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Abstract

The recently developed room-acoustics diffusion model relies on the basic as-
sumptions of the Fick’s law of diffusion, relating the acoustic intensity and the
energy density inside a room, through a constant diffusion coefficient. This study
investigates the relationship between these two acoustic quantities in the station-
ary state, for the particular case of long rooms with different amounts of boundary
scattering, by means of numerical simulations and experimental measurements.
The numerical study was performed with a sound particle-tracing code. The ex-
periments consist in measurements inside the scale model of a long room, where a
three-dimensional Microflown➤ probe (calibrated and equalized with digital filters)
was employed to collect data in terms of pressure and axial velocity components.
Then, for each receiver position, the intensity and the energy density gradient were
derived. Both numerical and experimental results show that inside long rooms the
diffusion coefficient is not a constant but increases with the distance from the
source, with a slope depending on the scattering coefficient of the walls. This re-
sult implies that, for such long enclosures, the diffusion model should consider a
space-varying diffusion coefficient to be more consistent with real phenomena.



Riassunto

La teoria della diffusione applicata all’acustica architettonica deriva dalla legge
di Fick sulla diffusione e mette in relazione intensità e densità di energia sonora
all’interno di un ambiente attraverso il valore costante del coefficiente di diffu-
sione. In questo lavoro viene analizzata l’effettiva relazione che intercorre tra le
due grandezze in condizioni stazionarie, nel caso particolare di ambienti lunghi
caratterizzati da differenti valori del coefficiente di scattering superficiale. L’analisi
è condotta sia attraverso simulazioni numeriche che impiegando misure sperimen-
tali. Le simulazioni numeriche sono state effettuate impiegando un software di
particle-tracing. La parte sperimentale è invece basata su misure all’interno di un
modello in scala: una sonda Microflown➤ tridimensionale (calibrata ed equaliz-
zata mediante l’impiego di filtri digitali) è stata utilizzata per acquisire i valori di
pressione sonora e delle tre componenti assiali di velocità delle particelle all’interno
dell’ambiente. Le grandezze misurate sono poi state impiegate per calcolare inten-
sità e gradiente della densità di energia sonora. Sia i risultati numerici che quelli
sperimentali evidenziano come, in ambienti lunghi, il coefficiente di diffusione non
sia costante ma aumenti al’aumentare della distanza dalla sorgente, con una pen-
denza che dipende dal coefficiente di scattering delle pareti. I risultati ottenuti
portano a concludere che, per simulare correttamente la propagazione del suono
all’interno di questo tipo di ambienti, il modello di diffusione dovrebbe basarsi su
un coefficiente di diffusione variabile nello spazio.
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Introduction

This thesis collects the research activities performed during the Ph.D. in En-
gineering Science, carried out from 2009 to 2011 at the Engineering Department
of University of Ferrara. Part of the activities were carried out at the PPRIME
Institute of University of Poitiers (France), where a seven months research period
was spent.

The thesis is focused on the room-acoustics diffusion theory and its validation
by means of both numerical and experimental results.

The room-acoustics diffusion theory is a recently developed model for the pre-
diction of the sound field inside enclosures. It was initially introduced by Picaut
et al. in 1997 [1] and it is based on the use of a diffusion equation to describe the
acoustic quantities inside urban streets or rooms with diffusely reflecting bound-
aries. The underlying assumption is that the multiple diffuse reflections that take
place on these surfaces yield to a sound field whose propagation can be described
as a diffusion process, employing the same equations that govern the propagation
of particles inside a scattering medium.

The model was further extended in the last ten years for taking into account
the main aspects of the sound propagation inside rooms (atmospheric or bound-
aries absorption, sound transmission...) and a numerical solution was introduced,
allowing the prediction of the sound field inside rooms of complex shape, or big
dimensions, with limited computational times and resources. The obtained re-
sults, expressed in terms of sound pressure level and reverberation time, show a
good agreement with both experimental and simulated data (especially for coupled
rooms [2, 3]).

Anyway, during these years, no systematic studies were carried out for vali-
dating the model, starting from the analysis of the basic equation of the diffusion
theory. The model relies in fact on two main equations: a conservation equation
and a diffusion gradient equation that relates the energy density gradient and the
sound intensity by means of a proportionality constant named diffusion coefficient
(Fick’s law). The equation states that the motion of particles from an high density
area to a low density one, that is the energy flow, is generated by the presence
of an energy density gradient. This relationship does not follow from the acous-
tic wave equation but derives from the so-called “diffusion approximation” in the
hypothesis of a small rate of change of the considered acoustic quantities with the
mean free path of the room.

The analysis of the diffusion gradient equation is therefore believed to be an
important issue in order to understand when the diffusion model can be successfully
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INTRODUCTION

applied and which is the “real” value of the diffusion coefficient. Moreover this kind
of analysis can be also employed for finding out if the model, which is intrinsically
limited to rooms with diffusely reflecting boundaries, could be extended to the more
realistic case of enclosures characterized by mixed diffuse and specular reflections.

Therefore, in this study, the basic equation of the room-acoustics model is
systematically investigated through a numerical and experimental estimate of the
diffusion coefficient inside enclosures with different geometries and acoustic prop-
erties of the boundaries. The numerical investigation was performed with the aim
of outlining the basic features of the problem and thus providing a starting point
for the experimental part of the research.

The thesis is divided in four main chapters, organized according to the following
structure.

In Chapter 1 the room-acoustics diffusion theory is reviewed. Firstly the for-
mulation of the analytical model is detailed, starting from the analogy between a
gas of elementary particles in a scattering medium and the reverberant part of the
sound field inside a room. The theoretical expression of the diffusion constant is
introduced, as derived from the diffusion theory applied to the particles propaga-
tion. Then the numerical solution of the diffusion equation is presented and the
limits of validity of the diffusion model are discussed. Finally, in the last part of
the Chapter, two studies dealing with the extension of the model to the description
of the sound field inside rooms with mixed reflections are briefly discussed.

Then, in Chapter 2 the numerical estimate of the diffusion coefficient is pre-
sented. The numerical analysis was carried out by means of a particle-tracing
code, whose typical features are detailed at the beginning of the Chapter. The
choice of this code was led by the possibility of modelling the sound field relying
on the same basic concepts of the diffusion model; moreover the direct calcula-
tion of energy density and sound intensity at each receiver position, irrespective
to each other, performed by the code allowed to numerically investigate the dif-
fusion gradient equation. The relationship between the two acoustic quantities
is initially assessed for a proportionate room with both uniform and non-uniform
surface absorption. Then a long room is considered, where a systematic analysis of
the diffusion coefficient sensitivity to the geometrical and acoustic characteristics
of the room was carried out.

The experimental part of the research is presented in Chapter 3 where the
measurements performed inside a scale model of a long room are described. The
first part of the Chapter deals with the intensimetric p-u probe employed for the
collection of the data: in particular, the calibration of the probe is carefully de-
tailed, describing the measurements performed inside a small anechoic chamber
and the numerical elaboration of the digital filters to be employed for the cor-
rection of the raw signal. The measurements were performed inside two different
configurations of the scale model, varying the scattering and absorption properties
of the boundaries; the acquired data (pressure and three velocity components) al-
lowed to retrieve the energy density and the sound intensity along the three axes.
Hence, in the final part of the Chapter the basic characteristics of the investigated
sound fields are carefully investigated, by means of energetic and intensity based
quantities.

2



INTRODUCTION

Finally, in Chapter 4, the experimental estimate of the diffusion coefficient in-
side the two investigated long rooms is presented and the validity of the diffusion
equation is discussed, as a function of the reflection properties of the room bound-
aries. In the same Chapter a comparison between simulated and measured quan-
tities is also performed, with the aim of validating the sound intensity prediction
performed by the particle-tracing code.

3





Chapter 1

The room-acoustics diffusion

theory

1.1 Introduction

Sound field modelling is a topic of primary interest in architectural acoustics;
during the years several analytical and numerical models have been proposed in
literature with the aim of exactly predicting the sound field, in both its temporal
and spatial distribution.

However, given the complexity of the physical phenomena involved, it is not
possible to reach a single, all-comprehensive model and during the time a variety
of approaches has been suggested, each one with specific fields of analysis and
restrictions in the application. For example the solution of the wave equation
(employing either analytical or numerical methods) leads to an accurate description
of the sound field in terms of modal distribution but, given the computational load,
it is suitable only for the low frequency range. On the contrary, statistical methods
allow to deal with medium and high frequencies, providing correct results even with
a limited knowledge of the room under study, but they can not describe the sound
field characteristics at the low frequencies. Anyway, all these different models yield
to the prediction of the majority of the acoustical effects and, on the whole, cover
a wide range of configurations, useful from a practical point of view.

In this Chapter a recently developed model for the prediction of the sound
field inside enclosures, named room-acoustic diffusion theory, is presented. The
model is based on the analogy between the sound field inside a room with diffusely
boundaries and the propagation of elementary particles in a scattering medium.
The analogy, initially proposed by Ollendorff in 1969 [4, 5] was further developed
by Picaut et al. in 1997 [1, 6] with reference to urban acoustics. A numerical
implementation of the analytical formulation was then derived in 2006 [7], in order
to employ the model for describing and predicting the sound field inside enclosures
of various shapes and preparations, for example coupled rooms [2, 3, 8, 9] or fitted
rooms [10]. During the years the model has been further extended for taking into
account high absorption coefficients of the room boundaries [11, 12], atmospheric
attenuation [13] and sound transmission through the walls [7]. Few attempts were

5



CHAPTER 1. The room-acoustics diffusion theory

also carried out to extend the model and describe the case of enclosures character-
ized by mixed (diffuse and specular) reflections [14, 15].

In the following Sections the theoretical derivation of the diffusion equation is
presented, starting from the more general representation of the diffusion problem
(transport equation) and focusing on the analogy between the diffusion of particles
in a scattering medium and the sound field inside rooms. The numerical implemen-
tation of the model and its principal extensions proposed in the last years are then
briefly introduced and finally, in the last part of the Chapter, the problem of cor-
rectly predicting the main parameter of the equation (i.e., the diffusion constant)
is discussed.

1.2 Room-acoustics diffusion theory: theoretical

model

1.2.1 Sound particles concept

The mathematical formulation of the diffusion model is based on the concept
of sound particles and the equivalence between the sound energy density and the
particles distribution function inside an enclosure.

The sound particle concept stems directly from geometrical room acoustics: the
sound rays can in fact be regarded as trajectories of the sound particles (phonons)
[16] or, alternatively, the sound particles can be described as “short pulses with
a broad spectral distribution propagating along sound rays path” [17]. Following
this approach, geometrical room acoustics can be considered as a special case of
particle dynamics and the sound field assimilated with a gas of sound particles,
where the local sound energy density is represented by the density of particles at
each receiver position. Hence, in models based on the sound particles concept the
target shifts from the prediction of the sound field to the analytical or numerical
calculation of the local density of sound particles.

The main assumptions of this kind of models can be summarized in the following
points:

1. In the sound field the particles propagate at the sound velocity c along
straight lines, without mutual interaction and carrying an infinitesimal amount
of energy. When a particle strikes a wall, or an obstacle if the room is fitted,
it can be absorbed or reflected, according to the local absorption coefficient
α; if the particle is reflected, a new straight trajectory is identified, whose
direction depends on the reflection law of the surface.

2. As it derives from geometrical acoustics, the sound particle approach disre-
gards the undulating nature of the sound waves and is suitable only for the
description of the sound field in the high frequency range, where the phase
effects can be neglected. The sound field is therefore regarded as a superpo-
sition of an high number of plane waves, mutually incoherent, with phases in
a random relationship [18].
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3. The sound field can be properly represented with a particles model only
after a large number of reflections has occurred, when it can be described as
a complex energy mixing [19]. It follows that only the reverberant part of the
sound field, result of a “complex mixing of specular reflections, diffraction and
scattering phenomena” [20], can be properly modelled by a particle approach.

4. This kind of models do not take into account expressly the notion of frequency
which anyway can be introduced via the acoustics properties of the room
surfaces and the source (absorption and scattering coefficients, source power,
atmospheric absorption...).

1.2.2 Analogy between room acoustics and particle diffu-

sion

As introduced in the previous Section, the reverberant part of the sound field
inside a room can be modelled through a multitude of phonons, propagating along
straight lines and striking the room boundaries. According to the room-acoustics
diffusion model, this propagation can be considered analogous to the movement
(diffusion) of elementary particles in a space containing scattering objects (fig-
ure 1.1), as described by Morse and Feshbach [21]. In particular the analogy regards
the case of scattering objects more massive than the elementary particles where,
even if collisions between elementary particles occur, their effect can be neglected;
from a physical point of view, the model describes for example the propagation of
electrons through massive nuclei or the movement of photons through fog particles.

(a) (b)

Figure 1.1: Analogy between the diffusion of a sound particle inside a room (a) and the diffusion
of an elementary particle in a scattering medium (b). (from [1])

Therefore, following the proposed analogy, the room boundaries are assimilated
to a set of scattering elements and the average absorption coefficient of the room
is considered analogous to the absorption probability ᾱ of the scattering elements.
Moreover the phonons velocity c (i.e., the speed of sound) is supposed to be equal
to the propagation velocity of the elementary particles.

The scattering objects, which can be described as elastic spheres of radius R,
are randomly distributed inside the space with a density nt; their total scattering
cross section is Qt=πR2=se/4, being se=4πR2 the surface of each sphere. When
a particle hits a scattering object, it is absorbed with an average probability ᾱ

7
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and reflected with a probability (1 − ᾱ); the total cross section of the scattering
elements can therefore be written as the sum of an absorption cross section Qa and
a scattering cross section Qs, as:

Qt = Qa +Qs = ᾱ Qt + (1− ᾱ)Qt. (1.1)

In order to apply the analogy between the diffusion of gas particles and the sound
field inside a room of volume V and surface S, it is moreover necessary that the
surface per room volume is equal to the scattering objects surface per unit volume,
that is:

S

V
= nt se. (1.2)

Finally, let’s define P (x) as the probability that a particle covers a distance x
without collisions. A particle will cover a distance x + dx without collisions only
if it does not experiment collisions along the length x and inside the volume of
thickness dx and unit surface perpendicular to the propagation direction. This, in
terms of probability, can be expressed as:

P (x+ dx) = P (x) · (1−Qtntdx), (1.3)

where Qtntdx is the number of diffusing elements inside the defined volume. Start-
ing from equation (1.3), it is possible to derive the average distance λ between two
successive collisions (mean free path), expressed as:

λ =

∫

∞

0

xP (x)dx =
1

Qtnt

. (1.4)

According to the defined analogy, inside an enclosure equation (1.4) leads to:

λ =
4V

S
, (1.5)

which is the value classically chosen for expressing the mean free path inside rooms
with diffusely boundaries [17, 22].

1.2.3 Transport equation

In this Section the transport equation is analytically derived. This equation can
be considered as the most general representation of the diffusion problem; starting
from its integral formulation and applying the so-called “diffusion approximation”
it will be then possible to derive the analytical expression of the diffusion equation.

Let’s define the phase space Vr × Vv, where the state of a single particle can be
specified at each instant of time by its six coordinates x, y, z, vx, vy, vz, expressing
position and velocity.

In order to analytically derive the density of sound particles at each position of
the space it is necessary to move from the description of the motion of the single
particles to a description of the average motion of the whole cloud of particles.
The link between small-scale phenomena and large-scale motion of the fluid as a

8
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whole, can be provided by the distribution function, according to the methods of
the kinetic theory.

The distribution function f(r,v, t) returns the probability for a particle to be
localized at position r in the position space Vr with a velocity v (with norm c,
speed of sound) in the velocity space Vv at the instant t.

Hence, all the large-scale properties can be obtained conveniently integrating
the distribution function.

Integrating the function over both position and velocity spaces gives the total
number of particles:

N =

∫∫∫

f(r,v, t) dVvdVr. (1.6)

Integrating the function over the only velocity space returns the average number
of particles per unit volume of position space, that is, following the analogy with
the propagation of sound particles, the sound energy density:

w(r, t) = e

∫∫∫

f(r,v, t) dVv. (1.7)

Similarly, the total average velocity per unit volume expresses the sound energy
flow, or acoustic intensity:

I(r, t) = e

∫∫∫

vf(r,v, t) dVv. (1.8)

In the following, a unit mass e will be considered, corresponding to the case of a
unit energy carried by each sound particle.

Let’s now consider the propagation of the particles inside a space. If colli-
sions on the scattering elements do not take place, all the particles in a given
element of velocity space Vv will travel with the same velocity v and there will be
f(r,v, t)dVvdVr of them in the element dVr at the position r(x, y, z) and at the
time t. The same particles, at the time t+dt, will be found at the position r+vdt.
Therefore, if collisions and absorption phenomena are neglected, the distribution
function at the position r at time t must be equal to the distribution function at
the position r + vdt and at the time t+ dt:

f(r,v, t) = f(r + vdt,v, t+ dt), (1.9)

meaning that during the propagation there is no loss of sound particles:

d

dt
f(r,v, t) =

[

∂

∂t
+

∂

∂r

dr

dt
+

∂

∂v

dv

dt

]

f(r,v, t) = 0. (1.10)

Given that the velocity v is a constant over the time (i.e. dv/dt = 0) and dr/dt =
v, it is possible to simplify equation (1.10) and obtain the equation of continuity
for the distribution function, that describes the spatial and temporal evolution of
the local particles density:

∂

∂t
f(r,v, t) = −v · ∇f(r,v, t), (1.11)

9



CHAPTER 1. The room-acoustics diffusion theory

where the gradient operator ∇ operates only on the space dependence of f(r,v, t).
Equation (1.11) can also be seen as the transport equation of a free molecular

flow, also called Liouville equation; the evolution of sound particles density is
described in analogy with the evolution of the molecular density in a rarefied (or
Knudsen) gas [23].

When the particles propagate inside a space filled with scattering elements, the
possibility of collisions modifies the distribution function, which is no longer the
same from point to point; in fact, due to collisions, some particles vanish from the
velocity space element dVv, while other particles, originally in other velocity space
elements, are scattered inside it. In this Section the absorption of the particles
due to collisions with the scattering elements is neglected: it will be considered in
➜ 1.2.6 where the boundary conditions are discussed.

The particles vanishing from the velocity space element dVv due to collisions
are responsible for a rate of loss of the distribution function, expressed as:

∂

∂t
f(r,v, t) = −(Qtntc)f(r,v, t) = −

c

λ
f(r,v, t), (1.12)

where Qtntc expresses the fraction of particles that experiment collisions and
change their direction.

On the other hand, there is also a fraction of particles, originally in other
velocity space elements, which are scattered into dVv by collisions. Assuming that
the particles are scattered with equal probability in all directions and that there
is no change in the velocity of the particles undergoing collisions, the increase rate
of f(r,v, t) can be written as:

∂

∂t
f(r,v, t) =

(

Qtntc

4π

)
∫

f(r,v′, t) dVv′ , (1.13)

where dVv′ represents the velocity space elements where the particles scattered
inside dVv are originally located. Hence, the continuity equation can be generalized
for taking into account the scattering phenomena, leading to:

∂

∂t
f(r,v, t) = −v · ∇f(r,v, t)− c

λ
f(r,v, t) +

c

4πλ

∫

f(r,v′, t) dVv′ . (1.14)

1.2.4 Diffusion approximation

Applying the transport model to a specific problem, requires the resolution of
the transport equation together with some appropriate boundary conditions. Un-
fortunately, at the moment exact analytical solutions for this system of equations
are not available, a part from the case of simple geometries [24, 25].

Anyway, it is possible to find asymptotic solutions of the system, moving from
the integral formulation to a differential equation, easier to solve but not always
valid. In fact, a differential equation is a good approximation of the transport
equation only when the changes in w(r, t) and I(r, t) per mean free path are
small, that is, when the distribution function is nearly independent of the angle of
direction of the velocity and the energy flow I(r, t) is small [21].

10



CHAPTER 1. The room-acoustics diffusion theory

Therefore, let’s consider the angle-dependent part of f(r,v, t) to be quite small;
in this case the density function f(r,v, t) can be expanded in power of v, giving
the first order approximation:

f(r,v, t) ≈ 1

4π
w(r, t) +

3

4πc2
v · I(r, t). (1.15)

Considering this last relation, equation (1.14) becomes:

∂

∂t
w(r, t)+

3

c2
v
∂

∂t
I(r, t) = −v ·∇w(r, t)− 3

c2
v ·∇(v ·I(r, t))− 3

cλ
v ·I(r, t), (1.16)

which can be separated in two equations on the basis of symmetry, by considering
separately the terms that change sign when the direction of v is reversed and the
terms that do not. The terms that change sign lead to:

I(r, t) = −Dth∇w(r, t), (1.17)

where the term ∂I/∂t of equation (1.16) has been neglected, given the slow rate
of change with the time of the involved quantities. This equation, relating the
acoustic energy flow to the acoustic energy density is a diffusion gradient equation
and states that an energy gradient produces a motion of sound particles from an
high density area to a low density one [1]. The same type of equation was employed
in different fields of acoustics, for example in the context of porous materials [26]
or structural vibrations [27].

In equation (1.17) it is introduced the diffusion constant of the room Dth,
expressed, for rooms of arbitrary shape with diffusely reflecting walls, as:

Dth =
λc

3
=

4V

S

c

3
, (1.18)

where the expression of the mean free path λ is taken up from equation (1.5).
On the other end, the terms that do not change sign lead to:

∂

∂t
w(r, t) = − 3

c2
v · ∇ [v · I(r, t)] . (1.19)

Replacing I(r, t) with the expression defined in equation (1.17) and averaging over
all the possible directions of v, the diffusion equation can be obtained as:

∂

∂t
w(r, t)−Dth∇2w(r, t) = 0, (1.20)

where ∇2 is the Laplace operator.
It is worth noticing that the diffusion equation can be seen as a direct conse-

quence of the general principle of energy conservation:

∂w

∂t
(r, t) +∇ · I(r, t) = 0, (1.21)

provided that the intensity is proportional to the energy density gradient as stated
in equation (1.17).

