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1.Introduction  

1.1  Normal vasculature  

The basic constituents of the walls of blood vessel are endothelial cells, smooth muscle 

cells, and extracellular matrix, including elastic elements, collagen and proteoglycans. 

They are arranged in concentric layers: 

• Intima (adjacent to the lumen) 

• Media 

• Adventitia (externally) 
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In normal arteries, the intima is composed of the lining endothelial cells with minimal 

underlying subendothelial connettive tissue. It is separated from the media by a dense 

elastic membrane called internal elastic lamina. 

The outer limit of the media of most arteries is marked by a well-defined external 

elastic lamina. 

In the large and medium-sized arteries, the smooth muscle cell layer of the media near 

the vessel lumen depend primarily on direct diffusion of oxygen from the vessel for their 

nutritional needs. Diffusion is facilitated by holes (fenestration) in the internal elastic 

membrane (Robins-Pathologic basis of disease, 1999) 

1.1.1 Endothelial cells 

Endothelial cells form a monolayer that lines the entire vascular systems (the 

endothelium). Vascular endothelium is a versatile multifunctional tissue having many 

synthetic and metabolic properties. Endothelial cells can respond to various abnormal 

stimuli by adjusting some of the constitutive function, by expressing newly acquired 

(induced) properties (Sumagin et al, 2008). The term endothelial dysfunctions often 

used to describe several types of potentially reversible changes in the functional state of 

endothelial cells that occur in response to environmental stimuli (Selwyn AP et al, 

1997). 

1.1.2 Vascular Smooth Muscle Cells 

Vascular smooth muscle cells (SMCs) are capable of many function including 

vasoconstriction and dilatation in response to normal or pharmacologic stimuli; synthesis 

of collagen, elastin, and proteoglycans; elaboration of growth factors and cytokines; and 

migration to the intima and proliferation: As the predominant cellular element of the 

vascular media, smooth muscle cells constitute an important element not only normal 
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vascular repair, but also pathological such us atherosclerosis. Resting vascular smooth 

muscle cells are spindle shaped, with single, elongated nuclei resembling fibroblast. 

Cytoplasm tic filaments that contain actin and myosin mediate the contractile function 

of SMCs. 

 

During the healing response, smooth muscle cells undergo changes that resemble 

dedifferentiation (Bochaton-Piallat ML, Gabbiani G, 2005). SMCs migrating from the 

media to the intima lose the capacity to contract, gain the capacity to divide, and 

increase the synthesis of extracellular matrix molecules, often designated a shift from 

that contractile phenotype to the proliferative synthetic phenotype. Structurally, there 

is a decrease in the thick myosin-containing filaments and an increase in the amount of 

organelles involved with protein synthesis, such us rough endoplasmic reticulum and 

Golgi apparatus. The contractile state of vascular smooth muscle influences arterial 

blood pressure and regulates organ blood flow. The contractile apparatus of vascular 

smooth muscle is composed of thin and thick filaments, and that force generated 

between these two filaments provides the mechanism for cell shortening. The molecular 

events that initiate the interaction between these filaments are dependent upon the 

free sarcoplasmic concentration of activator calcium, which is regulated by the cell 

membrane and at subcellular sites. Changes in electrical activity of the cell membrane 

and interaction of pharmacologic agents with membrane receptors alter the cell, 

causing either a decrease or increase in sarcoplasmic calcium concentration and thus 

changing the contractile state of the vascular smooth muscle cell. Alterations in the 

cellular mechanisms that regulate intracellular calcium concentration may contribute to 

abnormal vascular function in pathologic states (Bohr DF, Webb RC, 1984) 
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1.2 Atherosclerosis  

Atherosclerosis is a condition in which patchy deposits of fatty material develop in the 

walls of medium-sized and large arteries, leading to reduced or blocked blood flow. 

Atherosclerosis is caused by repeated injury to the walls of arteries.   Many factors 

contribute to this injury, including high blood pressure, tobacco smoke, diabetes and 

high levels of cholesterol in the blood (Besler et al 2008). Often, the first symptom is 

pain or cramps at times when blood flow cannot keep up with the tissues‘ need for 

oxygen. To prevent atherosclerosis, people need to stop using tobacco, improve their 

diet, exercise regularly, and maintain control of their blood pressure and diabetes 

(Taylor DA & Zenovich AG, 2008). If atherosclerosis causes complications, such as a 

heart attack or stroke, these are treated. In the most developed countries, 

atherosclerosis is the leading cause of illness and death. 

Arteriosclerosis literarily means hardening of arteries; more accurately, however, it is a 

generic term for three patterns of vascular disease that have in common thickening and 

loss of elasticity of arterial walls: 

• The dominant patter is atherosclerosis, characterized by the formation of 

intimal fibrous plaques that often have a central grumos core rich in lipid  

 

• Monckeberg's arteriosclerosis, also called medial calcific sclerosis, is a form of 

arteriosclerosis or vessel hardening, where calcium deposits form in the middle 

layer of the walls of medium sized vessels (the tunica media) 
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• Arteriolosclerosis: sclerosis and thickening of the walls of arterioles. The hyaline 

form may be associated with nephrosclerosis, the hyperplastic with malignant 

hypertension, nephrosclerosis and scleroderma. 

 

Atherosclerosis is characterized by intimal lesion called atheromas or fibrofatty plaques 

that protrude into the lumen, and undergo a series of complication. 

 

Atherosclerosis primarily affects elastic arteries (e.g., aorta, carotid and iliac arteries) 

and large and medium sized muscular arteries (e.g. coronary and popliteal arteries). The 

disease often begins in childhood, but symptoms are not usually evident until middle age 

or later when the arterial lesions precipitate organ injury (Milei, 2003). 
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Symptomatic atherosclerotic disease is most often localized to arteries supplying the 

heart, brain, kidneys, lower extremities, and small intestine. Myocardial infarction 

(heart attack), cerebral infarction (stroke), and aortic aneurysms are the major 

consequences of this disease. Thus, epidemiologic data on atherosclerosis are expressed 

largely in terms of the incidence of or the number of death caused by ischemic heart 

disease (Robins-Pathologic basis of disease, 1999). 

 

1.2.1 Pathogenesis of atherosclerosis 

The development of atherosclerosis is complicated, but the primary event seems to be 

repeated, subtle injury to the artery‘s wall through various mechanisms. These 

mechanisms include physical stresses from turbulent blood flow (such as occurs where 

arteries branch, particularly in people who have high blood pressure) and inflammatory 

stresses involving the immune system, certain infections, or chemical abnormalities in 

the bloodstream (high cholesterol, diabetes)(Arora S & Nicholls SJ, 2008). 

The pathogenesis of atherosclerosis has not been well defined, however, association of 

fatty degeneration and vessel stiffing was the first definition of atherosclerosis. 

