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Introduction

0.1 Investigating the Quark Gluon Plasma phase

Despite the solid theoretical basis of Quantum Cromo-Dynamics (QCD),
the QCD phase diagram (see a sketch of it in fig. 1, and a complete review
in ref [1]) is still not fully theoretically understood. This descends from
the extreme complexity of the QCD calculations (strong coupling), finding
an exact solution is hard enough to push physicists towards approximate
methods, each one with a validity window restricted to particular areas of
the phase diagram.
QCD features an important property: its coupling constant runs towards
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Figure 1: Cartoon representation the QCD phase diagram. The
strongly interacting quark matter is known to have different
phases, due to the unique features of QCD. In this work we
will mainly focus on the high temperature and low density
region.



smaller values with increasing energy scale, giving rise to what is called
asymptotic freedom. This leads to the natural anticipation that QCD
matter at high energy densities undergoes a phase transition from the
hadronic phase, at low temperature and chemical potential, into a new
state of matter with deconfined quarks and gluons. The latter is known as
the Quark Gluon Plasma (QGP) phase.

The QGP phase is still experimentally widely unknown, and theoret-
ically firm statements about its properties can be made only in limited
cases – at finite temperature with small baryon density (µB ≪ T ) and
that at asymptotically high density (µB ≫ ΛQCD). In particular, standard
Monte Carlo techniques used in lattice QCD calculations show that at
vanishing baryon density, the transition between the hadron phase and
the QGP phase is actually a crossover [2]. Due to the the sign problem
posed by finite density, standard Monte Carlo techniques used in lattice
QCD fail at finite values of the chemical potential, so lattice QCD is less
effective to explore the QCD phase diagram moving away from vanishing
baryon density (see for instance [3]). In such area of the phase diagram, we
can find experimental results descending from ultra-relativistic heavy-ion
collisions experiments, which artificially reproduced for the first time the
QGP, which is considered to have filled the early universe up to times of
10−5 − 10−4 s (hence the name “little bangs” [4, 5]).

The investigations devoted to the modelization of the heavy-ion colli-
sions, pushed by the experiments started a couple of decades ago and still
ongoing, gave birth among other theories to the hydrodynamic modeling of
the collision, whose purpose is to dynamically represent the phase transition
(see a chronological summary in [6]).

Experiments, started a couple of decades ago and still ongoing, showed
evidence of the presence of the QGP phase. Since the plasma evolves on
a strong interaction time scale, the community was motivated to develop
theoretical schemes to model the dynamics of the phase transition from
the QGP to the hadronic phase. One of the most successful framework is
the hydrodynamic approach to heavy-ion collisions.
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Historical overview and hydrodynamics achievements

0.2 Historical overview and hydrodynamics achieve-
ments

While the very first hint that the collision between heavy particles, like
atomic nuclei, can be modeled exploiting collective theories like fluid-
dynamics dates back to the 1950s [7], this approach really had a boost
in the scientific community at the end of the 1970s. The main sources
of the interest toward these models were the ongoing experiments, which
covered a range of energy in the center of mass from a few hundred
MeV (Berkeley LBNL) up to 5 GeV (AGS at BNL) and 17 GeV (SPS at
CERN) per nucleon [8, 9]. Even if it was not obvious that a new state
of matter had been obtained, the results of such fixed-target experiments
showed the presence of collective behaviour, and in particular that the
medium undergoes a collective expansion in the plane perpendicular to the
beam [10]. The flat behaviour of the particle spectra around mid-rapidity
led Bjorken [11] to propose the simplified model of a ultra-relativistic fluid
expanding radially in a boost-invariant space. Even if this model failed
to describe the transverse collective behaviour, it cast the basis of the
hydrodynamic approach to heavy-ion collisions.

In particular, in the decades from 1980 to 2000, a lot of effort went
into the development of codes that solved the equations of motions for a
relativistic ideal fluid in one and two transverse directions (e.g. [12–14]),
motivated by the experimental evidence of transverse flow [15,16] and in
particular of elliptic flow [17], which is an anisotropic emission around the
beam direction due to the difference of pressure gradients along the axes of
the transverse plane.

Applying a collective theory such as ideal hydrodynamics in a regime
of strong coupled interactions was something daring, but it turned out
that numerical models could qualitatively predict the behaviour of all
low transverse momentum (i.e. soft) observables produced in heavy ions
collisions. The quantitative comparison among the theory and the data
though, showed a sharp discrepancy: although the particle spectrum was
correctly reproduced in the low transverse momentum region, the elliptic
flow was overestimated by about 50% [18]. In the same years, microscopic
approaches based on a kinetic description of systems of scattering hadrons
were also developed and correctly predicted the elliptic flow [19]; but the
same kinetic approach, taken alone, failed in the subsequent years at higher
energies [20,21].

The turn around in the field was finally given in 2000, by the Relativistic
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Heavy Ion Collider (RHIC) at BNL, that allowed to study collisions of gold
or lead nuclei up to energies in the center of mass of

√
sNN = 130 GeV

and
√
sNN = 200 GeV per nucleon. These experiments brought conclusive

evidence of the expected new phase state of the matter, called Quark Gluon
Plasma (QGP), in which hadrons melt into deconfined colored degrees of
freedom, quarks and gluons, predicted by QCD. This evidence also involved
a huge drop in the net baryon distribution as a function of the rapidity
in the most central collisions (see [22] and figure 3 therein), showing a
medium transparent to nuclear collision, which reflects the presence of the
hot medium together with the absence of nuclei fragments and indicating
the creation of the QGP (this process is also known as baryon stopping). To
further corroborate the evidence, the so called jet quenching was observed
for the first time, a process that involves the suppression of the momentum
of mini jets of hadrons passing through the bulk.
For the first time hydrodynamics could be quantitatively compared to
experiments [23], and this induced many in the scientific community to
claim that the QGP is a “nearly perfect fluid”: due to the asymptotic
freedom in QCD and the color Debye screening, the QGP was expected to
behave like gas and produce no anisotropy in the momentum flow . Instead,
given the agreement with hydrodynamics, the idea of a strongly coupled
plasma flowing as a perfect liquid spread among the community [24–26].

In the next years the applicability of hydrodynamics was questioned,
and in fact it appeared that the initial success of ideal fluid dynamics was
in reality tainted by the use of a non-realistic equation of state for the
fireball (see [27]) together with a treatment of its chemical composition
which did not properly reflects its late hadronic stage [28].

In particular some works [29–32] restricted the region in which hydro-
dynamics is effective to the (early) QGP phase, in which the fluid has
undergone low dissipative effects. Since the late hadronic stage is bet-
ter represented by microscopic theories, various hybrid approaches were
proposed, in which the description switched from hydrodynamic to ki-
netic. The presence of dissipative effects draw anyway the attention to the
possibility of a viscous QGP phase description [31, 33–36]. In fact with
experiments giving more and more refined results it became evident the
need of a (although small) viscosity even in the most central collisions.
Further studies, motivated by the need to give a precise and quantitative
description of the QGP phase, brought to the community more and more
accurate hydrodynamic numerical codes, testing their ability to handle
extreme regimes, extending the model to a full (3+1)-D space and including
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ECHO-QGP

viscous corrections to higher orders [37–42].

0.3 ECHO-QGP

In spite of the huge progress due to the new experimental discoveries and
theoretical advances made over the past decades, several open questions
regarding the nature, structure and origin of the QGP are still debated.
It has still to be understood what is the smallest size and density for a
system of QCD matter to conserve the liquid behavior [43]; what are the
transport properties of the QGP and how they are affected by its chemical
composition; how its collective properties emerge from the interactions
among the individual quarks and gluons and what is the precise nature of
the initial state; how it reaches in such a short time an approximate local
thermal equilibrium and all the same undergoes such a rapid expansion,
whether the applicability of hydrodynamics in a strongly coupled regime
is meaningful ... and the open questions are so many that deserve an
entire work just to be discussed [44]. Even though the effort towards the
understanding of the QGP phase diagram involves the worldwide physic
community, and the hydrodynamics is a very well know approach to inves-
tigate it, we are still lacking a reliable and widespread resource, accessible
to any scientist wanting to approach the open questions. The ECHO-QGP
was firstly formed with the goal to provide an answer to this problem.

ECHO-QGP lies among the most refined numerical hydrodynamic
codes to describe the QGP phase. It has been built on top of the Eulerian
Conservative High Order code for General Relativistic Magneto-Hydro-
Dynamics (GRMHD) [45], originally developed and widely used for high-
energy astrophysical applications. ECHO-QGP shares with the original
code the conservative (shock-capturing) approach, needed to treat shocks
and other hydrodynamical discontinuities that invariably arise due to the
intrinsic nonlinear nature of the equations, and the high accuracy methods
for time integration, and spatial interpolation and reconstruction routines,
needed to capture small-scale fluid features and turbulence. With respect
to the original hydrodynamical version of the code, where only the ideal
case was treated, ECHO-QGP fully embeds second-order dissipative effects,
treated within the Israel-Stewart-Müller theory frame (treated in more
detail in chapter 1).