11
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1.2.5 Introducing a source function

In the present form, the diffusion equation does not contain a term accounting
for the introduction of new particles into the scattering space, that is a source
function. This term can be added in the transport equation (1.14), bringing to the
following modified expression of the diffusion equation:

∂

∂t
w(r, t)−Dth∇2w(r, t) = P (r, t), (1.22)

where P (r, t) accounts for a source located in r and emitting particles with a
defined distribution in the time t.

For example, the case of a point source emitting q particles per second may be
modelled by the term qδ(r − rs), rs being the source position [21]. Following the
analogy between elementary particles propagation and sound field inside a room
[7], the diffusion equation inside a room with a point source of power W (t) located
at rs can be therefore expressed as:

∂

∂t
w(r, t)−Dth∇2w(r, t) = W (t) δ(r − rs). (1.23)

If an impulsive point source is considered, the diffusion equation will become
instead:

∂

∂t
w(r, t)−Dth∇2w(r, t) = E0 δ(r − rs)δ(t− t0), (1.24)

where E0 is the energy emitted from the source at the time t = t0.

The particular case of a sound source occupying a volume v and radiating a
sound power W (t) (which will be employed in the numerical implementation of
the diffusion equation in ➜ 1.2.9) can be modeled instead with the following source
term:

P (r, t) =
W (t)

v
fs(r), (1.25)

where the function fs(r) is equal to 1 inside the volume v and 0 otherwise; the
integration of equation (1.25) over v returns the sound power of the source.

1.2.6 Boundary conditions

In the derivation of the transport equation it was supposed that the absorption
of the scattering elements (or equivalently the absorption of the room boundaries)
was negligible. This phenomenon, which leads to a rate of loss in the distribution
function, can be both integrated in the expression of the diffusion equation (ho-
mogeneous Neumann boundary conditions) or directly considered in the boundary
conditions (mixed boundary conditions). The solutions obtained with both meth-
ods are equivalent, but, while the first one deals only with the average absorption
coefficient of the room ᾱ, the second one allows to handle local variations of ab-
sorption.

12
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1.2.6.1 Homogeneous Neumann boundary conditions

The absorption of the room boundaries is integrated in the model by adding a
term to the transport equation (1.14), accounting for a rate of loss of the distribu-
tion function f(r,v, t):

∂

∂t
f(r,v, t) = −v · ∇f(r,v, t)− nt(Qs +Qa) c f(r,v, t) +

+
Qsntc

4π

∫

f(r,v′, t) dVv′ + p(r,v, t), (1.26)

where p(r,v, t) is the function modelling the sound source and ntQac expresses the
fraction of particles absorbed by the scattering elements.

In this case, the diffusion equation becomes:

∂

∂t
w(r, t)−Dth∇2w(r, t) + σ w(r, t) = P (r, t), (1.27)

where σ = cᾱ/λ is the probability rate of a sound particle to be absorbed during
one second.

In this approach the absorption phenomena are exclusively handled inside the
volume of the room by the diffusion equation; on the boundaries (where the ab-
sorption actually takes place) it is only necessary to state the impossibility of the
particles to be transmitted through the walls: when a particle strikes a surface
it can only be absorbed or reflected, but it can not escape from the volume. The
associated boundary conditions state therefore a null energy flow through the walls
(∂w/∂n = 0).

The system of equations that has to be solved therefore becomes equal to:

∂

∂t
w(r, t)−Dth∇2w(r, t) + σw(r, t) = P (r, t) in V, (1.28)

I(r, t) · n = −Dth∇w(r, t) · n = 0 on ∂V, (1.29)

where V expresses the room volume, ∂V denotes the room boundaries and n is
the local vector normal to the surface.

1.2.6.2 Mixed boundary conditions

In order to take into account the local variations of the surface absorption and
their effect on the sound field, a different set of boundary conditions was presented
in ref. [7]. In this case the absorption is entirely handled through the boundary
conditions, expressed in the form:

I(r, t) · n = −Dth∇w(r, t) · n = hw(r, t), (1.30)

where h is the so-called local exchange coefficient.
The expression of h can be derived observing that the energy flow through the

room boundaries S has to be equal to the absorption over the room volume V , as
expressed by the term σw(r, t) in equation (1.27):

∫

V

σ w(r, t)dV =

∫

∂V

h(S)w(r, t)dS. (1.31)

13
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If the sound field is supposed to be totally diffuse1, that is, if the energy density
is uniform throughout the volume, the exchange coefficient can be expressed as a
function of the absorption coefficient as:

ᾱcS

4
=

∫

∂V

h(S) dS. (1.32)

If the room boundaries are composed of n surfaces Si with constant sound absorp-
tion αi, then the exchange coefficient hi of each surface portion can be expressed
as:

hi =
αic

4
, i = 1, ..., n. (1.33)

Therefore, if the mixed boundary conditions are employed, the following system
of equation will be solved:

∂

∂t
w(r, t)−Dth∇2w(r, t) = P (r, t) in V, (1.34)

Dth

∂

∂n
w(r, t) +

cα

4
w(r, t) = 0 on ∂V. (1.35)

The exchange coefficient h, but also the coefficient σ, are based on the Sabine
absorption coefficient, restricting the validity of diffusion model to rooms with low
surface absorption. To overcome this limitation a new expression for the exchange
coefficient h was suggested in ref. [11, 12], based on the Eyring absorption coeffi-
cient αE = −ln(1− α):

hE,i = −
c ln(1− αi)

4
. (1.36)

This expression can be applied when the absorption coefficient is high, improving
the results in terms of reverberation time, for rooms with both non-homogeneous
and high absorption.

This model shows anyway a singularity when the absorption coefficient becomes
equal to 1.0 (i.e., when portions of the room walls are open); in order to overcome
the problem, a modified boundary condition was proposed in ref. [28], where the
exchange coefficient is expressed as:

hM,i =
αic

2 · (2− αi)
. (1.37)

The three boundary conditions return the same results in the low absorption
region, whereas they show considerable discrepancies in the high absorption region.

1.2.7 Considering the atmospheric absorption

The atmospheric absorption has a relevant contribute in the distribution of the
sound field, especially in big rooms and at high frequencies. As shown in ref. [11],

1These boundary conditions are therefore obtained relaying on a quite specific (and ideal)
assumption, which could represent a critical point in the solution of the model.
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it can be integrated into the room-acoustic diffusion model by adding a specific
rate of loss to the distribution function, which will be rewritten as:

∂

∂t
f(r,v, t) = −v · ∇f(r,v, t)−

[ c

λ
+mc

]

f(r,v, t) +

+
Qsntc

4π

∫

f(r,v′, t) dVv′ + p(r,v, t), (1.38)

where m is the coefficient of atmospheric attenuation [m−1].
Consequently the diffusion equation (in the hypothesis of mixed boundary con-

ditions) changes its expression in:

∂

∂t
w(r, t)−D′

th∇2w(r, t) +mcw(r, t) = P (r, t). (1.39)

Therefore the presence of atmospheric absorption alters the expression of both
diffusion equation and diffusion coefficient, that becomes:

D′

th = Dth ·
1

1 +mλ
(1.40)

However as the effect of the atmospheric absorption is usually quite small per mean
free path (i.e. mλ≪ 1) it can be assumed that D′

th ≈ Dth.

1.2.8 The diffusion model as an extension of the statistical

theory

According to classical theory [17], the energy balance for a room of volume V
and surface S containing a source of sound power W (t) and with an average surface
absorption ᾱ, can be expressed as:

V
d

dt
w(t) + V

cᾱS

4V
w(t) = W (t). (1.41)

This expression can be compared with the energy balance of the same room given
by the diffusion theory and expressed integrating equation (1.28) over the room
volume:
∫

V

∂

∂t
w(r, t)dV +

∫

V

cᾱS

4V
w(r, t)dV −Dth

∫

V

∇2w(r, t)dV =

∫

V

W (t)δ(r − rs)dV .

(1.42)
By using Gauss’s theorem and the condition of null energy flow through the bound-
aries, the term containing the Laplacian operator is shown to be null:

D

∫

V

∇2w(r, t)dV = Dth

∫

∂V

∂w

∂n
(r, t)dS = 0, (1.43)

and, if the order of derivative and integral in the first term are exchanged, the
expression will become:

∂

∂t

∫

V

w(r, t)dV +
cᾱS

4V

∫

V

w(r, t)dV =

∫

V

W (t)δ(r − rs)dV . (1.44)

15



CHAPTER 1. The room-acoustics diffusion theory

This last expression is clearly an extension of equation (1.41) for a spatially varying
sound field: the room acoustics diffusion theory can be therefore considered as an
extension of the classical statistical theory, as pointed out in ref. [1, 7].

However it is necessary to clarify the differences between the “diffuse” sound
field (as defined by the classical theory) and the sound field considered in the
diffusion model.

The “diffuse” sound field rests classically on two main hypothesis [17, 29]:

❼ spatial diffusion: the stationary energy density is uniform inside the room;

❼ directional diffusion: the incidence of sound energy at any point of the sound
field does not depend on the direction of incidence.

This two conditions can be realized inside rooms with irregular shape and low ab-
sorption. The geometry helps in scattering the sound rays in all possible directions
and providing an high modal distribution; the absorption is instead needed to be
low, as otherwise it will affect the diffusion of the field by continuously extinguish
potential ray paths. In order to create the diffuse field, enclosures with diffusely
reflecting boundaries are particularly efficient, as the irregularities on the surfaces
scatter and redistribute the sound field in a wide range of directions.

On the contrary the room-acoustic diffusion theory deals with sound field char-
acterized by non-uniform energy density, which varies inside the room according
to the geometry and the absorption of the walls. The differences in the temporal
and spatial distribution of the energy density are just responsible for the energy
flow inside the room.

1.2.9 Validity of the diffusion equation

As already pointed out, the diffusion process is based on the assumption that
a large number of reflections happens inside the room and the sound field can
be regarded as a complex energy mixing; this hypothesis assures that only small
variations of the acoustic quantities take place per mean-free path. It also implies
that this kind of model can properly describe only the reverberant part of the sound
field or, looking at the problem in the time domain, that it is valid only after a
certain amount of time after the source activation, necessary for the first reflections
to take place. In the first instants after the source activation the diffusion theory
returns in fact non physical results [1, 7].

Several values for the time limit after which the model leads to correct results
were proposed. Morse and Feshbach [21] and Valeau et al. [7] suggested that a
limit of one mean free time (i.e. λ/c) could be considered for the diffusion equation
to have physical meaning; before this time, the high probability of the particles
of not having hit a scatterer/surface yet leads to non valid results. Equation
(1.3) states in fact that the particles have some chance to hit a surface even at
infinitely small distance from the source, which is clearly not physical. Then, in
ref. [3], a time interval of two mean free time was proposed, in order to find
an agreement between the reverberation time obtained with the diffusion model
and measured inside coupled rooms. Finally, a systematic study focused on this
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topic was recently published, where diffusion theory and ray-tracing results are
compared [30]. The authors suggest that the diffusion equation could be considered
certainly valid after the mixing time (the time at which the transition from early
reflections to late reverberation occurs), conventionally equal to three mean-free
path; in addition the equation can also correctly predict a certain fraction of early
reflections (approximately one mean free path) prior the time at which mixing
occurs.

1.3 Numerical implementation of the diffusion

model

The room-acoustic diffusion equation can be analytically solved only in few
cases, when the shape of the enclosure and the associate boundary conditions are
especially simple. For example, a solution was calculated inside long rooms with
uniform absorption for both stationary and time-varying states, yielding to the
analytical expressions of sound attenuation and reverberation time in finite, semi-
infinite and infinite long rooms [6].

In all the other cases (complex room shape, complicate distribution of the sound
absorption...), it is instead necessary to numerically solve the diffusion equation,
following the procedure developed in ref. [7].

In particular a FEM-based method was proposed to solve the equation that, in
its time-varying form, can be rewritten as:

∂

∂t
w(r, t)−Dth∇2w(r, t) = 0 in V, (1.45)

∂

∂t
w(r, t)−Dth∇2w(r, t) =

W

v
in Vs, (1.46)

The diffusion equation is solved in two separate sub-domains (V and Vs) with
different source terms, ensuring that the constant sound power of the source W
can be retrieved by integrating equation (1.46) over Vs. Here Vs identifies the
sob-domain of volume v centered in the source location and V is the whole room
volume minus Vs, representing the sub-domain where the sound energy density is
calculated. The associated boundary conditions will be of the mixed-type.

When the finite-element method is employed for solving the Helmholtz equa-
tion, its application is limited at the low frequency range, as the size of the mesh
elements has to be smaller than the considered wavelength (< Λ/6). If the same
method is employed for solving the diffusion equation, the parameter that influence
the mesh size will be no longer the wavelength but the mean-free path of the room:
the same mesh size can therefore be employed for all the frequency bands and the
size of the elements is required to be smaller than one mean free path. It follows
that the finite-elements method can be employed for solving the diffusion equation
even in big rooms with limited meshing and low computational times.

From the numerical solution of the diffusion equation expressed in terms of
energy density w(r, t) it is possible to obtain the square pressure, classically em-
ployed in room acoustics for describing the sound field. To express this quantity,
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it is necessary to recall the concept of the random wave theory, introduced in ref.
[31, 32] and further discussed by Pierce [33] and Nelson [18], where the sound field
in a room is described by a superimposition of an infinite number of plane waves.
Provided that all quantities are spatially averaged through a volume of space that
is large compared to the acoustic wavelength at the considered frequency, but much
smaller than the room mean free path [18], the energy density can be related to
the square pressure according to the expression:

p2(r, t) = ρc2w(r, t), (1.47)

where ρ is the air density and c the speed of sound. Let us stress here that equa-
tion (1.47) does not rely on the “diffuse field” assumption, but considers locally-
averaged quantities. In the same way, the energy density w(r, t) governed by the
diffusion equation can be seen as a local spatial average of the energy density,
smoothing the local modal effects that could occur in practice throughout the
room.

Finally, it is important to recall that in order to obtain the total sound field
inside the room, the direct field contribution has to be added to equation (1.20)
that provides only the reverberant component of the sound field. The direct part
of the energy density can be expressed as:

wd(r, t) =
W (t)

4πcr2
. (1.48)

1.4 Diffusion coefficient estimate

In equation (1.18) the diffusion coefficient was theoretically defined as a con-
stant, depending only on the mean free path of the room. Its expression was directly
derived from the diffusion theory applied to the propagation of particles and only
few attempts have been done to investigate the real value of the parameter.

Figure 1.2: Variation of the normalized diffusion coefficient Dth/c with the mean free path λ
of the room; (+) numerical estimation with the radiosity method, (–) diffusion model. (from [1])

For example, in ref. [1] a numerical estimate of the constant is provided, by
comparing the diffusion equation and a numerical model. The comparison was
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performed with the radiosity method, proposed by Kuttruff [17] and based, simi-
larly to the diffusion theory, on the hypothesis of purely diffusely reflections inside
the room. Numerical simulations were carried out for long rooms with different
dimensions and aspect ratios, showing a close agreement between the numerical
estimate and the theoretical value, as represented in figure 1.2.

A different approach is instead proposed in ref. [6], were the reliability of the
expression chosen to describe the mean free path of a room is discussed. In fact, for
the long room considered in the study, the best agreement between experimental
measurements and diffusion model results was obtained for a different expression
of the mean free path, that is:

λ =

√

S

4π
. (1.49)

This expression, introduced in ref. [34], derives from the application of the image
source method to rectangular rooms.

This study proves that it is necessary to further investigate the diffusion coef-
ficient value as it could differ from the theoretical value, varying, for example, as
a function of the room shape.

1.4.1 Diffusion coefficient inside rooms with mixed diffuse

and specular reflections

Another issue to be tackled is the possibility of extending the diffusion model
to the most general case of rooms with mixed reflections. The model, and therefore
the expression of the diffusion coefficient, is intrinsically limited to the rather ideal
condition of rooms characterized by purely diffuse reflections. This conditions
is frequently assumed for prediction models but it is hardly encountered in real
situations as the surfaces diffuse only a fraction of the incident sound whereas
the remaining part is reflected into specular directions, according to the scattering
coefficient s.

In order to model this phenomenon LePollès et al. [23] analytically derived
an expression for the diffusion coefficient K, starting directly from the transport
equation solved in its asymptotic form, for the particular case of a street canyon.
Being b the width of the street, the diffusion coefficient K is expressed as:

K =
(1 + d)

(1− d)

bc

4
, (1.50)

where d is the accomodation coefficient, varying from 0 for diffuse reflections to 1 for
purely specular reflections. In figure 1.3 the variation of the diffusion coefficient
with d and b is represented showing that, as the fraction of specular reflections
increases the diffusion coefficient increase, that is a faster diffusion of the sound
energy takes place. In the same way the energy is distributed very quickly when
the distance between the façades of the street canyon is large, while remains for a
long time at the same place when the planes are close to each other.

A systematic study on the estimation of the diffusion coefficient inside enclo-
sures with mixed diffused and specular reflections was initially proposed in ref. [10]
and then developed, for the case of a stationary sound field by Foy et al. [14, 15].
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Figure 1.3: Variation of the normalized diffusion coefficient K/c as a function of the accomo-
dation coefficient d (accounting for the fraction of specular reflections inside the room) and the
width of the street b. (from [23])

In these studies the presence of mixed reflections is taken into account by em-
pirically adjusting the theoretical diffusion coefficient with a correction factor K:

Demp = K Dth. (1.51)

The values of the parameter K were empirically obtained, for a variety of room
shapes, by comparing the diffusion model with cone-tracing simulations: the most
probable value for K is determined as the one that provides the best fit between
the SPL curves estimated with the two methods.

The main results of the study can be summarized in the following remarks:

1. Inside enclosures with purely diffuse reflections it is possible to identify a nar-
row interval of values for K optimal for all the investigated geometries and
centred around K ≈ 1.2 (that is, the theoretical expression slightly underes-
timates the diffusion coefficient). Inside proportionate rooms the solution of
the diffusion equation is almost independent on the diffusion coefficient.

2. The acoustical behaviour of long and flat rooms is significantly affected by
variations of the scattering coefficient, whereas inside rooms with propor-
tionate dimensions the sound field is relatively unaffected by the amount of
specular reflections inside the rooms; the range of possible values for the
diffusion coefficient is very broad.

3. Inside enclosures with mixed reflections the estimated values of K are always
higher then those obtained for the same room with diffusely reflecting bound-
aries. The variation of the correction factor with the scattering coefficient s
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can be expressed through the following empirical law:

K = −2.238 ln(s) + 1.549, (1.52)

where the scattering coefficient varies between 10−3 and 1. This expression
is found to be valid only for enclosure with low absorption (α < 0.4) where
even for mixed reflections the diffusion process seems to be still valid.

This empirical model was validated by comparison with experimental measure-
ments, for both SPL and reverberation time.

1.5 Open problems

The theoretical frame outlined in the previous Sections highlights that the dif-
fusion equation is a powerful numerical method that allows to predict the sound
field inside rooms of various shape with low calculation times and limited compu-
tational resources. Even though in the last years several studies were published on
this topic, still some aspects of the diffusion theory remain unsolved, as they were
never systematically investigated by an experimental point of view:

❼ the “real” value of the diffusion coefficient as a function of the room geometry;

❼ the possibility of describing with a diffusion process the sound field inside
enclosures with mixed reflections

Obviously these problems could be tackled from an analytical point of view, for
example newly deriving the diffusion equation in the hypothesis of a variable diffu-
sion coefficient. This kind of approach is for example employed for the description
of the sound propagation in non-homogeneous materials or for the heat transfer.

Anyway, it is believed that prior to proceed with this kind of analysis, it is nec-
essary to clearly understand the limits of the diffusion equation in its present form
by means of numerical and experimental tools. The recognized open issues will be
therefore investigated in the following Chapters, analysing one of the basic equa-
tions of the room-acoustics diffusion model, that is, the equation relating sound
energy density and sound intensity through Dth (Fick’s law of diffusion). If the
validity of equation (1.17) is assessed in different geometrical and acoustical con-
figurations, then an estimate of the diffusion coefficient could be provided allowing
to model the sound field inside the considered room with a diffusion process.

In Chapter 2 the gradient equation will be investigated numerically, employing
a particle-tracing code, whereas in Chapter 3 it will be analysed from an experi-
mental point of view, by means of measurements inside the scale model of a long
room.
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Chapter 2

Numerical anaylsis of the

diffusion gradient equation inside

proportionate and long rooms

2.1 Introduction

In this Chapter, the local value of the diffusion coefficient is numerically inves-
tigated inside both proportionate (cubical) and non-proportionate (long) rooms.

To do so, the diffusion equation in its stationary form was numerically solved,
together with appropriate boundary conditions, by using a FEM-based software.
The results, in terms of Sound Pressure Level (SPL) and Sound Intensity Level
(SIL) were compared with those predicted by a numerical code based on particle-
tracing simulations, with the aim of investigating the diffusion gradient equation
and verifying the relationship between sound energy density and sound intensity.
A local, numerical estimation of the diffusion coefficient was then derived as a
function of the room shape and of the boundaries reflection law.

The choice of employing a particle-tracing code, instead of other well established
methods (such as, for example, ray-tracing methods) is based on two principal
remarks:

1. the particle-tracing code models the sound field starting from the same basic
concept of the diffusion equation, that is, as a cloud of elementary particles,
propagating inside the room and carrying infinitesimal amounts of energy.

2. the particle-tracing code allows a direct calculation of the net sound intensity,
irrespective of the sound energy density (making thus possible to assess the
diffusion gradient equation and predict the diffusion coefficient value).

In the following Section the particle-tracing code is described in detail, espe-
cially focusing on its calculation principle and the main advantages and downsides
of the model. Then, some numerical applications of the diffusion equation and the
particle-tracing code are presented, with reference to the sound field inside a cu-
bical room with diffuse reflections and both uniform and non-uniform absorption;
moreover, an analytical correction of the diffusion solution is introduced. Finally
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the sound field inside a long room is numerically analysed and the local value of
the diffusion coefficient is obtained for different geometrical configurations (varying
length and aspect ratio of the room) and various acoustic properties of the surfaces.