Principal events of atherosclerosis are the follow: 

 

• The development of focal regions of chronic endothelial injury, usually subtle, 

with resultant endothelial permeability and increased leukocyte adhesion 

(Crowther MA, 2005) 

• Insudation of lipoproteins into vessel wall, mainly LDL with its high cholesterol 

content and also very-low-density lipoprotein (VLDL), and modification of such 

lipoprotein by oxidation (Torzewski M, Lackner KJ.2006) 
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• Adhesion of blood monocytes (and other leukocytes) to endothelium, followed by 

migration of monocytes into the intima and their transformation into 

macrophages and foam cells (Doran AC et al, 2008) 

• Adhesion of platelets to focal areas of denudation (when present) or to adherent 

leukocytes (DiCorleto PE, 1993) 

• Release of factors from activated platelets, macrophage, or vascular cells that 

cause migration of smooth muscle cells from media in to the intima (Bochaton-

Piallat ML, Gabbiani G, 2005) 
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1.2.2 Classification of type lesion 

 

Type I Lesions  

Type I lesions consist of the first microscopically and chemically detectable lipid 

deposits in the intima and the cell reactions associated with such deposits. These lesions 

have been characterized in studies in which the sequence of lesions was deduced from 

examining many persons who died at different ages (Stary et al, 1994). 

 

Type II Lesions  

Type II lesions include fatty streaks, which on gross inspection may be visible as yellow-

colored streaks, patches, or spots on the intimal surface of arteries. Fatty streaks stain 

red with Sudan III4958 or Sudan IV.  

The precursors of advanced lesions are divided into three morphologically characteristic 

types. Both type II lesions and I represent small lipid deposits in the arterial intima, and 

type II includes those lesions generally referred to as fatty streaks.  

Fatty streaks are not significantly raised and thus do not cause any disturbance in blood 

flow. They may be precursor however of the most ominous atheromatouse plaque 

(Herbert et al, 1995).  

Type III Lesions  

The designation "type III lesion" applies only to lesions that form the morphological and 

chemical bridge between type II lesions and atheromas.  

The type III lesion is also known as the intermediate lesion, the transitional lesion, and 

as preatheroma. Its characteristic histological features are microscopically visible 

(Stery et al, 1994). 
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Type IV  

In type IV lesion a dense accumulation of extracellular lipid occupies an extensive but 

well-defined region of the intima. This type of extracellular lipid accumulation is known 

as the lipid core. A fibrous tissue increase is not a feature, and complications such as 

defects of the lesion surface and thrombosis are not present. The type IV lesion is also 

known as atheroma. Type IV is the first lesion considered advanced in this classification 

because of the severe intimal disorganization caused by the lipid core. The 

characteristic core appears to develop from an increase and the consequent confluence 

of the small isolated pools of extracellular lipid that characterize type III lesions (Stary 

HC, 1989). 

 

Type V 

Type V lesions are defined as lesions in which prominent new fibrous connective tissue 

has formed. When the new tissue is part of a lesion with a lipid core (type IV), this type 

of morphology may be referred to as fibroatheroma or type Va lesion. A type V lesion in 

which the lipid core and other parts of the lesion are calcified may be referred to as 

type Vb. A type V lesion in which a lipid core is absent and lipid in general is minimal 

may be referred to as type Vc. With these lesions, arteries are variously narrowed, 

generally more than with type IV (Herbert et al, 1995). 
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Type VI 

Type IV or V lesions with one or more of these additional features are classified as type 

VI and may also be referred to as complicated lesions. The superimposed features may 

subdivide type VI: 

• Surface Defects and Haematoma  

Disruptions of the lesion surface include fissures and ulcerations, but their extent 

and severity may differ greatly (Arbustini et al, 1999). The smallest ulcerations 

consist of focal loss of a part of the endothelial cell layer and are visible only 

under the microscope. Deep ulcerations may expose and release lipid from a lipid 

core. Fissures or tears of the lesion surface are of variable depth and length. 

• Thrombosis  

Capillary haemorrhages within lesions could conceivably cause sufficient 

disruption to precipitate thrombosis. (Paterson JC, 1936; Barger AC et al, 1984) 
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1.2.3 Role of vascular smooth muscle cells in atherosclerotic plaque 

The initiation of atherosclerosis results from complex interactions of circulating factors 

and various cell types in the vessel wall, including endothelial cells, lymphocytes, 

monocytes, and smooth muscle cells (SMCs). Human autopsy studies, in vitro 

mechanistic studies, and in vivo correlative data suggest an important role for SMCs in 

the initiation of atherosclerosis (Orlandi et al, 2006).  SMCs are the major producers of 

extracellular matrix within the vessel wall and in response to atherogenic stimuli can 

modify the type of matrix proteins produced. In turn, the type of matrix present can 

affect the lipid content of the developing plaque and the proliferative index of the cells 

that are adherent to it(Bijianet al 2005).  

SMCs are also capable of functions typically attributed to other cell types. Like 

macrophages, SMCs can express a variety of receptors for lipid uptake and can form 

foam-like cells, thereby participating in the early accumulation of plaque lipid (Doran et 

al, 2008). Like endothelial cells, SMCs can also express a variety of adhesion molecules 

such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 to which 

monocytes and lymphocytes can adhere and migrate into the vessel wall (Doran et al, 

2008).  

If the hypercholesterolemia (or other inciting event) persist, smooth muscle cells 

proliferation and extracellular matrix deposition in the intima continue and are the 

major processes that convert a fatty streak into a mature fibrofatty atheroma, 

accounting for the progressive growth of atherosclerotic lesion (Rosenfeld ME, 2000). 

Arterial smooth muscle cells synthesize collagen elastin and glycoproteins. Several 

growth factors have been implicated in the proliferation of SMCs: PDGF, which is release 

by platelets adherent to the focus of endothelial injury, macrophage, endothelial cells, 
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smooth muscle cells; FGF; and TGF-a.  SMCs proliferation is modulated by inhibitors, 

including heparin-like molecules present in endothelial cells and smooth muscle cells 

and TGF-b derived from endothelial cells or macrophages (Robbins- Pathologic basis of 

disease, 1999). 

1.2.3.1 SMC distinct phenotype  

Normally, adult medial SMCs (termed “contractile”) are arranged in concentric layers 

and are filled with myofilaments and dense bodies but contain a relatively poorly 

developed Golgi apparatus and rough endoplasmatic reticulum. In contrast, SMCs 

characteristic of the intimal lesion of atheroma atherosclerosis (termed “synthetic”) 

have lost this appearance and are characterised by an abundance of rough 

endoplasmatic reticulum and sometime no evident myofilaments (Campbell GR, 

Campbell JH, 1990). During atherosclerosis progression SMCs switching from a 

contractile to a synthetic phenotype, the concept is that a predisposed SMC 

subpopulation is responsible for the production of intimal thickening (IT). This possibility 

has been raised on the basis of original work by Beneditt and Beneditt (Beneditt EP, 

Beneditt JM, 1973) who reported that human atheromatouse plaque have been featured 

of a monoclonal lesion, recently it has been demonstrate that human plaques are at 

least oligoclonal (Swarts Sm, Murry CE, 1998). The concept of SMC heterogeneity has 

been established by the description of contractile and synthetic phenotypes in vivo and 

in vitro (Thyberg J et al1995). 