The developing team of ECHO-QGP involved several researchers from
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three Italian Universities: Florence, Ferrara and Turin. In four years, this
team has brought ECHO-QGP to come known in the international commu-
nity as peer with other accomplished hydrodynamic codes1 ( [37–42,47–66]),
creating a state-of-the-art tool in the heavy-ion collisions physics field and
it is also suitable for public distribution.
A 3+1D public code is still missing in the physics community. Few public
codes are available [13, 14, 34–36], but none of them performs full 3+1D
simulations within a viscous theory. We wold like to remark that the vis-
cosity, and in particular its magnitude, is still a matter of debate, while it
has been proved to be an essential component of the description. Moreover,
the full dimensionality of the simulation is also an essential component:
hydrodynamic needs complementary modeling concerning the initial condi-
tions and the particle production, which can be constrained by the use of
the experimental observables. For instance, within a 2+1D simulation we
could not study the particle rapidity spectra or the odd harmonics of the
flow as functions of the rapidity.

Adapting a hydrodynamics code born for astrophysical applications to
a code for the modeling of heavy-ion collisions is a demanding task. The
working plan was distributed as follows: Florence’s group was in charge of
the implementation of the Israel-Stewart formalism in the hydrodynamic
evolution; Turin’s group worked on the initial conditions and the Equation of
state; myself with the group of Ferrara were involved in the implementation
of the decoupling process, i.e. the only stage of the calculation that
produces results to be compared with experiments. The physical observables
obviously depend on the initial conditions and on the hydrodynamic fields,
therefore I had to actively collaborate with the other two groups during
the development and the test of the code. Concerning the applications
of ECHO-QGP to physics problems, I calculated the directed flow and
the particle polarization in presence of vorticity during the hydrodynamic
evolution. Finally, I collaborated with a group of the theoretical division of
CERN, for the study of the evolution of initial state fluctuations through a
perturbative method.

1see [46] for a 2012 review of the features of each hydro code



Outline

0.4 Outline

This thesis is structured as follows: in chapter 1 the reader can find an
overview of the hydrodynamic description, together with the method used
to implement it in ECHO-QGP. In the same chapter there is a collection of
tests, proving the suitability of ECHO-QGP to model heavy-ion collisions
along with its accuracy. In chapter 2, we describe the setup used for
ECHO-QGP and we explain in more detail how to construct the initial
state and how the final observables are computed. In chapter 3 ECHO-
QGP is exploited to study the vorticity formation in high energy nuclear
collisions: we will show how thermal vorticity affects the directed flow and
its relation with the final state polarization. In particular, we will discuss
the detectability of the polarization of the Λ. In chapter 4 we employ
a perturbative approach to the initial state to study the fluid dynamic
propagation of fluctuations. In the last chapter we draw conlusions about
the work performed with ECHO-QGP and we give an outlook about future
perspectives.
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1
Relativistic Viscous

Hydrodynamics

Hydrodynamics is a theoretical framework which allows the collective
description of a strongly interacting many-body system, through ther-
modynamic variables defined locally, masking all the microscopic details.
Provided that the initial expansion timescale is sufficiently long compared
to the transport mean free path, we can in fact exploit thermodynamic
concepts like temperature and pressure to describe the system. Hydrodyna-
mics applicability has been extensively discussed (see for instance [67, 68])
but this theoretical frame is currently one of the best dynamic tools to
reproduce the experimental observables.

As shown in the cartoon in fig. 1.1, the region in which we apply
hydrodynamics is after a pre-equilibrium phase (∼ 1 fm/c), in which the
medium achieves local thermal equilibrium, and before the dissipative
behavior becomes dominant (and hence better described by a kinetic
approach).

In this chapter, we will quickly review the hydrodynamic theory before
showing how it is implemented and how it performs in ECHO-QGP.

1.1 Ideal Hydrodynamics

The definition of “Ideal Hydrodynamics” is currently accepted as a synonym
of non-viscous. It is anyway important to remark that ideal hydrodynamics
does not necessarily imply the global thermodynamic equilibrium: when



RELATIVISTIC VISCOUS HYDRODYNAMICS
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Figure 1.1: Cartoon representation of a Heavy-ion collision. The
origin of the axis represents the instant of the collision,
assuming that the nuclei are moving at the speed of light
along the light-cone, where the remnants of the shattered
nuclei continue to move. The medium is believed to ther-
malize in a time of the order of 1 fm/c. The average life
of the fireball is of about 10 fm/c, and in such interval hy-
drodynamic is exploited to model its evolution. When the
scattering rate of particles is of the order of the expansion
rate, hydrodynamics ceases to be applicable.
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Ideal Hydrodynamics

all transport coefficients are vanishing, there can still be the presence of
thermodynamic force with no entropy production.

The hydrodynamic flow (uµ) is denoted as a four velocity with its
normalizing condition, which defines the fluid Lorentz factor (γ ≡ u0)

uµ ≡ γ(1, vi) uµu
µ = −1 γ = (1− gijv

ivj)−1/2 vi ≡ ui/γ (1.1)

In ideal hydrodynamics, the system is well and fully described by its
energy momentum tensor and the conserved charge current

Nµ
0 = n0u

µ (1.2)

Tµν0 = e0u
µuν +∆µνP0 (1.3)

where the orthogonal projector operator has been introduced, written as:

∆µν ≡ gµν + uµuν , (1.4)

and it respects the orthogonality relation: ∆µνuµ = 0. The local equilibrium
thermodynamic quantities are defined by the relations

e0 = uµuνT
µν
0 energy density (1.5)

P0 =
1

3
∆µνT

µν
0 hydrostatic pressure (1.6)

n0 = −uµNµ
0 conserved charge density (1.7)

In case of multiple conserved charges the equation 1.2 must be valid for
each conserved charge ni0.

The conservation of the energy-momentum tensor and conserved current
are written as:

dµN
µ
0 = 0, (1.8)

dµT
µν
0 = 0. (1.9)

where the covariant derivative (dµ) could be decomposed along its temporal
direction D≡uαdα, and along its spatial direction ∇µ ≡ ∆α

µ dα.

dµ = −uµD +∇µ, (1.10)

Equations 1.8-1.9 provide a set of 4+1 independent equations (or 4+N
for N multiple conserved currents) with 5+1 (5+N) independent variables
namely: n0, e0, P0, u

µ. The set given by the conservation laws alone does

− 12 −



RELATIVISTIC VISCOUS HYDRODYNAMICS

not give a complete description, for this reason an Equation of State (EoS)
is usually adopted to close the system, i.e. a relation P0 = P(e0, n0).

1.2 Dissipative Hydrodynamics

The parabolic character of the equation of heat has been recognized as a
fallacy due to the unsuitability of conventional thermodynamics in describ-
ing transient regimes. In fact, in the Navier-Stokes approach the dissipative
quantities react instantaneously to the thermodynamic forces, but the
instantaneous propagation implies acausality, for which reason a consistent
generalization of the Navier Stokes equations in a relativistic frame is
forbidden. Along with the causality violation, the first-order theory has
stability problems, having exponentially growing modes when the pertur-
bation from global equilibrium is infinitesimally small (see for instance [69]).

Relaxing the instantaneous propagation assumption by introducing
characteristic time scales, which regulate the response of the dissipative
quantities to the corresponding thermodynamic forces, causality and stabil-
ity issues are removed and the theory becomes stable and causal. While the
value and the importance of the higher order transport coefficients is still a
hot topic ( [70,71]) historically, the first second-order theory approach for
viscous hydrodynamics was proposed by Israel and Stewart [72].

In 1949 Grad proposes a new theoretical approach in the framework of
the classical kinetic theory, appliyng a method of moments (now known
as Grad-14 moments approximation) and obtaining the set of classical
dissipative fluid-dynamics equations [73]. In 1967 [74] Müller presents a
phenomenological derivation of the non relativistic thermodynamics, includ-
ing second order terms in heat flow and viscosity conventionally neglected,
which is consisitent with Grad’s kinetic approach. In 1970 Stewart [75]
elaborates the relativistic extension of the Grad’s approximation, along
with others (Anderson and Stewart [76], Marle [77], Kranys [78–81]). In
1976 Israel extends the phenomenological approach to the relativistic case.
In 1987 the comprehensive work of Israel and Stewart [72] draws together
the collection of all kinetic and phenomenological approaches, providing
the explicit form of the transport coefficients in the generalized transport
equations for a relativistic quantum gas.

