thermo-Fisher Scientific, Milan,
Italy). The column used was a DB-5 column (L=30 m,
I.D.=0.25 mm, df=0.25 μm film thickness; J&W Scientif-
ic, Rancho Cordova, CA, USA). High-purity helium was
the carrier gas with a velocity of 1.5 mL min−1.

Temperature program conditions were optimized for
analysis of butyl and silyl derivatives. For butyl
derivative analysis the column temperature program
consisted of an initial isothermal step at 70 °C for
5 min, a temperature increase to 160 °C at 5 °C min−1,
followed by another increase to 280 °C at 15 °C min−1.
For silyl derivatives the temperature program started with
an initial temperature of 75 °C (hold for 5 min); it was
raised to 135 °C at 2 °C min−1, followed by an isothermal
hold for 2 min, and after that, the temperature was
increased to 160 °C at 2 °C min−1, then further raised to
280 °C at 15 °C min−1.

All samples were injected in splitless mode (splitless
time, 30 s); the injector temperature was 250 °C.

The mass spectrometer operated in EI mode (positive
ion, 70 eV). Ion source and transfer-line temperatures were
270 and 320 °C, respectively. The mass spectra were
acquired with repetitive scanning from 50 to 600m/z in 1 s.
The full scan detection mode was chosen since it allows a
comprehensive investigation of the wide range of polar
organics yielding derivatives under the selected operative
conditions. In addition to total ion chromatograms (TIC),
the selected-ion monitoring (SIM) mode was used to
quantify the target analytes: Either the base peak ion or
one of the most abundant characteristic fragments was
chosen as the SIM ions (Table 1, third and sixth columns).

Compound identification was performed by comparison
of the chromatographic retention times and mass spectra
with those of authentic standards and the mass spectral
library of the GC–MS data system.

All samples were analyzed in triplicate. To obtain
reliable and reproducible quantitative data, the internal
standard procedure was used. Hexadecane was added as an
injection IS since it is not subject to the derivatization
procedures: The detector response was expressed as peak
area value, Aca, relative to internal standard peak area (AIS),
i.e., Aca/AIS.

Analytical parameters of the GC–MS method

The method sensitivity and linearity were evaluated by
computing the calibration curves using six multicomponent
standard solutions containing C3–C9 acids in a concentration
range corresponding to 1.5–25 ng m−3 in the sampled air
(absolute injected quantity 1.7–28 ng) for each compound.
Samples were derivatized and analyzed by GC–MS: Each
point on the curve, obtained as the average of three replicated
measurements, is expressed as peak area ratio Aca/AIS.

The regression parameters were computed by the least-
squares method: The intercept values were verified as
statistically equal to zero by computing the 95% two-sided
confidence interval for each intercept value (b0) and
applying the t test at 5% of significance.

Sensitivity was assessed by establishing the detection
limit XLOD for each studied acid. On the basis of the slope
of the calibration line, XLOD was computed as the analyte
concentration yielding a signal value YLOD ¼ yb þ 6sb,
where yb is the blank average signal of 10 blank responses,
and σb its standard deviation. This XLOD value corresponds
to a 0.13% probability that the blank signal will be
misinterpreted and that the compound may be lost [27].
The detection limit was computed as XLOD ¼ 6sb=b1,
where b1 is the slope of the calibration line.

To check the precision and accuracy of the proposed
method, recovery experiments were carried out by spiking
known amounts of target C3–C9 dicarboxylic acids onto
one half of a blank quartz fiber filter and processing the
spiked filters as the real aerosol samples. Three different
concentration levels were investigated for each analyte, i.e.,
10, 20, and 30 ng m−3, and the measurements were repeated
in triplicate to compute mean recovery and RSD% values.

Results and discussion

The two most common derivatization procedures were com-
pared for quantitative analysis of dicarboxylic acids in PM
samples by focusing attention on two challenging conditions:

1. Quantification of lighter C3 and C4 dicarboxylic acids,
since they contain relevant information for source
apportionment and secondary organic aerosol formation
[2–4, 6, 7, 9, 20].

2. Analysis of PM samples collected by low-volume devices
(55 m3 air volume sampled over 24 h) requiring the
highest method sensitivity at trace level [4, 8, 14, 17, 21].

BF3 esterification

After derivatization according to the described procedure
(“Extraction of environmental samples”), the standard
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solutions were analyzed by EI in the full scan mode in
order to investigate the fragmentation pattern of each
compound. The [M−129]+ ion fragment is the base peak
ion for most butyl derivatives, consistently with Kawamura
[21] (Table 1, second column). The m/z values selected for
SIM detection and quantification were either the base peak
ion or one of the more abundant characteristic fragment
ions (Table 1, third column). Reliable measurements can be
obtained only for the dicarboxylic acids heavier than C5,
since the lighter C3–C4 acids yield butyl esters that are too
volatile to avoid evaporative losses and too unstable to be
accurately quantified [10, 20]. The calibration curves were
computed for C5–C6 acids (Table 2, first to fifth rows): The
obtained parameters show that the derivatization procedure
displays good linearity and sensitivity, nearly independent
of the acid molecular weight. The achieved detection limits
are low enough to make the method compatible with
environmental analysis: 2.6–4.9 ng m−3 in the sampled air

(Table 2, fourth column) corresponding to 2.9–5.4 ng as
absolute injected quantity (Table 2). The reported XLOD

values resulted higher than some of the data in the literature
[1, 7]. This result is consistent with the unfavorable
conditions of low sampled volume (55 m3), which are
mainly critical for lighter dicarboxylic acids.

Recovery experiments were carried out by spiking one
half of a blank quartz fiber filter with known amount, i.e.,
10, 20, and 30 ng m−3 of target C5–C9 dicarboxylic acids.
The results for the 20 ng m−3 concentration are listed in
Table 3, where the mean recovery and RSD% values are
reported for triplicate measurements (Table 3). Recovery of
the target compounds varied from 66% for glutaric acid to
120% for azelaic acid (Table 3, first column). The standard
derivation values were lower than 15% for the studied
acids, with the exception of the lighter glutaric acid (21%;
Table 3, second column). As expected, the precision of the
method decreases with the analyte concentration since for

Table 1 Parameters for GC–MS analysis of the target C3–C9 dicarboxylic acids using esterification (first to third columns) and silylation (fourth
to sixth columns) procedures

Acids tr (min) m/z max m/z SIM tr (min) m/z max m/z SIM

BF3 esterification Silylation

Malonic acid – – – 14.4 147; 149 75; 147; 149

Succinic acid – – – 20.6 147; 149 75; 147; 149

Glutaric acid 23.7 87; 115 115 26.0 147; 149 75; 147; 149

Adipic acid 25.2 111; 129 129 31.8 75, 141 75; 147; 149

Pimelic acid 26.2 125; 143 143 37.6 75, 155 75; 147; 149

Suberic acid 27.1 139; 157 157 43.7 75; 149 75; 147; 149

Azelaic acid 27.9 125; 171 171 49.4 75; 149 75; 147; 149

Retention times of the analyte derivatives are in the first and fourth columns, major derivative fragment ions in the second and fifth columns (most
intense fragments are in italics), and m/z values selected for SIM detection in the third and sixth columns

Acids b1 b0 (ngm−3) R2 XLOD (ngm−3) XLOD(ng)

BF3 esterification

Glutaric acid 0.0112±0.0008 −0.01±0.01 0.992 4.9 5.4

Adipic acid 0.0117±0.0004 0.001±0.008 0.994 3.5 3.9

Pimelic acid 0.0110±0.0004 0.006±0.007 0.997 2.9 3.2

Suberic acid 0.0110±0.0005 0.01±0.01 0.995 2.6 2.9

Azelaic acid 0.0120±0.0006 0.02±0.01 0.997 2.9 3.2

Silylation

Malonic acid 0.100±0.003 −0.11±0.05 0.997 2.6 2.9

Succinic acid 0.135±0.005 −0.09±0.06 0.997 1.9 2.1

Glutaric acid 0.081±0.003 −0.06±0.05 0.995 2.6 2.9

Adipic acid 0.036±0.001 −0.03±0.01 0.997 2.1 2.3

Pimelic acid 0.032±0.001 −0.03±0.02 0.995 2.7 3.0

Suberic acid 0.0296±0.0008 −0.03±0.01 0.997 2.4 2.6

Azelaic acid 0.023±0.001 −0.02±0.01 0.997 2.1 2.3

Table 2 Calibration curve
parameters for the C3–C9 acids
and XLOD values

First to fifth rows, BF3esterifi-
cation reaction (SIM signals at
different m/z values specific for
each acid, see Table 1); sixth to
12th rows, silylation (SIM sig-
nal at m/z=147 for all the
studied acids). XLOD values are
expressed as air volume con-
centration (ng m−3 , fourth col-
umn) and absolute injected
quantity (ng, fifth column)
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all the acids the relative standard derivation values range
from 24% to 16% for the 10 ng m−3 level and from 6% to
14% for the 30 ng m−3 concentration.