2.2 A particle-tracing software

The particle-tracing algorithm employed in this study is named SPPS (Sound
Particles Propagation Simulation) and is based on the concept of tracking, both
in time and space, the elementary particles that form the sound field. The code
follows the approach originally suggested by Stephenson [35, 36] and was developed
by Picaut et al. for investigating the acoustic parameters within street canyons
and enclosures [37, 38].

As the code is based on the sound particle concept, it is suitable only for
simulating the sound field in the high frequency range, where the modal density
is high. The concept of frequency is not directly taken into account but different
simulations have to be carried out for each frequency band, varying the absorption
and scattering properties of the surfaces, the atmospheric absorption coefficient
and the power of the sound source.

In the model the particles are emitted from a source with sound power W ,
through a closed (or partially closed) enclosure and each particle carries an initial
energy einit = W/N (N being the number of particles emitted from the source).
The particles propagate along straight lines, without any mutual interaction and
with a velocity v, whose norm is equal to the speed of sound c. When a particle
hits a wall (or a diffusing obstacle), it is absorbed or reflected into a new direc-
tion, according to the local reflection law. All the simulations presented in the
following Sections were obtained by employing the energetic approach proposed by
the code [39]: the absorption phenomena do not lead to the disappearance of the
particle from the propagation domain, but at each collision the particle energy is
weighted according to the local absorption coefficient. The same calculation prin-
ciple is applied for the absorption of particles during their propagation, due to the
atmospheric absorption.

On the other hand, the reflection phenomena are modelled by successive draw-
ings of random numbers following a procedure which can be assimilated to a Monte
Carlo method and allows to determine the new propagation direction. In practice
the choice of the reflection angle is made by drawing a number ξ between 0 and
1, to be compared with the local value of the scattering coefficient s. If ξ > s
the particle is specularly reflected and the reflection angle is equal to the incident
angle, according to the Snell’s law. On the other hand, if ξ < s, the particle re-
flection will be diffuse: the new propagation direction depends only on the form
of the reflection law of the surface and its numerical representation should respect
the density probability of the physical phenomenon. For the purpose of this study,
a cosine Lambert’s law was considered, where the probability of reflection is max-
imum along the normal direction whereas is null on the grazing angles. In this
particular case the propagation direction can be obtained by using the inverse cu-
mulative distribution function technique [40]. The probability f(φ̂) that a particle
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is reflected in the solid angle φ′, included between 0 and φ̂, is obtained as:

f(φ̂) = 2

∫ φ̂

0

cosφ′sinφ′dφ′ = sin2φ̂. (2.1)

As the probability is between 0 and 1, the choice of the angle φ̂ can be simply done
by drawing a random number u ∈ [0, 1], that is:

φ̂ = sin−1
√
u = cos−1(1− u)0.5. (2.2)

Obviously, the reflection and absorption phenomena are better represented when
the number of random drawings is high, that is when the number N of particles is
high in comparison with the room dimensions.

Since SPPS is a numerical tool, in order to describe the sound propagation
inside the room, spatial and temporal discretizations are required.

Temporal discretization is carried out calculating the position of each particle
within the room every multiple of a constant time step ∆t. Of course, in order
to obtain an accurate description of the propagation in the time domain, it would
be better to select a time step as smaller as possible but in practice its value is a
compromise between the precision requirements and the computation time.

On the other hand, spatial discretization is performed by dividing the three
dimensional propagation domain into a finite number of tetrahedral elements, using
algorithms of Delaunay type [41]. Moreover, the punctual receivers are represented
through finite spherical volumes (Vrec), in order to compute the number of particles
located at the receiver position at time t. The choice of the volume dimension is
once again a compromise: it should be small enough to generate a precise spatial
description, but not too small, as in this case the probability that a sound particle
is located inside the volume becomes too small.

In order to derive the acoustic quantities inside the simulated enclosures, all
the contributions of all the particles are collected at the receiver position, as the
sound energy density in a receiver volume is proportional to the distribution of
sound particles in its volume.

The sound energy density (in J/m3) is estimated for each time step n at every
receiver position as the sum of the amount of energy carried by each particle that
crosses the receiver volume Vrec (figure 2.1):

wrec(n) =
Erec(n)

Vrec

=
W

N

1

Vrec

N0
∑

i=1

ǫi
li
c
. (2.3)

In equation (2.3), N is the total number of emitted particles, N0 is the number of
particles that cross the receiver volume, li/c = ∆ti is the amount of time that the
ith particle spends inside the receiver volume, the coefficient ǫi depending on the
reflections that this particle has undergone (i.e., εi =

W
N
∆tiǫi is the energy carried

by the ith particle).
The particle-tracing code provides also results for the net sound intensity vector

at each receiver position, calculated as the sum of the intensity vectors of the
particles that pass through Vrec. Considering that each particle travels through

25



CHAPTER 2. Numerical anaylsis of the diffusion gradient equation
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(3.75)

Figure 3.18: Principe du calcul du niveau de pres-

 

Figure 2.1: Calculation principle of the energy density at a receiver position with the particle-
tracing code: each particle crosses the receiver volume and cover a distance li inside it. (from
[37])

Vrec with a velocity vector vi (with ‖vi‖ = c) and carries the energy εi, the net
sound sound intensity vector is then calculated according to:

Irec(n) =

N0
∑

i=1

εi vi =
W

N

1

Vrec

N0
∑

i

ǫili
vi

c
. (2.4)

The acoustic quantities wrec(n) and Irec(n) can be summed for all the time steps,
yielding the stationary energy density and the stationary net intensity vector.

The numerical code was extensively validated for the prediction of both sound
pressure level and reverberation time, comparing the obtained results with other
numerical models, experimental data or analytical formulations. On the contrary,
no comparisons are available for the prediction of the sound intensity: the com-
parison between numerical results and experimental data which will be presented
in Chapter 4 is the first attempt of validation of the code.

2.3 Numerical investigation of proportionate rooms

The concept of diffuse sound field employed in room-acoustics predictions is
based on the hypothesis of uniform spatial and directional diffusion of the sound
energy density inside a room: plane waves with uniform amplitude and random
phase arrive at each point of the room with equal probability from all directions,
leading to a uniform energy density and a null net energy flow throughout the
enclosure. Typical examples of enclosures where the sound field is regarded as
diffuse (above the Schroeder frequency) are proportionate rooms with uniform
boundaries absorption, where the main acoustic quantities are usually predicted
employing Sabine’s statistical theory.

Anyway, this theory can provide only a rough estimation of these quantities
since the ideal “diffuse sound field” does not exist in reality [42–44]: the reverberant
part of the energy density is not uniformly distributed but undergoes a spatial decay
from the source to the boundaries of the room [45], and a non-null reverberant
energy flow is then present inside the room.
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Recent studies [46, 47] have investigated and described the energy flow within
rooms at low frequencies, where the sound field is dominated by strong modal
effects. In this Section, on the other hand, the high-frequency case (where the phe-
nomena can be described in a statistical way) is investigated. First, an analytical
correction for the diffusion equation is presented, which is valid in the region close
to the source, where the diffusion approximation is invalid. Then, the link between
the spatial variations of the stationary reverberant acoustic energy density and
the acoustic intensity vector (defined as the local acoustic energy flow) is analysed
inside proportionate enclosures.

As both diffusion model and particle-tracing code do not directly deal with
the concept of frequency or frequency bands, all the results will be presented with
reference to a unique frequency identified by the acoustic properties of the surfaces
and the characteristics of the sound source.

2.3.1 Analytical correction close to the source

As explained in ➜ 1.2.9, close to the sound source (i.e., for source-receiver dis-
tances smaller than the mean free path of the room), the solution of the diffusion
equation is invalid, as the diffusion process is not established yet [7].

In order to better understand the phenomenon, the solution of the diffusion
equation in its stationary state can be analysed [21]. When the source emits a
constant sound power and the steady-state is reached, the diffusion equation can
be expressed as an Helmholtz equation:

Dth∇2w(r)− σw(r) = W δ(r − rs). (2.5)

The Green function of equation (2.5) for an unbounded medium is:

G(r, rs) =
W

4πDthr
exp

(

−
√

σ

Dth

r

)

, (2.6)

where W is the sound power, rs is the source location, r = ‖r− rs‖ is the source-
receiver distance, and σ = ᾱc/λ (ᾱ being the mean absorption coefficient of the
room). An interpretation of this function was proposed in ref. [7], and it was
pointed out that for r → 0, the Green function G(r, rs) reduces to:

G(r, rs) =
W

4πDthr
. (2.7)

This 1/r singularity involves a non-physical behaviour of the diffusion solution
close to the source, where an incorrect direct field is predicted due to the lack of
validity of the analogy with a diffusion process.

On the other hand, the intensity I(r, t) is correctly described by the diffusion
process, even close to the source. Indeed, applying the diffusion gradient equa-
tion (1.17) to the Green function of equation (2.7) retrieves the correct value of
the direct field intensity:

I(r) = −Dth

∂

∂r

(

W

4πDthr

)

=
W

4πr2
. (2.8)
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The conclusion is that the spurious part of the energy density solution of equa-
tion (2.7), is the part of the energy whose flow creates the direct field intensity, the
remaining part accounting for the reverberant energy density.

The idea is then to calculate a “corrected” energy density, wr(r), from the solu-
tion of the diffusion equation wdiff (r), by removing the non-physical contribution
of the diffusion process in the region close to the source:

wr(r) = wdiff (r)−
W

4πDthr
. (2.9)

The quantity wr(r) is then expected to be an improved estimation of the energy
density of the reverberant field, as the shortcoming of the 1/r singularity is re-
moved from the original solution wdiff (r). Following this, the total net intensity
vector (including the contributions of direct field and reverberation) is calculated
by computing I(r) = −Dth∇wdiff (r), while the contribution of the reverberant
field, Irev(r), will be calculated as:

Irev(r) = −Dth∇wr(r) = I(r)− W

4πr2
. (2.10)

The vector Irev(r) is termed “reverberant intensity vector”, while I(r) is the “total
intensity vector” (including the direct and reverberant fields contribution).

In the following this analytical correction is verified for the case of a cubical
room with diffuse reflections and uniform absorption coefficient.

2.3.2 Cubical room with uniform aborption coefficient

In this Section the sound field inside a 10 × 10 × 10 m3 cubical room, with a
uniform absorption coefficient α = 0.1 is investigated; an omni-directional source
is located in its centre, and emits a constant sound power level LW = 100 dB. An
upper view of the cubical enclosure, together with source and receivers positions
on the plane at z=5 m, is shown in figure 2.2.

Inside the room, particle tracing simulations were carried out with N = 5×106

particles and a time step ∆t = 0.002 s; a scattering coefficient s = 1 was assigned

Figure 2.2: Upper view of the investigated 10 × 10 × 10 m3 room, with the two lines along
which sound pressure and sound intensity levels are evaluated. The gray zone refers to the area
where the spatial distribution of the intensity vectors is investigated.
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to all the surfaces, which can thus be regarded as purely diffusely reflecting. The
diffusion equation was numerically solved by using a software based on the finite
elements method, where a cubical domain was defined and meshed with about
420×103 quadratic Lagrange-type elements.

The SPL at each point in the room is calculated from the energy density, by
using the estimation of the square pressure introduced in equation (1.47). For the
purposes of this analysis only the reverberant part of the energy density was taken
into account, calculated as the difference between the total sound energy density
w(r) and the energy density of the direct field wd(r) for particle-tracing simula-
tions, and as the corrected energy density wr(r) for diffusion model simulations.

In order to understand if the empirical correction of the energy density leads to
correct results, the predicted SPL was compared with that obtained applying the
theory developed by Barron et al. [45, 48], widely known as “revised theory”. This
theory, originally developed for the prediction of the sound field in concert-halls and
auditoria, stems from geometrical room-acoustics and the image source method. It
provides reliable results when dealing with proportionate enclosures and uniform
boundaries absorption, and it finds a good agreement with data measured inside the
enclosures. In this model the energy density at the receiver is obtained by adding
the contribution of the image sources weighted by the absorption coefficient of the
walls and the mean free path of the room, as:

w(r) =
W

4πcr2
exp (−γr), (2.11)

where γ = − ln (1−ᾱ)/λ, λ being the mean free path of the room. The integration
of all these contributions over the totality of the image sources, will then provide
the reverberant energy density at the receiver position, decreasing with the distance
according to an exponential law. In terms of sound pressure level the relationship
can be expressed as:

SPL(r) = LW + 10 log

(

1

V

exp (−γr)
γ

)

. (2.12)

The calculated SPL curves, obtained with the three different methods, are de-
picted in figure 2.3, showing that the models lead to similar results, with relative
differences lower than 0.3 dB; in the same graph, for comparison, the SPL decay
obtained from wdiff (r), solution of the diffusion equation, is plotted, demonstrat-
ing the need for removing the 1/r singularity as in equation (2.9). Finally, it is
worth noticing that, although the general trend of the SPL distribution has to
be considered almost constant, all the models predict slight variations of the SPL
value in the position closest to the boundaries, that will inherently produce energy
flows (i.e., intensity vectors) throughout the room.

The SIL at position r is calculated as:

SIL(r) = 10 log

(

I(r)

Iref

)

, (2.13)

where I(r) is the norm of the calculated intensity vector and Iref = 10−12 W/m2.
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Figure 2.3: Sound pressure level (SPL) of the reverberant field as a function of the distance
between source and receiver (S-R distance) inside a cubical room with α = 0.1, along Line 2:
revised theory (solid line), particle tracing simulations (×); (· · ·) and (•) indicate respectively
the SPL calculated with the diffusion model from wdiff (r) and wr(r).

In figure 2.4 the predicted total SIL is plotted along Line 1 and Line 2 (as
defined in figure 2.2): both numerical tools provide the same results, in spite of
their differences in the calculation method of the sound intensity. This agreement
demonstrates that the gradient equation of equation (1.17) is valid, even though
the energy density variations are very weak throughout the room. Indeed the
obtained intensity matches the one obtained from the particle-tracing calculation.

The numerical results of figure 2.4 are compared with the SIL decay of the
direct field (with norm Idir = W/4πr2), decreasing 6 dB for doubling of distance
[29]. Close to the source the total field is completely dominated by the direct
sound, while, near the boundaries a discrepancy between the total and direct SIL
is found, that reaches almost 1.5 dB for the considered geometry. In these regions
therefore the norm of the reverberant intensity vectors becomes of the same order
of magnitude as the norm of the direct intensity vectors.

This effect is related to the presence of edges and vertices: a numerical sim-
ulation of a sphere with radius R = 5 m, uniform absorption coefficient α = 0.1
and diffuse boundaries was carried out employing the diffusion model, the source
being located at the sphere centre. The total SIL estimated along a line from the
source to a wall, is depicted in figure 2.4, demonstrating that in such a room, due
to the spherical symmetry, the reverberant energy density flow is null all over the
enclosure: the total sound intensity at any internal point is then equal to its direct
component, and the reverberant field is found to be ideally diffuse in this case [49,
50].

In order to explain the different SIL decay trends on Line 1 and Line 2, the
spatial distribution of the reverberant intensity vectors inside the cubical room
was represented over an horizontal plane in figure 2.5. Only the region outside
the reverberant radius rr = 1.15 m (calculated according to the classical theory
[17]) is depicted, shown as the grey zone in figure 2.2. The intensity vectors are
shown to follow a well-defined pattern from the source toward the edges of the
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Figure 2.4: Total sound intensity level (SIL) in the 10 × 10 × 10 m3 cubical room (α = 0.1),
as a function of the source-receiver distance, along Line 1 (solid lines) and Line 2 (dotted lines):
particle tracing simulations for the room with diffusely reflecting boundaries (×), diffusion model
(•), theoretical value of the direct sound field (- -); (◦) refers to the total SIL calculated with the
diffusion model inside a sphere with radius R = 5 m and α = 0.1.
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Figure 2.5: Reverberant intensity vectors distribution over the horizontal plane at z=5 m inside
a 10 × 10 × 10 m3 cubical room with α = 0.1: particle-tracing simulations (solid arrows) and
diffusion theory (dashed arrows).

room, and the norm of the reverberant intensity is more intense close to the room
boundaries. Both models provide the same pattern, in spite of local differences
in the vectors direction, which, again, demonstrates the validity of the diffusion
gradient equation.

Additionally, it is observed that close to the room corner, the reverberant in-
tensity vectors point toward the same direction as the direct field intensity vectors:
in this region the total SIL is therefore higher than the direct one, as observed in
figure 2.4 for Line 2. Conversely, along Line 1, the total SIL is lower than the SIL
of the direct field, as a consequence of the reverberant intensity vectors orientation,
opposite to the one of the direct field intensity vectors.
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Similar effects were pointed out also byWaterhouse in ref. [51], showing that the
reverberant field departs from the ideal condition of diffusiveness due to interference
phenomena that occur close to the walls of the room between the sound wave and its
reflections. The different combinations of the phase of the waves are responsible for
an increase of the sound pressure level close to the boundaries of the room. Anyway,
the results of this analysis can not be entirely reproduced with the diffusion model
(or with the particle-tracing code) as the latter is an energetic model, and thus can
not model the interference phenomena.

Finally, having numerically assessed the validity of the diffusion gradient equa-
tion, a local estimate of the diffusion coefficient was obtained, starting from the
particle-tracing software results and inverting the expression in equation (1.25), as:

Dest(r) =
|Irev(r)|
|∇wrev(r)|

, (2.14)

where Irev(r) and wrev(r) are the simulated reverberant intensity vector and energy
density. Only the reverberant part of the sound field was considered in the estimate,
being the only one properly modelled through the diffusion equation.
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Figure 2.6: Ratio between the estimated diffusion coefficient Dest and the theoretical value Dth

inside the cubical room 10× 10× 10 m3 with α = 0.1, over a quarter of the horizontal plane at
z=5 m.

In figure 2.6 the ratio between the estimated value of the diffusion coefficient
and the theoretical one, as obtained by equation (1.18), is represented over the
horizontal plane: the values of the estimated coefficient are basically lower than
that of the theoretical one, as a consequence of a slightly bigger variation of the
energy density simulated with the particle-tracing model. Anyway, Dest varies
from point to point over the plane, with values between 0.1 · Dth and 2.5 · Dth,
without any kind of regularity or organized trend: therefore it is not possible to
define a unique value for the coefficient inside the room. The result is in agreement
with the conclusions drawn by Foy et al. in ref. [15] in the analysis of the SPL
decay inside rooms with proportionate dimensions, where, especially if the source
is located in the centre and the shape of the room is cubical, the solution of the
diffusion equation is found to be almost independent of the diffusion coefficient.
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2.3.3 Cubical room with non-uniform absorption coefficient

A cubical room with non-uniform absorption properties was then investigated:
in this case all the walls are featured with an absorption coefficient α = 0.1, except
for the ceiling where α = 0.5.

Inside this room, as an effect of the non-homogeneous absorption coefficient,
the reverberant intensity vectors are attracted from the surface with the higher
absorption, leading to an energy flow from the floor to the ceiling of the room. Both
particle-tracing model and diffusion model provide the same vector distribution,
as shown in figure 2.7.

In figure 2.8 the total SIL predicted by the two models is reported along the
x=5 m line, together with the SIL of the direct field. Again, a very good agreement
is found between the diffusion gradient modelling of the intensity, and the direct
calculation obtained with the particle-tracing code. As for the cubical room with
uniform absorption coefficient, in the region close to the walls the norm of the
reverberant intensity vector is of the same order of magnitude as the norm of the
direct one, leading to a discrepancy between the direct and the total field. Close
to the floor, where the reverberant intensity vectors are oriented in the opposite
direction to the direct intensity vectors, the total SIL is lower than the direct SIL.
Close to the ceiling, where both reverberant and direct sound intensity vectors
point toward the same direction, the total SIL is higher than the direct one.
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Figure 2.7: Reverberant intensity vector distribution over the vertical plane at y=5 m inside a
10× 10× 10 m3 cubical room with α = 0.5 for the ceiling and α = 0.1 for the remaining surfaces:
particle-tracing simulations (solid arrows) and diffusion theory (dashed arrows).

Some deviations of SIL from the one of the direct field were already reported
and discussed by Van Zyl et al. [29], for enclosures with poor directional diffusion;
in particular the differences can be interpreted as positive or adverse additions of
the reverberant intensity field to the direct intensity field. More generally, inside a
room with non homogeneous absorption distribution, the reverberant energy flows
from reflecting to absorbing surfaces are responsible for the non-diffuseness of the
reverberant sound field 1.

1The same conclusion was pointed out also in ref. [52] where it is remarked the unsuitability
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Figure 2.8: (a) Side view of the 10 × 10 × 10 m3 cubical room: the ceiling is featured with
α = 0.5 while the other surfaces with α = 0.1; the sound intensity level is evaluated along the
x=5 m vertical line, over the y=5 m plane. (b) Total sound intensity level (SIL): particle-tracing
simulations (×), diffusion theory (•), direct sound field (solid line).

2.4 Numerical estimation of the diffusion coeffi-

cient inside long rooms

In this Section the numerical methodology introduced in ➜ 2.3.2 for the estima-
tion of the diffusion coefficient is applied to the case-study of a long room.

The choice of investigating this particular kind of enclosures was determined
by several different considerations:

1. Inside long rooms, as a consequence of the disproportion between the ge-
ometrical dimensions, the sound field is far from diffuse and the classical
statistical formula can not be employed for predicting the acoustic quantities
which vary continuously along the length of the room [52]. Hence, in order to
study the sound field inside this kind of enclosures, it is necessary to employ
other models, such as the radiosity method (for rooms with diffusely reflect-
ing boundaries), or the image source method (for room with geometrically
reflecting boundaries). The room-acoustics diffusion theory represents a valid
alternative to these methods (at least, in the case of diffuse reflections) as it
can be regarded as an extension of the statistical theory to non-diffuse sound
fields.

2. The sound field inside long rooms can be considered as one-dimensional: this
observation allows to investigate the local value the diffusion coefficient only
along one of the room dimensions, diminishing the number of independent
factors affecting its variation.

of the classical theory for describing the sound field inside enclosures with normal shape but
extremely uneven absorption distribution.