The contractile phenotype is typical of the differentiated artery, and the synthetic one 

is typical of developing and pathologic arteries. A further step was the characterization 

in vitro of morphologically distinct SMC populations, which has been observed in many 

species, including humans (Thomas WA, 1983). 
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1.3 Animal model of atherosclerosis 

 Several animals have been used for the study of atherosclerosis, 

such as the non-human primates, swine, mice, guinea pigs and hamsters. However there 

is no one perfect animal model that completely replicates the stages of human 

atherosclerosis, cholesterol feeding and mechanical endothelial injury are two common 

features shared by most models of atherosclerosis (Dhanya SP, Hema CG, 2008).  

It is important to note that not all animal models for atherosclerosis develop intimal 

thickening as a precursor to lesion formation. While intimal thickening is observed in 

primate and chicken models, it is not found any of the commonly used rodent models 

(Stary et al, 1992). Although several works have attempted to study atherosclerosis in 

rodent models by injuring vessels and disrupting internal elastic lamina to induced SMC 

proliferation, the plaque that results from this approach differ significantly from 

spontaneous human atherosclerosis (Doran et al, 2008).  

However, until now, the most-studied species has been the rat. The initial description of 

SMC heterogeneity was made in the rat carotid artery injury model, wherein 2 SMC 

populations were identified: a spindle-shaped phenotype, with the classic "hill-and-

valley" growth pattern, obtained from the normal media, and an epithelioid phenotype, 

in which cells grow as a monolayer and exhibit a cobblestone morphology at confluence, 

isolated from the IT 15 days after endothelial injury (Orlandi A et al, 1994). The findings 

of 2 SMC distinct phenotype have been confirmed by many laboratories (Bochaton-

Piallat ML et al, 1996; Yan ZQ, Hansson GK, 1998). 
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Irrespective of the species studied, epithelioid and rhomboid phenotypes, when 

compared with spindle-shaped SMCs, have in common several features, among which the 

most relevant are (1) enhanced proliferative activity, including serum-independent 

growth in some species; (2) enhanced migratory activity; (3) increased proteolytic 

activity; (4) poor level of differentiation, as defined by citoscheletal and contractile 

protein expression and (5) high sensitivity to apoptotic stimuli. In all species studied, 

epithelioid and rhomboid SMCs show a higher proliferative activity than do spindle-

shaped SMCs; however, contrary to spindle-shaped SMCs, they stop growing at 

confluence as a result of cell contact inhibition (Hao et al, 2003). 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1.4 Citoscheletal proteins 

1.4.1 Alpha-Smooth muscle actin 

Alpha-Smooth Muscle Actin (a-SMA), an isoform typical of smooth muscle cells (SMC) 

and present in high amounts in vascular SMC.  

Despite the structural similarities between different actin isoform, there is 

evidence for functional diversity. Alpha-Smooth Muscle Actin also appears during 

vascular development but, during maturation, becomes the single most abundant 

protein in adult vascular smooth muscle cells (Gabbiani et al 1984). Likewise, a-SMA 

is the major isoform of vascular tissue, such as the aorta, while γ-smooth muscle 

actin predominates in the gastrointestinal and genital tracts (J. Vandekerckhove, K. 

Weber; 1979).  

Stress fibers, which have been studied mainly in cultured cells, are considered to be 

contractile organelles and are associated with the generation of isometric tension 

(Wang et al 2006). 

In smooth muscle cells, SMA comprises a very large proportion of total cell protein, 

while the content of SMA in non-muscle cells such as myofibroblasts is much lower 

(P.D. Arora and C.A. McCulloch. 1994).  

1.4.2 Desmin 

Desmin is a type III intermediate filament found near the Z line in sarcomeres. It 

was first purified in 1977, the gene was characterized in 1989, and the first 

knock-out mouse was created in 1996(Costa M, et al 2004). Desmin is only 

expressed in vertebrates, however homologous proteins are found in many 
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organisms. It is a 52kD protein that is a subunit of intermediate filaments in 

skeletal muscle tissue, smooth muscle tissue, and cardiac muscle tissue. 

1.4.3 Vimentin 

Vimentin is a member of the intermediate filament family of proteins. 

Intermediate filaments are an important structural feature of eukaryotic cells. 

They, along with microtubules and actin microfilaments, make up the 

cytoskeleton. Although most intermediate filaments are stable structures, in 

fibroblasts, Vimentin exists as a dynamic structure (Tang DD, 2008). 

1.4.4 Smooth muscle myosyn heavy chain 

Myosin II is a major contractile protein of skeletal, cardiac and smooth muscles. It 

is composed of two heavy chains (approximately 200 kDa) and two pairs of light 

chains (approx. 20 kDa). The myosin heavy chains form a dimer consisting of two 

globular amino-terminal heads and carboxy-terminal c (-helical coiled coil tails). 

The heads bind the light chains and contain the ATP- and actin-binding sites 

whereas the tails are involved in the assembly of myosin molecules into filaments. 

Four smooth muscle specifc myosin heavy chain isoforms are known (Quevillon-

Chéruelet al, 1999). Two isoforms (named SMB and SMA) are defined by the 

presence or the absence of an insert of seven amino acids in the N-terminal 

globular head region.  
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The study of citoscheletal proteins, which are accepted as reliable differentiation 

markers, has allowed characterization of the contractile versus the synthetic phenotype. 

It should be noted that when placed in culture, all SMCs tend to show a dedifferentiated 

phenotype. With this limitation, the phenotypic variation of cultured SMCs furnishes 

important information concerning the influence of many factors on their biologic 

features. α-SMA is expressed in vascular SMCs, even at early stages of development, and 

thus represents the most general marker of SMC lineage. Although α-SMA is permanently 

expressed in SMCs, it is more abundant in spindle-shaped SMCs than in epithelioid or 

rhomboid SMCs. Desmin, an intermediate filament protein, and SMMHC are expressed in 

well-differentiated SMCs are relatively well studied. In cultured rat SMCs, Desmin 
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generally disappears. In larger animals, Desmin is maintained at a significant level of 

expression in spindle-shaped SMCs, whereas it is hardly detectable in epithelioid and 

rhomboid SMCs. SMMHC are clearly expressed more importantly in spindle-shaped SMCs 

than in epithelioid and rhomboid SMCs (Schwartz et al, 1995; Shanahan CM et al, 1998; 

Owens GK, 1998; Sartore S et al, 1999).In general, SMCs isolated from larger animals, 

including humans, are more differentiated than are those isolated from rodents. Porcine 

spindle-shaped SMCs maintain appreciable expression of α-SMA, SMMHC, Desmin, and 

Smoothelin. SMMHC, calponin, h-caldesmon, and metavinculin are abundantly expressed 

in bovine spindle-shaped SMCs (Frid MG et al, 1997; Hao H et al, 2002).  