− 13 −



Dissipative Hydrodynamics

In this work a second-order Israel-Stewart treatment has been used
and implemented in ECHO-QGP. The energy-momentum tensor and the
conserved currents are decomposed as

Nµ = nuµ + V µ, (1.11)

Tµν = euµuν + (P +Π)∆µν + πµν + wµuν + wνuµ, (1.12)

where the viscous contributions to the energy momentum tensor are respec-
tively the shear (πµν) and bulk part Π of the viscous stress tensor. The
following definitions do apply:

conserved charge density n = uµN
µ (1.13)

particle diffusion flux V µ = ∆µ
αN

α (1.14)

energy density e = uµuνT
µν (1.15)

isotropic pressure P +Π =
1

3
∆µνT

µν (1.16)

energy-momentum flow orthogonal to uµ wµ = −∆µ
αT

αβuβ (1.17)

where the shear component of the stress tensor is defined as

πµν = [12(∆
µ
α∆ν

β +∆µ
β∆

ν
α)− 1

3∆
µν∆αβ]T

αβ (1.18)

and satisfies the orthogonality and traceless requirements:

πµνuν = 0 (1.19)

πµµ = 0. (1.20)

When the dissipative quantities vanish (V µ = wµ = πµν = Π = 0), we
recover the ideal decompositions Nµ

0 = n0u
µ and Tµν0 = e0u

µuν + P0∆
µν .

To guarantee the thermodynamic stability of the system, in the local
rest frame of the fluid (LRF), the quantities n and e are fixed to their
equilibrium values by utilizing the Landau matching conditions (n = n0,
e = e0). The pressure is recovered using an appropriate equation of state
(EoS) as P = P(e, n) = 1

3∆µνT
µν
0 .

When treating the theory up to orders higher than the first, one loses
the equivalence between the four-velocity parallel to Nµ and the normalized
timelike eigenvector of Tµν , which were equivalent in the first order theory.
In principle any frame that arbitrarily deviates from the equilibrium frame
is a valid choice for the hydrodynamic flow, since the only condition that
has to be fulfilled is that the dissipative components of the conserved
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RELATIVISTIC VISCOUS HYDRODYNAMICS

quantities are small compared to the equilibrium ones. The two most
common possibilities for the selection of the frame are the Landau frame in
which there is no net energy-momentum flow (wµ = 0); or the Eckart frame
in which the charge dissipative flow vanishes (V µ = 0). The former choice
is the one we adopted in our works, for several reasons. The QGP in High
Energy collisions (RHIC, LHC) is created with an extremely small baryon
density, letting the equation of state assume the form P = P(e). That
is the very case of many hydrodynamic studies and the Landau frame is
preferred because the particle frame cannot be defined for the systems with
vanishing conserved currents, while the energy frame is always definable.
The same argument applies when there are multiple conserved currents:
there is no further simplification if other currents are still present, when
choosing one of them to vanish.

For vanishing baryon densities we have only one quantity left to describe
the dynamics of the fluid and the equation for Nµ becomes redundant in
the conservation laws:

dµN
µ = 0, (1.21)

dµT
µν = 0. (1.22)

It is now convenient to decompose the conservation law of eq.(1.22)
along uµ and orthogonal to uµ, in order to derive the energy and momen-
tum equations, respectively. In order to do so, one can take advantage
of some useful kinematic quantities. The covariant derivative of the fluid
velocity can be decomposed in its irreducible tensorial parts, respectively
the transverse, traceless, and symmetric component σµν , the trans-
verse, traceless, and anti-symmetric component ωµν and the scalar
component θ:

dµuν = σµν + ωµν − uµDuν +
1
3∆µνθ, (1.23)

where the following definitions apply:

shear tensor σµν = 1
2(∇µuν +∇νuµ)− 1

3∆µνθ, (1.24)

= 1
2(dµuν + dνuµ) +

1
2(uµDuν + uνDuµ)− 1

3∆µνθ,

vorticity tensor ωµν = 1
2(∇µuν −∇νuµ) (1.25)

= 1
2(dµuν − dνuµ) +

1
2(uµDuν − uνDuµ),

expansion scalar θ = ∇µu
µ = dµu

µ. (1.26)
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Dissipative Hydrodynamics

With the above decompositions, the relativistic energy and momentum
equations in 1.22 can be written as

De+ (e+ P +Π)θ + πµνσµν = 0, (1.27)

(e+ P +Π)Duν +∇ν(P +Π) +∆β
ν ∇απ

α
β +Duµ πµν = 0, (1.28)

where the latter is clearly orthogonal to uν .
Matching fluid dynamics to the underlying microscopic theory (i.e. in

the case of dilute gases the Boltzmann equation) is done in the Israel
Stewart formalism, through Grad’s method of moments, truncating the
expansion at second order in momentum. The coefficients of the truncated
expansion can then be uniquely related to the fluid dynamic fields using
a matching procedure. The bulk and shear viscous parts of stress tensor,
including terms up to second-order in the velocity gradients, satisfy the
following evolution equations:

DΠ = − 1
τΠ
(Π + ζθ)− 4

3Πθ, (1.29)

∆µ
α∆

ν
βDπ

αβ=− 1
τπ
(πµν+2ησµν)− 4

3π
µνθ−λ(πµλωνλ + πνλωµλ) (1.30)

(for derivation see for instance [82]). In this analysis, terms that are
quadratic in Π, πµν and ωµν are neglected. To obtain the solution of the
above evolution equations we shall need to specify the transport coefficients
η, ζ, the shear and bulk relaxation times τπ, τΠ, and the other second-
order transport parameter, λ ≡ λ2/η [82]. The parameter λ2 is known
for the weakly coupled, as well strongly coupled N = 4, Super Yang
Mills theories [82], but not for the strongly coupled QCD. The vorticity
contribution in Eq. (1.30), which contains λ, for the purposes of this chapter
will be mostly ignored by letting λ = 0, whereas in specific runs it will be
chosen to be 1 as in [83].

Writing explicitly the orthogonal projector as in (1.4) and using orthog-
onality condition uµπµν = 0, we can rewrite Eq. (1.30) as

Dπµν = − 1
τπ
(πµν + 2ησµν)− 4

3π
µνθ + Iµν1 + Iµν2 , (1.31)

where the contributions deriving from the orthogonal projection (Iµν1 ) have
been kept apart from the vorticity contribution term (Iµν2 ). They are
defined as follows:

Iµν1 = (πλµuν + πλνuµ)Duλ, (1.32)

Iµν2 = −λ(πµλωνλ + πνλωµλ). (1.33)
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1.3 Hydrodynamics in ECHO-QGP

In this section the reader can find a quick summary on how the imple-
mentation of the conservation laws (1.21, 1.22) within the ECHO-QGP
code.

1.3.1 Formalism in ECHO-QGP

The conservation laws and the evolution equations for the components of Π
and πµν must be rewritten in a form suitable for numerical computations:
a conservative balance law; in which conserved quantities (U), fluxes (Fi)
and source terms (S) are present:

∂0U+∇iF
i = S (1.34)

In the dissipative case, the system is comprehensive of 13 scalar equations
(with the addistion of the equation of state).

Even if the formal setup emplys the Landau frame, it is numerically
convenient to evolve the continuity equation in the limit V µ = 0, in order
to improve the stability. Equation 1.21 is rewritten as:

Dn+ nθ = 0, (1.35)

where the charge density n must be interpreted just as a tracer responding
to the evolution of the fluid velocity through the expansion scalar θ. We
manipulate the equation to obtain the desired form (1.34)

dµN
µ = |g|−

1
2∂µ(|g|

1
2Nµ) = 0, (1.36)

or also

∂0(|g|
1
2N0) + ∂k(|g|

1
2Nk) = 0. (1.37)

Again, it is necessary to repeat the same procedure to the conservation
of the energy-momentum tensor components 1.22

dµT
µ
ν = |g|−

1
2∂µ(|g|

1
2Tµν )− ΓµνλT

λ
µ = 0, (1.38)

where the relation Γµµλ = |g|−
1
2∂λ|g|

1
2 , has been employed, in which g is

the determinant of the metric tensor. It is possible to further rewrite this
equation making use of the symmetry properties of the energy-momentum
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tensor, to obtain:

∂0(|g|
1
2T 0

ν) + ∂k(|g|
1
2T kν) = |g|

1
2ΓµνλT

λ
µ = |g|

1
2 1
2T

λµ∂νgλµ, (1.39)

The adjustment of the evolution laws for the stress tensor component
is also needed, to obtain the desired form of balance laws. The previous
dµN

µ = 0 relation is now useful in order to rewrite the timelike components
of the comoving derivative (D ≡ uµdµ), multiplying the equations for the
evolution of πµν and Π (1.29 and 1.30) by the tracer n, one obtains:

∂0(|g|
1
2N0Π) + ∂k(|g|

1
2NkΠ) = |g|

1
2n

− 1
τΠ
(Π + ζθ)− 4

3Πθ


(1.40)

for the evolution of the bulk component of the stress tensor; and

∂0(|g|
1
2N0πµν) + ∂k(|g|

1
2Nkπµν) =

|g|
1
2n

− 1
τπ
(πµν + 2ησµν)− 4

3π
µνθ + Iµν0 + Iµν1 + Iµν2


, (1.41)

for the evolution of the shear components of the stress tensor. The source
terms have been kept non explicit, since they are different for different
coordinates systems, but the term I0 has been isolated, since it clearly
vanishes in Minkowski coordinates:

Iµν0 = −uα(Γµλαπ
λν + Γνλαπ

µλ) (1.42)

On the other side, in Bjorken coordinates the non-vanishing Iµν0 terms are

Ixη0 = −(uτπxη + uηπτx)/τ, (1.43)

Iyη0 = −(uτπyη + uηπτy)/τ, (1.44)

Iηη0 = −2(uτπηη + uηπτη)/τ, (1.45)

while Iµν1 and Iµν2 are defined in the usual way.