34



CHAPTER 2. Numerical anaylsis of the diffusion gradient equation

3. As reported in ref. [15], inside elongated rooms the solution of the diffusion
process is very sensitive to the value of the diffusion coefficient: so, unlike
the case of cubical rooms, with this geometrical configuration a variation of
the diffusion coefficient should be observed inside the room.

The relationship between energy density and sound intensity was numerically
investigated firstly inside a long room room with diffusely reflecting boundaries;
then the geometrical (length, aspect ratio) and acoustic (boundaries reflection law
and surface absorption coefficient) properties of the room were systematically var-
ied. As for the cubical room, the aim of the analysis was to identify, if exists,
the diffusion coefficient that allows the stationary sound field to be governed by a
diffusion process.

2.4.1 Remarks on the one-dimensional Green function

Inside long enclosures the sound field varies mainly along the length of the
room and can be considered constant over the cross-section; this behaviour allows
to define the sound field as one-dimensional and investigate the acoustic parameters
only along the main dimension of the room. If the boundary conditions are “simple”
(such as, for example, uniform boundaries absorption), the diffusion equation can
be analytically solved, as proposed in ref. [6]. For example, in the limit case of an
infinitely long room with the sound source located in x = 0, the one-dimensional
Green function is expressed as:

G(x) =
W

2
√
Dthσ

exp

(

−x
√

σ

Dth

)

, (2.15)

where W is the sound power and σ accounts for the absorption at the room bound-
aries. The function predicts an exponential decay of the energy density with the
distance from the source, thus a linear decrease of the sound pressure level within
the room.

It is worth noticing that for one-dimensional enclosures the whole solution
wdiff (r) provided by the diffusion equation is satisfactory, as the 1/r singular-
ity that occurs close to the source in proportionate rooms, is not present here;
therefore, in long rooms is not necessary to employ the correction introduced in
➜ 2.3.1 for dealing with sound-receiver distances smaller than one mean free path.
The reason is twofold: firstly, the correction is needed only where the sound field
is three-dimensional, condition that inside proportionate room is met in the whole
propagating space, while in long rooms happens only in the position closest to the
source (near field). Secondly, the correction is needed inside a region of the size
of one-two mean free paths but while in proportionate room the mean free path is
significant in comparison with the room dimensions, in the case of long enclosures
it is always much smaller of the biggest dimension of the room, where the sound
field is usually investigated.

Therefore, in all the simulations that will be presented in the following, the
empirical correction was never applied and it was chosen to study only the total
sound field, which is everywhere coincident with its reverberant part, except for
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positions closest to the sound source, where the direct field is predominant. The
total energy density at each position r of the room is calculated as:

w(r) =
W

4πcr2
+ wdiff (r), (2.16)

where wdiff (r) describes the reverberant part of the sound field obtained as the
solution of the diffusion equation.

2.4.2 Numerical estimation of the diffusion coefficient

To start with, a long room with dimensions 40× 4× 4 m3 is considered, with a
uniform absorption coefficient α = 0.1 and completely diffusely reflecting bound-
aries. The sound source is located 2 m apart from one of the end walls and emits a
constant sound power level LW = 100 dB. An upper view of the investigated geom-
etry is depicted in figure 2.9, with the source position and the line, from the source
to the opposite end wall, along which the acoustic quantities were investigated.

Figure 2.9: Upper view of the 40× 4× 4 m3 room with the line at z = 2 m along which sound
pressure and/or sound intensity were evaluated.

Particle-tracing simulations were carried out with N = 5 · 106 particles, a time
step ∆t = 0.002 s and a total time Ts = 2 s; for the numerical solution of the
diffusion equation with a FEM-based software the domain was meshed with 6114
quadratic Lagrange-type elements. For the calculation of the energy density gra-
dient it was chosen to apply central finite differences, with a 4th order accuracy;
the same method was employed for both simulation tools.

The predicted acoustic quantities are depicted in figure 2.10, as function of the
distance from the source.

As expected, the sound field inside the room is not diffuse and the SPL decreases
continuously along the length. The two simulation tools provide quite similar
results for the SPL decay, up to 25 m from the source, where the difference between
the models is almost equal to 1 dB and the slope of the decay curve predicted by
the particle-tracing model starts diminishing, affected by the reflections from the
surrounding walls. This effect, mainly related to the presence of the end wall, was
already pointed out by Kang [53] and Picaut et al. [6]. Kang explains the change of
slope in long rooms with geometrically reflecting boundaries and highly reflective
end walls with a difference in the contribution of the image sources: the first order
image source plane plays a more important role than the others, that become
important instead only in the area close to the end wall, producing a decrease (or
even a slight increase) of slope in the SPL decay. On the other hand, Picaut et
al. study the influence of the absorption coefficient on this change of slope in the
case of long rooms with diffusely reflecting walls, concluding that it raises when
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Figure 2.10: SPL (a) and SIL (b) inside a long room 40× 4× 4 m3 with α = 0.1 and diffusely
reflecting boundaries (s=1): particle tracing simulations (solid line), diffusion model solved with
the constant Dth (−−), diffusion model solved with the estimated diffusion coefficient (•).

the absorption at the end and on the side walls increases. Anyway, this effect is
not properly modelled by the diffusion theory and leads to differences between the
numerical simulations that, close to the end wall of the room, reach 4 dB.

The predicted SIL shows differences between the two models starting from
12 meters from the sound source and increasing with the distance; the diffusion
equation always predicts for the sound intensity smaller values than the particle-
tracing code.

It is worth stressing here an important restriction of both diffusion model and
particle-tracing code. Neither of them allows to take into account the concept of
frequency band and bandwidth and this lack leads to an incorrect representation
of the acoustic phenomena as, for example, the dependence of the level difference
between pressure and intensity on the considered bandwidth (increasing with the
enlargement of the frequency band) [54]. This is clearly an intrinsic limitation of
the models, that can not be overcome without a complete revision of their basic
hypothesis; therefore, great attention has to be paid in comparing the predicted
acoustic quantities.

In order to find a better agreement between the two simulation tools, the dif-
fusion coefficient was numerically investigated inside the room, starting from the
particle-tracing results and employing the relationship expressed in equation (2.14).
The ratio between Dest and Dth is represented in figure 2.11: starting from the
theoretical value, the estimated diffusion coefficient increases linearly with the dis-
tance, up to 30 m from the source where the slope of the curve increases sharply.
The linear increase of Dest explains the erroneous results predicted by the diffusion
theory, which is based on the constant value Dth.

The experimental curve was therefore fitted with the linear approximation
shown in the same figure, to be employed for solving the diffusion equation. The
results, in terms of SPL and SIL, are represented in figure 2.10, showing, as ex-
pected, a close agreement with the particle-tracing predictions, with differences
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Figure 2.11: Ratio between the estimated and the theoretical value of the diffusion coefficient
as a function of the distance between source and receiver inside a long room 40× 4× 4 m3 with
α = 0.1 and diffusely reflecting boundaries (s = 1): particle-tracing simulations (solid line), linear
approximation (•).

smaller than 1 dB everywhere, even in the region close to the end wall, where the
SPL increase is finally properly modelled.

In the linear approximation only the part of the curve with a constant slope
was considered, as it seems to be the only one affecting the behaviour of the sound
field. The final change of slope is due to the end wall reflections, which lead to an
increase of energy density in the area; this physical effect is probably enhanced in
the diffusion coefficient estimation by the numerical computational errors related
to an energy density gradient with values close to zero.

Finally, the local value of the diffusion coefficient was estimated over the cross-
section of the room in x=13 m; the results are shown in figure 2.12.

It can be seen that the diffusion coefficient is not a constant over the section
but varies slightly, increasing its value from the boundaries to the centre of the
room of about 15%. The variation is related to the changes over the cross section
of both energy density and sound intensity, originated by the presence of the room
boundaries. In fact the assumption of semi-diffuse sound field (that is of constant
sound energy density over the cross section) is a useful simplification of the problem
but variations of the acoustic parameters over the cross section are always present,
that become smaller with increasing distance between the cross-section and the
source [53].

2.4.3 Diffusion coefficient inside long rooms with different

length

In this Section the influence of the room length on the diffusion coefficient value
is investigated. In particular, three rooms with the same cross-section 4 × 4 m2

and length L1 = 20 m, L2 = 40 m and L3 = 60 m are considered, with a uniform
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Figure 2.12: Contour plot of the ratio between the estimated and the theoretical value of
the diffusion coefficient inside a long room 40 × 4 × 4 m3 with α = 0.1 and diffusely reflecting
boundaries. Results for the cross-section in x=13 m.

absorption coefficient α = 0.1 and completely diffusely reflecting boundaries (s =
1).

In figure 2.13 the predicted SPL and SIL decays inside the three rooms are
represented. Both quantities are somehow independent of the length of the room:
the decays follow always the same trend, as far as 10 m from the end wall, where
the reflection effects become important and the decay in each room experiments a
deviation from the main path. It is worth noticing that increasing the length of
the room, increases also the spatial variation of the energy density at the end of
the room: inside the enclosure with L = 60 m close to the end wall an increase of
sound pressure level can in fact be noticed.
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Figure 2.13: SPL (a) and SIL (b) inside a long room with cross-section 4 × 4 m2, uniform
absorption coefficient α = 0.1 and diffusely reflecting boundaries. Particle-tracing results for
different lengths of the room: L1 = 20 m (•), L2 = 40 m (solid line), L3 = 60 m (- -).
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Figure 2.14: Ratio between the numerically estimated and the theoretical diffusion coefficients
within a long room with cross-section 4 × 4 m2, absorption coefficient α = 0.1 and diffusely
reflecting boundaries. Results for different length of the room: L1 = 20 m (•), L2 = 40 m (solid
line), L3 = 60 m (- -).

In the special case of long rooms with square cross-section it can be easily
demonstrated that the mean free path is equal to the height (or the width) of the
room and, consequently, the diffusion coefficient does not depends on the length of
the room. It means that, for the positions farther from the source and the end wall,
where the Green function of equation (2.15) can be considered valid, the energy
density follows always the same decay trend, regardless of the length of the room.

This is confirmed also by the diffusion coefficient estimate, which can always
be approximated using the same regression law, as depicted in figure 2.14.

2.4.4 Diffusion coefficient inside long rooms with different

cross-section

Then the influence of the cross-section dimension on the diffusion coefficient
variation inside a long room was investigated. For the analysis, three different
elongated enclosures were considered, with the same length (L=40 m) and cross
sections respectively 2× 2 m2, 4× 4 m2, 6× 6 m2.

In figure 2.15 the spatial decay of the acoustic quantities decays are represented;
it can be seen that the behaviour is quite different, depending on the distance from
the sound source. Close to it the acoustic parameters are higher inside the rooms
with the smaller cross-sections but, on the opposite, close to the end wall, SPL
and SIL are found to have the biggest values in the room with the biggest cross
section. So, when comparing rooms with the same LW , the overall attenuation is
lower inside the room with the biggest cross-section; this numerical evidence can
be explained according to ref. [53] where it is suggested that as the cross-sectional
area increases, the sound field become closer to diffuse, and thus, the decay slope
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Figure 2.15: SPL (a) and SIL (b) inside long rooms with length L=40 m, α = 0.1 and diffusely
reflecting boundaries. Particle-tracing results for different cross-sections: 2× 2 m2 (- -), 4× 4 m2

(•), 6× 6 m2 (solid line).

of the acoustic parameter diminishes2. Moreover, the change of slope at the end of
the SPL decay curve (which is related to the particular geometrical shape of the
rooms) is stronger inside the room with the small cross-section.

The diffusion coefficient value was numerically estimated in the three cases
(figure 2.16), showing again a linear increase with the distance but with different
slopes, depending on the room dimensions. In particular, the slope is found to be
inversely proportional to the cross-sectional area, that is to be higher inside rooms
with an high ratio between cross-section and length.

2.4.5 Diffusion coefficient as a function of the absorption

coefficient

In this Section the dependence of the sound field inside a long room on the
overall amount of absorption is investigated. Three long room with dimensions
40 × 4 × 4 m3 are considered, characterized by diffuse reflections (s = 1) and
different values of the boundaries absorption coefficient: α1 = 0.1, α2 = 0.2 and
α3 = 0.3.

In figure 2.17(a) the spatial decays of SPL and SIL are represented, as obtained
by particle-tracing simulations. The increase of surface absorption leads, as ex-
pected, to steeper spatial decays of both acoustic quantities, even though the slope
increase is more pronounced when the SPL is considered. The absorption coeffi-
cient affects also the slope variation of the SPL close to the end wall of the room,
enhancing the reflection effects due to the surrounding boundaries; evidences of
this effect were also pointed out in ref. [6].

2According to ref. [52] “since the unsuitability of the classic theory depends on both dimension
and absorption conditions, it seems that there is not a fixed lenght/cross section ratio to charac-
terise the long enclosure. In other words, to define a long enclosure, the dimension condition as
well as the amount and distribution of the absorbers should be considered.”.
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Figure 2.16: Ratio between estimated and theoretical diffusion coefficients within long rooms
with lenght L=40 m, absorption coefficient α = 0.1 and diffusely reflecting boundaries. Results
for different cross-sections: 2× 2 m2 (- -), 4× 4 m2 (•), 6× 6 m2 (solid line).

A numerical estimate of the local value of the diffusion coefficient was obtained
for the three enclosures (figure 2.17(b)), showing again a linear increase of the
coefficient, with an initial value always coincident with the theoretical value. The
surface absorption affects only the slope of the distance - Dest curve that increases
with the raise of the absorption coefficient.

Even though the diffusion coefficient estimate with the particle-tracing code
could be extended to absorption coefficients higher than α = 0.3, only the results
obtained for the interval α = [0.01, 0.4) can be considered meaningful. In fact,
when Dest is employed to solve the diffusion equation (as illustrated in ➜ 2.4.2),
absorption coefficient values bigger than 0.4 lead to non-physical estimate of the
SIL spatial decay3; on the contrary correct results were always returned for the
SPL prediction. This behaviour is supposed to be related to a lack of validity of
equation (1.17) when dealing with disproportionate enclosures and high absorption
coefficients. No evidences of this effect were found in literature, as the results inside
these kind of enclosures always refers to the energy density spatial distribution [12]
or to the reverberation time [11].

2.4.6 Diffusion coefficient as a function of the scattering

coefficient

Finally, the variation of the acoustic parameters inside a long room was numer-
ically investigated as a function of the reflection law of the boundaries. The same
long room described in ➜ 2.4.2 was considered, with three different values of the
boundaries scattering coefficients (s=0.1, s=0.5, s=1).

The SPL and SIL spatial decays calculated in the three cases are represented
in figure 2.18. It can be seen that as the amount of specular reflections inside

3In the numerical resolution of the diffusion model all the formulations of the exchange coef-
ficient presented in ➜ 1.2.6 were tested.
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Figure 2.17: (a) SPL (black lines) and SIL (red lines) inside a 40 × 4 × 4 m3 long room
with diffusely reflecting boundaries. Particle tracing results for different values of the absorption
coefficient: α=0.1 (–), α=0.2 (•), α=0.3 (- -). (b) Ratio between the estimated Dest and the
theoretical Dth diffusion coefficient within a 40 × 4 × 4 m3 long room with diffusely reflecting
boundaries. Results for different values of the absorption coefficient: α=0.1 (–), α=0.2 (•), α=0.3
(- -).

the room increases, the sound field starts to behave more similarly to a diffuse
one, diminishing the spatial attenuation of the SPL. Therefore, inside long rooms,
increasing the roughness of the boundaries, leads to greater spatial variations of
the acoustic quantities and not to a more diffuse sound field.

As suggested in ref. [53] the reason can be related to the highest chance of
the sound rays to hit the surfaces inside rooms with diffusely boundaries with
respect to the case of a long room with specularly reflecting boundaries; as the
scattering coefficient increases, the sound rays have therefore an highest probability
of being absorbed from a surface and consequently the total energy inside the room
decreases.

Moreover, it can be observed that the variation of the scattering coefficient
differently affects the SPL decay, depending on the distance from the source. In
fact close to the sound source the biggest SPL values are found inside the room
characterized by purely diffuse reflections (due to backscattering), whereas close
to the end of the room an opposite trend verifies and the long room with s = 1
shows the smallest SPL values [55]. The crossing point between the three curves is
found around x=8 m.

Let’s now consider the SIL spatial decay: as for the energy density, the SIL
attenuation is smaller inside the long room with diffuse reflections. According to
the gradient equation (1.17), solved with a constant diffusion coefficient, what one
should expect is instead the opposite trend, as the lowest energy gradients should
originate the lowest values of intensity. The observed SIL decay therefore suggests
that if the stationary sound field is expected to be modelled with a diffusion process,
then the diffusion coefficient should locally variate, increasing with the fraction of
specular reflections inside the room.

The local estimate of the diffusion coefficient is depicted in figure 2.19, showing
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Figure 2.18: SPL (a) and SIL (b) inside a 40 × 4 × 4 m3 long room with uniform absorption
α = 0.1. Particle tracing results for different values of the scattering coefficient: s=0.1 (solid
line), s=0.5 (- -), s=1 (•).
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Figure 2.19: Ratio between estimated and theoretical diffusion coefficient within a 40×4×4 m3

long room with α = 0.1. Particle tracing results for different values of the scattering coefficient:
s=1 (solid line), s=0.5 (•), s=0.1 (- -), s=0.01 (-•-).

that both slope and the initial value of the curve distance-Dest increases with the
amount of specular reflections inside the room. Only when s = 1, the initial value
of the curve coincides with the theoretical value Dth.

In the same figure, also the diffusion coefficient estimate for s = 0.01 is repre-
sented, which can be considered as the lowest limit of application of the described
methodology. Scattering values lower than 0.01 returns in fact a non correct match-
ing between particle-tracing results and the diffusion equation solved with the cor-
responding diffusion coefficient estimates. Therefore it is possible to conclude that
the case of purely specular reflections can not be modelled as a diffusion process,
being based on a different propagation mechanism.
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2.5 Conclusions

In this Chapter the sound field inside both proportionate and elongated rooms
was investigated by means of the diffusion equation and a particle-tracing numerical
code, which allows a direct and independent calculation of energy density and
sound intensity. The ratio between the two quantities was employed to perform a
numerical investigation of the local value of the diffusion coefficient inside the two
kind of enclosures.

In particular, the main results obtained with the numerical part of the research
can be summarized in the following remarks:

1. The presence of a spurious part in the solution of the diffusion equation was
assessed, whose energy flow produces the direct field intensity. An empirical
correction was derived, in order to obtain a correct description of the rever-
berant part of the sound field inside the rooms; the correction was proved
to be necessary especially close to the sound source (where the sound field
is three-dimensional) or, more generally, in the region within one (or two)
mean-free paths from the source.

2. Inside proportionate rooms with homogeneous absorption, where the sound
field is classically supposed to be diffuse, the diffusion equation with the
analytical correction provides correct results and highlights the presence of
weak variations of the reverberant energy density, producing an energy flow
throughout the room. This energy flow (which correspond to the reverberant
intensity inside the room) is well-organized, emanating from the source and
the walls central areas, and converging toward the room’s edges and vertices.
The intensity vector pattern derived from the energy density gradients was
compared with that obtained by direct calculation, showing a good agree-
ment and proving the reliability of the diffusion gradient equation for the
reverberant intensity.

3. The diffusion coefficient was numerically investigated inside the proportionate
room: it was not possible to define a unique value (or an organized trend)
of the coefficient, confirming that, when dealing with proportionate rooms,
the solution of the diffusion equation is almost independent of the diffusion
coefficient.

4. The numerical analysis of the long rooms showed that inside this kind of
enclosures the diffusion coefficient is not a constant but increases linearly
along the length of the room, starting, when the boundaries are diffusely
reflecting, from the theoretical value Dth. The dependence of the diffusion
coefficient on the length, the aspect ratio and the absorption properties of the
room was assessed. The analysis confirmed the necessity of experimentally
investigate the relationship between energy density and intensity inside long
rooms, in order to understand if the sound field inside them can be modelled
as a diffusion process.
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5. Finally, long rooms characterized by mixed reflections were considered; the
increase of the amount of specular reflections inside the room was proved to
influence both slope and initial values of the curve describing the variation
of the numerically estimate diffusion coefficient with the distance. The nu-
merical analysis allowed to estimate the diffusion coefficient only inside long
rooms where a residual amount of diffuse reflections is still present (s > 0.01);
the case of purely specular reflections can not be correctly represented with
a diffusion process, being based on a different propagation mechanism.
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Chapter 3

An experimental energetic

description of the scale model of a

long room

3.1 Introduction

This Chapter is focused on the experimental investigation of the sound field
inside a scaled long room.

In the previous Chapter the main results of the numerical part of the research
were presented: in particular, the diffusion gradient equation was analysed inside
long rooms finding that the diffusion coefficient varies with the length of the room
and the acoustic properties of the boundaries. The numerical simulations gave
therefore a clear outline of the basic features of the issue and provided a starting
point for the experimental part of the research.

To assess the real relationship between energy density and intensity in long
rooms, measurements were performed inside a 1:16 scale model employing a p-
u probe to collect the data. A three-dimensional pressure-velocity probe, that
Microflown kindly lent us, was employed, for accomplishing the required mea-
surements. Two different configurations, with different acoustic properties of the
boundaries, were set up and the sound field inside them was described by means
of energetic and intensity based quantities.

A careful description of the sound field inside the scaled long rooms was a main
target of this study, as it represents the mean to understand the results, in term
of diffusion coefficient estimate, that will be presented in the next Chapter.

The first step in the acquisition of reliable data inside the model was the cali-
bration of the employed p-u probe, accomplished by means of measurements inside
an anechoic chamber, where the probe was exposed to a sound field of spherical
waves. The description of the measurements and the numerical elaboration of the
digital filters are the main topics of the following Section.