 

Taken together, the data obtained in different species suggest that the degree of 

differentiation of SMCs changes with the phenotype; this integrates well into a view that 

reconciles the heterogeneity of SMCs with the modulation concepts. Once distinct 

populations have been defined, the ultimate aim is to identify genes and/or proteins 

that are differentially expressed and to test whether they are involved in the phenotypic 

changes that occur in vivo. Studies on the possibility that an SMC phenotype can evolve 

into another have shown that the results depend on the species used.  The specific 

phenotype of SMC observed in vitro is maintained when they are placed back into an in 

vivo environment. The evolution of the lesion in vivo appears to depend on the relative 

replicative activity and/or susceptibility to apoptosis of these phenotypes. Moreover, in 

the rat, an agent that influences the biologic behaviour of epithelioid SMCs, i.e., 

retinoic acid, inhibits IT formation. In the pig, the situation is different, in that spindle-

shaped SMCs can modulate into rhomboid SMCs and, if the stimulus ceases, can return to 

their original phenotype, at least in vitro (Hao et al, 2003). 
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1.5 Carotid endarterectomy (CEA)  

Carotid endarterectomy (CEA) is an operation to clean out an artery and restore normal 

blood flow through the artery. An endarterectomy is basically a "Rotorooter" procedure. 

It removes diseased material from the inside of an artery, and also removes any 

occluding atheromatouse deposits, the aim being to leave a smooth lining within the 

vessel, so the blood can flow normally. In endarterectomy, the surgeon opens the artery 

and removes the plaque. The aim of CEA is to prevent the adverse sequelae of carotid 

artery stenosis secondary to atherosclerotic disease, i.e. stroke. As with any 

prophylactic operation, careful evaluation of the relative benefits and risks of the 

procedure is required on an individual patient basis. Peri-operative combined mortality 

and major stroke risk is 2 – 5%. 

Carotid stenosis is diagnosed with ultrasound Doppler studies of the neck arteries or 

magnetic resonance arteriography (MRA). Symptoms have to affect the other side of the 

body; if they do not, they may not be caused by the stenosis, in which case 

endarterectomy will be of minimal benefit (Adams HP Jr. 2009) 
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2. Aim of the study  

The last years were characterized by several studies proceeding to understand SMC 

heterogeneity. Animal models of rat or rabbit IT after endothelial lesion are presently 

the most studied models for atherosclerotic plaque formation and have been useful in 

order to understand several biological features of SMCs. The disadvantages of animal 

models are that there is no possibility to reproduce the same history of pathogenesis in 

animals as that in man. There is no perfect animal model that completely replicates all 

stages of human atherosclerosis.  

However, identification of particular SMCs subpopulation in human arteries represents a 

difficult challenge for understandable reason, such us material availability and 

experiment standardization. The relevance of SMC heterogenity to human disease still 

remains to be demonstrated. 

Thanks to collaboration between our laboratory and the Vascular Surgery’s group of 

Sant’Anna Hospital (University of Ferrara) leading by Francesco Masculine, we have had 

the possibility to obtain samples of atherosclerotic and no-atherosclerotic human carotid 

artery from patients undergone to carotid endarterectomy. 

Aim of this study is to obtain primary culture of human vascular smooth muscle cells 

(SMCs) from both atherosclerotic and no-atherosclerotic carotid artery, to investigate 

human SMC heterogeneity.  

The possibility to isolate o SMC subpopulations, from a single human artery, could be 

useful to verify the hypothesis that distinct SMC subtypes are involved in atherosclerosis 

pathogenesis and progression.   
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3.Materials and Methods  

3.1 Tissue explantation  

Specimens collect during endarterectomy were conserved in cold (4°C) sterile RPMI plus 

2% Hepes, containing 100 U/ml of penicillin and 100 µg/ml of streptomycin and 400mM l-

glutamine (All reagent from Gibco, Invitrogen). In about 1 hour from surgery, specimens 

were taken to the laboratory. The specimens were washed several times with fresh RPMI 

to remove blood. 

The abluminal surface of tissue were gently scraped to remove any connettive tissue, 

whereas the luminal surface undergone the same treatment to remove endothelial cells. 

For tissue explantation, CEA specimens were cut into 3x3x3-mm pieces. The abluminal 

side of the explants was carefully placed in contact with the culture dish (15 to 20 tissue 

pieces per 60-mm dish). After 40 minutes, during which specimens dried, RPMI (10% FBS, 

100 U/ml penicillin, 100 µg/ml  streptomycin, 400mM l-glutamine) was added to petri 

dish. The times requested for emergence of the first cells from the explants and growth 

to confluence was recorded.  Explanted tissue pieces were removed after 10 days. 

Population isolated by tissue explantation were studied between second and sixth 

passage. 

3.2 Cells Culture  

Once cells outgrowth from explanted tissue rinse confluences, were passed by a 1:2 spit 

ration and cultured in RPMI plus 10% FBS, containing 100 U/ml of penicillin and 100 

µg/ml of streptomycin and 400mM l-glutamine (All reagent from Gibco, Invitrogen), and 

cells were maintained at 37 °C in a humidified atmosphere of 95% air and 5% of CO2. 

In all experiment cells were used from 2nd to 6th passage. 
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3.3 Co-culture experiments  

Co-culture of Plaque and Media was performed by using the Transwell system (24-mm-

diameter Transwell clear polyester membrane, 0.4-µm pore size, Costar). Media 

specimens were plated into the upper compartment in RPMI plus 10% FBS, plaque were 

plated in the lower compartment (position of media and plaque specimens was inverted 

for control). Specimens were removed as above, and cells were cultured as above-

mentioned. 

3.4 Immunofluorescence 

Cells from 3rd to 6th passage were growth on glass cover slips. Cells were fixed using a 

solution of RPMI 2% Hepes (Gibco, Invitrogen corporation) and 1% paraformaldeide 

(Sigma Aldrich)  for 20 Minutes at room temperature. Cells were, then, washed with 

Phosphate Buffered Saline (PBS), and methanol fixation (for citoscheletal components) 

for 8 minutes. Then Incubation with primary Antibody was performed for 1 hour. 

Antibodies used were:  

 Anti-SMA, IgG2a mouse monoclonal antibody, dilution 1:50, generously provided by 

Gabbiani-Bochaton-piallat group 

 Anti-Vimentin, IgG1a mouse monoclonal antibody. dilution 1:200(Dako Inc.) 

 Anti-desmi, IgG1a mouse monoclonal antibody. dilution 1:10(Dako Inc.) 