The technique of introducing the conserved number current as a tracer
is exploited in a similar way within a recent code for (2+1)-D Lagrangian
hydrodynamics [84] to solve the evolution equation of the bulk viscous
pressure Π.

Due to the orthogonality condition, only 6 out of 10 components of the
viscous stress tensor are independent. ECHO-QGP can evolve the 5 spatial
component πij , or evolve all and only its 6 spatial independent components.
The latter choice is the one adopted in the present work, and it generates
a system which can be arranged in matrix form to reflect the structure of
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1.34, with:
conservative variables

U = |g|
1
2


N ≡ N0

Si ≡ T 0
i

E ≡ −T 0
0

NΠ

Nπij

 , (1.46)

fluxes

Fk = |g|
1
2


Nk

T ki
−T k0
NkΠ

Nkπij

 , (1.47)

sources

S = |g|
1
2


0

1
2T

µν∂igµν
−1

2T
µν∂0gµν

n[− 1
τπ
(Π + ζθ)− 4

3Πθ]

n[− 1
τπ
(πij + 2ησij)− 4

3π
ijθ + Iij0 + Iij1 + Iij2 ]

 (1.48)

The above Eqs. 1.46-1.47 together with the eq. 1.34 represent the set of
ECHO-QGP equations in the most general form, since ECHO-QGP can
work both in Minkowski and Bjorken coordinates.

1.3.2 Implementation in ECHO-QGP

In this section, the reader can find a very brief summary of the numerical
techniques used in ECHO-QGP. The name conserved variables is intended
for the set of quantities U, explicit in 1.46 entering the equation 1.34, while
the expression primitive variables is used to refer to the corresponding
physically meaningful quantities, namely: the fluid velocity, the local energy
density, the independent components of the shear stress tensor and the
charge density (P = {n, vi, P,Π, πij}).

The ECHO-QGP [85] code has been built upon the original ECHO
scheme [86] which was, and still is, devoted to relativistic hydrodynamics
and MHD (in any GR metric, even time dependent like for Bjorken coor-
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dinates) for astrophysics purposes. Therefore, ECHO-QGP shares with
ECHO the finite-difference discretization, the conservative approach, and
the shock-capturing techniques.

• The spatial grid is discretized along all the directions of interest as
a Nx × Ny × Nz set of cells (Nη in Bjorken coordinates). Lower
dimensionality runs are always admitted, for example, 2-D tests with
boost invariance in Bjorken coordinates are performed by choosing
Nη = 1.

• The physical primitive variables set (P = {n, vi, P,Π, πij}) is initia-
lized for t = 0 (or for a chosen τ = τ0 in Bjorken coordinates) defining
the value of each variable at every cell center.

• During the hydrodynamic evolution, the conservative variables U and
fluxes F are calculated at cell interfaces. At first, the corresponding
values of the primitive variables are calculated at cell interfaces too.
For each “spatial direction”, the primitive variables calculated at the
interfaces (i.e. left : PL and right : PR) are used to retrieve the value
at the cell centre.

• For each component and at each intercell, upwind fluxes F̂ k (along
direction k) are worked out using the so-called HLL two-state formula
[87] as

F̂ k =
ak+F

k(PL) + ak−F
k(PR)− ak+a

k
−[U(PR)− U(PL)]

ak+ + ak−
, (1.49)

where the coefficients ak± are calculated as:

ak± = max{0,±λk±(PL),±λk±(PR)}, (1.50)

and the local fastest characteristic speeds associated to the Jacobian
∂Fk/∂U, relative to the direction k is calculated as:

λk± =
(1− c2s)v

k ±

c2s(1− v2)[(1− v2c2s)g

kk − (1− c2s)v
k2]

1− v2c2s
.

(1.51)

Notice that eq. (1.51), provides an approximated solution to the local
Riemann problem. The sound speed is extracted from the Equation
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of State:

c2s =
∂P
∂e

+
n

e+ P

∂P
∂n

. (1.52)

• High order derivatives of fluxes are calculated for each direction
(corresponding to ∇iF

i in eq. 1.34), and then the source terms (S)
are added, leaving the conserved variables (U) be the only unknown.
The time derivatives contained in some of the source terms (like in the
expansion scalar) are calculated by using their values at the previous
timestep.

• The evolution equations are updated in time via a second or third
order Runge-Kutta time-stepping routine.

• At each temporal sub-step, the set of primitive variables (P =

{n, vi, P,Π, πij}) is calculated starting from the updated set of cor-
responding conservative variables. In order to do so two different
methods are exploited: an iterative relaxation method or the more re-
fined multidimensional Newton-Raphson root-finding method, which
performes the cycle on the vi components. The latter one is the most
employed, and it is summarized as follows.
Exploiting the orthogonality conditions πµνuν = 0, one can express
the shear stress tensor components as:

π0i = πijvj , π00 = π0ivi = πijvivj , (1.53)

Substituting Si = gijSj and π00 = −π00, the conserved variables in
1.46 can be rewritten as

N = nγ, (1.54)

Si = (e+ P +Π)γ2vi + π0i, (1.55)

E = (e+ P +Π)γ2 − (P +Π) + π00. (1.56)

The components πij are by all means conserved variables, entitled
by the conservation of the charge density, despite its lack of physical
meaning in this frame.
Once one has the vi in the Local Rest Frame (LRF), the charge and
energy density would be given by:

e = E − gijS
ivj , n = N/γ. (1.57)

− 21 −



Hydrodynamics in ECHO-QGP

At this point, the secondary thermodynamic variables can be retrieved
through the Equation of State. The best performing technique that
was found to calculate the primitive variables is based on an iteration
of the method employed in the ideal case, which takes place as
an external loop over the vi components and it is closed when a
given tolerance in |vinew − vi| terms is reached. The vi are initialized
with their values at the previous time-step. The cycle performs the
following steps:

1. The new quantities Ẽ and S̃i are calculated as:

Ẽ = E − π00, S̃i = Si − π0i;

(notice that in the ideal case Ẽ ≡ E, S̃i ≡ Si, P̃ ≡ P so the
external iteration is unnecessary).

2. An inner cycle to retrieve P is performed, which is reiterated
until |Pnew − P | reaches the desired tolerance.

(a) In the inner cycle the temporary pressure is calculated,
together with the associated primitive variables:

P̃ (P ) = P +Π, v2(P ) = S̃2/(Ẽ + P̃ )2

and

e(P ) = (Ẽ + P̃ )(1− v2)− P̃ , n(P ) = N

1− v2.

(b) The cycle is iterated via a Newton-Raphson procedure,
minimizing the quantity

f(P ) = P[e(P ), n(P )]− P,

where
f ′(P ) =

∂P
∂e

de

dP
+
∂P
∂n

dn

dP
− 1.

The updated value of the pressure becomes:

Pnew = P − f(P )/f ′(P ),

3. Once retrieved the pressure corresponding to the vi components,
their updated value is provided by:

vinew = S̃i/(Ẽ + P̃ ).
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The same procedure can be applied when also the π00 and π0i viscous
terms were evolved. Thanks to the conservative nature of N , they
represent conservative variables, avoiding the necessity of applying
the orthogonality condition to extract them.

• The output of primitive variables and other diagnostic quantities are
provided for selected output times.

1.4 Validation of the ECHO-QGP

ECHO-QGP has undergone several numerical test, devoted to the evaluation
of its response against shocks, of its accuracy in solving equations and its
reliability in treating the plasma in extreme conditions. In this section a
summary of its performances can be found.