Silylation reaction

Different experimental conditions have been widely applied
to derivatize LMW oxygenate compounds for subsequent
GC determination in PM samples [2, 4, 14–16, 21, 23].
Starting from the data in the literature, an optimization
study was performed on the derivatization conditions that
most affect analytical responses—i.e., reaction temperature
and duration time—in order to develop a rapid, reproduc-
ible quantitative method for trace levels. The study was
performed on standard aqueous solutions of C5–C9 dicar-
boxylic acids (each acid at 20 μg mL−1).

The standard solutions were derivatized according to
the procedure described in “Extraction of environmental
samples” and submitted to GC analysis MS using SIM
detection mode: The most abundant ions with m/z=147
and m/z=149 are selected for SIM detection to differen-
tiate compounds bearing −COOH from other classes of
organics (Table 1, fifth and sixth columns). The analytical
responses were expressed as relative peak area Aca/AIS

(hexadecane as internal standard).
The influence of reaction temperature and duration was

tested carrying out the reaction at 50, 75, and 100 °C for 30,
60, and 90 min. Among the experimental conditions
exploited, the reaction conditions of 75 °C for duration of
90 min yielded the best results and were chosen in the
following study.

The analytical performance of the procedure was
assessed by the calibration curves computed on standard
solutions of C3–C9 acids. The obtained results show that the
procedure allows quantification of all the studied acids with
good sensitivity, since it achieves low XLOD values
independent of the acid’s molecular weight, ranging in the
concentration values from 1.9 to 2.7 ng m−3 in the sampled

air (Table 2, fourth column) corresponding to 2.1–3.0 ng
interval as absolute injected quantity (Table 2, fifth
column).

The results obtained from studying procedure precision
and accuracy are reported in Table 3 (recovery and RSD%
values for the 20 ng m−3 concentration). Good recoveries
were found for all the target compounds ranging from 78%
for malonic acid to 115% for azelaic acid (Table 3, third
column). The procedure also displays good reproducibility,
as evaluated by RSD% values on three replicates, that range
from 3% to 10% (Table 3, fourth column). Moreover, these
properties were nearly constant for the 10 and 30 ng m−3

concentration levels.

Comparison between silyl and butyl ester derivatization

The obtained results confirm that both the methods are
reproducible, trace-level procedures suitable for environ-
mental monitoring of dicarboxylic acids. However, some
differences can be singled out when the two procedures are
compared for the challenging application of quantitative
determination of lighter C3–C9 dicarboxylic acids at trace
levels. These differences will be discussed below in terms
of their relevance in the environmental measurements for
PM monitoring.

– The silyl derivatives of dicarboxylic acids have higher
molecular weights and are less volatile than the
respective butyl derivatives. Thus, less time is required
to elute the butyl derivatives, thus significantly reduc-
ing the duration of a chromatographic run: Only 30 min
is the retention time required for the butyl ester of the
most retained C9 acid, while nearly 50 min is needed
for the corresponding silyl derivative (Table 1, first and
fourth columns). Nevertheless, the higher volatility
yields some evaporative loss during the derivatization
procedure thus decreasing analyte recovery.

– One merit of the trimethylsilylated compounds is that
their EI mass spectra yield structurally characteristic
ions (ion fragment at m/z=74, 147, 149), which make
identification highly reliable. These ion fragments can
be used in SIM detection mode for a simpler and more
selective chromatographic signal. This advantage can-
not be achieved by butyl derivatives, since their
prominent fragmentation pathway commonly gives rise
to the [M−73]+ fragment as the most abundant
fragment ion. Therefore, different m/z values must be
specifically selected for SIM detection and quantifica-
tion of each target acid (Table 1, third column).

– In general, the method sensitivity obtained with
BSTFA derivatives was higher than the one with the
butyl esters. This can be explained by the silylation
reaction yield (i.e., degree of conversion) or by the

Table 3 Accuracy (recovery %) and reproducibility (RSD%) of
esterification and silylation procedures estimated on triplicate meas-
urements at 20 ng m−3 concentration level

R% RSD% R% RSD%

BF3 esterification Silylation

Malonic acid – – 78 6

Succinic acid – – 85 3

Glutaric acid 66 21 95 8

Adipic acid 88 12 99 5

Pimelic acid 90 9 107 9

Suberic acid 95 9 110 6

Azelaic acid 120 15 115 10
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stability of the derivatives during handling. As a
consequence, the silylation procedure displays higher
sensitivity with lower XLOD values for all the
investigated C3–C9 dicarboxylic acids, compared to
butyl esterification. On the other hand, the sensitivity
of the BF3/BuOH method strongly depends on the
acid molecular weight: It is unreliable for the lower
C3–C4 terms, and it significantly increases with the
acid molecular weight to achieve detection limits
comparable to those of silylation for the heavier C7–
C9 acids. The low sensitivity for C3–C4 acids is also
due to the concomitant higher volatility of their
derivatives, which yields evaporative loss during the
derivatization procedure.

Application to real PM samples

In order to confirm the findings obtained upon standard
solutions, the two methods were applied to environmental
PM matrices. To obtain comparable results on the same
aerosol sample, each sample (PM samples 1 and 2 in
Table 4) was obtained by two consecutive sets of samples
(two quartz fiber filters) combined for extraction and then
halved to separately perform derivatization prior to GC–MS
analysis. The TIC chromatogram of the BF3/BuOH deriv-
atized sample (sample 1) is reported in Fig. 1a (derivative
retention times are reported in Table 1, first column). The
silyl derivatives obtained with BSTFA reagents on the same
aerosol sample (sample 1) were analyzed under SIM
detection mode at m/z=74, 147, 149 (SIM chromatogram
in Fig. 1b; derivative retention times are reported in Table 1,
fourth column).

The concentrations of the target dicarboxylic acids were
measured with both the procedures using the calibration
curves reported in Table 2: The obtained results are
reported in Table 4 for both the samples.

As verified on standards, the lighter C3 and C4 acids
escaped detection by the BF3/BuOH method. It must be
noted that some target acids are present in the investigated

samples at a concentration level close to their detection
limit, in particular in the case of BF3 esterification, where
glutaric acid concentration is lower than XLOD (Table 4).
However, a good agreement within 4% was shown by the
results obtained from the two procedures for all the
quantified acids: This proves that both derivatization
procedures produce reproducible quantification.

The individual species show similar abundance indepen-
dent of the carbon chain length, with malonic and azelaic
acids predominant. These results are consistent with
literature on dicarboxylic acids in PM2.5 for a rural
sampling site [8, 13–17, 23]. The predominance of the C9

diacid is expected since it is an oxidation product of
biogenic unsaturated fatty acids. This result is confirmed
by a low value of 0.5 computed for the C6/C9 ratio for
both samples and using both procedures to indicate a
high biogenic input for aerosol diacids (Table 4) [1, 2, 4, 6,
9, 20].

Moreover, BSTFA derivatization also makes it possible
to compute the C3/C4 ratio as another marker of diacid
origin: Both samples yield a value of 1.3 as it is commonly
observed in atmospheric aerosols with low anthropogenic
sources (combustion of fossil fuels produces C3/C4≈0.3)
and reduced photo-induced secondary formation of dicar-
boxylic acids (that would yield higher C3/C4≥3 values)
[3, 4, 6, 9, 20].

Conclusions

Comparison of the two popular derivatization reactions
shows that, on the whole, both techniques are suitable for
the analysis of low-molecular-weight dicarboxylic acids in
atmospheric aerosols since they provide low detection
limits (≤4 ng m−3) and satisfactory reproducibility (RSD
%≤15%).

The BSTFA procedure is preferable when the analysis is
performed under the most challenging conditions
concerning determination of lighter C3–C4 terms in PM

Table 4 Concentrations of the target dicarboxylic acids measured on two experimental aerosol samples (samples 1 and 2) after derivatization with
BF3/BuOH (first and second columns) and BSTFA (third and fourth columns) reagents

Acids PM sample 1 (ngm−3) PM sample 2 (ngm−3) PM sample 1 (ngm−3) PM sample 2 (ngm−3)
Esterification Silylation

Malonic acid – – 5.2±1.4 5.4±1.5

Succinic acid – – 3.8±1.2 4.0±1.6

Glutaric acid 2.6±3.3 2.8±3.2 2.5±1.6 2.7±1.4

Adipic acid 3.1±2.0 3.3±3.8 3.0±1.2 3.2±1.6

Pimelic acid 2.7±1.8 3.0±2.6 2.6±1.8 2.9±1.4

Suberic acid 2.6±2.7 3.0±3.9 2.5±1.4 2.9±1.3

Azelaic acid 5.8±2.8 6.1±3.4 5.6 ±1.8 6.0±2.0
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filters collected by low-volume air samplers: It provides
lower detection limits (≤2 ng m−3) and higher reproduc-
ibility (RSD%≤10%). Moreover, the use of BSTFA reagent
can be extended to other the polar compounds, although
containing sterically hindered sites, such as sugars which
are relevant molecular markers of biogenic sources. It is
evident that the demand for high sensitivity is less
constrictive if high-volume sampling devices are used and
enough material is collected for detailed organic speciation.