The second part of the Chapter is, on the other hand, focused of the measure-
ments performed inside the scale models, firstly to assess the acoustic properties
of the different surface materials and then to investigate the acoustic quantities
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inside the scaled long rooms. Two set ups were considered, differing in the type of
finishing of the interior surfaces: flat in the first model (corresponding to the case
of purely specular reflections) and scattering inside the second (corresponding to
the case of mixed reflections inside the room). The description of the sound fields
basic features is reported in the final part of the Chapter.

3.1.1 State of the art: intensity in reverberant sound fields

During the years several theoretical formulations have been proposed for de-
scribing the sound intensity inside reverberant sound fields.

A perfectly “diffuse” field is classically described through an infinite number of
plane waves, propagating from uniformly distributed directions and having random
phase relations (hypothesis of directional diffusion). Therefore, the net flow of
reverberant energy through a receiver is supposed to be null inside the room [17, 29]
whereas, close to the room boundaries the norm of the intensity can be expressed
as I(r) = cw(r) [17].

In ref. [54] the reverberant sound field inside an ideal pure-tone diffuse field is
analysed: in this context, in the hypothesis of unit normalized spatial variances
of the mean square pressure and the mean square velocity, all the phase angles
between pressure and every component of the particle velocity are equally likely.
Hence, the spatial-average value of the active intensity component Ia is zero in
every direction, that is the spatial distribution of Ia is symmetric around zero,
implying that the local value of the active intensity could be non-null. In such
a pure-tone sound field it is demonstrated that the intensity level is about 5.5
dB below the sound pressure level. On the contrary, if the room is excited by a
“band of random noise”, the level differences will depend on the bandwidth and
the reverberation time of the enclosure.

In ref. [56] a distinction between “diffuse” sound field produced by a single
source and “true” diffuse sound field (as created by uncorrelated sources) is pro-
posed. In the first sound field the coherence between sound pressure and particle
velocity γ2

pur
is almost unit and the field is “no more active than reactive”. On the

other hand, in the second case, the sound field can be considered as homogeneous
and isotropic, γ2

pur
= 0 and the field is not reactive.

The classic description of the diffuse field can be extended to take into ac-
count the interference phenomena that occur near the walls of the room [31, 51],
showing that the interference between each wave and its reflected (and correlated)
counterpart originates interference pattern near the boundaries. This approach
was applied to the region of high modal overlap and but an application to the
low-frequency region is proposed in [46, 47, 57] where the statistical properties of
active and reactive sound intensity are investigated.
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3.2 Characterization of the employed p-u probe

The instantaneous sound intensity along a direction is defined as the product
of the sound pressure and the component of the particle velocity in that direction
[42]. Starting from the definition, it is clear that measuring the sound intensity is
never a straightforward task, as, in principle, it involves the concurrent measure of
two acoustic quantities by means of transducers of different type.

An historical review of the techniques employed for measuring the sound inten-
sity in air can be found in ref. [42], where the basic features of the two available
categories of probes (p-p and p-u) are also described. As is common knowledge,
while the p-p probes provide an indirect measure of the particle velocity (according
to the Euler’s equation), the p-u probes are able to directly measure the particle
velocity. The main drawback of this kind of probes is the phase mismatch between
the two transducers, which is always present (as derives from differences in the
transduction method of the devices) and leads to important bias errors in the in-
tensity estimate, especially at low frequency when the measurements are carried
out in the near field of a source [18, 58].

For this research a Microflown➤ USP probe was employed, performing the
measure of the particle velocity according to the principles of the two hot wires
anemometry. The choice of employing this probe was mainly led by the possibility
of acquiring three independent measurements of velocity along the Cartesian axes
at the same time; moreover the dimensions of the probe are small enough to avoid
perturbations of the sound field.

3.2.1 Description of the probe

The Microflown➤ device performs a direct measure of the velocity of air parti-
cles by means of two closely spaced wires [59–62]; a detail of the particle velocity
transducer is shown in figure 3.1 The wires, heated by an electric power to a tem-
perature of 300◦C, work as resistors sensitive to temperature fluctuations. In fact,
when an acoustic airflow propagates orthogonally across the two wires, the tem-
perature distribution around the resistors alters asymmetrically and generates a
voltage signal proportional to the particle velocity. The upstream wire is always
cooled down more than the downstream one and this feature makes the system able
to discriminate between positive and negative velocity, according to the reversal of
the temperature difference.

The sensitivity of the device is not flat over the frequency; the response curve
is a combination of one high-pass and two low-pass filters, with the following char-
acteristics:

❼ at low frequency the sensitivity increases 6 dB per octave; this effect is found
to be related to the thermal boundary layer of the wires;

❼ between 100 Hz and 1 kHz the frequency response is relatively flat;

❼ at high frequencies the sensitivity decreases. A first roll-off (6 dB per octave)
happens between 1 and 10 kHz, caused by diffusion effects. A second roll-off
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Figure 3.1: SEM photo of a Microflown probe; detail of the two heated wires. (from [61])

happens then above 10 kHz, where the sensitivity decreases an additional 6
dB per octave; the decrease depends on the heat capacity (thermal mass),
the geometry and the operating temperature.

The sensitivity curve for each device is directly provided by the manufacturer,
in terms of an analytical parametric function [63]. This analytical model predicts
the corner frequencies of the system and provides magnitude and phase of the
filters to be applied for correcting the measured values; the correction can be
directly applied during the measurements by using the signal conditioner provided
together with the probe. Anyway, this method prevents the possibility of checking
the calibration procedure, which has to be a-priori considered as correct.

Therefore, in this study, an alternative procedure was employed for the equal-
ization and calibration of the signal: raw (uncorrected) data were initially acquired
and afterwards processed by using digital filters, expressly designed and derived
from calibration measurements.

For the measurements inside the scaled long room a 1/2 in. USP probe was
employed: this is a three dimensional device where three orthogonally positioned
particle velocity sensors are combined with a small electret microphone, as shown
in figure 3.2. The use of this kind of probe allowed to completely characterize
pressure and intensity (in modulus and direction) inside the scale model, over a
suitable frequency range.

�

�

 

Figure 3.2: A Microflown➤ USP probe with the three particle velocity sensors positioned on
the sides and the pressure microphone mounted on the top of the device.

50



CHAPTER 3. Experimental description of a scaled long room

3.2.2 Directivity measurements

Before staring the calibration measurements, a preliminary investigation of the
employed probe was carried on, assessing its frequency and directional responses.

All the measurements were accomplished inside a small silent chamber, which
can be considered as anechoic above 250 Hz; moreover, in order to avoid spurious
reflections all the possible reflecting objects were covered with absorbent material.
The sound source, an highly directive unit at the high frequencies, was placed at
an height of 138 cm from the floor; the probe was placed at the same height, 70
cm far from the source.

The measurement chain was then completed by a portable personal computer
equipped with a MOTU➤ Traveler sound card set up with a sampling rate of 96
kHz, the loudspeaker’s power amplifier and the signal conditioner of the tested
probe. In this phase the measurements were performed enabling the hardware
correction of the signal. The acquired impulse responses (IRs), obtained with the
sine sweep technique, were employed to retrieve the level of the signal for each
one-third octave band in the frequency interval between 800 Hz and 20 kHz.

In a first set of measurements the probe was maintained in the vertical position
and rotated clockwise around its axis by means of a turntable placed underneath;
a measure was accomplished every 10◦. In figure 3.3 a sketch of the measurement
set-up at the 0◦ position is shown, where the relative position of the three velocity
sensors is identified through their distinctive colour. In this configuration only the
directional response of the two vertical sensors (red and blue) can be investigated,
as the wave front is orthogonal to their heated wires; the third sensor, the green
one, should instead register a null, or at least constant, signal, well separated from
the others.

Figure 3.3: Sketch of the set-up for the directivity measurements (upper view); source and
probe configuration for the angular position of 0◦. The relative position and orientation of the
three velocity sensors are identified by their distinctive colour: the red and the blue sensors are
oriented along the axis of the probe, while the green one is in the orthogonal direction.

The results, in terms of polar pattern, are reported in figure 3.4: the red and the
blue sensors show the expected figure-of-eight directionality and a good agreement
between each other. The signal acquired with the green sensor is instead almost
constant over all the directions and well separated from the others, with differences
of about 15 dB. The pressure microphone can be considered omnidirectional for
all the investigated frequency range.
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(a) Red device

���

���

���

���

���

���

���

���

���

���

�

��
	�

��

��

��

��

��


�

��	
�

	��

���

���

�	�

���

���

���

�
�
��

���

���

�	�

���

���

���

���
���

�
����
	��

	��

		�

	��

	��

	��

	��

	��

	
�

�����
� 	����
� �����
� 
����
� ������
�

(b) Blue device
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(c) Green device
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(d) Pressure microphone

Figure 3.4: Polar plots of the four transducers forming the p-u probe, for five different one-
third octave bands; the measurements were carried out inside a silent chamber with the probe
maintained in the vertical position and rotated around the vertical axis. Results acquired every
10◦.
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A second set of measurements was then performed to investigate the directional
response of the green sensor: in this case the probe was maintained in the horizontal
position and rotated around the vertical axis. The polar plot (figure 3.5) shows
again the expected cosine behaviour but with a slight asymmetry for the 90◦-270◦

positions, due to the influence of the probe chassis on the sound field and the small
changes in the sensor position during the rotation. Again the red and blue sensors
acquired a constant signal, well separated from that of the device under test.

���

���

���

���

���

���

���

���

���

���

���

���

�

	�

�

��

��

��

��

��

��

��
��


��

���

�	�

�
�

���

���

���

���

���

��

	��

		�

	
�

	��

	��

	��

	��
	��

	��	��

��


	�



�


��


��


��


��


��


��

	����
� 
����
� �����
� �����
� 	�����
�

Figure 3.5: Polar plot of the particle velocity green device for five different one-third octave
bands; the measurements were carried out inside a silent chamber with the probe maintained in
the horizontal position and rotated around the vertical axis. Results acquired every 10◦.

Finally, in figure 3.6 the frequency responses of the four devices for a frontal
incidence of the sound field are reported: the data are referred to the measurement
set up with the vertical probe for the pressure, the red and the blue device (respec-
tively in the angular position 0◦, 0◦ and 90◦) and to the set up with the horizontal
probe for the green device (angular position 0◦). In the graph the pressure signal is
attenuated of 30 dB with respect to the others. It can be seen that the frequency
response of the three devices can be considered relatively flat (with deviations of
± 3dB) up to 17 kHz.

On the whole, the tested p-u probe demonstrated its suitability for carrying
out precision measurements inside a scale model.

3.2.3 Calibration measurements

At present, there is no established method for calibrating the p-u probes; in fact,
while it is quite easy to calibrate the pressure microphone, a comparison calibration
of the velocity sensor is still not possible, as a standard reference particle velocity
transducer does not exist. So, the solution is to carry out a relative calibration,
that is, to calibrate the velocity sensor with respect to the pressure one, exposing
the whole probe to a sound field with a known relationship between pressure and
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Figure 3.6: FFT analysis of the frequency response of the three velocity sensors (identified by
their colour) and the pressure microphone (black line) for frontal incidence. The pressure signal
is attenuated of 30 dB with respect to the others.

velocity. Then, the reference velocity signal will be obtained as the ratio between
the measured and the theoretical value of the impedance of the sound field.

With reference to the employed p-u probe, during the last years several cal-
ibration methods have been proposed, as, for example, the calibration inside an
anechoic room [58], the calibration inside a standing wave tube [61] and the cali-
bration with a spherical baffle [64, 65]; see, for a review of the different techniques
ref. [64]. In addition, a new calibration procedure was recently proposed, employ-
ing a plane progressive wave generated along a wave guide as reference sound field
[66]. The main targets of these methods are to cover at once all the considered
frequency range (without any change in the measurement set up) and to allow an
in-field calibration that does not require specially equipped rooms to be performed.

For this study it was chosen to calibrate the probe following the method pro-
posed by Jacobsen et al. in ref. [58]. The calibration measurements were performed
inside a small anechoic chamber, where the probe was exposed to a field of spher-
ical waves. When the distance between source and receiver is conveniently large,
the impedance of the field equals that of the plane progressive waves, that is ρ0c.
If the calibration is carried out close to the sound source (as in the present case,
due to the limited dimensions of the available chamber) the theoretical value of
the impedance is no longer valid: the hypothesis of far field is not verified and
the loudspeaker can not be considered a perfect monopole. This remark is espe-
cially true at low frequency where a correction for the “near field effect” has to
be set. No additional phase-correction procedures (as those suggested in ref. [58])
were employed in the calibration, given that the scale model measurements were
performed at frequencies higher than 500 Hz.

The measurements set-up is shown in figure 3.7. The sound source was an highly
directive unit, positioned at an height of 141 cm. The probe was placed, together
with a reference microphone, 55 cm apart from the source, at the same height.
The reference microphone was a 1/8 in. B&K➤ type 4165 free-field microphone,
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Figure 3.7: Measurement set ups for the calibration of the p-u probe inside the anechoic
chamber, with the highly directive source and the reference microphone.

chosen in order to minimize the effects of its presence on the sound field close to
the probe.

The measurement chain was therefore composed by the sound source with the
power amplifier, the reference microphone, the p-u probe with the related pream-
plifiers and a MOTU➤ Traveler sound card, operating at 192 kHz sampling rate.
During the measurements, the correction of the velocity signals provided by the
manufacturer was not applied.

The test signal was a sine sweep, varying from 700 Hz up to 23 kHz. The lower
limit of the frequency range was chosen in accordance to the supposed Schroeder
frequency of the scale model where the measurements had to be performed. The
upper limit was, on the other hand, imposed by the sensibility of the velocity
transducer, which greatly decreases above 20 kHz.

During the calibration, three sets of measurements were acquired, one for each
of the velocity transducers: each calibration was hence performed rotating the de-
vice under test in the direction of maximum sensibility (condition of orthogonality
between the source and the velocity sensor).

3.2.4 Elaboration of the calibration filters

The measured impulse responses were elaborated following a two-step proce-
dure:

1. comparison of the built-in pressure microphone of the probe with the ref-
erence microphone over the whole frequency range; this step is required for
aligning the frequency response of the probe over the flat response of the
reference microphone.

2. adjustment of the velocity sensor frequency response over the calibrated pres-
sure one, according to the known impedance of the sound field.

All the data were elaborated with dedicated Matlab➤ routines. A tempo-
ral windowing was first applied, to avoid the presence of spurious reflections and
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retrieve only the direct part of the signal. The signals were then numerically elab-
orated for obtaining the three series of calibration transfer functions, expressed in
FFT with a spectral resolution of 1.5 Hz over the calibration frequency range [67,
68].

Firstly, the transfer function between the two measured pressure signals, named
Hpp̂, was obtained, expressed as:

Hpp̂(ω) =
pref (ω)

p̂(ω)
, (3.1)

where pref (ω) is the pressure signal measured with the reference microphone and
p̂(ω) is the pressure signal acquired with the built-in microphone.

As three set of measurements were performed, three pressure signals of the
built-in microphone were obtained, which in principle should coincide. However a
slight difference in the high frequency range can be instead observed, due to the
different orientation of the probe (vertical for the calibration of the red and blue
sensors and horizontal for the calibration of the green one): in particular a decrease
in the frequency response of the microphone at the high frequency is observed when
the probe is in the vertical position. Therefore, as the Hpp̂ transfer function has
to be unique, it was chosen to employ the function obtained by elaborating the
signals acquired during the calibration of the green device, when the built-in and
the reference microphones were similarly oriented.

Amplitude and phase of the transfer function in FFT are shown in figure 3.8:
as the built-in microphone has a flat response up to almost 5 kHz, the correction
will affect only the high frequency range. Applying the Hpp̂ transfer function to
a measured (uncorrected) pressure signal p(ω), allows to calculate its “corrected”
value pcorr(ω), as:

pcorr(ω) = p(ω) ·Hpp̂(ω). (3.2)
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Figure 3.8: Amplitude and phase of the transfer function Hpp̂ between the pressure signals
measured with the built-in and the reference microphones (spectral resolution 1.5 Hz).

Then the transfer functions for the relative calibration of the velocity devices
were elaborated. The underlying idea was to obtain a “virtual” reference velocity
starting from the reference pressure signal and the theoretical impedance of the
sound field, to be compared with the velocity signal acquired during the calibration
measurements.
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The probe was exposed to a sound field of spherical waves, where the admittance
of the medium can be expressed as:

Hth(ω) =
u(ω)

p(ω)
=

1

ρc

(

1 +
1

ikr

)

. (3.3)

In the expression ρ is the air density, k the wave number and r the distance
between the source and the probe. The term within brackets, which accounts for
the correction of the near field effect, affects the results only in the low frequency
range.

On the other hand, the “true” specific admittance measured in the calibration
position with the probe, will differ from the theoretical one, due to the mismatch
in the frequency response of the two transducers. The measured impedance (that
is, the inverse of the admittance) can be expressed as:

Hp̂û(ω) =
p̂(ω)

û(ω)
, (3.4)

where p̂(ω) and û(ω) are the measured uncorrected signals in the calibration con-
ditions.

Therefore, the corrected velocity signal can be expressed through a combination
of the transfer functions defined above, as:

ucorr(ω) = u(ω) ·Hpp̂(ω) ·Hth(ω) ·Hp̂û(ω) = u(ω) ·Huû(ω). (3.5)

In figure 3.9 the amplitude and the phase of theHuû filters obtained for the three
velocity sensors are represented. Obviously, being above 1 kHz, the sensitivity of
the velocity devices diminishes continuously with the frequency and the amplitude
of the Huû filters shows an increasing trend.

In order to assess the reliability of the obtained transfer functions, some relevant
acoustic quantities were calculated for the calibration conditions, where the sound
field, as well as its principal characteristics, are known.

First of all, the ratio between the corrected pressure and velocity signals was
investigated for each of the three channels, with the aim of evaluating the presence
of numerical errors and defining the range of validity of the elaborated filters.

A similar trend of variation was obtained for all the devices, shown in figure 3.10
with reference to the green transducer. The measured ratio, in spite of the presence
of slight variations in the FFT representation, is in satisfactory agreement with the
corresponding theoretical value (1/Hth) starting from 1.5 kHz; below this value the
elaborated filters do not provide the right correction of the acquired signals and
can not be applied. Hence, the value of 1.5 kHz will represent the lower limit of
the investigated frequency range inside the scale models.

Then the sound intensity in the calibration position was evaluated. The dis-
tribution of the mean intensity in frequency was obtained via FFT analysis of the
corrected pressure and velocity signals, combined through their cross-spectrum, as:

Ir + iJr = Spu |Hpp̂|2 Hp̂û Hth. (3.6)
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Figure 3.9: Amplitude and phase of the three transfer functions Huû(ω) between the mea-
sured velocity signal and a “virtual” velocity obtained from the reference pressure signal and the
theoretical impedance; spectral resolution 1.5 Hz.

In equation (3.6) Ir and Jr are respectively the active and reactive components of
the intensity along a direction r, whereas Spu is the cross-spectrum between the
measured sound pressure and particle velocity. Given the hypothesis on the sound
field in the calibration conditions, the sound intensity was expected to be purely
active, with similar frequency distributions for the three sets of acquired data.

The active and reactive components of the intensity, measured with the three
devices, are represented in figure 3.11; the analysis of the results leads to the
following remarks:

❼ The sound field can be considered purely active; the difference between active
and reactive intensity is in fact nearly 15 dB for all the investigated frequency
range. If the linear value of the two intensity components is represented, it
can be seen that the reactive component varies rapidly with the frequency
but has a null mean.

❼ The results provided by the three velocity sensors are in fair agreement, with
small differences at high frequency (around 20 kHz) between the green device
and the other two. The difference derives from the choice of always employing
the same transfer function Hpp̂ for correcting the particle velocity.
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Figure 3.10: Comparison between the theoretical (blue line) and the measured (red line) ratio
between pressure and velocity signals; the measured values were corrected with the elaborated
transfer functions, according to equations 3.2 and 3.5. The two functions are found to be equal
starting from 1.5 kHz.

❼ The measured active component of the intensity has a satisfactory flat re-
sponse in the frequency range between 1.5 and 18 kHz, where the calibration
procedure can be considered valid.

Moreover, the sign of the intensity calculated in the calibration conditions, allows
the assessment of the internal reference system of the probe that will be necessary,
during the measurements inside the scale model, to evaluate the positive or negative
direction of the intensity vectors.

Finally, it is worth noticing that in the elaboration of the transfer functions
was not introduced the sensitivity of the reference pressure microphone; therefore,
even though the relative calibration between the pressure and the velocity devices
is correct and provides a flat and in-phase response of the two transducers, the
absolute level of the acquired signal can not be retrieved. Anyway, for the purposes
of this study this aspect can be neglected as the focal point are the relationship
between the acoustic quantities and their variations inside the enclosures
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Figure 3.11: Sound intensity level (SIL) derived from the calibration measurements (spectral
resolution 1.5 Hz): active component (red line) and reactive component (blue line).

3.3 Measurements inside the scale model of a

long room

The experimental investigation of the diffusion coefficient value was accom-
plished by means of measurements inside a scale model.

The choice of employing a scale model was led by the possibility of performing
measurements inside an enclosure where the acoustic properties of the surfaces
could be estimated with good accuracy and the sound field carefully described.

The main issue of taking measurements inside a scale model is the effect of
the air absorption as it does not vary linearly with the frequency and affects the
measurements at high frequency. The effect can be diminished by replacing the
air inside the model with dry air or other gas, as nitrogen, with smaller decay
parameters. However in this case, the relatively large dimensions of the model
made these solutions impractical and quite expensive.

An alternative possibility is to numerically correct the measurements according
to the standard ISO 9613-1 [69]; the procedure was successfully applied to the
measurements for the characterization of the materials, in order to obtain the
correct absorption and scattering coefficients. The procedure was accomplished
with the commercial software Dirac➤ that automatically provide a rescale on the
time axis of the measured impulse responses, retrieving their full scale equivalent.