 Anti-SMMHC, IgGH+L (data produced in Gabbiani-Bochaton-Piallat Laboratory, 

department of pathology University de Geneva) 

 Anti-S100A4, IgM mouse monoclonal antibody dilution 1:10 (generously provided by 

Gabbiani-Bochaton-Piallat group) 

 Anti-TFPI, rabbit polyclonal antibody, dilution 1:10 (Santa Cruz Biotechnology, Inc) 
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If it is desirable to examine the co-distribution of two different antigens in the same 

cell, a double immunofluorescence procedure may be used. Cells may be incubated 

simultaneously with two primary antibodies, provided they are monospecific and can be 

distinguished with secondary antibodies conjugated to different fluorochromes.  

After incubation with primary antibody cells were washed 3 times with PBS and than 

incubate with DAPI (4', 6-diamidino-2-phenylindole) and secondary antibody conjugate 

with FITCH or Rodhamin:  

 Goat anti-mouse IgM rhodamine (TRITC) conjugate dilution 1:50 (SouthernBiotech) 

 Goat anti-mouse IgG2a fluorescein (FITC) conjugate dilution 1:50(SouthernBiotech) 

 Goat anti-mouse IgG1 fluorescein (FITC) conjugate dilution 1:50(SouthernBiotech) 

 Mouse anti-rabbit IgG rhodamine (TRITC) conjugate dilution 1:50 (Dako) 

After 3 wash with PBS, coverslips with cells are mounted in PVA (polyvinyl alcohol) and 

observe at microscopy.  

Images of immunofluorescence staining were acquired and overlaid by using Adobe 

Photoshop. 
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3.5 Semiquantitative RT-PCR 

From 5x 106cells, at 3rd passage, RNA was extract by using Illustra  RNAspin Isolation Kit 

(GE Healthcare) was used. Total RNA (1 g) was used for each 20 l reverse transcription 

reaction (0,05mM oligo dT, 0,5mM dNTPs, 50mM Tris HCl pH 8.3, 75mM KCl, 3mM MgCl2, 

100mM DTT) with 200 units of Superscript III reverse transcriptase (Invitrogen).  

For PCR reaction 1 l of cDNA obtained from reverse transcription reaction was used. 

Each vials contain: 25l of a solution  10mM Tris HCl pH 9, 50mM KCl, 3mM MgCl2, 30nM 

dNTPs, 200ng of each Reverse and Forward Primers. Semiquantitative PCR was 

performed by using Taq DNA Polymerase (Fisher Scientific), with 25 cycles each 

consisting of 1 minutes at 95°C, 30s at Annealing temperature (depends on the couple of 

primer used) and 1 minutes at 72°C. PCR products were visualised on 2% agarose gel.  

Tab. Primers  
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3.6 Microarray assay 

RNA from 3 couple of cultured cells from both NAA and AA carotid artery was extract as 

previously described. 

Whole human genome expression detection by oligo microarray.  

RNAs from 6(3 NAA and AA cells population) samples were hybridized on Agilent whole 

human genome oligo microarray (Agilent Technologies, Palo Alto, CA). This microarray 

consists of 60-mer DNA probes synthesized in situ, which represent 41,000 unique human 

transcripts. One-colour gene expression was performed according to the manufacturer’s 

procedure. RNA quality is assessed by the use of Agilent 2100 Bioanalyzer (Agilent 

Technologies). Low quality RNAs (RNA integrity number below 7) were excluded from 

microarray analyses. Labelled cRNA is synthesized from 500 ng of total RNA using the 

Low RNA Input Linear Amplification Kit (Agilent Technologies) in the presence of cyanine 

3-CTP (Perkin-Elmer Life Sciences, Boston, MA). Hybridizations were performed at 65°C 

for 17 hours in a rotating oven. Images at 5 um resolution were generated by Agilent 

scanner and the Feature Extraction 9.1 software (Agilent Technologies) was used to 

obtain the microarray raw-data. 

 

Microarray data analysis 

Microarray results were analyzed by using the GeneSpring GX software (Agilent 

Technologies). Data files were pre-processed using the GeneSpring plug-in for Agilent 

Feature Extraction software results. Data transformation was applied to set all the 

negative raw values at 5.0, followed by on-chip and on-gene median normalization. A 

filter on low gene expression was used so that only the probes expressed (flagged as 

Present) in at least one sample were kept; the probes that do not change between 
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samples, identified as having an expression value across all samples between median ± 

1.5, were removed.  Then, samples were grouped in accordance to their differentiation 

status and compared. Differentially expressed genes were selected as having a 2-fold 

expression difference between their geometrical mean in two or more groups of interest 

and a statistically significant p-value (<0.05) by ANOVA (analysis of variance) statistic, 

followed by the application of the Benjamini and Hoechberg correction for false 

positives reduction. Differentially expressed genes were employed for Cluster Analysis of 

samples, using the Pearson correlation as a measure of similarity.  

 

GO and Pathway analysis 

The Gene Ontology (GO) and enriched Pathway analysis, on differentially expressed 

genes, was performed with the GeneSpring tools and by using the FatiGO+ algorithm.  
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4. Results  

4.1 Carotid endarterectomy 

Carotid endarterectomy involves a longitudinal arteriotomy extending to internal carotid 

distal to the lesion, and a dissection plane established between media and the external 

elastic lamina of artery. The plaque (with underlying media) is then resected and 

arteriotomy closed. 

During endarterectomy, not only atherosclerotic lesion but also a sample of no-

atherosclerotic carotid artery is taken from carotid artery, which does not show typical 

characteristics of atheromatouse plaque. 
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No-Atherosclerotic Artery (NAA) is composed of a normal media underlying a thickened 

intima without necrotic core (AHA classification: intermediate or type III lesion) before 

the proximal end point of carotid endarterectomy 

(fig.9)

 

Atherosclerotic Artery (AA) is composed of a media underlying an atheromatouse plaque 

(AHA classification: atheroma-fibroatheromata or type IV-V lesion) at the proximal end-

point of carotid endarterectomy (fig.9) 
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4.2 Isolation of SMCs by tissue explantation 

In order to obtain primary culture of SMCs from CEA specimens, of both AA and NAA, 

tissue explantation technique was used.  

After four days, from tissue explantation, wells contain specimens were observe daily, 

to record cellular outgrowth.  

Cells outgrew from fifth to tenth day after tissue explantation, time for outgrowth was 

similar for both NAA and AA tissue.  

After ten days, independently of cellular outgrowth, specimens were removed from 

well.  

Although cells from NAA and AA outgrew at similar time, confluence was rise at different 

day, in fact while NAA cells raised the confluence nine days after cellular outgrowth, AA 

cells took about seven day to raise confluence. 

As shown in figure 10 differences between NAA cells and AA cells were immediately 

clear: In fact, while NAA cells are large and grow in a monolayer, AA cells are smaller 

and elongated, and grown multilayered with hills and valley pattern. 
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4.3 Identification of the proliferative compartment  

We were able to obtain cells from both NAA and AA tissue and efficiency was similar as 

shown in tab below.  