It must be underlined that both procedures require water
evaporation: In particular, in the BF3/BuOH derivatization
process water facilitates the reverse derivatization reaction.

The water evaporation step is time consuming and causes
significant evaporative losses of the smaller, more volatile
target compounds (e.g., malonic acid).

Further work is underway, changing extraction proce-
dure and derivatization operating conditions in order to
simultaneously determine additional compounds that are
either more or less water soluble (e.g., sugars and larger
mono- and dicarboxylic acids) or more volatile (e.g.,
nonanal). Solutions may also turn to simplified procedures
that drop the water extraction and evaporation steps, i.e.,
mixing the derivatization reagents directly with filter
substrates or using direct thermal desorption device coupled
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Fig. 1 GC–MS chromatograms of a derivatized environmental PM matrix (PM sample 1, in Table 4). a TIC chromatogram of the BF3/BuOH
derivatives; b SIM chromatogram at m/z=74, 147, 149 of the silyl derivatives
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to GC–MS to reduce time-consuming sample preparation
steps and analyte losses by desorption of the organics
within the GC injector.
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Abstaract
�
The paper describes the characterization of n-alkane homologous series present in PM samples 

performed by Gas Chromatography-Mass Spectrometry analysis. The PM samples were collected in 

three locations in northern Italy: Milan, a large  urban area, Oasi Bine, a rural site far from big city 

centers, and Alpe San Colombano a remote, high altitude site in the Alps. They represent different 

particle sizes ( 1PM , 52.PM , 10PM ) and seasons (summer, fall and winter). The analyzed samples were 

characterized in terms of PM total mass, total concentration of 20C - 32C  n-alkanes and carbon 

preference index, CPI , to quantify the relative abundance of odd versus even n-alkanes.  

As alternative to the conventional method based on peak integration, a chemometric approach based on 

computation of the Autocovariance Function ( EACVF ) was applied to extract homologous series 

property information. Two main parameters, EACVFCPI  and %series , estimating the n-alkanes relative 

abundance, are derived from EACVF  and proved useful chemical markers for tracking the biogenic 

and anthropogenic origins of organic input sources.  
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The investigated samples display a large variation in the n-alkanes relative abundance: the lowest 

values ( �%series 1-14%) were found in summer and the highest ( �%series 24-48%) in winter, most 

likely the result of higher emissions from urban ‘‘winter’’ sources. In addition, a considerable seasonal 

variation in EACVFCPI  values can be identified for all the sampling sites. The EACVFCPI  values are close 

to 1 ( �EACVFCPI 0.8-1.2) in the cold seasons, revealing a strong contribution from anthropogenic 

emissions, while the values show a greater spread ( �EACVFCPI 0.9-3) in the warm season, i.e. reflecting 

the influence of contribution from biogenic sources.  

The results obtained show the suitability of the EACVF  method in characterizing the n-alkane 

contribution and its applicability as a high-throughput method to analyze the huge amount of  data 

derived from environmental monitoring.�It�increases result reliability by deconvolving complex signals 

into its components and reduces subjectivity of human intervention to increase data quality.�

 
Introduction 

Identification of the various sources of particulate matter (PM) and assessment of their chemical 

composition are important steps in air quality management. It has been recognized that atmospheric 

aerosol consists of a complex mixture of hundreds of compounds belonging to many different chemical 

classes [1-4]. Despite this complexity, in environmental monitoring and assessment studies, to 

adequately represent a chemical signature of the possible organic source inputs to atmospheric PM, 

attention is focused on chemical markers [5-8]. 

Homologous series of n-alkanes is a subgroup of the carbonaceous material especially suited to tracing 

the origin and fate of different samples: this is because they can originate from both man-made and 

natural sources and are highly resistant to biochemical degradation [9]. In particular, two parameters 

are of particular relevance in describing n-alkane properties as chemical signature of input sources: i)  

the number of terms and ii) the abundance distribution of the odd/even terms in the series. The latter 

property, introduced by Bray and Evans [10], is commonly expressed by the carbon preference index, 

CPI , which describes the relative abundance of odd- versus even-numbered carbon chain n-alkanes. It 

is a key diagnostic parameter in tracking the origin of organic inputs to determine the biogenic and 

anthropogenic nature of n-alkane sources. In particular, anthropogenic emissions from utilization of 

fossil fuel generate a random distribution of odd vs. even terms yielding CPI  values close to 1. On the 

other hand, hydrocarbons originated from terrestrial plant material show a predominance of odd-

numbered terms showing 105��CPI  [7,11-17]. 
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Gas chromatography coupled with mass spectrometry (GC-MS) is the well-established technique of 

choice for identifying and quantifying the hydrocarbon fraction in complex mixtures of organics such 

as those present in aerosol samples [1,2,8]. The GC-MS signal obtained is usually a complex 

chromatogram, containing many resolved and unresolved peaks; for this reason, it is difficult to extract 

all the analytical information hidden in the chromatogram and hence the resulting estimate may be 

unreliable [18-20]. Moreover, the conventional chromatogram data processing method requires a great 

deal of labor and time since it needs to identify the n-alkane peaks by comparison to reference 

standards and MS spectra, integration of the identified peaks, computation of CPI  as a ratio of the sum 

of concentrations of the odd vs. the even numbered carbon alkanes [1,2,8,16].

Therefore, signal processing procedures are very helpful in transforming the GC data into usable 

chemical information: in particular, a computer-assisted method has to be the preferred high-

throughput approach since it reduces the labor and time required to handle the extensive amounts of 

data produced by environmental monitoring [18-21]. Among the many signal processing procedures 

developed to deal with this problem, a chemometric approach based on the AutoCovariance Function 

( ACVF ) has been widely applied to experimental chromatograms [22-27]. Recently, an extension of 

the approach has been developed to extract information on the n-alkane series — maxn  and CPI  — 

directly from the EACVF  computed on the acquired chromatographic signal [17]. 

In this paper, this signal processing procedure is applied to handle GC-MS signals of PM samples 

collected at three sites in Italy, over different seasons (2008): thanks to the method, information on the 

relative contribution of the homologous series, %series  and the CPI  values, can be directly estimated 

from the totEACVF  and  the PC computation takes just a few minutes. 

GC-MS signal processing procedure based on Autocovariance Function. A chemometric approach 

based on the AutoCovariance Function ( ACVF ) has been developed to interpret the complex signals 

and the extensive amount of data obtained from GC-MS analysis. In particular, the method has proved 

powerful in extracting accurate information on the properties of the homologous series present in the 

analyzed mixture [17, 23-25]. 

The GC analysis of a sample containing terms of a homologous series —  i.e. a PM sample containing 

n-alkane series —  generates a signal formed by an ordered sequence of  peaks whose retention time is 

described by:  

 maxR nnbncnt 0,1,2,3...==)( �  (1) 



� 4

where )(ntR  is the retention time of the thn  term of the series; c  the contribution a specific functional 

group makes to the overall retention; maxn  the number of components belonging to the series. The value 

bt ��  is the retention increment between the terms of the homologous series, e.g., the 2CH  retention 

time increment, in the strict case of linearized temperature programming of GC analysis [26].  A 

representative GC-MS signal of a PM sample is reported in fig. 1a (sample MI-17 of Table 1) where 

peaks of n-alkanes can be identified (arrows indicate the interdistance bt �� ). 

The chemometric approach studies the Autocovariance Function (Experimental ACVF , EACVF ) 

directly computed from the experimental chromatogram acquired in digitized form using the following 

expression [22]: 

)ˆ)(ˆ(1)(
1

YYYY
M

tEACVF kjj

kN

j
���� �

�

�
�            k=0,1,2,…M-1      (2) 

where jY  is the digitized chromatogram signal, Ŷ  its mean value, M the truncation point in the 

EACVF  computation. The correlation time �kt ��  is the interdistance between the subsequent 

digitized positions, and assumes discrete values with k  ranging from 0 to (M-1). 

The EACVF values represent the correlations between subsequent peaks in the chromatogram. They 

can be plotted as a function of the time interdistance t�  to obtain the EACVF  plot: a representative 

EACVF  plot computed on the GC-MS signal of fig. 1a is reported in fig. 1b. 

A theoretical model has been developed and an algorithm has been implemented to estimate properties 

of the homologous series directly from the EACVF values [17]. In particular, the following parameters 

can be obtained (detailed equations are reported in the Supporting Information): 

1. Presence of homologous series.  A sequence of GC peaks (following eq.1 due to terms of a 

homologous series) generates an EACVF  plot containing well defined deterministic peaks located at 

interdistance bt ��  and multiple values, bkt ��  (deterministic peaks indicated in fig. 1b). It can be 

shown that the EACVF  plot displays a simplified picture of the original signal, still retaining relevant 

diagnostic information able to reveal the presence of the series terms in the mixture. In fact, the power 

of the mathematic model lies in its ability to extract information on the ordered components, singling 

them out from the complexity of the signal. 