Hence, a 1:16 scale model of a long room was set up, conceived as a modu-
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Model scale (MS) Full scale (FS)

Length 0.500 m 8 m
Width 0.500 m 8 m
Height 0.250 m 4 m
Surface 1.000 m2 288 m2

Volume 0.063 m3 256 m3

Table 3.1: Geometrical dimensions of the scaled reverberant chamber. The dimensions are given
with both model scale values (MS) and their full-size equivalents (FS).

 

 

 

Figure 3.12: The scaled reverberant chamber.

lar structure made of fir-tree wooden panels, with the possibility of patching the
interior surfaces with different kind of finishing. Two configurations were set up,
corresponding to the cases of purely specular and mixed (specular and diffuse)
reflections inside the room. Prior to the measurements inside the scaled long room
a characterization of the different superficial finishing was made, obtaining their
absorption and scattering coefficients. These values will be then employed in the
numerical particle-tracing model of the scaled room.

All the results presented in this Section are expressed as a function of the
full-size equivalent frequency for the scale of 1:16 (FS).

3.3.1 Characterization of the materials

The acoustic characterization of the materials was accomplished by measure-
ments inside a 1:16 scaled reverberation chamber, with the dimensions reported in
table 3.1.

The chamber was set up following the advices of the standard ISO 354 [70]
on geometrical dimensions, sound absorption area and diffusers, for obtaining the
desired diffuse conditions inside the room. In particular, all the interior surfaces
were varnished with an acrylic paint to limit their sound absorption and curved
plastic elements of suitable dimensions were randomly distributed throughout the
space. An image of the final set up is shown in figure 3.12.

The same chamber could also be prepared for accomplishing scattering measure-
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ments, by modifying the configuration of the floor with the addition of a circular
section flush with the rest of diameter 5.6 m in full scale (FS). This section was
connected to a turntable underneath providing the required rotation of the sample
under test [71]. The measurement principle of the scattering coefficient measure is
in fact based on the isolation of the specular (correlated) part of the reflections
from the uncorrelated one: this can be obtained by synchronized averaging the
impulse responses acquired for different orientation of the sample. The set up for
the scattering measurements is shown in figure 3.13.

Figure 3.13: The scaled reverberant chamber set up for scattering measurements, with the
rotating central section in the centre of the floor connected to the turntable underneath.

The measurement chain consisted of a miniaturized piezoelectric dodecahedron
(with a diameter of 7 cm) with the related power amplifier, a 1/4 in. free-field
B&K➤ microphone with its preamplifier and a MOTU➤ Traveler sound card op-
erating at 192 kHz sampling rate.

The measurements were accomplished by inserting the microphone inside the
model from holes in the ceiling (figure 3.14); the holes not involved in the cur-
rent measure were plugged with silicon stoppers, treated with the same varnish
employed for all the surfaces of the chamber. For the absorption measurements
4 source positions and 16 microphone positions were chosen, evenly distributed
into the available space. The impulses responses obtained with the sine sweep
technique were processed with the Dirac➤ software for calculating their full scale
equivalents and correcting the effect of the air absorption. For each position was
then calculated the reverberation time RT30.

Before starting the characterization of the materials, the grade of diffusion of
the reverberation chamber was tested, varying the position and the number of re-
flectors. The test was performed applying the Davy’s criterion, which assesses the
grade of diffusion of the sound field from the spatial variance of the measured rever-
beration time [72, 73]. In particular, the theoretical value of the relative standard
deviation is calculated as:

σ(T )

T
=

0.96√
BT

, (3.7)

where T is the spatial average of the reverberation time, σ(T ) its standard de-
viation and B the statistical bandwidth. When the measured relative standard
deviation is lower than the theoretical one, the sound field can be considered as
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Figure 3.14: Measurement set up with the tested material inside the scaled reverberant chamber
for the absorption measurements.

Figure 3.15: Materials tested inside the reverberation chamber: a patch of varnished scattering
elements (on the left) and a flat varnished tile (on the right).

diffuse. Otherwise non-diffuse conditions prevail. The comparison, for the chosen
configuration of the reverberation chamber, is reported in table 3.2. It can be seen
that the sound field can be considered as diffuse for the one-third octave bands
between 125 Hz and 1 kHz (FS), which therefore represent the range of validity of
the obtained absorption and scattering coefficient.

Then, the materials employed in the scale model were tested inside the rever-
beration chamber: the varnished finishing and the scattering elements (figure 3.15).
The scattering patch was obtained by gluing small wooden pieces in random or-
der over a plastic grid; the elements, all with different geometries and dimensions
(ranging from 0.16 m to 1.28 m FS) had been previously varnished for limiting
their sound absorption. The absorption coefficient of the varnish finishing was
obtained performing a first measurement with a Perspex tile (which provided an
highest reference reverberation time) and a second measure with a varnished tile.

In figure 3.16 the measured values of the absorption and scattering coefficients
in one-third octave bands are presented. It is worth noticing that the scattering
elements, in spite of the varnish finishing, still present a residual absorption due
to the material porosity which will affect the measurements inside the model; the
absorption of the flat surface is instead quite negligible. The scattering coefficient
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Frequency Frequency Theoretical Measured
band (MS) band (FS) std. deviation std. deviation

Hz Hz % %

1000 63 12.19 20.63
1350 80 11.68 12.79
1600 100 10.83 13.10
2000 125 10.43 9.43
2500 160 10.09 7.50
3150 200 8.86 8.83
4000 250 7.58 6.79
5000 315 6.68 5.82
6300 400 6.02 4.87
8000 500 5.70 4.61
10000 630 5.51 4.41
12500 800 4.92 4.80
16000 1000 4.45 4.17

Table 3.2: Application of the Davy’s criterion to the RT30 measurements inside the reverbera-
tion chamber: the sound field can be considered as diffuse when the measured standard deviation
is lower than the theoretical one. The results are expressed as a function of the frequency in both
model scale (MS) and full scale (FS).

of the flat, varnished surface is almost null: the sound will therefore be reflected in
a specular manner from this elements. On the other hand, the scattering patches,
due to the random surface roughness, are characterized by a coefficient s increasing
with the frequency.

In table 3.3 the standard deviations of the measured coefficients are reported
for each of the rescaled frequency bands, showing great uncertainties especially in
the evaluation of the scattering coefficients at low frequency.

Frequency
Scattering el. Flat surfaces

α s α s

125 0.005 0.152 0.150 0.110
160 0.006 0.172 0.100 0.107
200 0.006 0.118 0.080 0.071
250 0.004 0.142 0.070 0.070
315 0.004 0.106 0.030 0.054
400 0.004 0.138 0.030 0.076
500 0.003 0.175 0.040 0.086
630 0.004 0.196 0.030 0.046
800 0.007 0.166 0.020 0.051
1000 0.002 0.152 0.020 0.073

Table 3.3: Standard deviations of the measured absorption and scattering coefficients of the
scattering elements and the flat surfaces employed inside the model. Results expressed as a
function of the full-size equivalent frequency (FS).
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Figure 3.16: Measured absorption coefficient α and scattering coefficient s for the varnish
finishing (−−) and the scattering elements (solid line) in one-third octave bands; the results are
expressed as a function of the full-size equivalent frequency (FS).

Model scale (MS) Full scale (FS)

Length 2.500 m 40 m
Width 0.500 m 8 m
Height 0.250 m 4 m
Surface 4.000 m2 1024 m2

Volume 0.3125 m3 1280 m3

Table 3.4: Geometrical dimensions of the scaled long room. The dimensions are given with
both madel scale values (MS) and their full-size equivalents (FS).

3.3.2 Scale model set-up

Then, the scale model of a long room was set up, with the dimensions reported
in table 3.4.

The model was composed by modular square elements of 4 m (FS) side, tightly
connected together to build the floor and the walls of the room; the minimal fissures
between the elements were sealed with tape for avoiding any leakage of sound.
The ceiling was instead formed by one whole piece, provided with holes at regular
positions for introducing the microphone and performing the measurements inside
the model. During the measurements all the holes (a part from that corresponding
to the current receiver position) were plugged with stoppers, varnished on the
interior side for preventing sound absorption. The size of the holes was specifically
designed to allow the passage (and a minimal movement) of a 1/2 in. transducer.

For the purposes of this study, two different configurations were set up, by
differently patching the interior surfaces:

1. a long room with flat boundaries (figure 3.17);

2. a long room with surfaces equipped with a great number of scattering frames
(almost 80% of the total surface was covered); this set up is shown in fig-
ure 3.18. Each modular square element was patched with a scattering frame
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Figure 3.17: Measurement set up of the scaled long room with flat boundaires.

of the same dimension, suspended with small hooks from the lateral walls,
appended to the ceiling or simply laid on the floor.

The measurements were performed with a portable personal computer with a
CLIO➤ sound card operating at 192 kHz sampling rate, connected to a miniatur-
ized piezoelectric dodecahedron with the related amplifier and to a Microflown➤

USP probe with the signal conditioner1. In both configurations the sound source
was placed close to an end wall of the model and the measurements were accom-
plished in 23 receiver positions at two different heights: z=1.60 and z=2.72 in FS
(corresponding to z=0.1 m and z=0.17 m in MS). An upper view of the source
and receivers positions is shown in figure 3.19. At each receiver position 4 impulse
responses were collected at the same time with the sine sweep technique, one for
each of the independent channels of the p-u probe.

As the aim of the measurements was to investigate experimentally the diffusion
gradient equation, it was necessary to collect data which could be useful for the
estimate of the energy density gradient. Hence, around each receiver positions
other six measures were collected, two for each of the principal directions (one at
each side of the “main” central position). Each additional point was 8 cm far from
the central one (FS).

For performing this kind of measurements, that require great precision in the
probe displacement, the acquisition system was automatized through the use of
a three dimensional scanner (figure 3.20). The scanner, which has a movement
precision of 1 mm, allowed independent movements along the three directions and
was controlled with a dedicated LabView➤ application.

The two systems (probe displacement and signal acquisition) were conveniently
synchronized for performing all the measurements in an automatic way.

1As the equalization of the recored signal was performed in post-processing by using the
elaborated digital filters, during the acquisition the correction of the signal was disabled.
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(a) Long room

(b) Upper view (floor)

(c) Upper view (ceiling)

Figure 3.18: (a) Measurement set up of the scaled long room with scattering boundaires. (b)
and (c) Sketch of the surfaces of the room covered with the scattering patches, identified by the
gray areas for floor (b) and ceiling (c), and thick lines for the walls.

Figure 3.19: Source (S) and receivers (1-23) positions inside the scaled long room (upper view).
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Figure 3.20: Automatic acquisition of the measurements inside the scale model with a three
dimensional scanner.
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3.3.3 Characterization of the sound field inside the scale

model

The impulse responses measured inside the scale model were elaborated with
Matlab➤ routines for obtaining the principal acoustic quantities at each receiver
position. All the elaborations were carried out in the frequency range from 1.5 to
18 kHz (MS), where the calibration filters provide a reliable signal correction.

The results will be therefore presented, with reference to the full-size equivalent
frequency, in one-third octave bands from 125 to 1000 Hz. In this Section only the
results concerning the bands of 500 and 800 Hz will be presented; the results
obtained for all the considered bands are reported in Appendix A.

Two principal quantities were obtained from the elaborations: energy density
and intensity. The calculation procedure for obtaining the sound intensity has
already been detailed in ➜ 3.2.4; the energy density, on the other hand, was eval-
uated as the sum of its potential and kinetic components [51], calculated as the
auto-spectra of pressure and velocity:

epot =
Spp

2ρ0c2
, (3.8a)

and:

ekin,r =
ρ0
2
Surur

, (3.8b)

where ekin,r and ur (velocity signal) are referred to the direction r.

3.3.3.1 Long room with flat surfaces

First, the Schroeder frequency was calculated for the scaled long room with
flat surfaces, employing the spatially averaged value of the measured RT30, equal
to 4.30 ± 1.03 s (the value refers to all the considered bands). The Schroeder
frequency is equal to 116 Hz, meaning that the first analysed band, 125 Hz, is
(partially) characterized by a modal behaviour: it will not be considered in the
analysis of the sound field which is limited to the frequencies of high modal overlap.

The first analysed parameter is the energy density level Le: its spatial decay
inside the room, together with that of its potential and kinetic components, is
represented in figure 3.21. As inside long rooms the sound field is supposed to
vary mainly with the length of the room, only the receiver positions along a line
at z=1.6 m from the source to the end wall of the room were considered for the
analysis (positions n◦ 2 - 21 - 6 - 8 - 22 - 12 - 14 - 23 - 18 - 20, with reference to
figure 3.19).

From figure 3.21 it can be seen that inside the room the energy density atten-
uation is almost null: in fact, except for the near field positions, the variation of
the parameter along the length is quite limited. The same trend can be observed
for both its components, that, moreover are always coincident. This almost null
spatial variation is related to the presence of the highly reflective end wall, whose
presence greatly affects the last part of the temporal decay, reducing the variation
of the acoustic quantities; evidences of this effect can also be found in ref. [53].
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Figure 3.21: Energy density level (Le) decay inside the scaled long room with flat surfaces,
along the line from the source to the end wall at z=1.6 m. Measured values and regression
lines for the one-third octave bands of 500 and 800 Hz: total energy density (× and solid line),
potential energy density (⋄ and − · −), kinetic energy density (◦ and −−).

Then, the variation of the reverberation time along the length was analysed in
terms of both RT30 and EDT (figure 3.22). As for the energy density level, the
observed variation are quite limited, especially for the highest frequencies, where
the ratio between RT30 and EDT becomes almost equal to one, meaning that the
temporal decay inside of the sound inside the room is rather linear.

All these evidences lead to the conclusion that, inside the long room with flat
boundaries, the sound field is close to diffuse, characterized by a uniform energy
density throughout the room2. In order to asses the diffusiveness of the field, a
further check was carried on, applying the Davy’s criterion on the measured RT30;
for this analysis all the measurement positions were considered. The comparison
between theoretical and measured variances of the data is reported in table 3.5,
confirming that for all the investigated frequency bands the sound field can be
considered as diffuse.

Then, the distribution of the active part of the sound intensity inside the room
was considered. In figure 3.23 the spatial decay of the intensity level is represented
as a function of the distance from the source, showing a decrease along the length
of the room. This result is in accordance with the analysis of the intensity inside
reverberant field presented in ref. [56]. In fact, as the room was excited by a
random noise (with no correlation in phase), the intensity related to the direct
part of the field becomes predominant and leads to a decrease of the total intensity
level [29]. Anyway, the measured decrease is always milder than the 6 dB decrease
for doubling of distance expected for the direct intensity level: this behaviour can
in fact be observed only inside an ideally diffuse sound field [74].

These results can be better understood by analysing also the variations of the
sound intensity components. The component along the x-axis (i.e., the component

2In a diffuse sound field the kinetic energy density has the same level as the potential energy
density (see for example ref. [47]): therefore the agreement between the theoretical behaviour and
the measurements can be considered as a confirmation of the validity of the amplitude calibration.
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Figure 3.22: Reverberation time inside the scaled long room with flat surfaces as a function of
the source-receiver distance. Measured values and regression lines for the one-third octave bands
of 500 and 800 Hz: EDT (× and solid line), RT30 (◦ and −−).

Frequency Theoretical Measured
band (FS) std. deviation std. deviation

Hz % %

160 7.96 7.31
200 6.17 4.59
250 5.30 4.13
315 4.88 4.43
400 4.63 2.66
500 4.51 3.41
630 4.36 2.56
800 4.12 2.63
1000 3.85 2.71

Table 3.5: Application of the Davy’s criterion to the RT30 measurements inside the scaled long
room with flat surfaces; all the receiver positions were considered in the analysis. According to
the criterion, the sound field can be considered as diffuse when the measured standard deviation
is lower than the theoretical one.
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Figure 3.23: Sound intensity level (SIL) decay inside the scaled long room with flat surfaces
along the line from the source to the end wall at z=1.6 m. Measured values and regression lines
for the one-third octave bands of 500 and 800 Hz: total intensity (× and solid line), intensity
along the x-axis (◦ and −−), intensity along the y-axis (∗ and − · −), intensity along the z-axis
(⋄ and · · ·).

in the direction of the longest dimension of the room) is always slightly predom-
inant over the other two; the y and z components, on the other hand show a
less recognizable trend and depending on the considered frequency give a different
contribute to the global level.

The representation of the normalized intensity vectors distribution over the
horizontal plane is shown in figure 3.24. It can be seen that while the energy
flow presents a prevailing orientation along the x-axis it is not completely mono-
dimensional, as local, random deviations from the principal direction are always
present. These deviations are even more pronounced in the region further from
the source (where the sound field is influenced by the reflections on the end wall)
and close to the walls of the room. Hence, it can be concluded that inside the
long room with flat surfaces the energy flow is mainly oriented along the x-axis but
local, random variations, maybe enhanced also by small irregularities in the scale
model set up, are also present accounting for the significant values of the two Iy
and Iz components.

Evidences of the diffusiveness of the sound field can also be obtained from
the comparison between the active and the reactive part of the intensity. In fig-
ure 3.25 these quantities are represented over the investigated frequency bands,
with reference to the receiver position n◦ 12, located 18 m (FS) far from the source
(figure 3.19). The magnitude of active and reactive intensity is almost the same
for all the frequencies (with differences between the two quantities smaller than 3
dB) and generally lower than the normalized energy density cw(ω), fulfilling the
condition established in ref. [56] for a diffuse sound field:

|J(ω0,∆ω)| ≈ |I(ω0,∆ω)| << cw(ω0,∆ω), (3.9)

where the notation (ω0,∆ω) indicates that the quantities are associated with a
frequency band. It is worth noting that this relation is valid for a reverberant
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Figure 3.24: Normalized intensity vectors measured inside the scaled long room with flat sur-
faces (upper view); results over the horizontal plane at z=1.6 m.

“diffuse” sound field created by a single source and not for a “true” diffuse sound
field, homogeneous and isotropic, created by a number of distant, uncorrelated
sources, where the reactive intensity is negligible.

Let’s recall here the definition of active and reactive components of the sound
intensity [42, 54, 56]. In a time-stationary sound field, the instantaneous intensity
can be divide in two parts:

❼ an active component, with a non null value and corresponding to the local
net flow of sound energy;

❼ a reactive component, with a time-average value equal to zero, corresponding
to local oscillatory transport of energy; it describes the non-propagating part
of the energy, flowing back and forth around a position.
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Figure 3.25: Measurements inside the scaled long room with flat boundaries at the position
n◦12 (as defined in figure 3.19) in 1/3 octave bands: normalized energy density level (-·-), active
intensity level (–) and reactive intensity level (- -).
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The two quantities are associated with the components of particle velocity which
are respectively in phase and in quadrature with the acoustic pressure. According
to ref. [56]:

Ir =
1

2
Re [pu∗r] , (3.10)

Jr =
1

2
Im [pu∗r] , (3.11)

where the symbol ∗ denotes the complex conjugate of a complex quantity.
The active and reactive intensities could be related to similar components of

propagating and non-propagating energy density. For example, Morse and Ingard
[75] define the amount of “radiant sound energy density” near point sources. This
energy radiating with the speed of sound and moving outward from the source, is
expressed as:

ep(r, t) =
|I(r, t)|

c
. (3.12)

The remaining part of the total sound energy in the near field is called “reactive
energy” and it is obtained as:

enp(r, t) = w(r, t)− |I(r, t)|
c

. (3.13)

As pointed out in ref. [56], equation (3.12) might be used as a definition of the
active sound energy density, relating this quantity to the active intensity. On the
contrary, a similar simple relationship between reactive energy density and reactive
sound intensity can not be established. Mann et al. [76] divide instead the particle
velocity in a pure tone sound field into a part which is in phase with the sound
pressure and a part which is quadrature. An brief review of the different definitions
of active and reactive energy density can be found in ref. [56].

In this study the approach proposed in ref. [75] was adopted and an analysis of
the sound field inside the scaled long room in terms of relative distribution between
propagating and non-propagating energy was performed. The analysis was carried
out separately for the three directions, expressing the total energy density along
a direction as the sum of the corresponding kinetic and potential components.
In figure 3.26 the difference between the calculated energy levels is represented,
showing that for all the investigated directions the non-propagating part of the
energy is always bigger than the propagating one. That means that only a small
part of the total available energy flows inside the room, while the rest is “trapped”
and flows back and forth around a position. This observation is especially true for
the y and z axes along which the non propagating energy prevails, leading to the
local effects observed in the intensity distribution.
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Figure 3.26: Difference between the levels of propagating and non-propagating energy density
as a function of the distance from the source inside the long room with flat surfaces; results for
the quantities measured along the x-axis (×), y-axis (◦), z-axis (⋄) for the frequency of 500 Hz.

3.3.3.2 Long room with scattering surfaces

Then, the characteristics of the sound field inside the long room with scattering
boundaries were investigated.

The Schroeder frequency was calculated starting from the RT30 averaged value
and found to be equal to almost 67 Hz; in this case the RT30 averaged over all the
measurement positions is equal to 1.44 ± 0.47 s. Anyway, in accordance with the
analysis of the sound field inside the room with flat surfaces, only the frequency
bands from 250 to 1000 Hz will be considered.

In this configuration the temporal decay of the signal at each receiver position
is affected by both the scattering and absorption properties of the room surfaces,
that lead to a non-diffuse sound field. In fact, as represented in figure 3.27, in
this case the energy density decreases continuously along the length of the room,
especially for the highest frequency bands (see also Appendix A.2 ). Again the
kinetic and potential components of the energy density are found to be coincident.
The reverberation time, on the other hand shows an increasing trend with the
length (figure 3.28) for both RT30 and EDT; moreover, for some of the investigated
frequencies the EDT shows a concave behaviour, reaching a maximum value and
then slowly decreasing close to the end of the room.

In order to understand if really the spatial decay of the energy was originated
by a non-diffuse sound field and not by the presence of the surfaces absorption,
the Davy’s criterion was applied again to the measured RT30 values. The results
are reported in table 3.6 for all the considered frequency bands, showing that at
the lowest frequencies (up to 400 Hz), where the effect of the scattering from the
boundaries is still limited, the sound field can be again considered close to diffuse.
At higher frequencies a non-diffuse behaviour prevails.