 

 

From the observation of fig.9, that while NAA is a monolayer of media formed of SMCs,  

AA is featured by two compartments, media and plaque, that both contain SMCs, even if  
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In a different percentage. Cells from NAA could outgrow only from media, differently in  

AA specimens cells might arise both from media and plaque. To understand which was  

The origin layer of cells, we prepared experiments in which media and plaque were 

separated with a surgical blade taking advantage of the natural cleavage plane that 

separates them (fig.11)  

 

 

 Successively, we set up experiments, in which were used: or fragments of media alone 

or fragments of plaque alone, or complete lesion. From samples collected from five 

different patients (undergone endarterectomy), were been prepared experiments in 

which a part of every lesion was subdivided in media and plaque. Three conditions of 

culture were therefore created: 
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1. Tissue explantation of media alone, after plaque overhanging removal 

2. Tissue explantation of plaque alone, after removal of media below 

3. Tissue explantation of undivided lesion, without separation of the layers 

 

In all experiment served out, cellular proliferation was observed neither from media 

alone or from plaque alone, while cellular outgrowth were noticed only by complete 

lesion without separation of layers (fg.12).  
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Data obtained did not permit to identify proliferative layer, therefore, It was necessary 

to prepare experiments in which media and plaque were physically separate, but shared 

the same culture medium, to understand from which layer cells outgrew.  
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4.4 Co-culture experiment 

In this experiment media and plaque were placed in two different compartments, thus   

allows to discriminate from which layer cells outgrew, depending on the compartment in 

which cells were be found. 

Transwell membranes (corning corporation) were used, a systems that let to prepared 

co-culture experiments. This polyester membrane is supported on a plastic small basket, 

inserted in wells (made of polystyrene). The membrane has holes of 0,4µ that does not 

allow the cells to cross it, but permit medium to diffuse from a compartment to other. 

The transwell system permit to mimic structure of the vessel wall, in which cells of 

media and plaque are separate by elastic lamina, but they can communicate and 

influence each other by secreting biological molecules, able to diffuse from a 

compartment to another.  
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In order to avoid influence of polymer type on the cellular outgrowth media specimens 

were placed on the transwell membrane, and plaque on the bottom of wells or vice 

versa. Seven CEA specimens were used in co-culture experiments.  

Data obtained show that cells outgrew always only from media wherever it was situated 

(on transwell membrane, or on the bottom of the well). From plaque, independently of 

its position, we never observed cellular outgrowth (fig. 13).  

 

 

Cells outgrew from fifth to tenth day, once at confluence cells showed a typical grown 

patter of AA cells, previously observed. 
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Taken together these data indicate that media is the proliferative compartment, but the 

presence of plaque is necessary for cellular outgrowth. 

This result suggests that the plaque releases factors necessary for SMC migration.  
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4.5 Distinct SMCs phenotypes 

Observation of cells by phase-contrast microscopy clearly showed morphological 

differences between NAA and AA cells (figure 10) 

 

  

Cells from NAA are large (L-SMCs), grow as a monolayer and exhibit cobblestone 

morphology at confluence, while AA cells are small (S-SMCs) and grow multilayer with 

the classic "hill-and-valley" growth pattern.  

In addition, the two distinct types of SMC exhibited differences in the proliferation. 

After 7 days of culture s-SMCs showed a higher proliferative activity as compared with l-

SMC, which stopped growing at confluence because of cell contact inhibition (fig15)  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4.5.1 Distinctive features of SMC  

Immunofluorescence staining 

Differences between two kind of cells were further analyzed by investigate expression of 

characteristics molecular marker of SMCs level. For this purpose Immunofluorescences 

staining was used.  

Since mature SMCs express alpha smooth muscle actin (αSMA), identification of this 

marker in these cells is necessary to define them as smooth muscle cells.  

 

As shown fig 16 alpha smooth muscle actin is present in both L-SMCs and S-SMC and this 

data identify both populations as vascular smooth muscle cells. However, the two 
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populations differed, with l-SMC showing higher level of a-SMA than s-SMCs. Vimentin is 

a marker of mesenchimal origin cells, as SMCs should be.  As observed in fig.16 the 

amount of Vimentin seems to be similar in both types of cells. 

Desmin, a 52kD protein that is a subunit of intermediate filaments in skeletal muscle 

tissue and smooth muscle tissue, was not present either in l-SMCs or s-SMCs(fig.17). This  

Data confirm previous findings, obtained by immunohistochemistry on human carotid  

tissues, showing that SMCs  were Desmin negative (Gabbiani et al, 1981).   
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SMMHC, a citoscheletal protein and a marker of contractile phenotype, was present in 

both cell types, but it was more expressed in NAA cells 

(fig.18).
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 S100A4 

The protein S100A4 belongs to a large family of low molecular weight calcium binding 

proteins. In human, S100A4 was barely detectable in coronary artery media and 

markedly expressed in SMCs of atheromatouse and restenotic coronary artery lesions. 

S100A4 is a marker of porcine R-SMCs in vitro and of intimal SMCs during intimal 

thickening development (Brisset et al 2007). 

Immunofluorescence staining showed the presence of S100A4 only in s-SMCs (fig.19) 
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RT PCR  

Semiquantitative RT PCR was used to investigate expression of SMC characteristic 

markers and S100A4 at the RNA level.  

 

 

Amplification data indicated that mRNAs of actin and Vimentin were present in both 

kinds of cells. On the contrary, neither Desmin nor SMMHC were detected.  

mRNA for S100A4 was present in both kind of cells, but it was more expressed in AA 

cells, as shown in fig.20 
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4.6 Co-colture of NAA and plaque specimens obtained from the same carotid 

artery 

As previously described, plaque is necessary for cellular outgrowth from AA media, 

suggesting that plaque might release factors able to influences SMC migration. 

In order to verify if plaque could influence cellular outgrowth from NAA, we performed 

tissue explantation in which NAA media was placed in the petri dish alone or with 

plaque. The two conditions of tissue explantation are schematically reported below: 

 

                 

The monitoring of cellular culture by phase-contrast microscopy showed that: 

• NAA cells in the presence of plaque outgrew earlier than cells from NAA alone, 

• NAA cells, growth in the two conditions, exhibited different morphological 

features (fig 21) 

•  Cells from NAA+ Plaque take less time to raise confluence.  
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NAA cells growth in the presence of the plaque was analyzed by immunofluorescences 

for a-SMA and S100A4. 

By Immunofluorescences staining S100A4 was detected in cells outgrowth from NAA in 

presences of plaque. This data compare with thee absence of S100A4 protein in NAA 

cells, suggest that plaque could influences not only time of cellular outgrowth but even 

molecular features.  
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In fig.22 we can observe that NAA with Plaque cells show S100A4 and lower level of a-

SMA (compared with cells from NAA alone), in addition they were small and elongate 

like s-SMCs coming from AA. 