2. Number of terms of the homologous series. The height of the )bk(EACVF  peaks computed at 

bkt ��  for even k can be used to estimate the number, maxn  (signed peaks in Fig 1b). 

3. Contribution of homologous series. The ratio )(EACVF)b(EACVF 02  can be considered an 
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estimation of  the relative contribution of the homologous series terms to the total alkanes present in the 

sample. In fact, the EACVF  value computed at bt 2��  is related to the peak area of the homologous 

series components (arrow in Fig. 1b) while )(EACVF 0  is related to the total area of all the 

chromatographic peaks, i.e., total alkane components, if the SIM signal at zm = 57+71+85 is acquired. 

 4. Odd/even prevalence. To quantitatively describe the abundance distribution of odd and even terms 

of the series, the R  value is defined as the ratio: 

 
he

ho

a
a

R
,

,=  (3) 

where h,oa  and h,ea  are, respectively, the mean peak heights computed on the odd and even terms of the 

series. This R  value can be properly used to estimate the CPI  parameter, usually calculated on the 

same number of odd and even terms of the series. It is directly computed from the values of the 

EACVF  peaks at bt ��  and bt 2�� , since they retain information on the abundance of odd and even 

terms (see Supplementary Information). 

5. Deconvolution of UCM band component.  Experimental experience teaches that some PM samples 

— e.g., ambient aerosols with a high contribution from transportation or oil combustion — generate 

GC signals containing a large hump, known as the unresolved complex mixture (UCM), which 

interferes with the chromatographic separations of n-alkanes 24C	 . This arises from the presence of 

other similar saturated nonpolar compounds, i.e., branched alkanes and alkylated cycloalkanes, which 

are difficult to be resolved with GC and which display similar fragmentation patterns under mass 

spectrometry [2,7,13,16] (a representative chromatogram is reported in Fig. 2a, sample MI-20 in Table 

1). 

The EACVF  plot computed on these signals shows the large UCM hump superimposed on the 

deterministic peaks at kbt ��  diagnostic of the n-alkane sequence (Figure 2b, upper solid line). 

Nevertheless, the EACVF  method makes it possible to deconvolve the signal into the two components: 

the UCM  ( UCMEACVF , dashed line in Fig 2b) and separated signal ( resEACVF , bottom bold line in Fig 

2b) [26]. This is due to the intrinsic statistical property of the EACVF : i.e. it is additive when 

computed on independent variables such as the signals of UCM  and resolved peaks [22]. The 

resEACVF  plot shows well-defined deterministic peaks at kbt ��  from which a reliable computation 

of EACVFCPI  parameter can be achieved. 

As a simplified procedure, the height of the EACVF  peak at bt 2�� , calculated from the peak 
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baseline (bold arrows in Fig. 2b), can be proposed as an approximation of the )k(EACVFres 2  value and 

is used to estimate the relative abundance of alkane series ( %series ). The accuracy of this 

approximation was verified by comparing the EACVF  results with the values computed using the 

traditional procedure based on computation performed on the integrated area of the identified n-alkane 

peaks. 

 

Methods

Sample collection.  The PM samples were collected at three locations in northern Itally. 38 samples 

were collected in Milan (MI;�45°31’19”N, 9°12’46”E) a large urban area: the sampling site was located 

at “Torre Sarca”, where the University of Milano-Bicocca is located, an area with high motor vechicle 

traffic. Oasi Bine (OB; 45°08’40’’N, 10°26’08’’E) is located far from any big city centers, the nearest 

cities of Cremona and Mantova are about 15-20 km away: it represents the rural environment (22 

sampled PMs). Other filters (18 samples) were collected at Alpe San Colombano (ASC, 2280 m. a.s.l; 

46°27’18’’N 10°18’50’’E), a remote, high altitude site in the Alps. 

At all the sampling sites, PM was collected by using low volume gravimetric samplers (flow 38.33 

l/min: HYDRA sampler, FAI Instruments, Rome Italy). The samplers had two channels, each equipped, 

respectively, with a 2.5 m
  and a 1 m
  cutpoint inlet so that the 52.PM  and 1PM  were collected daily 

(24 h), simultaneously on two Teflon filters (47 mm Ø, 2 μm, Pall Gelman, USA). 1PM  and 52.PM  
were sampled in MI, OB and ASC during the summer (S: June-August 08), fall (F: November 08: only 

MI and OB) and winter 2008-2009 (W: December 08-Janaury 09). In MI a 10 m
  cutpoint inlet was 

also used to collect some 10PM  samples during the summer and winter campaigns. A list of the studied 

samples is reported in Table 1: samples were categorized according the sampling site (1st column), 

particle size (2nd  column) and seasonality (3rd column). Table 1 contains only the first 22 analyzed 

samples (from MI-1 to MI-22); for the complete data set of the analyzed samples, see the Supporting 

Informations section (Table S1).  

Before and after sampling, filters were 48h-equilibrated (35% RH, T ambient) and weighted with a 

microbalance (1μg precision, model M5P-000V001 Sartorius, Germany) to measure the particle 

concentration (μg m-3). All sampled filters were then preserved in the dark at –20°C (to avoid 

photodegradation and evaporation processes) for the chemical analyses. 



� 7

PM sample preparation and extraction. Filters were prepared in order to perform different chemical 

analysis on the same samples. From each daily filter, 4 spots were cut: 1 spot was used for the 

determination of both n-alkanes and polycyclic aromatic hydrocarbons (PAHs) (results not reported) by 

GC-MS. In order to obtain enough PM mass for trace organic chemical analyses such as n-alkanes and 

PAHs, 3 daily filters were usually pooled together. 

For n-alkane (and PAH) analysis, the PM filters were extracted in dichloromethane ( 22ClCH , purity � 

99.8%, Ultra Resi-Analyzed, J.T. Baker) in an ultrasonic bath (Sonica®, Soltec). PM samples were 

placed in an amber glass vial containing 2 ml of 22ClCH  and ultrasonically extracted once for 20 

minutes. The extract was then filtered through a PTFE syringe filter (cut 0.45 μm, Alltech) to remove 

insoluble particles. The extraction solvent was evaporated under a gentle stream of nitrogen ( 2N , 

purity � 99.9999%, Sapio) until dry. The residue was dissolved in 200 l
  of isooctane ( 88HC , purity � 

99.5%, for residue analysis, Fluka), transferred to a 1 ml amber glass vial with PTFE septa and kept at 

–20°C  in the dark to prevent losses and photochemical reactions until the GC-MS analysis. 

PM sample Gas Chromatograpy/Mass Spectrometry (GC/MS) analysis. The extracts were 

analysed by Gas Chromatography (GC) coupled with Mass Spectrometry (MS). An Agilent 6850 GC 

was used equipped with autosampler and a split/splitless injector. The separation was performed on a 

DB-XLB capillary column (length 60 m, i.d. 250 μm, film 0.25 μm; J&W Scientific).  The injector was 

kept at 300°C and 2 l
  of extract were injected in splitless mode. Helium (He; purity 99.999%, Sapio) 

was used as carrier gas with a constant flow of 1 ml/min. The n-alkane analysis was performed under 

the following temperature programme: (1) temperature ramp from 60° to 300°C at 6° C min-1, (2) 

isothermal hold at 300°C for 20 min. The transfer line was kept at 305°C.  

A quadrupole mass spectrometer (5973 Network Mass Selective Detector, Agilent Technologies) was 

used and operated at 70 eV in the electron ionization (EI) mode. The chromatograms were acquired in 

the SIM (Single Ion Monitoring) mode by monitoring 57, 71 and 85 zm  values during the whole 

chromatographic run. 

 

Identification and quantification of n-alkanes.  A standard mixture of n-alkanes ( 14C - 32C ) was 

prepared from single solid standards purchased from Alltech and diluted in isoctane ( 88HC ; purity 

	99.5%, for residue analysis, Fluka).  This mixture was then diluted to obtain a concentration range of 

40-0.02 mlg
 to be used to compute the calibration curve for each n-alkane. The external standard 
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method was used for n-alkane quantification based on the GC-MS signal obtained from the sum of  

three zm  values (57, 71 and 85). The calibration curves obtained for the 14C - 32C  n-alkanes show 

good linearity with intercept values close to zero and regression coefficients 2R  higher than 0.995.  

The method detection limit ( LODX ) was calculated from analysis of blank field filters (filters not used 

in PM sampling but submitted to the same manipulation as the samples used in field and laboratory 

experiments): LODX values were computed as the mean signal of all analysed blank field filters (n=7) 

plus three times the deviation standard. The detection limit ranged from 0.07 3mng for n-eicosane 

( 20C ) to 0.08  3mng for n-dotriacontane ( 32C ) when concentration is reported to the average sampling 

volume of 41.4 3m (the pool of 3 different quarters of daily filters). The obtained detection limits were 

compatible with monitoring of n-alkane comcentrations in PM samples. 