The spatial decay of the intensity is represented in figure 3.29 showing that
both total sound intensity and its components greatly decrease along the length.
In this configuration the prevalence of the x component is less evident than in the
configuration with flat boundaries, and limited to the regions closest to the sound
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Figure 3.27: Energy density level (Le) decay inside the scaled long room with scattering sur-
faces, along the line from the source to the end wall at z=1.6 m. Measured values and regression
lines for the one-third octave bands of 500 and 800 Hz: total energy density (× and solid line),
potential energy density (⋄ and −−−), kinetic energy density (◦ and − · −).
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Figure 3.28: Reverberation time inside the scaled long room with scattering surfaces as a
function of the distance from the source. Measured values and regression lines for the one-third
octave bands of 500 and 800 Hz: EDT (× and solid line), RT30 (◦ and −−).

source; in the other parts of the long room also the contribution of the intensity
along the y axis becomes important. The intensity level along the z axis is always
significantly smaller of the other two components, except for the positions closer
to the end wall.

The spatial distribution of the intensity over the horizontal plane is depicted
in figure 3.31, confirming the previous remarks: close to the sound source the
energy flow is mainly oriented along the longest dimension of the room. Then,
the flow becomes less oriented and the intensity vectors starts to be “attracted”
from the lateral wall in y=0. On the whole the energy flow inside the room with
scattering boundaries is therefore less oriented than that inside the same room with
flat boundaries.
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Frequency Theoretical Measured
band (FS) std. deviation std. deviation

Hz % %

160 Hz 12.27 % 9.77 %
200 Hz 11.29 % 6.47 %
250 Hz 10.07 % 6.25 %
315 Hz 9.57 % 8.90 %
400 Hz 8.75 % 8.82 %
500 Hz 8.31 % 8.97 %
630 Hz 7.88 % 8.16 %
800 Hz 7.29 % 7.67 %
1000 Hz 6.68 % 8.38 %

Table 3.6: Application of the Davy’s criterion to the RT30 measurements inside the scaled long
room with scattering surfaces; all the receiver positions were considered in the analysis. According
to the criterion, the sound field can be considered as diffuse when the measured standard deviation
is lower than the theoretical one.
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Figure 3.29: Sound intensity level (SIL) decay inside the scaled long room with scattering
surfaces along the line from the source to the end wall at z=1.6 m. Measured values and regression
lines for the one-third octave bands of 500 and 800 Hz: total intensity (× and solid line), intensity
along the x-axis (◦ and −−), intensity along the y-axis (∗ and − · −), intensity along the z-axis
(⋄ and · · ·).
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Figure 3.30: Measurements inside the scaled long room with scattering boundaries at the
position n◦12 (as defined in figure 3.19) in 1/3 octave bands: normalized energy density level
(-·-), active intensity level (–) and reactive intensity level (- -).

The analysis of the active and reactive components of the sound intensity
(as represented in figure 3.30) show that the sound field is mainly active, as
|I(ω0,∆ω)| > |J(ω0,∆ω)|, with differences bigger than 4 dB, over all the con-
sidered frequency bands.

Again, also for this configuration the analysis of the relative contributions of
the propagating and non propagating part of the energy density was carried out.
The results are shown in figure 3.32 for the frequency of 500 Hz: it can be seen
that also inside this room the non propagating component is predominant, leading
to local re-circulations of sound energy density and affecting the punctual direction
of the intensity vector. Anyway, this predominance appears to be less pronounced
than inside the room with flat surfaces, especially for the x and y components.

3.3.3.3 A comparison with two numerical models

The acoustic quantities measured inside the scaled models were then compared
with the results provided by two numerical models, with reference to the spatial
decay of the energy density.

The first model chosen for the comparison was the revised theory, whose basic
features have been already outlined in ➜ 2.3.2. For the comparison, the sound
pressure level inside the room was calculated as:

SPL(r) = LW + 10 log

(

W

4πr2
+ 25

T

V
exp

(

−0.04 r
T

)

)

. (3.14)

where T is the reverberation time inside the enclosure, derived from the spatially
averaged RT30 values measured inside the scale models.

The second comparison was performed with a numerical model, based on a
hybrid calculation method [77]: depending on the order of reflection the software
models in fact the reflections with a mixture of image source method and ray-
tracing or with a pure ray-tracing method. The acoustics properties assigned to
the room surfaces were chosen in accordance with the results of the measurements
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Figure 3.31: Normalized intensity vectors measured inside the scaled long room with scattering
surfaces (upper view); results over the horizontal plane at z=1.6 m.
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Figure 3.32: Difference between the levels of propagating and non-propagating energy density
as a function of the distance from the source inside the long room with scattering boundaries;
results for the quantities measured along the x-axis (×), y-axis (◦), z-axis (⋄) for the frequency
of 500 Hz.
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inside the scaled reverberation chamber and presented in ➜ 3.3.1. For the simu-
lations were employed 1000 rays and a transition order equal to 2, meaning that
the first and the second orders of reflection were modelled using the image source
method.

The comparison between the three sets of data, referred to the octave band of
500 Hz, is reported in figure 3.33. Inside the long room with flat boundaries, a
good agreement between the three sets of data is found, with differences between
each other smaller than 0.5 dB.
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Figure 3.33: Comparison of the energy density level Le spatial decay along a line from the
source to the end wall. Results obtained, for the frequency band of 500 Hz, with measures inside
the scale model (×), revised theory equations (⋄), ray-tracing software (◦).

On the other hand, inside the room with scattering boundaries the measured
values are in agreement only with the ray-tracing model: the difference is almost
constant over the length and equal to 1 dB. The results predicted with the revised
theory differ from the measured ones starting from 15 m from the source, where
the observed difference is bigger than 1 dB; close to the end wall, the discrepancy
reaches 4 dB.

The comparison of the experimental data with the numerical ones confirms
the conclusions drawn in the previous Sections. In fact, inside the room with flat
boundaries the agreement between measures and revised theory, which correctly
predicts the sound decay inside semi-reverberant fields, supports the idea of a
diffuse sound field inside this kind of experimental configuration. In the same
way, the difference between measures and revised theory inside the long room
with scattering boundaries confirms the non-diffuseness of the sound field. The
agreement observed between measured data and ray-tracing results is an evidence
of the accuracy of the experimental data.

3.4 Conclusions

The target of this first experimental part of the research was to obtain reliable
data, to completely describe the sound field inside long rooms with different types
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of superficial finishing.
To do so, two main aspects were considered and investigated.
First, the calibration of the intensity probe employed in the measurements was

performed: a set of digital filters was derived from measurements inside a sound
field of spherical waves, for the calibration of the acquired pressure and velocity
signals from 1.5 up to 18 kHz. The use of digital filters allowed to acquire data
with high signal-to-noise ratios.

Then, the characterization with energetic and intensimetric quantities of the
measured sound fields was carefully accomplished, providing the starting point for
the diffusion coefficient estimate inside the two rooms.

For the long room with flat boundaries the analysis of the sound field leaded
to the following remarks:

❼ Inside the room the sound field is close to diffuse: the energy density is uni-
form throughout the space with equal potential and kinetic components; the
reverberation time is constant for all the receiver positions. The analysis of
the spatial variance of the measured RT30 with the Davy’s criterion con-
firmed that the sound field can be considered diffuse for all the investigated
frequency bands.

❼ The sound intensity inside the room decreases faintly with the distance from
the source; the magnitude of the active and reactive components is compara-
ble for the investigated positions: the sound field inside the room is therefore
“no more active than reactive” [54, 56].

❼ The distribution over the plane of the intensity vectors shows the presence
of an overall energy flow along the length of the room but also the effect of
local random deviations over the horizontal plane, due to the presence of a
great quantity of non-propagated energy inside the room.

On the other hand, inside the long room with scattering boundaries the analysis
of the sound field leaded to the following remarks:

❼ According to the analysis of the sound field with the Davy’s criterion, at
low frequencies (up to 400 Hz) the sound field is close to diffuse while, at
higher frequencies prevails a non-diffuse behaviour. At these frequencies, the
energy density decays along the length of the room and the reverberation
time increases continuously.

❼ The sound intensity continuously decreases along the length of the room with
a slope greater than that observed inside the room with flat boundaries; in
this case the sound field is mainly active.

❼ The representation of the intensity vectors shows that in this case the en-
ergy flow is mainly bi-dimensional over the horizontal plane, with a great
contribution of the y-component of the intensity leading to a systematic ori-
entation of the vectors toward a lateral surface of the model. Inside the room,
even though the non-propagating component of the energy density prevails,
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a greater fraction of energy propagates inside the room with respect to the
previous case.

The differences observed between the two configurations will therefore differ-
ently affect the relationship between energy density gradient and intensity, allow-
ing to experimentally investigate the dependence of the diffusion coefficient on the
characteristics of the sound field.
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Chapter 4

Experimental evaluation of the

diffusion coefficient inside long

rooms

4.1 Introduction

The measurements performed inside the scaled long rooms were finally em-
ployed for the experimental investigation of the diffusion gradient equation.

In this Chapter the experimental estimate of the diffusion coefficient is therefore
presented and its dependence on the acoustic properties of the room surfaces is dis-
cussed, according to the basic features of the investigated sound fields highlighted
in Chapter 3. The results are moreover compared with the numerical estimates of
the diffusion coefficient obtained by using a particle-tracing software, as presented
in Chapter 2.

The experimental evaluation of the diffusion coefficient was carried out by em-
ploying two different methodologies.

The first approach was based on the direct measurement of the acoustic quan-
tities involved in the diffusion process and employed the data acquired at the
neighbouring receiver points placed around each “main” receiver position.

The second approach, on the other hand, relied on two hypothesis on the ex-
pected variation ofDmeas inside long rooms, derived from the preliminary numerical
investigation: linear increase of the coefficient with the distance from the source
and dependence of the coefficient only on the x-component of the sound field. In
the same Section also the comparison between the measured data and the results
of numerical simulations is discussed, to assess the reliability of the simulation code
in predicting the sound intensity inside enclosures.

As will be outlined in the final Section of the Chapter, the two experimental
methods lead to similar results and allow to clarify the relationship between energy
density and sound intensity inside long rooms as well as the possibility of applying
the room-acoustics diffusion theory to long rooms with partially diffusely and non-
diffusely reflecting boundaries.
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4.2 Evaluation of the local diffusion coefficient

For the experimental estimate of the diffusion coefficient inside the scaled long
rooms a methodology based only on the performed measurements was firstly em-
ployed.

The basic acoustic quantities involved in the diffusion gradient equation (1.17),
that is sound intensity and energy density, were directly measured at each re-
ceiver position and employed in the estimate of the measured diffusion coefficient,
expressed as:

Dmeas(r) = −
|I(r)|
|∇w(r)| . (4.1)

As from the characterization of the sound field inside the scale models appeared
that the energy flow is not purely mono-dimensional but varies in the space, the
estimate was carried out taking into account the variation of the acoustic quantities
along the three axes.

Therefore the energy density gradient was calculated starting from the mea-
surements in the six additional points placed around each receiver position, as:

|∇w(r)| =
√

(∇xw(r))2 + (∇yw(r))2 + (∇zw(r))2. (4.2)

∇xw(r), ∇yw(r) and∇zw(r) are the energy density gradient components obtained
with a finite approximation of the data acquired by moving the probe in two
opposite locations along each axis; the distance between each couple of points was
equal to 1cm (model scale). The sound intensity was instead simply obtained
starting from the Ix, Iy, Iz components measured at each central receiver position.

The estimate procedure followed four main steps:

1. calculation of the energy density gradient at each central receiver position,
according to equation (4.2);

2. calculation of the intensity vector at each central position;

3. projection of the energy density gradient along the intensity direction;

4. estimate of the local value of the diffusion coefficient, applying equation (4.1).

The third step was required in order to remove the experimental errors intrin-
sic to the measurement procedure, that could lead to small (and unpredictable)
deviations of the vectors from their main direction. The correction was also ac-
complished by discarding the values of the diffusion coefficient estimated when the
angle between ∇w(r) and I(r) was too high; the limit threshold was set to 15◦

and leaded to the rejection of almost the 15% of the measurement points.
The results of the analysis are shown in figure 4.1, with reference to the fre-

quencies of 500 and 800 Hz; all the measurement points over the horizontal plane
were considered in the analysis with the aim of understanding the presence of a
systematic variation of the experimental diffusion coefficient inside the room.
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Figure 4.1: Ratio between the measured Dmeas and the theoretical Dth diffusion coefficients
inside the scaled long rooms for the frequency bands of 500 and 800 Hz. Results for the room
with flat boundaries (◦ and −−) and the room with scattering boundaries (×, and solid line).

The data show the dispersion typical of the experimental measurements but,
nevertheless, both a clear trend of variation of the coefficient with the distance and
a distinction between the two investigated sound fields can be observed.

Inside the room with flat boundaries, the diffusion coefficient show an increas-
ing trend with the distance from the source, and the values are generally higher
than those obtained inside the room with scattering surfaces. In this configura-
tion, where the sound field is mainly non-diffuse according to the criteria proposed
in Chapter 3, the measured diffusion coefficient increases again inside the room,
but with very limited slopes. In both cases, the experimental diffusion coefficient
is greater than the theoretical one, which always represents the smallest value
observed in the measured data.

4.3 Particle-tracing simulations of the investigated

scaled long rooms

With the aim of comparing the measured values of the diffusion coefficient with
the numerical estimates provided by the particle-tracing code, simulations of the
two experimental set ups were carried out.

The numerical model of a 2.5× 0.5× 0.25 m3 long room was created, with an
omnidirectional sound source located close to the end wall, emitting a constant
sound power level. As during the measurement phase, a measure with the p-u
probe of LW of the source was not performed, the sound power level was arbitrary
chosen for the numerical simulations. This, even though not represented a main
issue in the comparison of the results, still required the formulation of an a-priori
hypothesis on the correct matching of the results, which will be discussed in the
following.

The absorption and scattering coefficients of the surfaces were chosen in accor-
dance to the values derived from the measurements inside the scaled reverberation
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Frequency
Model 1 Model 2

α s α s

125 0.061 0.010 0.083 0.034
160 0.038 0.010 0.089 0.027
200 0.056 0.010 0.136 0.056
250 0.031 0.010 0.136 0.136
315 0.046 0.010 0.148 0.248
400 0.049 0.010 0.172 0.281
500 0.061 0.010 0.201 0.386
630 0.058 0.025 0.226 0.464
800 0.060 0.027 0.245 0.518
1000 0.046 0.020 0.260 0.582

Table 4.1: Absorption and scattering coefficients employed inside the numerical models; in the
table Model 1 refers to the long room with flat surfaces whereas Model 2 refers to the long room
with scattering boundaries.

chamber (➜ 3.3.1).
In the model of the long room with flat boundaries, where all the surfaces are

characterized by the same finishing, the measured absorption coefficients were di-
rectly employed, whereas the scattering coefficients lower than 0.01 were discarded
and substituted with the limit value of 0.01.

On the other hand, inside the room with scattering surfaces, two further as-
sumptions on the acoustic properties of the boundaries were formulated:

1. On the surfaces where the scattering patches were located, the acoustic prop-
erties of the flat and scattering finishes were summed. In fact, given the
geometry of the scattering patches (which do not cover continuously the sur-
face), it was supposed that also the varnished finishing upon which the patch
was located could contribute to the total properties of the surface.

2. A surface average of the scattering and absorption coefficients was performed,
in order to avoid the presence of numerical errors in the numerical results.

The absorption and scattering coefficients employed for the numerical simulations
are reported in table 4.1.

Inside the models, particle tracing simulations were carried out withN = 5×106
particles and a time step ∆t = 0.002 s. The results were obtained for the same
source and receiver positions employed in the experimental set up (see ➜ 3.3.2);
moreover the grid of receivers was thickened for obtaining a regular step of 1 m
(full scale) between the measurement points.
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4.3.1 Comparison of the numerical and experimental re-

sults

In this Section the results of the numerical simulations are compared with the
acoustic parameters measured inside the scale model.

Firstly the reverberation time was considered, comparing predicted and mea-
sured values of RT30, whose values are expected to be related to the physical
properties of the enclosure [78]. The comparisons are shown in figure 4.2 and fig-
ure 4.3 for the line of receivers at z=1.6 m and y=3.33 m.

0 10 20 30
2.5

3

3.5

4

4.5

5

5.5

S−R−distance [m]

R
T

3
0

 [
s
]

(a) 500 Hz

0 10 20 30
2.5

3

3.5

4

4.5

5

5.5

S−R−distance [m]

R
T

3
0

 [
s
]

(b) 800 Hz

Figure 4.2: RT30 inside the long room with flat boundaires as a function of the distance from
the source. Comparison between the measured (×) and the numerically simulated (solid line)
values.
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Figure 4.3: RT30 inside the long room with scattering boundaires as a function of the distance
from the source. Comparison between the measured (×) and the numerically simulated (solid
line) values.
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Figure 4.4: Spatial distribution of the normalized intensity vectors obtained from the particle-
tracing simulations of the long room with flat boundaries; results over the z=1.6 m plane and
the frequency of 800 Hz.
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Figure 4.5: Spatial distribution of the normalized intensity vectors obtained from the particle-
tracing simulations of the long room with scattering boundaries; results over the z=1.6 m plane
and the frequency of 800 Hz.

The obtained trend of variation are quite similar for the two models, with
maximum differences that, for the considered 500 and 800 Hz frequency bands,
reach the 15 % of the measured values. If the comparison is extended to the whole
range of analysed frequencies, it can be see that the agreements is satisfactory
(smaller than 20%) only starting from 500 Hz for the room with flat surfaces and
400 Hz for the room with scattering surfaces. The differences are related to the
uncertainties in the estimation of the absorption and scattering coefficients that
become important especially at low frequency and inside the room with flat surfaces
(where the considered coefficients are quite small and affected by uncertainties
comparable with their value).

Then, the distribution of the intensity vectors over the horizontal plane was
analysed; the results, referred to the surface at z=1.6 m and the frequency of 800
Hz, are shown in figure 4.4 and figure 4.5.

It can be seen that the numerical model predicts an energy flow solely oriented
along the main dimension of the room; the intensity vectors deviate from the prin-
cipal direction of propagation only close to the source (influenced by the presence
of the direct field) and close to the edges at the end of the room that (weakly)
attract the energy flow. The numerical code predicts a purely mono-dimensional
behaviour of the sound field, without the local, random deviations observed inside
the scale model, due to the small irregularities in the model set up and the en-
ergy re-circulation phenomena, which characterize the real sound fields. Close to
the lateral walls the intensity vectors show almost the same orientation observed
in the central positions, not affected by the presence of absorbing or reflecting
surfaces. Finally, the predicted intensity distribution is almost the same for both
investigated models, without differences related to the different reflection laws of
the surfaces.
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All these remarks yield to the conclusion that the particle-tracing model can
not properly predict the intensity distribution inside long rooms, or at least, it
can properly predict only the component along the x-axis, which is certainly the
predominant component but not the only one affecting in the sound field (as shown
in Chapter 3 ). Hence, with the aim of validating the numerical results, they were
compared with the only x-component of the acoustic quantities measured inside
the scale models.

As the sound power of the source was unknown, it was chosen to rescale the
experimental results seeking the best fit between measured and simulated energy
density; the obtained rescaling factor was then applied to the measured sound
intensity. The choice of employing energy density instead of intensity for the com-
parison, was originated by the supposed greater reliability of the particle-tracing
software in the calculation of the former parameter (see ➜ 2.2).

The best fit between measured and simulated energy density was obtained
following a two-step procedure, carried out for the linear values of the data:

1. calculation of a regression curve that could provide a reliable description of
the energy density decay along the line from the source to the end wall

2. calculation of the rescaling factor that provide the best fit between simulated
data and regression curves of the experimental values, employing a least mean
square procedure.
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Figure 4.6: Energy density level (Le) decay along a line from the source to the end wall of the
long room with flat boundaries, for the frequency bands of 500 and 800 Hz: measured (×) and
simulated data (−−).

The comparison between measured and simulated energy density inside the
rooms is represented in figure 4.6 and figure 4.7, showing a satisfactory agreement
for both configurations. Inside the long room with scattering boundaries the whole
spatial decrease of the energy density is correctly modelled, with differences lower
than 1 dB. On the other hand, inside the room with flat boundaries, the numerical
model properly predicts the spatial energy decay only in the far field of the room
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Figure 4.7: Energy density level (Le) decay along a line from the source to the end wall of the
long room with scattering boundaries, for the frequency bands of 500 and 800 Hz: measured (×)
and simulated data (−−).

(starting from 10 m from the source), whereas close to the source, differences of
almost 3 dB can be observed.

Finally, the measured and numerically predicted sound intensity decays were
compared, as represented in figure 4.8 and figure 4.9. In this case, the best agree-
ment is found for the room with flat boundaries, where the spatial decay is correctly
predicted. Conversely, inside the room with scattering boundaries, bigger differ-
ences can be observed between the two set of data, with a systematic underestimate
of the measured data and the prediction of a slightly different spatial decay trend.
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Figure 4.8: Sound intensity level (SIL) decay along a line from the source to the end wall of
the long room with flat boundaries, for the frequency bands of 500 and 800 Hz: measured data
(×) and simulated data (−−).
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Figure 4.9: Sound intensity level (SIL) decay along a line from the source to the end wall of
the long room with scattering boundaries, for the frequency bands of 500 and 800 Hz: measured
data (×) and simulated data (−−).

4.3.2 Semi-empirical estimate of the diffusion coefficient

The particle-tracing simulations allowed to numerically estimate, according to
equation (2.14), the diffusion coefficient inside the investigated long rooms. As
expected, Dest increases linearly with the distance from the source and depends
on the fraction of specular reflections present inside the room: an increase in the
scattering coefficient, yields indeed to a bigger slope of the distance-Dest curve
(figure 4.10).