1.4.1 Mildly relativistic 1D shear flow

Assuming a flow that is only mildly relativistic, the diffusion of a shear flow
profile in (1+1)D is known analytically. A similar case has already been
studied for testing numerical algorithms for relativistic viscosity [88] and
also resistive magnetohydrodynamics [45]. This test has been performed
in Minkowski coordinates, choosing a velocity profile vy = vy(x). For
sub-relativistic speeds and a uniform background state in terms of energy
density and pressure, at any time t of the evolution, only vy will change
due to shear viscosity (the bulk viscosity does not play a role since θ ≡ 0),
always preserving γ ≈ 1. In such Navier-Stokes limit, the momentum
equation along y reads

(e+ P )∂tv
y + ∂xπ

xy = 0, πxy = −2ησxy = −η∂xvy,

which leads, for a constant η coefficient, to the classical 1D diffusion
equation

∂tv
y = Dη∂

2
xv
y, Dη = η/(e+ P ),

with (constant) diffusion coefficient Dη. Assuming a step function for the
vy(x) profile at t = 0, with constant values −v0 for x < 0 and v0 for x > 0,
it is possible to express the exact solution at any time t as:

vy = v0 erf
1
2


x2

Dηt


.
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Figure 1.2: Comparison between the ECHO-QGP evolution output
and the analytic solution at t = 10 fm/c for the dependence
of the velocity, in the case of mildly relativistic 1D shear
flow. The numerical setup is shown in table 1.1

v0 η Dη Nx [xmin;xmax]
GeV/fm3 fm fm

0.01 0.01 0.01 301 [-1.5,1.5]

Table 1.1: Setup for the mildly relativistic 1D shear flow test. The
chosen EoS is e+ P = 4P = 1GeV/fm3. The comparison
with the analytical result is shown in fig. 1.2

In order to proceed to the numerical test, the above profile has been used
at the initial time t = 1 fm/c instead of the discountinuous step function,
letting ECHO-QGP evolve it up to late times (t = 10 fm/c). The result
of such evolution (with the setup described in table 1.1) has then been
compared to the analytical solution for the corresponding time (see fig. 1.2),
showing perfect agreement.

1.4.2 2D shock tubes

Shock-capturing numerical schemes, as in the classical hydrodynamical
case, are designed to handle and evolve discontinuous quantities inevitably
arising due to the nonlinear nature of the fluid equations. In order to
validate these codes, typical tests are the so-called shock-tube 1D problems.
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Nx Ny [xmin;xmax] [ymin; ymax] tend
fm fm fm/c

201 201 [−4; 4] [−4; 4] 4

TL PL TR PR η/s
GeV GeV/fm3 GeV GeV/fm3

0.4 5.4 0.2 0.34 0/0.01/0.1

Table 1.2: Setup for the shock tube test, performed with EOS-I (see
sec. 2.2) and different values for η/s. The comparison with
the analytical result is shown in fig. 1.3

Two uniform states are taken on the left and on the right with respect of an
imaginary diaphragm, which is supposed to be initially present and then
removed at t = 0. Typical patterns seen in the subsequent evolution are
shocks and rarefaction waves. In performing this test, a relativistic blast
wave explosion problem is considered, which is characterized by an initial
static state with temperature and pressure much higher in the region on
the left, namely TL = 0.4 GeV (PL = 5.40 GeV/fm3) and TR = 0.2 GeV
(P = 0.34 GeV/fm3). In order to make a more stringent test, the shock-
tube test has been performed by placing the initial diaphragm along the
diagonal of a square box adopting Minkowskian coordinates 2+1D, and
by letting the system evolve in a higher-dimensionality frame from t = 0

up to t = 4 fm/c. The same test has been repeated for the ideal case
and for different values of the shear viscosity η/s (0.1 and 0.01). Some
of the results of this test, performed within the setup described in table
1.2 are shown in in fig. 1.3, in particular one can find the velocity profile
vx, the expansion scalar θ, the energy density e, and the component of
the shear stress tensor −2πzz, as a function of x and along the axis y = 0.
As in [71], at the final time (tend = 4 fm/c), ECHO-QGP shows to be
free fom numerical spurious oscillations near the shock front even in the
ideal (stiffer) case. When introducing the viscosity, profiles are smoother
for increasing values of η/s. Small oscillations can be seen in θ (mainly
due to the low accuracy in the time derivative) for the largest value of the
viscosity.

1.4.3 Boost invariant expansion along z-axis

As a first validation of ECHO-QGP in Bjorken coordinates it was considered
a test with no dependence on the transverse coordinates (x, y), implying a
vanishing vorticity. For this test, a boost invariance along the z-direction is
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Figure 1.3: Hydrodynamic quantities in a relativistic blast wave
explosion problem. In this panel there are respectively the
energy density e, the component −2πzz of the shear stress
tensor, the expansion rate θ, and the velocity component
vx, as a function of x for η/s = 0, 0.01, 0.1 at tend =
4 fm/c. The numerical setup is shown in table 1.2

assumed, thus the involved quantities do not depend on ηs either, reducing
the dependence of the system to the time coordinate (0+1D test). The
evolution of uniform quantities will be then just due to the τ dependence
of the gηη term in the metric tensor, in the absence of velocities. The
energy-momentum tensor simplifies to:

Tµν ≡ diag{e, P +Π+ πxx, P +Π+ πyy, (P +Π)/τ2 + πηη}

where πxx, πyy, and πηη are the only non-vanishing components of the
shear stress tensor. Applying to the latter its tracelessness property and
exploiting the assumed simmetries, it is possible to write those components
as:

2πxx=2πyy=−τ2πηη≡ϕ,

so only one independent component of πµν is sufficient to describe the
system. Despite this simplification and in order to guarantee the reliability
of the code, in this test ECHO-QGP evolves all 6 spatial components
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τ0 η/s ζ τπ
fm/c GeV/fm2 fm/c

1 0.08 0.01 1

Table 1.3: Parameters setup for the boost invariant expansion along
z-axis. The comparison with the analytical results is shown
in fig. 1.5.

starting at τ = 1 fm/c from a constant initial energy density profile, and
never imposing tracelessness. The system as described admits an analytical
solution, provided that first-order theory applies. The energy equation is
then enough to describe the overall evolution

∂e

∂τ
= −e+ P +Π− ϕ

τ
. (1.58)

Within the first-order theory, Π and ϕ can be obtained from their
Navier-Stokes (NS) values

Π = −ζ
τ
, ϕ =

4η

3τ
.

Employing the ultrarelativistic gas EoS and assuming constant values for
η/s and for ζ/s, eq. (1.58) admits the following analytic solution [89–91]
for the temperature as a function of the proper time:

T (τ) = T0

τ0
τ

 1
3


1 +

4η/3s+ ζ/s

2τ0T0


1−

τ0
τ

 2
3


,

where T0 is the temperature at the initial proper time τ0. This last analytic
form is compared with the outcome of ECHO-QGP, set up to reproduce
the Navier-Stokes limit. Such comparison can be seen in fig. 1.4 (where
ζ/s has been set to 0).

On the other hand, an analytic solution for the evolution equations
extracted within the second-order theory has never been derived. However,
assuming that the evolution of Π and ϕ is simply governed by the relaxation
part of the source terms one can write (τπ=τΠ):

∂Π

∂τ
= − 1

τΠ


Π+

ζ

τ


− 4Π

3τ
→ ∂Π

∂τ
= − 1

τπ


Π+

ζ

τ


(1.59)

∂ϕ

∂τ
= − 1

τπ


ϕ− 4η

3τ


− 4ϕ

3τ
− τ2Iηη1 → ∂ϕ

∂τ
= − 1

τπ


ϕ− 4η

3τ


.

(1.60)
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Figure 1.4: Comparison between the analytic solution and the same
quantity computed numerically by ECHO-QGP of the
evolution of the temperature T (τ) derived in the context
of the first-order Navier-Stokes theory (eq. 1.58). Here
ζ/s = 0

Assuming η, ζ and τπ to be independent of the temperature, eqs. (1.59,1.60)
admit the following semi-analytic solution for Π and ϕ:

Π(τ) = Π(τ0) e
− τ−τ0

τπ +
ζ

τπ
e−

τ
τπ


Ei


τ0
τπ


− Ei


τ

τπ


, (1.61)

ϕ(τ) = ϕ(τ0) e
− τ−τ0

τπ − 4η

3τπ
e−

τ
τπ


Ei


τ0
τπ


− Ei


τ

τπ


, (1.62)

where, Ei(x) denotes the exponential integral function.
The above solutions are obtained from ECHO-QGP under the same

assumptions. The comparison between the ECHO-QGP output and the
semi-analytic solution for the evolution of Π is shown in fig. 1.5, showing
perfect agreement.

1.4.4 2+1D tests with azimuthal symmetry

The study that naturally follows the 0+1D test in Bjorken coordinates, is the
boost-invariant case (still ∂η ≡ 0) where one also considers the evolution in
the transverse plane. When the initial state (at τ0) is azimuthally invariant,
the 2+1D evolution with ECHO-QGP can be compared with analytic
results in 1+1D.
Three different solutions have been derived that apply to this situation:
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Figure 1.5: Comparison between the analytic solution and the same
quantity computed numerically by ECHO-QGP of the
evolution of the bulk viscosity Π(τ) for the second-order
derivation (see eq. 1.61). The numerical parameters setup
can be found in tab. 1.3.

the first one assumes a Woods-Saxon initial profile for the energy density
and a viscous free evolution [12]; the second and the third ones are an
analytical solution (under the assumption of cold plasma) [92] and a semi-
analytical solution (less stringent assumptions) of the viscous equations
of motions starting from an azhimuthally symmetric initial profile created
ad-hoc [68,93,94].