The n-alkanes were identified by matching the retention times of each peak in the sample 

chromatogram  with those of a standard solution. Interfering coeluition problems were evaluated in the 

samples by comparing mass spectra of the samples with those of the standards as well as with those 

from the NIST mass spectra library (NIST MS Search r. 2.0). Problems of interference were only found 

for the n- 19C peak at  zm =57. Therefore, the 19C  peak area was quantified in standard solutions and 

samples by using the sum of zm =71 and  zm =85, excluding the zm =57 contribution. 

 

Computations on GC/MS signals. The algorithms used for the signal processing of the GC-MS data 

are written in the MATLAB ® (The MathWorks, Inc., R2007b) package. Computations were performed 

on a 1.53 GHz (256 RAM), AMD Athlon personal computer. 

The first step of data handling consisted of a procedure to linearize the chromatographic signal to 

obtain constant retention increments between subsequent terms of the homologous series (eq. 4). It is a 

retention time alignment algorithm based on comparison vs. n-alkane standard mixture [26]. 

The Autocovariance Function was then numerically calculated from the linearizated chromatogram, 

according to eq. 1. A MATLAB  algorithm was implemented, based on eqs. 5 and 10, to directly 

estimate the parameters maxn , EACVFCPI  and %series  from the EACVF  computed on a properly 

selected region of the chromatogram corresponding to the 14C - 32C  n-alkanes. 

 
Results and Discussion 

Under the applied GC-MS analysis conditions, the n-alkanes ranging from 14C  to 32C  can be identified 



� 9

in the investigated PM samples. However, the lighter 14C - 19C  terms were found at a low concentration 

level, lower than the detection limit for more than 50% of the samples. It must be noted that the first 

region of the chromatogram, where 14C - 19C  n-alkanes elute, was quite disturbed due to coelution of 

other interfering compounds. Moreover, the lighter n-alkanes with �C  19 are generally considered too 

volatile to be accurately determined in PM samples as they incur evaporative losses during the 

sampling and analytical procedures [6,11,16]. 

For all the above reasons, the terms ranging from 20C  to 32C were investigated in the present study as 

potential tracers for biogenic/antropogenic emissions: they were detected in all the analyzed PM 

samples, displaying a concentration level higher than the detection limit for most of the samples 

(>80%). 

 

Spatial and seasonal variations of n-alkane content in PM samples. The concentrations of each 

20C - 32C  term were added together to obtain the total value 3220 CC ��  which was then used as an 

estimate of the n-alkane content in airborne particulate samples (reported in Table 1, 5th column). In 

addition to the concentration level ( 3mng ), a relative %CC 3220 ��  value was also computed, as the 

ratio between the 3220 CC �� values and the particle concentrations: it represents the partial contribution 

of n-alkanes to the PM total mass (Table 1, 6th column). 

To investigate the variation in total n-alkane 3220 CC ��  concentrations for different sampling sites, 

seasons and particle sizes ( 52.PM , 1PM , 10PM ), the mean values were computed (± mean SD, 

calculated as nSD )  and reported in Table 2. 

Lower concentrations were found in summer for the 52.PM  samples collected in all the 3 sites:  

3220 CC �� values were 8.8 (± 0.9) 3mng  in MI, 8.9 (± 1.1) 
3mng in OB and  5.9 (± 0.4) 3mng  in 

ASC.  In summer, the concentrations observed at the urban site were of an order of magnitude similar 

to those observed at clean rural and remote sites. In fact, in Northen Italy, summer is characterised by 

conditions of atmospheric instability which facilitate atmospheric transport, thus making the fine PM 

concentrations uniform throughout the entire region [28]. In this season, the high altitude remote site 

(ASC) is within the boundary layer and therefore affected by atmospheric transport from the plains. 

The highest n-alkane concentrations were encounterd during fall and winter in the urban site (MI), 

ranging from 95.9 (± 4.7) 3mng  in 1PM  samples (fall)  to 194.9 (± 20.5) 3mng  in 10PM  samples 

(winter). This result is consistent with a restricted atmospheric transport of PM from source areas (like 
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the city) to near ground (like rural area) due to the stable atmospheric conditions present in fall and 

winter that confine vertical distribution of pollutants to the first hundred meters of the atmosphere [29]. 

The partial contribution of n-alkanes to the PM total mass ( %CC 3220 �� ) is low since it falls within the 

0.035- 0.566% range (6th column in Table 1).  The obtained results are consistent with those found for 

10PM  in urban sites in winter in other studies: e.g. 0.05-0.15% ( %3324 CC �� ) Vienna [30], 0.26% 

( %3319 CC �� ) Taiwan [12]. Taiwan values are like the ones we measured in MI (0.27%  for winter 

PM10 samples). It must be noted that, althougth the n-alkanes represent only minor costituents of PM, 

they contain very relevant information, helpful for input source characterization. 

The %CC 3220 ��  value has the same seasonal trend as 3220 CC ��  concentrations: minimum values 

were encountered in summer in all the 3 sites, with maximum in fall and winter. %CC 3220 �� values 

were 0.081 (± 0.09) % in MI, 0.113 (± 0.021) % in OB and 0.211  (± 0.056) in ASC for summer 52.PM  

samples: for the urban site (MI), fall (0.308 %) and winter (0.264 %) values were more than 3 times 

those found in summer. Such seasonality could be a result of the higher emissions from combustion, a 

major source of n-alkanes in the cold seasons [7,8,30]. 

 
Particle size variations of n-alkane content in PM samples.  Since different cutpoint inlets were 

simultaneously used for collecting PM samples (2.5 m
  and 1 m
  in all the sampling sites and 10 m
  

cutpoint in MI), the obtained results make it possible to investigate n-alkane particle size distribution. 

The two PM dimensional fractions 1PM  and 52.PM  of fine PMs showed quite similar n-alkane 

concentrations (Table 2, 7th and 9th columns). When the n-alkane concentrations were measured in 

1PM  and 52.PM  samples collected simultaneously (from the same site, on the same days), the 

3220 CC ��  values found in 1PM  were on the average 68.5% (± 4.2%) of those in 52.PM . That means 

that about 70% of the n-alkane concentration in 52.PM  samples is really found in the finest 

submicrometric PM fraction ( 1PM ). 

10PM  was also sampled and analysed in MI site (Table 2, 3rd and 4th columns). In this case, the ambient 

concentration of n-alkanes measured in 10PM  was meanly 55.2% (± 5.3%) of that in simultaneously 

sampled 52.PM . By sampling fine PM ( 52.PM ), about 50% of total n-alkane concentration in 10PM  is 

taken into account: the other half (50%) is encountered in the coarse fraction 10PM - 52.PM  This is 

important to keep in mind when comparing the concentration of n-alkanes in atmospheric PM, referring 

to different PM dimensional fraction.  



� 11

Compared to these results, the literature reports slightly higher abundances of n-alkanes in the fine PM. 

For example, Bi [13] assessed that more than 80% of the total concentrations of n-alkanes ( 15C  to 35C ) 

were accumulated in particles <1.5 μm, both in urban and rural sites of Guangzhou (China). A 

distribution of the n-alkanes ( 19C  to 33C ) in 101 PMPM is reported in the range of 0.66 to 0.88 for the 

urban site of Taiwan [12]. 

 

n-alkane distribution: carbon preference index (CPI).  The CPI  parameter was computed using the 

traditional procedure based on peak integration of the 3320 CC �  n-alkane GC-MS signal to describe 

their abundance distribution [10] ( tradCPI , 7th column in Table 1). Most of the analyzed samples show 

1
CPI  values indicating strong contribution of emissions from urban ‘‘winter’’ sources, such as 

domestic heating (e.g., natural gas, oil, and wood combustion) generating a random distribution of 

odd/even terms of the series. On the other hand, the summer samples show higher CPI  values (1.5-3.5) 

due to the higher contribution of the odd terms 27C , 29C  and 31C  originating from plant material which 

yield maximum emissions during the vegetative season [5, 30]. The means (± mean SD) of CPI  values 

were computed for the three sampling sites at different seasons (Table 2, 5th, 10th columns).  Mean 

summer CPI  values for fine PM samples ( 1PM  and 52.PM ) are 1.5 in MI and 1.2 in OB and ASC. A 

higher value was encountered for the 10PM  sample, i.e. 2.5 (0.7) in MI. This would suggest that the 

main contribution to n-alkanes from plant material is found in the coarse PM fraction, and this is 

resonable as it is supposed a primary source of this is mechanical leaf abration (plant debris). In the 

literature, it is generally reported that the n-alkane of natural origin are predominantly found in the 

coarse PM, while those of anthropogenic origin tend to be found in the fine fraction [12,31]. 

Data handling of GC-MS signals using the EACVF  method. The chemometric method was applied 

to all chromatographic signals from GC-MS analysis of the PM samples. The aim was to test the 

method’s ability to characterize the n-alkane contribution, in terms of CPI , and its applicability as an 

high-throughput method for analysis of the huge amounts of  data from environmental monitoring.�In 

comparison with the traditional procedure based on computation performed on integrated 

chormatographic peaks, the EACVF  method displays three fundamental advantages: 

- it saves time and labor in data handling, thus increasing throughput and flexibility; 

- it increases result reliability by deconvolving complex signals into its components;  

- it reduces the subjectivity of human intervention, thus improving data quality. 
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These properties were investigated on a wide variety of samples in terms of sample particle size ( 1PM , 

52.PM , 10PM ), seasonality (winter vs. summer), and site location (urban vs. suburban). 