These preliminary data suggest that cells from NAA media under the influence of plaque 

could switch from large to small phenotype.   
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4.7 RNA profiling 

Observation of differences between s-SMCs and l-SMCs was limited by techniques used. 

Immunofluorescences and RT-PCR permit to analyze just a few numbers of markers at 

one time. For skip this problem we prepared microarray assay, which provide us general 

information on genes modulated in these distinct phenotypes. 

From 3 male patients between 67-73 years old, specimens both NAA e AA were taken. 

Specimens obtained were used to prepare tissue explantation. Once cells raised 

confluence, were cultured until 3rd passage. Then, at subconfluences was collected and 

RNA was extract using RNA minispin GE health care®.  Quality of RNA obtained by 

cultured SMCs was analyzed using Agilent Bionalazer®. As show in fig.23 in scale from 

1(lowest quality) to 10(highest quality) our samples obtained results from 8.80 to 9.80.   
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These data indicate that RNA samples were suitable for Microarray assay. 

Microarray analysis was performed on Agilent platform. Raw data were analyzed using 

GeneSpring GX software. A Welch t-test was used for a statistical analysis of 

differentially expressed genes. Only genes with P<0.05 and a fold-change >= 2 were 

retained for further analysis. Because of the small number of samples, these criteria 

increase the reliability of our microarray analysis allowing us to reduce false-positives. 

From this analysis we identified 375 genes differentially expressed in the two 

populations of SMCs (Fig. 24). 

 

 

Gene ontology (GO) analysis was used to assign the regulated genes into functional 

categories. A classification for biological processes was available for 225 genes (125 up-

regulated in disease, 100 up-regulated in normal). Given the two lists of differentially 
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expressed genes (125 and 100 genes), we scored each GO category by evaluating, with 

the Fisher's exact test, the enrichment of each class in the list of interest if compared to 

the list of all genes spotted on the microarray.  comparing the number of genes in the 

list annotated by this term to the expected number of such genes based on the total 

number of genes annotated by this term in the whole array 

The most representative categories in the two lists are schematically reported in figs 25 

and 26 respectively.  

 



  57 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Validation of microarray data at the mRNA level through semi-quantitative RT-PCR    

In order to validate microarray data we used semi-quantitative RT-PCR analysis for  

selected genes. Particularly, among inflammation response genes, two were analysed,  

serum amyloid A2 (SAA-2), and interleukin 6 (IL-6).  

SAA-2, an acute-phase serum  

adipokine, was chosen because of its highly significant difference in expression between  

NAA and AA cells (100:1, P=0,00265) and IL-6, because its correlation with SAA-2. 

and involvement in atherosclerosis pathogenesis (1227 PubMed citations).   

In semi-quantitative RT-PCR SAA-2 mRNA was found only in l-SMCs, thus confirming 

microarray data (Fig.27)  

 

 

IL-6 mRNA was detected in both l-SMCs and s-SMCs, and it was  
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differentially expressed (higher level in l-SMCs than in s-SMCs), with the same direction  

of change as measured by the expression array (fig.28). 
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4.8 Tissue factor (TF) pathway inhibitor (TFPI) in SMCs 

A principal focus of our laboratory is Haemostasis. For this reason, in microarray data 

analysis, a particular attention was reserved to genes involved in coagulation and its 

regulation.   

Among the genes listed in the coagulation cascade (KEGG database), TFPI expression was  

modulated in all three couples of RNA samples. Expression of TFPI was 1.3 – 5 fold lower   

in  s-SMCs than  l-SMCs.   

 TFPI is the major downregulator of the procoagulant activity of the TF–factor VIIa  

complex (TF - FVIIa). Beside a regulation activity of the coagulation cascade, TFPI  

exhibits additional biological functions (Fig.29). 
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5.  Discussion and Conclusion 

5.1 Primary culture of SMCs 

The involvement of selected cellular components in intimal hyperplasia and 

atherosclerosis progression has been inferred from the ability of only some cells to 

respond to stimuli in vitro, their accumulation in injury-induced intima, and the 

differences in gene expression between neointimal and medial SMCs (Zalewski et al,  

2002) 

Several animals have been used for the study of atherosclerosis, the nonhuman 

primates, swine, mice, guinea pigs and hamsters. The disadvantages of animal models 

are that there is no possibility to reproduce the same history of pathogenesis in animals 

as that in man. There is no perfect animal model that completely replicates all stages of 

human atherosclerosis.  

The availability of normal human arterial samples for experimental studies is limited. 

Primary cultures of vascular SMCs can be difficult to obtain and grow, and commercially 

available cells are expensive. Vascular tissues can be obtained from various organs 

during organ transplant procedures, but access to these tissues is limited. Furthermore, 

the age of the donor is often advanced and health problems or death of the donor may 

have altered the phenotype of the cells. There is always a question as to whether donor 

cells are truly normal (Leik et al, 2004). 

A readily available source of normal human arterial smooth muscle cells for in vitro 

studies would be useful.  
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In this thesis we developed an experimental protocol for the isolation and culture of 

SMCs from human samples of atherosclerotic and no-atherosclerotic carotid artery. This 

protocol provides a standard method for primary culture by tissue explantation. Cells 

stably maintained their features until tenth passage, thus permitting to perform 

experimental investigations for a relative long time.  

Nevertheless, drawbacks in setting up this method were manifold.   

First of all, tissue explantation needed to be performed as quickly as possible to avoid 

sample damage. For this reason within an hour from surgery, the specimens were taken 

to the laboratory.  

Although the number of samples was large enough, because CEA is one of the most 

performed surgical interventions in vascular surgery, not all CEA specimens were usable 

for tissue explantation. Particularly, using a surgical blade could not cut lesions 

presenting extended calcifications.  

In addition, as all samples of no-atherosclerotic artery were very small for 

understandable reason, the recovery of SMCs from atherosclerotic and no-

atherosclerotic portions of carotid artery from the same patient was difficult.  

Several time-consuming experiments were preliminarily performed, before 

understanding that, to obtain cellular outgrowth, the side of the specimen (luminal or 

abluminal) to be placed in contact with petri dish surface was the abluminal one.   
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5.2   Distinct SMC Phenotypes 

 

Several groups have obtained and characterized phenotypically different SMC 

populations from normal and pathological arteries, mainly in animals such as rats and 

pigs (Walker et al, 1986; Bochaton-Piallat et al, 1996). However, human SMC 

heterogeneity has only been sporadically described. Through tissue explantation we 

were able to isolate two distinct SMC populations from human carotid endarterectomy 

specimens. L-SMCs from NAA were large and grew in a monolayer, whereas s-SMCs from 

AA were small and elongated, growing multilayered with a typical pattern of hills and 

valley.  Moreover, proliferation rate differentiated l-SMCs from s-SMCs.  