Baym’s solution for a Woods-Saxon profile initialization

For the first case, it is assumed a Woods-Saxon profile for the initial energy
density, as appropriate for central nucleus-nucleus collisions:

e(r, τ0) =
e0

1 + exp [(r −R)/σ]
,

where τ0 is the initial time, r = (x2 + y2)1/2 is the radius in the transverse
plane, and R can be thought of as the radius of the nuclei. The analytical
solution for the subsequent evolution, as a function of τ and r, was found in
ref. [12] and it has been be compared with ECHO-QGP numerical results,
with the setup described in table 1.4. As shown in Fig. 1.6, there is a
perfect agreement between the analytic solution and ECHO-QGP, at any
proper time τ during the evolution.
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Figure 1.6: Spatial dependence of the temperature and of the radial
velocity at different times along with the analytic solu-
tion in the case of a Woods-Saxon initial condition with
cylindrical symmetry. Results obtained with ECHO-QGP
in 2+1D agree very well with the analytical solution by
Baym et al. [12].

R r σ T0
fm fm fm GeV
6.4 0 0.02 0.2

Table 1.4: Setup for the 2+1D test (see sec. 1.4.4) with azimuthal sym-
metry and boost invariance, performed with a Woods-Saxon
initial condition for the energy density profile. Results are
shown in fig. 1.6

Gubser flow

A very useful test for a numerical code of relativistic dissipative hydro-
dynamics is the extension of the ideal solution found by Gubser and
Yarom [92,95], in the case of a Bjorken flow with an azimuthally symmetric
radial expansion, to the viscous case [68,94]. Indeed, this solution provides
a highly non-trivial theoretical benchmark.

For the sake of clarity, the main steps leading to the analytical solution
are briefly summarized below, ad then a comparison with the numerical
computation is shown in fig. 1.7.

In the case of a conformal fluid, with P = e/3 EoS, the invariance
for scale transformations constrains the terms entering the second-order
viscous hydrodynamic equations. The additional requests of azimuthal and
longitudinal-boost invariance, constrain the solution of the hydrodynamic
equations, which has to be invariant under SO(3)q ⊗ SO(1, 1)⊗ Z2 trans-
formations. To start with, one defines a modified space-time metric as
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∆x ∆y ∆ηs ∆τ η/s τR q
fm fm fm/c fm−1

0.025 0.025 0.025 0.001 0.2 5η/(e+ P ) 1

Table 1.5: Parameters setup for the Gubser test. 1.7

follows (with usual Bjorken coordinates, ηs being the spacetime rapidity):

ds2 = τ2

dτ2 − dr2 − r2dϕ2

τ2
− dη2s


,

which can be viewed as a rescaling of the metric tensor:

ds2 −→ dŝ2 ≡ ds2/τ2 ⇐⇒ gµν −→ ĝµν ≡ gµν/τ
2.

It can be shown that dŝ2 is the invariant spacetime interval of dS3⊗R, where
dS3 is the three-dimensional de Sitter space and R refers to the rapidity
coordinate. It is then convenient to perform a coordinate transformation
(q is an arbitrary parameter setting an energy scale for the solution once
one goes back to physical dimensionful coordinates)

sinh ρ ≡ −1− q2(τ2 − r2)

2qτ
, tan θ ≡ 2qr

1 + q2(τ2 − r2)
, (1.63)

after which the rescaled spacetime element dŝ2 reads

dŝ2 = dρ2 − cosh2ρ (dθ2 + sin2θ dϕ2)− dη2s . (1.64)

The full symmetry of the problem is now manifest. SO(1, 1) and Z2 refer
to the usual invariance for longitudinal boosts and ηs → −ηs inversion,
while SO(3)q reflects the spherical symmetry of the rescaled metric tensor
in the new coordinates. In Gubser coordinates the fluid is at rest:

ûρ = 1, ûθ = ûϕ = ûη = 0. (1.65)

As shown in [92–95], an analytical solution for Israel-Stewart theory can be
found in the cold plasma limit, (i.e. extremely large viscosity or extremely
small temperatures), solving eq. 1.66b where the term πµν is removed from
the Israel-Stewart theory. This solution no longer relaxes to Navies-Stokes
theory, but it has been used as a test to guarantee the behavior of ECHO-
QGP under any circumnstace. Such comparison is shown in fig. 1.8. The
corresponding flow in Minkowski space can be obtained taking into account
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Figure 1.7: Comparison between the semi-analytic solution of the
Gubser viscous flow and a computation carried out with
the ECHO-QGP code.
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Figure 1.8: Comparison of the radial dependence of the energy density
e (left panel) and of the radial velocity vr (right panel)
with the Gubser flow [92] at τ = 1.0, 1.5, 2.0, 2.5 fm/c.
ECHO-QGP outcomes show a perfect matching with the
analytical results.

both the rescaling of the metric and the change of coordinates

uµ = τ
∂x̂ν

∂xµ
ûν ,

where x̂µ = (ρ, θ, ϕ, ηs) and xµ = (τ, r, ϕ, ηs). Other quantities such as the
temperature or the viscous tensors require the solution of the following set
of hydrodynamic equations (their most general form actually admits further
terms that were derived for a system of massless particles in refs. [96, 97]),
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valid for the case of a conformal fluid with e = 3P ∼ T 4:

DT

T
+
θ

3
− πµνσ

µν

3sT
= 0 (1.66a)

τπ


∆µ
α∆

ν
βDπ

αβ +
4

3
πµνθ


+ πµν = 2ησµν . (1.66b)

In the case of the Gubser flow in Eq. (1.65), due to the traceless and
transverse conditions π̂µµ=0 and ûµπ̂

µ
ν =0, one has simply to solve the two

equations (π̄ηη ≡ π̂ηη/ŝT̂ )

1

T̂

dT̂

dρ
+

2

3
tanh ρ =

1

3
π̄ηη tanh ρ (1.67)

and
τ̂R


dπ̄ηη

dρ
+

4

3
(π̄ηη)2 tanh ρ


+ π̄ηη =

4

3

η̂

ŝT̂
tanh ρ. (1.68)

The solution can be then mapped back to Minkowski space through the
formulae:

T = T̂ /τ, πµν =
1

τ2
∂x̂α

∂xµ
∂x̂β

∂xν
π̂αβ. (1.69)

The figures in the panel 1.7 show the comparison between the Gubser
flow analytical and semi-analytical solutions and ECHO-QGP numerical
computation for temperature and the components πxx, πxy and πηη of the
viscous stress tensor respectively, at different times. The initial energy
density profile is taken from the exact Gubser solution at the time τ = 1

fm/c. The simulation is performed with a grid of 0.025 fm in space and
0.001 fm/c in time. The shear viscosity to entropy density ratio is set to
η/s = 0.2, while the shear relaxation time is τR = 5η/(ε+ p). The energy
scale is set to q = 1fm−1.

As it can be seen, the agreement is excellent up to late times.

1.4.5 3+1D test in Minkowski

As last test, it has been considered the 3+1D case in the presence of a
spherically symmetric initial pressure or energy-density profile. This test is
essential to check the accuracy of the viscous implementation by verifying
that the symmetries are preserved by the spatial velocity components
during the whole fireball evolution. Due to the spherical symmetry of
the system it is expected a pure radial dependence of the fluid velocity
v⃗=v(r, t)r⃗/r throughout all the medium evolution, for both inviscid and
viscous fluids. To perform this test, the initial pressure profile is chosen to
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σ R P0 T0 η/s
fm fm GeV/fm3 GeV
0.5 6.4 4 0.307 0.16

Nx Ny Nz range tstop
fm fm/c

101 101 101 [−20 : 20] 10

Table 1.6: Parameters setup for (3+1)-D Minkowski test referring to
the results shown in fig. 1.9

be of Woods-Saxon type as in Eq. (1.4.4), with P and P0 replacing e and
e0, now in flat Cartesian coordinates with r = (x2 + y2 + z2)1/2. With the
parameters shown in table 1.6, we perform the tests with either EOS-LS
and EOS-PCE (see section 2.2), precisely to investigate the behavior of
different EOS’s in a realistic 3D case. The fluid 4-velocity is initialized
through the Bjorken condition (at the initial time is uµ = (1, 0, 0, 0)), and
in the viscous case the shear stress tensor is initialized to 0 (πµν ≡ 0 and
ζ/s = Π = 0), since boosting effects are not present in Minkowski. vx, vy,
vz are plotted along their respective axes in Fig. 1.9, perfectly lying on top
of each other, both for the inviscid and the viscous cases. Shear viscous
effects play the usual role of smoothing the velocity profiles, as expected.
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Figure 1.9: Comparison at t = 10 fm/c of the spatial components of
fluid velocity in a 3D run in Minkowski coordinates (setup
described in table 1.6).
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2
Numerical Set-Up, Features
and results of ECHO-QGP

In order to apply the hydrodynamic description to heavy-ion collisions,
one necessarily needs other, complementay, models to fix the unknown
parameters. In this chapter, we show how the initial and the final stages of
the evolution are modeled in ECHO-QGP, as well as the Equation of State
used.