The EACVF  was directly computed on the GC-MS signal (SIM signal at zm/  values of 57, 71 and 

85): the region 30-60 min was selected, since it contains the  3220 CC �  n-alkanes (Figure 1a,  sample 

MI17).  In comparison with the complex original GC signal, the EACVF  plot (Figure 1b) shows a 

simplified pattern characterized by a sequence of deterministic peaks located at =t� 2.8 min, i.e. the 

retention incrementen between subsequent terms of the the n-alkane series ( bt =� , eq.1) under the 

experimental GC conditions used. Such EACVF  peak is diagniostic, directly identifying the presence 

of  n-alkanes and hence there is no need to compare them with the GC retention times of the reference 

standards ( 3220 CC � ). 

The main information on n-alkane series are directly extracted from the values of the EACVF  

computed  at kbt =� , for chracteristic k  values. 

The number maxn  of n-alkanes present in the sample can be directly estimated from the EACVF  peaks 

at kbt =�  for even k : for all the investigated GC-MS signals the maxn  values were correctely 

estimated as 14�maxn .  

An )(EACVF)b(EACVF 02  ratio was computed to estimate the relative contribution of the 

homologous series terms to the total amount of alkanes ( %series , 10th column in Table 1).  

The abundance distribution of the odd/even terms, can be quantified by computing EACVFCPI  values 

directly from EACVF   using the values at bt =� and bt 2=�  ( EACVFCPI , 8th column in Table 1).  

Many investigated signals display a high contribution of the UCM hump (Fig. 2a) because, in an effort 

to obtain a fast analytical procedure for n-alkane determination, the samples were obtained by a simple 

solvent extraction, without any extract purification. These conditions may yield an ambigous n-alkane 

characterization as a consequence of the coelution yielding of complex superimposed signals: this is 

particularly true for samples containing low abundance n-alkanes as expressed by %series  values lower 

than 8. These chromatograms were handled with the complete procedure for deconvolving the UCM 

contribution from totEACVF  and computing EAVFCPI  from resEACVF  ( EACVFCPI  marked by a star in 8th 

column in Table 1). 

Reliability of the EACVFCPI data. The accuracy of the obtained results was checked by comparing the 

EAVFCPI  with tradCPI  values obtained using the two procedures ( tradCPI vs. EACVFCPI , 7th, 8th columns 
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in Table 1) and estimating the relative estimation error ( %� , 9th column in Table 1).  

In general, a good agreement was achieved between the two procedures:  the relative error %�  was 

lower than 15% for 70 of the 76 investigated samples and lower than 5% for 22 of them. The 

exceptions are 6 PM samples for which different tradCPI  and EACVFCPI  values were estimated ( 	%�  

15%). They correspond to the samples containing the lowest n-alkane abundance ( �%series 4) and 

which generate complex GC signals showing coeluting components and superimposed UCM band: this 

makes it very difficult to integrate the n-alkane peaks and to deconvolute the EACVF  plot to prevent 

an unbiased estimation of the tradCPI  and EACVFCPI  values. 

It must be noted that the whole procedure is reliable in estimating accurate parameters, since it also 

includes retention time rescaling and UCM component subtraction: all these results are directly 

obtained from the whole chromatographic signal by an algorithm requiring just a few minutes of PC 

computation time.  

 

Characterization of the PM samples by totEACVF method. The parameters EACVFCPI  and %series  

derived from EACVF  for each PM sample were investigated to extract information on source 

contributions to n-alkanes (plots reported in Figs. 3a and 3b).  The highest PM classification is based 

on seasonal differences and is nearly independent of sampling site and particle size. Such a 

characterization is due to large variations in the relative abundance of n-alkanes, as represented by 

%series  values ranging from 1% to 48%: the lowest values ( �%series 1-14%) were found in summer 

and the highest ( �%series 24-48%) in winter, most likely the result of higher emissions from urban 

‘‘winter’’ sources [4,7,8]. In addition to this classification, a considerable seasonal variation in 

EACVFCPI  values can be identified: EACVFCPI  values close to 1 ( �EACVFCPI 0.8-1.2) were found in the 

cold season for all the sampling sites, revealing a strong contribution from anthropogenic emissions. A 

greater spread in EACVFCPI  values ( �EACVFCPI 0.9-3) was observed in the warm season showing the 

influence of the contribution from biogenic sources in all the sampling sites.

This classification is sharper if the same PM dimensional fraction is considered: data for 52.PM  are 

reported in Fig. 3b. The values obtained show strong seasonal differentiation between samples 

collected during the summer — and which contain lower n-alkane concentrations ( �%series 1-11%) 

— and those collected in the fall-winter — containing a significantly higher n-alkane contribution 
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( �%series 18-43%). In addition to this classification, a considerable seasonal variation in EACVFCPI  

values can be identified for the 52.PM  samples.  

In conclusion, the presented results provide experimental evidence that the EACVF  procedure is 

robust, able to extract reliable information on the n-alkane distribution from direct handling of complex 

GC-MS chromatograms, such as SIM and TIC signals, also containing superimposed UCM hump: it 

can increase GC-MS analysis throughput and flexibility without sacrificing data quality or reliability of 

the results.  

Therefore, it can be proposed as a reliable alternative to the cumbersome, and time-consuming, 

procedure based on chromatogram integration thus offering simple, quick characterization of n-alkane 

distribution patterns. This property is especially helful for characterizing the distribution patterns of 

homologous series as chemical tracers in organics input sources to be used whenever attempting to 

identify the origin of an aerosol for the purpose of pollution control or abatement. 
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Table 1. Properties of 22 investigated PM samples collected in the urban site of Milan (MI), 
categorized according to the particle size ( 52.PM , 1PM , 10PM , 2nd  column). The reported parameters 
are: PM concentration ( 3mng , 4th column),  n-alkane concentration ( 3mng , 5th column) and relative 
value to the PM amount  (6th column), CPI  values computed according to the traditional procedure 
( tradCPI , 7th column) and the EACVF method ( EACVFCPI ,8th column), %�  (9

th column) to estimate the 
relative estimation error of EAVFCPI  vs. tradCPI  values and %series (10th column) which is the relative 
contribution of the homologous series terms to the total amount of alkanes.  

EACVFCPI values marked by star in the 8th column indicate EACVFCPI  values computed from resEACVF  
using the complete procedure. 

 
 
 
 
 
 
 
 

Sample xPM Season PM 
(ng/m3)

�C20-C32 
(ng/m3)

�C20-C32/ 
PM % tradCPI EACVFCPI %� %series

MI-1 52.PM  SUMMER 13.2 4.58 0.035 1.48 1.70* 14.5 4.10 
MI-2 52.PM  SUMMER 5.10 3.86 0.076 1.47 1.02* 30.5 2.76 
MI-3 52.PM  SUMMER 4.50 6.22 0.138 1.27 1.36 7.10 4.60 
MI-4 52.PM  SUMMER 7.60 8.11 0.107 1.38 1.00* 27.6 2.21 
MI-5 52.PM  SUMMER 10.7 7.76 0.073 1.61 1.87* 15.9 4.04 
MI-6 52.PM  SUMMER 14.9 7.13 0.048 1.43 1.60* 11.7 3.29 
MI-7 52.PM  SUMMER 15.3 8.60 0.056 1.56 1.50 3.95 6.93 
MI-8 52.PM  SUMMER 15.3 9.46 0.062 1.48 1.38 6.67 6.61 
MI-9 52.PM  SUMMER 12.4 7.73 0.062 1.20 1.05 12.5 8.85 

MI-10 52.PM  SUMMER 8.80 9.63 0.109 1.64 1.48* 9.75 7.00 
MI-11 52.PM  SUMMER 11.8 16.0 0.136 1.69 1.45* 14.2 8.70 
MI-12 52.PM  SUMMER 14.1 10.5 0.074 1.89 1.71* 9.60 8.69 
MI-13 52.PM  SUMMER 18.3 14.2 0.078 1.88 1.61* 14.1 11.1 
MI-14 1PM  SUMMER 8.30 8.89 0.107 1.31 1.17* 10.7 9.01 
MI-15 1PM  SUMMER 15.3 11.3 0.074 1.77 1.71 3.25 6.10 
MI-16 1PM  SUMMER 12.8 9.40 0.073 1.59 1.62 1.64 6.29 
MI-17 1PM  SUMMER 5.40 28.2 0.522 1.23 1.13 8.10 46.2 
MI-18 1PM  SUMMER 8.10 5.78 0.071 1.76 1.53* 13.0 6.02 
MI-19 1PM  SUMMER 9.50 5.41 0.057 1.68 1.54* 8.20 8.02 
MI-20 10PM  SUMMER 35.4 23.0 0.065 3.01 2.70* 10.2 32.7 
MI-21 10PM  SUMMER 19.2 16.9 0.088 3.38 2.98* 11.9 23.1 
MI-22 10PM  SUMMER 29.7 13.5 0.046 1.18 1.14 3.31 13.9 
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Table 2. Seasonal variation of  PM ( 3mg
 ), n-alkane concentrations ( 3220 CC �� : 3mng ) and 
tradCPI  values for different particle sizes ( 52.PM , 1PM , 10PM ) in urban (MI), rural (OB) and high 

altitude remote (ASC) sites. The mean values are reported (± mean SD, calculated as nSD ).  
 