To perform a comparison between these numerical estimates and the measured
values of the diffusion coefficient, a new estimate procedure was introduced. In fact,
the Dmeas values derived with the method presented in ➜ 4.2 could not be directly
employed in the comparison, being obtained in the hypothesis of variations of the
acoustic quantities along the three axes. This alternative methodology, which can
be defined as semi-empirical, takes instead into account only the component of the
acoustic quantities along the x-axis, which is the only part of the sound field directly
comparable with the numerical simulations. Moreover, an additional hypothesis on
the trend of variation of the diffusion coefficient with the distance from the source
was introduced, derived from the results of the numerical simulations: Dmeas is
therefore supposed to vary linearly with the distance from the source, following
the general law Dmeas = Dth · (â+ b̂r).

The semi-empirical estimate procedure, carried out considering the linear values
of the acoustic quantities, follows three main steps:

1. Starting from the measured values of the sound energy density, a regression
law ŵ(r) = f(r) was calculated, to describe the spatial decay of the parame-
ter along the line from the source to the end wall. For each frequency a best
fit procedure allowed to obtain the coefficients of the regression curves, ex-
pressed as a power law (ŵ(r) = Â r(B̂)+ Ĉ) for the room with flat boundaries
and as an exponential law (ŵ(r) = Â exp (B̂ r) + Ĉ exp (D̂ r)) for the room
with scattering boundaries. Different regression laws were chosen for the two
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Figure 4.10: Ratio between the estimated Dest and theoretical Dth diffusion coefficients ob-
tained from particle-tracing simulations for the frequency bands of 500 and 800 Hz; results for
the long room with flat (−−) and scattering (solid line) boundaries.

configuration, confirming the difference in the two investigated sound field;
in both cases the law maximizing the correlation coefficient for the majority
of the frequency bands, was employed [79].

2. A theoretical regression curve was calculated, for describing the spatial decay
of the sound intensity, according to the diffusion gradient equation and the
hypothesis of a linear variation of the diffusion coefficient. The obtained
regression law can therefore be expressed as: Î(r) = −Dth(â+b̂r)f ′(r), where
the values of â and b̂ are the only unknown quantities and f ′(r) expresses the
spatial derivative of the regression curves obtained at step 1.

3. The quantities â and b̂ were then estimated with a least mean square proce-
dure, comparing the theoretical regression curve with the Ix(r) values mea-
sured inside the scale model. In particular, the solution of the estimate prob-
lem was obtained employing an empirical trial method, that is graphically
investigating the quadratic error E(â, b̂) over a defined range of variation of
the estimate coefficients â (intercept) and b̂ (slope). The quadratic error is
calculated as:

E(â, b̂) =

Np
∑

i=1

(Ix(ri)− Î(xi))
2, (4.3)

where Np is the number of considered receivers.

An example of the distribution of 1/E(â, b̂) is displayed in figure 4.11 with
reference to the long room with scattering boundaries at the frequency of 800 Hz.
It can be seen that the inverse of the quadratic error shows a local maximum,
centred around the values (â, b̂) = (0.98, 0.05) that will be therefore considered as
the optimal estimate for intercept and slope of the linear curve.

It is worthy to notice that the choice of the regression law employed for de-
scribing the energy density spatial decay (and consequently the sound intensity
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Figure 4.11: Distribution of the inverse of the quadratic error 1/E(â, b̂) as a function of the

coefficient â and b̂, with reference to the long room with scattering boundaries at 800 Hz. The
presence of a local maxiumum identifies the couple of optimal (â,b̂) values.

spatial decay) greatly affects the estimate of the parameters â and b̂. For example
if an exponential law is employed for describing the spatial decay inside the room
with flat surfaces (regardless of the maximization of the correlation coefficient), it
becomes impossible to identify a local minimum in the graphical representation of
the quadratic error.

The values of â and b̂ that satisfy the least mean square criterion are reported in
table 4.2 for the two configurations and different frequencies, whereas in figure 4.12
and figure 4.13 a graphical comparison between the numerically estimated and
measured diffusion coefficients is presented.

It can be seen that inside the long room with scattering boundaries the es-
timated diffusion coefficient shows a weakly increasing trend, varying along the
distance from Dth to 3Dth. The numerically predicted coefficient shows instead a
bigger variation over the length, with a slope which is almost twice as the measured
one.

On the other hand, inside the room with flat boundaries the measured diffusion
coefficient increases greatly with the distance from the source, varying from 4Dth

up to 28Dth. The simulated coefficient Dest is instead characterized by both a
smaller initial value (close to Dth) and a smaller slope, with variations limited
between Dth and 10Dth. The estimated coefficient increases with a linear trend
up to 20 m from the source; close to the end of the room the values settle on a
constant value.

4.4 Discussion

The first approach employed for the estimate of Dmeas relies only on the mea-
surements performed inside the scale models: a direct evaluation of the energy
density gradient was accomplished, employing the six sets of primary data gath-
ered around each central receiver position.

The uncertainties in the acquisition of the data were taken into account by
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Frequency band Model 1 Model 2

[Hz] â b̂ â b̂

500 3.49 0.70 0.94 0.05
630 2.16 0.57 1.32 0.08
800 2.56 0.77 0.98 0.05
1000 1.04 0.42 1.12 0.02

Table 4.2: Intercept â and slope b̂ of the linear curve describing the variation of Dmeas with
the distance from the source; values estimated with a least-mean square procedure for the line of
receivers at z=1.6 m. In the table Model 1 refers to the set up with flat surfaces whereas Model
2 refers to that with scattering boundaries.
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Figure 4.12: Ratio between the estimated (or the measured) and the theoretical Dth diffusion
coefficient inside the long room with flat boundaries for the frequency bands of 500 and 800 Hz:
numerical estimate of Dest (−−), semi-empirical estimate of Dmeas (solid line).
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Figure 4.13: Ratio between the estimated (or measured) and the theoretical Dth diffusion
coefficient inside the long room with scattering boundaries for the frequency bands of 500 and
800 Hz: numerical estimate of Dest (−−), semi-empirical estimate of Dmeas (solid line).
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discarding the receiver positions where the angle between ∇w(r) and I(r) was
bigger than the threshold value of 15◦. The limited amount of discarded values
ensures the reliability of the acquired data: the differences observed between the
energy density values measured at the neighbouring points are not merely due to
experimental errors but to real variations of the acoustic quantities.

The employed approach describes the sound field only by means of punctual
measurements. Several studies in literature deal, on the other hand, with sta-
tistical representations of the acoustic quantities, locally averaging the measured
parameters over an elementary volume, with dimensions defined by the investi-
gated wavelength. Representing the sound field, and thus the diffusion coefficient,
by means of a similar approach, would have required to repeat the acquisition of
the seven sets of primary data several times inside the same elementary volume,
in order to calculate a local average of sound intensity and energy density gra-
dient. This kind of average can not obviously be performed inside the employed
scale model, where the dimensions and the relative positioning of the holes in the
ceiling were specifically designed as a good compromise between the necessity of
performing measurements at small distance and the possibility of completely char-
acterize the sound field inside a model of big dimensions. However, the obtained
results show that the punctual description of the acoustic quantities can carefully
describe the characteristics of the sound field in terms of energy density gradient,
discriminating the two investigated configurations and allowing to understand their
distinctive features.

The second methodology was mainly carried out to compare simulated and
measured results, in order to validate the predictions obtained with the particle-
tracing software. The main issue in this comparison is the unsuitability of the
numerical tool to provide a reliable description of the sound intensity distribution
inside the enclosure: the software predicts in fact a purely mono-dimensional energy
flow, not affected by the presence of the room boundaries neither by the reflection
law of the surfaces. Hence, the direction of the intensity vectors, at least in the
region close to the boundaries, can not be considered correct, as the contributions of
the other components of the sound intensity, along the y and z axes, are completely
discarded. Anyway, if the comparison is limited to the only x-component of the
measured acoustic quantities, the particle-tracing software provides results in fair
agreement with the measured acoustic quantities in terms of RT30, energy density
and sound intensity.

Finally, a comparison between the two methodologies employed for the estimate
of the measured diffusion coefficient can be performed. Obviously, as the two
methods take into account different components of the sound field, the obtained
results are not perfectly coincident; anyway, a general agreement can be observed
in the results: both methods predict in fact the same general trend of variation,
highlighting the same basic features marking the diffusion coefficient values inside
the two considered sound fields.

The following discussion will be therefore focused on the results obtained with
the semi-empirical methodology; the measured diffusion coefficients are shown, for
the frequency bands between 500 and 1000 Hz, in figure 4.14.

The diffusion coefficients measured inside the two long rooms always differ from
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Figure 4.14: Ratio between the measured Dmeas and the theoretical Dth diffusion coefficient
inside the two scaled long rooms. Results obtained with the semi-empirical methodology for the
one-third octave frequency bands: 500 Hz (−−), 630 Hz (· · · ), 800 Hz (solid line), 1000 Hz (−·−)

the theoretical, constant value showing two distinctive features:

❼ values always bigger than Dth;

❼ increase of the measured coefficient along the length of the room.

These effects can be related to the presence of specular reflections inside the long
room: increasing the scattering coefficient of the room surfaces (for instance moving
from the room with flat boundaries to the room with scattering boundaries) leads
to a decrease of both slope and initial value of the distance-Dmeas curve. A similar
effect can be observed moving, within the same configuration, from the coefficients
obtained at low frequency to those obtained at high frequency.

The presence of values always bigger than Dth can be explained by taking into
account the spatial variation of the acoustic quantities as a function of the scat-
tering coefficient of the boundaries: increasing the amount of specular reflections
inside long rooms leads in fact to a lower spatial attenuation of both energy den-
sity and sound intensity. Therefore, the ratio of the two acoustic quantities, that
expresses the local value of the diffusion coefficient, will be higher inside long room
characterized by low scattering coefficients. Increasing the amount of diffuse re-
flections inside the room, will lead to value progressively smaller and close to Dth.
Only in the limiting case of long room with completely diffusely boundaries (s=1),
where the biggest spatial attenuation of the acoustic parameters is expected, the
local value of the ratio between intensity and energy density will reach its lowest
value, equal to the theoretical constant.

The increase of the measured diffusion coefficient along the length of the room
can be, on the other hand, related to the amount of non-propagating energy inside
the enclosure. The characterization of the acoustic sound fields presented in ➜ 3.3.3
shows in fact that inside both enclosures the prevailing part of the energy density
does not flow inside the room but merely re-circulates around a given position or it
is steady. This non-propagating part of the energy, that increases with the distance
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from the source and is always bigger inside the long room with flat boundaries,
could therefore be interpreted as a “resistance” to the energy flow. Its presence
obviously affects the energy density gradient values, that, inside the long room
with flat boundaries or in the regions further from the source will describe not
only the flow of the energy inside the room but also all the non-propagating effects,
that disguise the real differences that occurs at the receiver positions. Therefore
constant values of the diffusion coefficient will be observed only when the effect of
the non-propagating part of the energy is small, for instance inside the long room
with scattering boundaries at high frequencies.

Let’s now consider the possibility that the diffusion gradient equation can prop-
erly express only the relationship between the intensity and the gradient of the
propagating part of the energy density, that is the only component really flowing
inside the room. If the propagating energy is expressed as ep(r) = |I(r)| /c, then
the diffusion gradient equation becomes:

I(r) = −D∇
( |I(r)|

c

)

. (4.4)

It is clear from equation (4.4) that the diffusion coefficient will be a constant only
if the intensity inside a room can be expressed through an exponential function.
The condition is met for example in a three-dimensional sound field that could be
described according to the revised theory [48], where the intensity at each position
of the room is expressed as:

I(r) =
W

V

exp (−γr)
γ

, (4.5)

where γ = − ln(1− ᾱ)/λ and λ is the mean free path of the room.
An attempt to verify this kind of approach was therefore performed, estimat-

ing the diffusion coefficient inside the long room with flat boundaries, where the
sound field can be adequately described with the expressions of the revised theory
(➜ 3.3.3.3). The analysis was carried out following the same approach described
in ➜ 4.2 and the energy density gradient was calculated taking into account only
the propagating part of the energy. The results are shown in figure 4.15 for the
frequency of 500 Hz and represent a first confirmation of the hypothesis made,
being the diffusion coefficient D characterized by an almost constant trend centred
around 0.7 ·Dth.

4.5 Conclusions

The main aim of the experimental part of this study was to assess the relation-
ship between energy density gradient and sound intensity inside long rooms, by
means of an experimental estimate of the diffusion coefficient value.

Two different methodologies were employed for the analysis: the first method
was based on a direct measure of the two acoustic quantities whereas the second
one was a semi-empirical approach, based on the hypothesis of a linear variation
of the diffusion coefficient with the length of the room. Even though the two
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Figure 4.15: Ratio between the measured D and the theoretical Dth diffusion coefficient inside
the long room with flat boundaries, for the frequency of 500 Hz. D values calculated taking into
account only the propagating component of the energy density.

methods can not be directly compared, as they model different part of the sound
field, the predicted diffusion coefficients show similar trend of variations and the
same distinctive features that allowed to discriminate the two investigated long
rooms.

In particular, the analysis leaded to the two following principal remarks:

❼ inside the long room with flat surface, characterized by the prevailing pres-
ence of specular reflections, the diffusion coefficient is bigger than the theo-
retical value, due to the low spatial attenuation of the acoustic quantities; the
coefficient increases sharply with the distance from the source, influenced by
the increasing presence of non-propagating energy density inside the room;

❼ inside the long room with scattering boundaries, the presence of mixed (spec-
ular and diffuse) reflections lead to a diffusion coefficient slightly bigger than
Dth; the theoretical value can in fact be reached only when the all the reflec-
tion inside the room are purely diffuse.

Finally, the comparison between measured and simulated acoustic quantities
provided an experimental validation of the particle-tracing code, especially focused
on the prediction of the sound intensity. The results show that only the predomi-
nant component of the sound field, that is the x-component, is properly simulated
with the numerical code; anyway, if the comparison is limited to this part of the
sound field, a fair agreement can be observed between measured and simulated
data.
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Conclusions

The aim of this research was to investigate the room-acoustics diffusion theory,
establishing its conditions for validity. In particular the analysis was focused on
the diffusion gradient equation, that is the equation at the basis of the theoretical
formulation of the model, relating energy density gradient and sound intensity
through a proportional relationship. The equation was investigated by means
of numerical simulations and measurements inside a scale model, setting out to
understand when the assumed relation is fulfilled inside the enclosures.

This kind of study has never been undertaken before, as the expression of
the diffusion coefficient was directly derived from the formulation of the diffusion
equation applied to the propagation of elementary particles; comparisons with
numerical results have only been performed. Anyway, as the diffusion coefficient
represents the central parameter of the diffusion model, a systematic investigation
of its expression is believed to represent a main requirement in order to validate
the model.

This study was also extended to enclosures characterized by mixed (specular
and diffuse) reflections, in order to understand if the sound field inside them could
be described through a diffusion process. Rooms with different shapes and acoustic
properties of the boundaries were therefore considered in the analysis.

The numerical part of the research was performed using a particle-tracing code
that allowed a direct and independent calculation of the acoustic quantities involved
in the diffusion gradient equation: the numerical estimated energy density and
sound intensity were then employed for retrieving a local, numerical estimate of
the diffusion coefficient.

During this part of the research, an analytical correction for the solution of the
diffusion equation was also derived, necessary for correctly describing the reverber-
ant part of sound field in the region within two mean free paths from the sound
source, where the diffusion model does not return valid results. The numerical es-
timate of the diffusion coefficient was firstly performed inside proportionate rooms:
in this case the solution of the diffusion equation was proved to be almost indepen-
dent on the diffusion coefficient value. Anyway the agreement between the acoustic
quantities derived from the diffusion model and the results of the numerical model
assessed the reliability of the diffusion gradient equation for the reverberant part of
the sound field. The case of long rooms was then considered, showing that the dif-
fusion coefficient is not a constant inside the rooms but increases with the distance
from the source; the variation of the coefficient with the shape of the room and
the acoustic properties of the boundaries was systematically evaluated, assessing
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the dependence of Dest on the scattering coefficient of the boundaries.
The results obtained during the first, numerical analysis helped in outlining

the basic features of the problem that were then further investigated by means of
experimental measurements.

The experimental analysis of the diffusion gradient equation was accomplished
inside the scale model of a long room. Measurements of sound pressure and particle
velocity were performed with a three-dimensional p-u probe; a set of digital filters
was specifically derived, for the calibration of the probe and the correction of the
acquired raw data. A local experimental estimate of the diffusion coefficient was
calculated, proving definitely that inside long rooms, the diffusion coefficient does
not coincide with the constant theoretical value but increases along the length of
the room, influenced by the presence of the predominant, non-propagating part
of the energy density. Similarly, the dependence of the diffusion coefficient on the
scattering coefficient of the boundaries was investigated, proving that an increasing
amount of specular reflections inside the room leads also to an increase in the
diffusion coefficient value.

Therefore this research allowed to assess the relationship between energy den-
sity and sound intensity inside long rooms and provided an experimental, direct
analysis of the physical phenomena theoretically predicted by the room-acoustics
diffusion model. The obtained results proved the necessity of further investigation
to assess the validity of the model inside enclosures with non-proportionate geome-
tries. Moreover a modification of the analytical formulation of the room-acoustics
diffusion equation is believed to be necessary for taking into account spatial vari-
ations of the diffusion coefficient inside the enclosures and better representing the
real phenomena.
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Appendix A

Acoustic parameters inside the

scaled long room

In this Appendix the results of the analysis of the sound field inside the two
investigated scaled long rooms are reported, for the one-third octave frequency
bands between 160 and 1000 Hz (frequency expressed as the full-size equivalent
FS). The characterization of the two sound fields is discussed in detail in ➜ 3.3.3.

The acoustic parameters are presented firstly for the long room with flat bound-
aries (Appendix A.1 ) and then for the same room with scattering boundaries (Ap-
pendix A.2 ) organized as follows:

1. energy density level Le;

2. reverberation time (RT30 and EDT);

3. sound intensity level SIL;

4. normalized intensity vectors distribution over the horizontal plane.
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A.1 Long room with flat boundaires
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Figure A.1: Energy density level (Le) decay inside the scaled long room with flat surfaces,
along the line from the source to the end wall at z=1.6 m. Measured values and regression lines:
total energy density (× and solid line), potential energy density (⋄ and − · −), kinetic energy
density (◦ and −−).
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Figure A.2: Reverberation time inside the scaled long room with flat surfaces. Measured values
and regression lines: EDT (× and solid line), RT30 (◦ and −−).
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Figure A.3: Sound intensity level (SIL) decay inside the scaled long room with flat surfaces
along the line from the source to the end wall at z=1.6 m. Measured values and regression lines:
total intensity (× and solid line), intensity along the x-axis (◦ and −−), intensity along the y-axis
(∗ and − · −), intensity along the z-axis (⋄ and · · ·).
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Figure A.4: Normalized intensity vectors inside the scaled long room with flat surfaces; results
over the horizontal plane at z=1.6 m for the frequency bands from 160 to 500 Hz.
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Figure A.5: Normalized intensity vectors inside the scaled long room with flat surfaces; results
over the horizontal plane at z=1.6 m for the frequency bands from 630 to 1000 Hz
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A.2 Long room with scattering boundaries
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Figure A.6: Energy density level (Le) decay inside the scaled long room with scattering surfaces,
along the line from the source to the end wall at z=1.6 m. Measured values and regression lines:
total energy density (× and solid line), potential energy density (⋄ and − · −), kinetic energy
density (◦ and −−).
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Figure A.7: Reverberation time inside the scaled long room with scattering surfaces. Measured
values and regression lines: EDT (× and solid line), RT30 (◦ and −−).
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Figure A.8: Sound intensity level (SIL) decay inside the scaled long room with scattering
surfaces along the line from the source to the end wall at z=1.6 m. Measured values and regression
lines: total intensity (× and solid line), intensity along the x-axis (◦ and −−), intensity along
the y-axis (∗ and − · −), intensity along the z-axis (⋄ and · · ·).
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Figure A.9: Normalized intensity vectors inside the scaled long room with scattering surfaces;
results over the horizontal plane at z=1.6 m for the frequency bands from 160 to 500 Hz.
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Figure A.10: Normalized intensity vectors inside the scaled long room with scattering surfaces;
results over the horizontal plane at z=1.6 m for the frequency bands from 630 to 1000 Hz
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Experimental diffusion coefficients

In this Appendix the results concerning the experimental estimate of the dif-
fusion coefficient discussed in Chapter 4 are presented, with reference to all the
investigated frequency bands.

Firstly, in Appendix B.1 the results of the experimental estimates based on the
direct measurements performed inside the models are reported. Then, in Appendix
B.2 the comparison between the measured parameters and the numerical simula-
tions (in terms of RT30, energy density spatial decay and sound intensity decay)
is detailed.
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B.1 Local estimate of the diffusion coefficient
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Figure B.1: Ratio between the measured Dmeas and the theoretical Dth diffusion coefficients
as a function of the distance from the source inside the scaled long rooms. Results for the model
with flat boundaries (◦ and −−) and the model with scattering boundaries (× and solid line).
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B.2 Comparison between numerical simulations

and measured values
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Figure B.2: RT30 inside the long room with flat boundaries as a function of the distance from
the source. Comparison between the measured (×) and the numerically simulated (solid line)
values.
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Figure B.3: Energy density level (Le) decay along a line from the source to the end wall of the
long room with flat boundaires: measured data (×) and simulated data (−−).
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Figure B.4: Intensity level (SIL) decay along a line from the source to the end wall of the long
room with flat boundaires: measured data (×) and simulated data (−−).
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Figure B.5: RT30 inside the long room with scattering boundaires as a function of the distance
from the source. Comparison between the measured (×) and the numerically simulated (solid
line) values.
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Figure B.6: Energy density level (Le) decay along a line from the source to the end wall of the
long room with scattering boundaires: measured data (×) and simulated data (−−).
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Figure B.7: Intensity level (SIL) decay along a line from the source to the end wall of the long
room with scattering boundaires: measured data (×) and simulated data (−−).
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Figure B.8: Ratio between the estimated Dest and the theoretical Dth diffusion coefficients
obtained from particle-tracing simulations; results for the long room with flat (−−) and scattering
(solid line) boundaries.
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