2.1 Initial conditions

Various choices of initial conditions are implemented in the ECHO-QGP
and are selectable by the user, including the test problems used for the
numerical validation of the code showed in section 1.4.

Initialization is done by setting either the energy density or the entropy
density distribution at the initial time τ0. In the 2D case, these quantities
receive both a soft (proportional to the density of participant nucleons
npart) and a hard (proportional to the density of binary collisions ncoll)
contribution, with relative weight given by the coefficient α∈ [0, 1] (see,
e. g. [98]):

e(τ0,x; b) = e0


(1− α)

npart(x; b)

npart(0; 0)
+ α

ncoll(x; b)

ncoll(0; 0)


,

where e(τ0,x; b) stands for either the energy or the entropy-density and e0
is the corresponding value at x=0 and b=0, x and b being the coordinates



Initial conditions

in the transverse plane and the impact parameter respectively. In the
optical Glauber model, for two colliding nuclei of mass numbers A and B,
the global density of participants (npart) and of binary collisions (ncoll) in
the transverse plane are respectively given by

npart(x; b) ≡ nApart(x; b) + nBpart(x; b), (2.1)

with

nApart(x; b)=TA


x+

b

2


1−

1−σNN

B
TB


x− b

2

B
,

nBpart(x; b)= TB


x− b

2


1−

1−σNN

A
TA


x+

b

2

A
,

and

ncoll(x; b) = σNN TA


x+

b

2


TB


x− b

2


. (2.2)

σNN is the inelastic nucleon-nucleon cross-section, and TA/B is the nuclear
thickness function (respectively for the nucleus A or B):

T (x) ≡
 ∞

−∞
dz ρ(x, z) =

 ∞

−∞
dz

ρ0

1 + e(
√
x2+z2−R)/δ

(2.3)

In Eq. (2.3) ρ is a Fermi parameterization of the nuclear density distribution
(ρ0, δ and R are respectively the nuclear density, the width and the radius
of the nuclear Fermi distribution) [99]. The tunable parameters are the
maximum initial energy density in central collisions e0 and the hardness
fraction α.

In the 3D case the initialization is performed using a model for the
density distribution similar to the one of refs. [31,100], charachterized by
an energy density (or equivalently entropy density) profile that vanishes at
space-time rapidity ηs larger than the beam-rapidity Yb≈ ln(

√
sNN/mp):

e(τ0,x, ηs; b) = ẽ0 θ(Yb−|ηs|) fpp(ηs) [αncoll(x; b) + (1− α)ñpart] (2.4)

ñpart =


Yb − ηs
Yb

nApart(x; b) +
Yb + ηs
Yb

nBpart(x; b)


(2.5)

Notice that here ẽ0 does not represent the energy or entropy-density at
x = 0 and b = 0, but it is simply an overall normalization factor. The
particles produced by the participants of nucleus A/B tend to follow the
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rapidity of their respective source: this effect is parametrized by the factors
(Yb ± ηs)/Yb. The function fpp(ηs) describes the rapidity profile in p-p
collisions (see sketch in fig. 2.1):

fpp(ηs) = exp


−θ(|ηs| −∆η)

(|ηs| −∆η)2

σ2η


.

Figure 2.1: sketch of the shape of the ra-
pidity profile in p-p collisions

This is a flat profile for |ηs| ≤∆η

and displays a gaussian damping at
forward/backward rapidities. The
extension of the rapidity plateau
∆η and the width ση of the gaus-
sian falloff are the two further pa-
rameters describing the rapidity de-
pendence in the 3D case. Any other
functional form can be implemented
by the user.

ECHO-QGP includes also the
possibility of performing event-by-event hydro calculations with fluctuating
initial conditions. A simple Glauber Monte Carlo routine is provided with
the code:

• A sample of Nconf nuclear configurations is generated, extracting
randomly the positions of the nucleons of the A and B nuclei from a
Woods-Saxon distribution. The transverse positions of the nucleons
in each nucleus is then reshuffled into the respective center-of-mass
frame.

• For a given configuration a random impact parameter b∈ [0, bmax] is
extracted from the distribution dP =2πbdb. Nucleons i (from nucleus
A) and j (from nucleus B) collide if (xi−xj)2+(yi−yj)2 < σNN/π. If
at least a binary nucleon-nucleon collision occurred the event is kept
and the information (xApart, xBpart and xcoll) is stored, otherwise not.
The procedure is repeated Ntrials times for each configuration of the
incoming nuclei.

• Each participant nucleon and collision, with a gaussian smearing
of variance σ, is a source of energy density (with the parameter α
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setting the hardness fraction):

e(τ0,x) =
K

2πσ

(1− α)

Npart
i=1

exp


−
(x− xpart

i )2

2σ2



+α

Ncoll
i=1

exp


−(x− xcoll

i )2

2σ2


. (2.6)

The model has been employed in ref. [101] and tuned, with a pure
dependence on participants (α= 0), to Au-Au data at RHIC (see
Fig. (2.2)). The rapidity dependence in the 3D case can be inserted a
posteriori as in the optical-Glauber initialization of Eq. (2.5). Storing
information both on xApart and on xBpart it is even possible to account
for the different rapidity dependence of the contributions of the
participants from the two nuclei (leading to a direct flow v1 far from
mid-rapidity).

Initial conditions for the flow are chosen in both the 2D and 3D cases in
order to have, at τ = τ0, zero transverse flow velocities and a longitudinal
flow given by the Bjorken’s solution (Y = ηs). Other choices can be easily
implemented.

2.1.1 MC-Glauber initial conditions: a test case

Here, we demonstrate the capability of running 2+1D ideal and viscous
Relativistic Hydro-Dynamics (RHD) simulations with ECHO-QGP in the
case of fluctuating Glauber-MC initial conditions. The local temperature
profile is set at the initial time τ = 1 fm/c for one particular nuclear
configuration generated through the Glauber-MC routine implemented in
ECHO-QGP (we assume Au-Au collisions with bmax = 20, σ = 0.6 fm,
K = 37.8 GeV/fm2, and α = 0.2); then the subsequent evolution is followed
both in the ideal and in the viscous case. In Fig. 2.3 the initial and later
stages of the evolution at τ = 5 and 10 fm/c are shown, where the upper
row refers to the ideal run and the lower one to the viscous run. Here we
assume a square numerical box ranging from −15 to 15 fm and made up
by 151 grid points in both directions. The equation of state applied here is
the one computed by ref. [102] (see next subsection), while in the viscous
run we set η/s = 0.08.

Clearly, the dynamical effects of shear viscosity are reflected in the
smoother spatial profiles: the surfaces of discontinuity arising from the
transverse expansion of the initial peaks of energy (shock fronts) are clearly
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Figure 2.3: Temperature scans at various times – at τ = 1, 5, and 10
fm/c – obtained from inviscid (upper panel) and viscous
(lower panel) ECHO-QGP simulations with Glauber-MC
initial conditions. The differences between the two cases
are clearly visible. The effect of shear viscosity can be
seen in the smoothening of the profiles.

visible only in the inviscid case. These results demonstrate the capability of
ECHO-QGP to handle also complex initial conditions with events displaying
sizable fluctuations. The full analysis including the study of higher-order
flow harmonics, of the impact on the freeze-out stage and of the final
particle spectra is beyond the scope of the present investigation and is left
for future work.

2.2 Equation of State

Solving hydrodynamics equations requires the knowledge of the Equation
of State (EoS) of the system. Although the code is already designed to
handle any form of P = P(e, n), in the present work we just consider the
case P = P(e), i.e. the case of a barotropic fluid. ECHO-QGP allows the
use of any tabulated EoS of this kind, if provided by the user in the format
(T, e/T 4, P/T 4, c2s), with c2s ≡ dP/de, the square of the speed of sound.

However, some choices are already implemented in the code and are of-
fered to the user. Test runs can be performed with the ideal ultrarelativistic
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EoS P = e/3. More precisely, we set in these cases

P = e/3 =
gπ2

90
T 4, c2s =

1

3
,

where g = 37 for a non-interacting QGP with 3 light flavors.

More realistic QCD EoS’s are included in the package, in the tabulated
form mentioned above, and can be selected by the user such as the EoS
of ref. [102], arising from a weak-coupling QCD calculation with realistic
quark masses and employed in the code by Romatschke [35].