 

 

10PM Samples 52.PM Samples 1PM  Samples 52.PM 1PM  
Samples �

PM  
(μg/m3) 

�C20-C32  
(ng/m3) tradCPI  PM  

(μg/m3)
�C20-C32  
(ng/m3) 

PM  
(μg/m3)

�C20-C32  
(ng/m3) tradCPI  

 

SUMMER 31.3  
(± 1.3) 

17.8  
(± 2.8) 

2.5  
(± 0.7) 

16.8  
(± 0.6)

8.8  
(± 0.9) 

10.4  
(± 0.6)

8.2  
(± 1.0) 

1.5  
(± 0.0) 

FALL - - - 46.3  
(± 3.6)

124.2  
(± 8.8) 

32.9  
(± 2.4)

95.9  
(± 4.7) 

1.2  
(± 0.0) MI 

WINTER 73.4  
(± 6.7) 

194.9  
(± 20.5) 

1.1  
(± 0.1) 

54.5  
(± 3.5)

124.2  
(± 14.0) 

34.2  
(± 3.6)

116.2  
(± 36.7) 

1.1  
(± 0.0) 

 

SUMMER - - - 15.5  
(± 0.7)

8.9  
(± 1.1) 

10.8  
(± 0.5)

8.5  
(± 0.5) 

1.2  
(± 0.1) 

FALL - - - 31.8  
(± 4.0)

38.6  
(± 2.7) 

17.3  
(± 2.3)

26.1  
(± 5.9) 

1.5  
(± 0.2) OB

WINTER - - - 32.4  
(± 2.3)

62.4  
(± 13.9) 

19.2  
(± 1.6)

34.0  
(± 6.8) 

1.0  
(± 0.0) 

 

SUMMER - - - 5.9 
(± 1.1)

5.9  
(± 0.4) 

3.6  
(± 0.4) - 1.2  

(± 0.1) ASC
WINTER - - - 2.9  

(± 0.3)
7.5  

(± 1.4) 
2.4  

(± 0.4)
5.0  

(± 1.3) 
0.8  

(± 0.0) 
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Figure captions 

Figure 1: GC-MS signal of a PM sample with high n-alkane content (sample MI17, series%=6). 
Fig. 1a: SIM signal of the GC-MS chromatogram monitored at 857157=/ ��zm . The arrow in the 
peak at bt 2�� indicates the )k(EACVFres 2 value as the basis for estimating the %series . 
Fig. 1b: EACVF  plot computed on the chromatogram: lower solid line. 
The arrows identify the peaks at minbt 1.80==�  and minbt 3.60=2=�  diagnostic in revealing the 
presence of the series terms. 

Figure 2: GC-MS signal of a PM sample with low n-alkane content (sample MI20, series%=18). 
Fig. 2a: SIM signal of the GC-MS chromatogram monitored at 857157=/ ��zm ;  
Fig. 2b: EACVF  plot computed on the chromatogram: upper solid line; UCMEACVF  plot computed on 
the unresolved component (UCM): dashed line; resEACVF  plot computed on the resolved component of 
the chromatogram: lower bold line. 
The arrows in the peaks at bt 2��  indicate the )k(EACVFres 2 value as the basis for estimating the 

%series  value. 
 
Figure 3: Characterization and classification of the different PM samples based on the parmeters 
computed by EACVF : relative abundance of the n-alkane series ( %series  ) and EACVFCPI  values. 
Fig. 3a: data of all the PM samples investigated (76 samples); 
Fig. 3b: data of PM samples having the same dimensional fraction (46 52.PM  samples). 
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Supporting Information 

Supporting Information contains the following data: 

Table S1: is the extendend form of the Table 1 in the main text containing the 
complete data set of all the 76 analyzed PM samples. 
Data treatment: is a detailed description of the mathematical equations used in the 
developed algoritm for computing the properties of the homologous series directly 
from the EACVF values.



Sample xPM Season PM 
(ng/m3)

�C20-C32 
(ng/m3) �C20-C32/PM % tradCPI EACVFCPI %� %series

MI-1 52.PM SUMMER 13.2 4.58 0.035 1.48 1.70* 14.5 4.10 
MI-2 52.PM SUMMER 5.10 3.86 0.076 1.47 1.02* 30.5 2.76 
MI-3 52.PM SUMMER 4.50 6.22 0.138 1.27 1.36 7.10 4.60 
MI-4 52.PM SUMMER 7.60 8.11 0.107 1.38 1.00* 27.6 2.21 
MI-5 52.PM SUMMER 10.7 7.76 0.073 1.61 1.87* 15.9 4.04 
MI-6 52.PM SUMMER 14.9 7.13 0.048 1.43 1.60* 11.7 3.29 
MI-7 52.PM SUMMER 15.3 8.60 0.056 1.56 1.50 3.95 6.93 
MI-8 52.PM SUMMER 15.3 9.46 0.062 1.48 1.38 6.67 6.61 
MI-9 52.PM SUMMER 12.4 7.73 0.062 1.20 1.05 12.5 8.85 
MI-10 52.PM SUMMER 8.80 9.63 0.109 1.64 1.48* 9.75 7.00 
MI-11 52.PM SUMMER 11.8 16.0 0.136 1.69 1.45* 14.2 8.70 
MI-12 52.PM SUMMER 14.1 10.5 0.074 1.89 1.71* 9.60 8.69 
MI-13 52.PM SUMMER 18.3 14.2 0.078 1.88 1.61* 14.1 11.1 
MI-14 1PM SUMMER 8.30 8.89 0.107 1.31 1.17* 10.7 9.01 
MI-15 1PM SUMMER 15.3 11.3 0.074 1.77 1.71 3.25 6.10 
MI-16 1PM SUMMER 12.8 9.40 0.073 1.59 1.62 1.64 6.29 
MI-17 1PM SUMMER 5.40 28.2 0.522 1.23 1.13 8.10 46.2 
MI-18 1PM SUMMER 8.10 5.78 0.071 1.76 1.53* 13.0 6.02 
MI-19 1PM SUMMER 9.50 5.41 0.057 1.68 1.54* 8.20 8.02 
MI-20 10PM SUMMER 35.4 23.0 0.065 3.01 2.70* 10.2 32.7 
MI-21 10PM SUMMER 19.2 16.9 0.088 3.38 2.98* 11.9 23.1 
MI-22 10PM SUMMER 29.7 13.5 0.046 1.18 1.14 3.31 13.9 
MI-23 52.PM FALL 48.2 112 0.232 1.35 1.16 13.8 20.3 
MI-24 52.PM FALL 36.8 120 0.326 1.22 1.16 5.00 20.3 
MI-25 52.PM FALL 39.3 141 0.359 1.16 1.15 0.95 23.1 
MI-26 1PM FALL 43.1 104 0.242 1.32 1.17 11.3 19.2 
MI-27 1PM FALL 27.8 95.6 0.344 1.18 1.17 0.89 19.3 
MI-28 1PM FALL 26.9 87.8 0.326 1.13 1.17 3.33 24.9 
MI-29 10PM WINTER 93.3 198 0.212 1.06 1.17 10.2 31.1 
MI-30 10PM WINTER 39.7 158 0.398 0.98 0.86 12.1 24.1 
MI-31 10PM WINTER 118 229 0.194 1.17 1.16 1.00 30.6 
MI-32 52.PM WINTER 64.7 92.6 0.143 1.28 1.11 13.1 43.5 
MI-33 52.PM WINTER 33.7 85.1 0.253 1.15 1.15 0.41 32.5 
MI-34 52.PM WINTER 122 446 0.366 1.03 1.18* 15.0 35.5 
MI-35 52.PM WINTER 56.8 163 0.286 0.99 0.85 13.6 27.2 
MI-36 52.PM WINTER 35.4 132 0.372 1.17 1.17 0.15 30.6 
MI-37 1PM WINTER 59.0 189 0.321 1.19 1.13 4.99 48.2 
MI-38 1PM WINTER 34.0 72.7 0.214 1.11 1.14 2.41 28.2 
OB-1 52.PM SUMMER 13.1 8.39 0.064 1.37 1.55 13.4 8.99 
OB-2 52.PM SUMMER 7.60 7.99 0.105 1.34 1.49* 11.0 5.73 
OB-3 52.PM SUMMER 2.30 6.06 0.263 0.95 0.96 1.34 6.26 
OB-4 52.PM SUMMER 4.40 4.28 0.097 1.10 1.01* 8.09 2.83 



Table S1. Properties of the investigated PM samples, categorized according to the sampling site 
(MI, urban; OB, rural; ASC, remote sites, 1st column), particle size ( 52.PM , 1PM , 10PM , 2nd

column) andseasonality (3rd column). The reported parameters are: PM concentration ( 3mng , 4th

column),  n-alkane concentration ( 3mng , 5th column) and relative value to the PM amount  (6th

column), CPI values computed according to the traditional procedure ( tradCPI , 7th column) and 
the EACVF method ( EACVFCPI ,8th column), %� (9th column) to estimate the relative estimation 
error of EAVFCPI  vs. tradCPI values and %series (10th column) which is the relative contribution of 
the homologous series terms to the total amount of alkanes.