The presence of S100A4 was an additional feature that distinguished  l-SMCs and  s-SMCs. 

S100A4 was detecting only in s-SMCs outgrowing from AA media, and in SMCs from NAA 

media in the presence of plaque. This protein has been detected in human IT SMCs  

(Brisset et al, 2007) and in atheroma prone SMCs in porcine coronary culture. 

Accordingly with this previous study, our finding might suggest that S100A4 could be also 

a marker of human atheroma prone cells.  
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5.3 Plaque influence on cellular outgrowth and proliferation  

From our results we demonstrated that plaque plays a fundamental role in cellular 

outgrowth and proliferation from both NAA and AA media.  

The co-culture experiments were useful for the identification of media as the 

proliferative compartment. Moreover by this approach we demonstrated that presence 

of plaque was necessary for AA media cellular outgrowth. Interestingly, cells coming 

from NAA in the presence of plaque showed morphological and molecular features 

similar to s-SMCs outgrown from AA tissue. This indicates that plaque could influence 

SMC phenotype independently of the starting tissue. Plaque component/s, able to 

influence cellular outgrowth, proliferation and phenotype, should be soluble in culture 

medium, because the holes of the transwell membrane do not allow cells to move from 

a compartment to other. These component/s could be present as molecule/s in the 

plaque or secreted by cells. One hypothesis is that macrophages, which are the most 

abundant cell type in plaque after SMCs, could release grow factors affecting SMC 

proliferation. The observation that macrophages outgrowth from plaque before SMCs 

reinforces this hypothesis. 
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5.4 5.3.RNA profiling 

Despite compelling evidence that phenotypic modulation of SMCs plays a key role in the  

development and/or progression of atherosclerosis and in vascular injury repair, the  

molecular mechanisms and their regulation leading to the phenotypic switching are still  

largely unknown (Kawai-Kowas & Owens, 2007). Particularly, very few information are 

available for SMCs and for their expression patterns in normal and atherosclerotic 

vessels.  

The comparison between SMCs from atherosclerotic and non atherosclerotic carotid 

artery through microarray assay, is an original approach to identify molecular signatures    

of the atherosclerotic process. Microarray data analysis indicated that 375 genes were 

differentially expressed, and among annotated genes 125 were up regulated in s-SMCs 

and 100 up regulated in l-SMCs.   

In particular, our attention was focused on IL-6 and SAA-2, both involved not only in  

inflammation but also in the atherosclerosis progression.  

 

IL-6 

IL-6 is an important stimulator of the acute phase reaction, acting on both liver and  

hypothalamus (Fattori, 1994) leading to release of Serum amyloid A (SAA), and  

fibrinogen, all know to have proinflammatory role. IL-6 deficiency was reported to result  

in an enhanced formation of atherosclerotic lesion, reduced collagen metabolism and  
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elevated level of serum cholesterol (Schieffer et al,2004). However, IL-6 is a pleyotropic 

cytokine and its role in the modulation of inflammation-related process, particularly  

cytokine response and tissue inflammatory cells infiltration, remains equivocal (Madan  

et al, 2007). One function of IL-6 is to suppress the level of proinflammatory cytokines  

without compromising the level of antinflammatory cytokines. Therefore the absence of  

IL-6 results in more pronounced response of proinflammatory cytokines. (VB)  

The evidence of a lower level of IL-6 mRNA in s-SMCs, supports data obtain by  

microarray assay and semiquantitative RT-PCR, in which L-SMCs showed higher level of  

IL-6 mRNA, compared with s-SMCs.  

 

SAA2  

Serum amyloid A (SAA) proteins are a family of apolipoproteins associated with high-  

density lipoprotein (HDL) in plasma. SAA2 belong to SAA protein family subclassified as 

acute phase SAA (SAA1; SAA2) and constitutive SAA. Although most SAA is produced by 

the liver, SAA1, SAA2, and SAA4 also can be produced by extra-hepatic sources. During 

inflammation, SAA1 and SAA2 are principally expressed and induced in the liver, while 

SAA3 is induced in many distinct tissues. SAA1 and SAA2 genes are regulated in liver cells 

by the proinflammatory cytokines IL-1, IL-6, and TNF-α. It is of interest that mRNA for 

SAA has been detected in all of the major cell types present in atherosclerotic, which 

contain both acute-phase and constitutive forms of SAA protein. It was demonstrated 

that SAA2 might serve as autocrine factor to influence SMC migration of aortic tissue 

injury and inflammation (Kumon et al, 2002).  

Cultured SMCs expressed SAA2 (Meek et al, 1993). Previous studies demonstrated an 

association between increased levels of serum amyloid A (SAA), and increased 

cardiovascular risk (Johnson, et al 2004). 
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Differently from literature, in which SAA2 is described as a pro-atherosclerotic marker, 

both in microarray analysis and in semiquantitative RT-PCR, it was more expressed in l-

SMCs outgrown from NAA samples. This finding requires further investigation.  

 

TFPI 

Several evidences support the strong relationships between coagulation and 

atherosclerosis. Acute thrombosis after atherosclerotic plaque disruption is a major 

complication of primary atherosclerosis, leading to acute ischemic syndromes and 

atherosclerosis progression. Several studies have identified TF in the intima of human 

atherosclerotic plaque and have suggested that it is an important determinant of 

thrombogenicity after plaque rupture. Vascular smooth muscle cells were identified as a 

significant source of TFPI synthesis in culture and in normal coronary arteries (Caplice N 

et al, 1997). Biologically active TFPI is present within human atherosclerotic plaque and 

is associated with attenuated TF activity (Noel M et al, 1998). TFPI is currently under 

clinical investigation as an anticoagulant and its effects on intimal hyperplasia in animal 

models have been studied (Taubman MB et al, 1997).  

TFPI downregulation in s-SMC from atherosclerotic carotid, observed both in microarray 

and immunofluorescence analysis is consistent with previous studies. 

  

Althought microarray analysis is a powerful approach to identify molecular signature,  

we are aware of the limitations of RNA profiling of cultured cells.  

A disadvantage is that the in vitro culture may cause a shift in the transcriptome 

(Bijnens et al, 2005).  However, in our study all cells were maintained in similar 

experimental conditions, which should favour the detection of differences related to the 

vessel conditions (presence/absence of atherosclerosis).  
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One of the most challenging aspects of gene expression analysis is the selection, among 

the vast quantities of data, those genes that could have a real causal role. Indeed, the 

change in the transcriptional level of a gene is not correlated with the causal role of 

that gene.  

Sometimes small changes in a key gene can produce a large biological effect. In 

addition, changes in gene expression are not invariably associated with changes in 

protein synthesis. Thus the microarray techniques may be viewed as guiding tools to 

point the study in the right direction, with more conclusive functional information 

collected in subsequent complementary studies.  
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