OB-5 52.PM SUMMER 9.00 10.0 0.111 1.27 1.45 14.1 8.96 
OB-6 52.PM SUMMER 13.5 12.7 0.094 1.26 1.08 14.2 7.37 
OB-7 52.PM SUMMER 9.90 11.0 0.111 1.18 1.06* 10.3 7.05 
OB-8 1PM SUMMER 6.20 9.26 0.149 0.95 0.93 1.37 21.2 
OB-9 1PM SUMMER 7.10 7.49 0.105 0.90 0.92 2.12 17.9 

OB-10 1PM SUMMER 9.50 8.70 0.092 1.01 1.09 8.34 13.8 
OB-11 52.PM FALL 34.3 35.7 0.104 2.99 2.54 15.0 33.7 
OB-12 52.PM FALL 14.6 35.9 0.246 1.47 1.25 14.8 32.7 
OB-13 52.PM FALL 27.0 44.0 0.163 1.27 1.17 7.70 35.2 
OB-14 1PM FALL 14.7 24.3 0.165 1.19 1.13 4.93 30.7 
OB-15 1PM FALL 8.30 16.9 0.203 0.97 0.88* 9.10 21.6 
OB-16 1PM FALL 15.3 37.1 0.242 1.14 1.16* 1.62 36.5 
OB-17 52.PM WINTER 38.0 74.5 0.196 1.07 1.18 10.5 35.5 
OB-18 52.PM WINTER 22.0 34.7 0.158 0.96 0.86 10.2 27.1 
OB-19 52.PM WINTER 55.0 78.0 0.142 1.10 1.19 8.53 42.1 
OB-20 1PM WINTER 28.0 43.9 0.157 1.04 1.18 13.6 34.0 
OB-21 1PM WINTER 11.0 21.0 0.191 0.96 0.86 9.91 24.9 
OB-22 1PM WINTER 29.0 37.0 0.128 1.14 1.16 2.15 33.4 
ASC-1 52.PM SUMMER 7.10 8.05 0.113 1.04 1.04 0.31 8.60 
ASC-2 52.PM SUMMER 4.60 6.77 0.147 0.96 0.94 1.90 6.79 
ASC-3 52.PM SUMMER 1.40 6.97 0.498 1.00 1.05 4.84 4.27 
ASC-4 52.PM SUMMER 1.50 6.19 0.413 0.97 0.91 6.31 4.39 
ASC-5 52.PM SUMMER 3.10 6.20 0.200 1.01 1.08 6.52 4.67 
ASC-6 52.PM SUMMER 6.00 5.51 0.092 1.43 1.84 28.4 3.66 
ASC-7 52.PM SUMMER 8.20 3.73 0.045 1.67 2.05 22.9 1.76 
ASC-8 52.PM SUMMER 9.20 4.68 0.051 1.37 1.07 21.8 2.19 
ASC-9 52.PM SUMMER 1.50 4.97 0.331 1.29 1.06 17.6 1.35 

ASC-10 52.PM WINTER 2.84 6.32 0.223 0.88 0.93* 6.12 31.5 
ASC-11 52.PM WINTER 2.18 5.76 0.264 0.80 0.91* 14.3 18.4 
ASC-12 52.PM WINTER 2.06 11.7 0.566 0.82 0.93* 12.3 19.4 
ASC-13 1PM WINTER 1.55 5.04 0.325 0.80 0.90* 12.9 28.9 
ASC-14 1PM WINTER 1.18 6.24 0.528 0.77 0.88 14.7 24.9 
ASC-15 1PM WINTER 0.93 1.56 0.167 0.97 0.95* 1.62 5.67 
ASC-16 1PM WINTER 1.62 2.51 0.155 0.94 0.90 3.96 5.25 



EACVFCPI values marked by star in the 8th column indicate EACVFCPI  values computed from 
resEACVF  using the complete procedure. 

�



Data treatment 

Theoretical models have been developed to express EACVF  in terms of the 
parameters describing the chemical composition of the analyzed sample [22, 23]. 
The value of EACVF  at the origin ( 0��t ) is expressed by the following equation: 

� �
X.dm

aA)(EACVF
/htot

hhT

1292
10

2

222 �
�

�          (S1) 

where TA  is the total area of the chromatographic signal, 21d  the half-height width of 
the EACVF  peak describing the mean separation performance, � . The value 22

hh a�
is the peak height dispersion ratio derived from the mean, ha , and the variance, 2

h� ,
of peak heights computed from the separated peaks observed in the chromatogram.  

If the signal contains an ordered sequence of  peaks (following eq.1, main text) — 
generated by the terms of a homologous series contained in the sample — the 
computed EACVF  shows deterministic peaks located at interdistance bt ��  and 
multiple values kbt �� , where the value bt ��  is the retention increment between 
the terms of the homologous series, e.g., the 2CH  retention time increment. The 
height of these peaks of the EACVF  plot, i.e., the values of )(kbEACVF , can be 
related to the properties if the series: the number of terms of the homologous series, 

maxn , and the odd/even distribution of the series terms [17, 23, 25]. 

The )(kbEACVFtot  values computed for odd k  values can be expressed by the 
following equation: 

)(12=)(
2

2
22

, kn
a

aa
X

bkEACVF max
h

h
h,ehotot ��

�

�
�
�

�
�

��� k=1,3,… 1�maxn    (S2)

The )(kbEACVFtot  values computed for even k  values are given by the following 
equation:
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where, in both the equations, 22
hh a�  is the peak maximum dispersion ratio derived 

from the mean, ha , and variance, 2
h� , of all the peak maxima computed from the 

separated peaks in the chromatogram. 
The paremeters h,oa and h,ea  are the mean peak heights computed on the odd and 
even terms of the series, h,oa and h,ea , respectively: from them the R  ratio is 
computed to estimate the EACVFCPI value.

Algorithms based on eqs. S1-S3 have been developed to use the EACVF  values 
experimentally computed from the GC signal (eq.2) to estimate the properties of the 
separated mixture: the number of components, totm , the number of terms in the 
homologous series, maxn , the odd/even distribution described by EACVFCPI , the 



contribution of homologous series described by %series , and the contribution of 
UCM component [17, 23, 25]. 

Number of components, totm . From the  )(EACVF 0  value it is possible to estimate 
the total number of components present in the mixture, totm , and, from it, to calculate 

totTT mAa � , i.e. the mean total chromatographic area. 

Number of terms in the homologous series. The )bk(EACVFtot  values computed 
for even k  values at subsequent kbt =�  and 2)(= �� kbt  interdistanes are used to 
estimate the number of terms maxn .  In fact, starting from eq. S3, the following 
equation can be derived [17]: 

k
kbEACVF
bkEACVFn

tot

tot
max �

� 2))((
)(2=  (S4) 

Contribution of the homologous series. The )b(EACVF 2 value, that is the value 
related to the total peak area of the series terms (( 22

eo aa � ) in eq. S3), can be compared 
to the )(EACVF 0  value for the total chromatographic peak area ( TtotT amA � , in eq. 
S1) in order to estimate the relative contribution the homolous series terms make to 
the overall signal, according to the following expression:  
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When EACVF is computed on the GC-MS signal acquired in SIM mode at zm =
57+71+85 values, it selectively contains information on the alkane components in the 
mixture. Therefore, in this case, the %series parameter can be defined as an 
estimation of the relative contribution of the homologous series to the total alkane 
content of the sample. 

Odd/even prevalence.  By dividing eq. S2 for 1�k by eq. S3 for 2�k , and 
introducing the R  ratio to substitute h,oa and h,ea , the following expression can be 
obtained as a function of R :

2)1)((
1)(2=

2)(11

1)(2

=
)(2
)(

2

2

��
�

��
�
�

�
�
� �

�

nR
nR

n
R

n
R

bEACVF
bEACVF

max

max
 (S6) 

This is a quadratic equation, that can be solved to obtain the R  value directly from 
the whole chromatogram on which the EACVF  values are computed at bt =�  and 

bt 2=� .

Deconvolution of the UCM band component. If the GC signal contains a large 
UCM  component contribution, the EACVF  computed on it shows the shape of 
UCM  hump which is superimposed on the deterministic, n-alkane sequence peaks. 
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