ECHO-QGP includes also two tabulated EoS’s obtained by matching
a Hadron-Resonance-Gas EoS (HRG EoS) at low temperature with the
continuum-extrapolated lattice-QCD results by the Budapest-Wuppertal
collaboration [103]. The HRG EoS was obtained by summing the con-
tributions of all hadrons and resonances in the PDG up to a mass of 2
GeV: P =


r Pr. In the classical limit T ≪ mr (quantum corrections are

included for pions, kaons and η’s) one has simply, for the pressure of the
resonance r:

Pr = gr
T 2m2

r

2π2
eµr/T K2

mr

T


, (2.7)

and the density of resonance r in the cocktail is given by

nr ≡

∂P

∂µr


T

= gr
Tm2

r

2π2
eµr/T K2

mr

T


. (2.8)

In the Chemical Equilibrium case (CE) in the hadronic phase all the
chemical potentials vanish ({µr=0}) and the multiplicity of any resonance
r is simply determined by the temperature through the ratio mr/T . On
the other hand experimental data provide evidence that the chemical
freeze-out – in which particle ratios are fixed – occurs earlier than the
kinetic one, in which particle spectra gets frozen. A realistic EoS should in
principle contain the correct chemical composition in the hadronic phase.
This can be enforced in the following way. At the chemical freeze-out
temperature Tc the abundances nr of all the resonances are determined by
Eq. (2.8) with µr=0. Afterwards, the fireball evolves maintaining Partial
Chemical Equilibrium (PCE): elastic interactions mediated by resonances
(ππ → ρ→ ππ, Kπ → K∗ → Kπ, pπ → ∆ → pπ...) are allowed, changing
the abundance of the single resonances r, but conserving the “effective
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Figure 2.4: Upper panel: HRG EoS, with chemical (CE, black con-
tinuous line) and partial chemical equilibrium (PCE, col-
ored dotted/dashed lines), vs the lattice-QCD results of
Ref. [103] (turquoise points). Lower panel: the EoS P (e)
resulting from the matching of HRG with lattice-QCD
results, in the CE (in black) and PCE (in red) cases. The
matching has been performed at the temperature T =150
MeV.
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multiplicity” of stable hadrons h (π,K, η,N,Λ,Σ,Ξ and Ω)

nh = nh +

r ̸=h

nr⟨N r
h⟩, (2.9)

where ⟨N r
h⟩ represents the average number of hadrons h coming from the

decay of resonance r. Furthermore the multiplicity of resonance r is fixed by
the chemical potential µr≡


h⟨N r

h⟩µh. Assuming an isoentropic expansion
of the fireball, PCE is set fixing at each temperature the chemical potentials
µh in order to to satisfy the relation

nh(T, {µh′})
s(T, {µh′})

=
nh(Tc, {µh′ = 0})
s(Tc, {µh′ = 0})

, (2.10)

which amounts to the conservation of the entropy per (effective) particle
throughout the medium evolution. Both in the CE and in the PCE case
the transition from the lattice-QCD to the HRG description is performed
at the temperature T = 150 MeV where the matching looks sufficiently
smooth: results for the EoS are displayed in Fig. 2.4. A tabulation of the
HRG+lQCD EoS in the PCE case is also part of the ECHO-QGP code.

Finally, we set the acronyms for the different equations of state currently
implemented in ECHO-QGP. The ideal ultrarelativistic P = e/3 EoS will
be labeled henceforth as EoS-I, and will be used mainly for testing purposes.
The EoS computed by Laine and Schröder [102] will be termed as EoS-LS.
The one with HRG+Lattice with CE (HRG+LAT+CE) will be termed as
EoS-CE, while the analogue one with partial chemical equilibrium will be
labeled as EoS-PCE.

2.3 Decoupling stage

Before illustrating results from ECHO-QGP of physical interest for heavy-
ion collisions, it is mandatory to implement a routine accounting for the
transition from the fluid description to the final hadronic observables to
compare with the data and other authors’ results.

The process of decoupling of hadrons from the fireball and their subse-
quent propagation in space-time is very complex and there are different
recipes to model it. The most used scheme is based on the notion of freeze-
out. Since the particle mean free paths strongly depend on the temperature
of the medium one can assume that below a certain temperature Tfreeze
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particles stop interacting within the fireball and they propagate as free
streaming particles. This is the so called kinetic freeze out and corresponds
to the end of the hydrodynamical evolution of the system. In this scheme
the hadron spectra are calculated using the Cooper-Frye prescription [104]:
from the temperature profiles obtained within the hydrodynamic simu-
lation one first determines the hypersurface Σ of constant temperature
T = Tfreeze and the total emission of primary particles is then calculated as
a sum of the thermal emission of cells lying on the freeze out hypersurface.
Corrections to the particle spectra related to the decay of unstable particles
have been shown to be significant and they must be included to reproduce
the experimental data [29,105,106].

In the last years, hybrid approaches have been proposed in which
the decoupling is treated as a switch, at a certain temperature Tswitch,
from a hydrodynamical description of the fireball to a particle transport
description [30, 31, 58, 107–112]. In this procedure one does not need
to introduce a freeze out hypersurface but a particlization algorithm is
anyway required which maps the hydrodynamic simulation output into
initial conditions for the transport code. For the sake of simplicity and
for performing our first tests of ECHO-QGP, we adopt here the freeze out
scheme and retain the hybrid approach as an important outlook of our
work. Let us now briefly review the formalism used for calculating the
particle spectra within the Cooper-Frye scheme. The momentum spectrum
of hadrons of species i is written as (consistently with the [-,+,+,+] metric):

E
d3Ni

dp3
=

d3Ni

dypTdpTdϕ
=

gi

(2π)3


Σ

−pµd3Σµ
exp


−uµpµ+µi

Tfreeze


± 1

(2.11)

The index i refers to the hadron species such as pions, kaons, protons etc;
gi and µi are the corresponding degeneracy and chemical potential and
finally pµ is the four momentum of the particle.

An improvement to the pure kinetic freeze-out distinguishes between the
temperature at which elastic interactions between particles cease, Tfreeze,
and the chemical freeze out temperature Tc at which just the inelastic
interactions cease. As explained before, below Tc a PCE equation of state
is computed which allows to determine the chemical potentials µi of each
“frozen particle” at decoupling. In fixing the yields of the individual hadrons
we will employ the chemical potentials arising from such a procedure. In
this work we will use the PCE equation of state and also the one presented
in Ref. [14].

The use of Eq. (2.11) requires to evaluate the hypersurface Σ of constant
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temperature. In 3+1D, determining such a surface is computationally
quite demanding because of the many different possibilities in which the
3D hypersurface can intersect the 4D hypercubes of the hydrodynamical
simulation grid [112]. Here we follow a simpler method also used in [58]:
we can imagine the hypersurface to be the collection of the hypercubes’
faces of those neighbours cells which are respectively above and below the
threshold Tfreeze. In this case the d3Σµ is composed by the sum (in Bjorken
coordinates):

d3Σµ =


dV⊥τ
dV⊥x
dV⊥y
dV⊥η

 =


τ∆x∆y∆ηsτ

τ∆y∆η∆τsx

τ∆η∆τ∆xsy

1
τ∆τ∆x∆ys

η

 (2.12)

where each volume element of the hypersurface is oriented by the vector

sµ = −sign


∂T

∂xµ


(2.13)

In this way, we associate to each of these cells a normal unitary vector
oriented toward the direction of negative temperature gradient.

In most cases only one of the components of d3Σµ is different from zero,
since the dV ⊥µ is added only if the freeze out condition is fulfilled. Let us
label with TA the temperature in an arbitrary cell, and TB the temperature
of its neighbour in the positive µ (with µ running over the four dimensions).
As a first approximation, if

(TA − Tfreeze)(Tfreeze − TB) > 0

then the hypersurface contains the element dV ⊥µ relative to those cells and
direction µ. A more refined procedure that we here adopt is to construct a
cell with values of temperature and four velocity interpolated between the
cells A and B. This construction allows to compute the scalar product in
the numerator of 2.11 at each hypersurface cell and could give a positive or
negative contribution to the total spectrum depending on the orientation
of the cell and the orientation of the four momentum of the particle.

Once the hypersurface is determined, one can calculate the spectra
as functions of the four momentum pµ which, in the Bjorken coordinates,
reads

pµ =

mT cosh (y − ηs), pT cosϕ, pT sinϕ,

mT

τ
sinh (y − ηs)


, (2.14)
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where y is the particle rapidity, pT is its transverse momentum and
mT = (p2T +m2)1/2 is its transverse mass. Whithin this formalism, we
can replace in formula 2.11:

−uµpµ = uτmT cosh (y − ηs)− uxpT cosϕ

− uypT sinϕ− τ2uη
mT

τ
sinh (y − ηs) (2.15)

and

−d3Σµpµ =


mT cosh (y − ηs) s

ττdxdydηs − pT cosϕ sxτdτdydηs

−pT sinϕ syτdτdxdηs −mT sinh (y − ηs) s
ηdτdxdy


(2.16)

The observables that will be considered in this work are the following:
the transverse spectrum at midrapidity (y = 0) averaged over ϕ

1

2π

 2π

0

d3Ni

pTdpTdydϕ
(y = 0, pT, ϕ)dϕ, (2.17)

the elliptic flow coefficient v2

v2(i)(pT, y) =

 2π
0

dNi

pTdpTdϕdy
(y, pT, ϕ) cos (2ϕ)dϕ 2π

0

dNi

pTdpTdϕdy
(y, pT, ϕ) dϕ

(2.18)

the rapidity spectrum

dNi

dy
=

 2π

0

 +∞

0

d3Ni

pTdpTdydϕ
(y, pT, ϕ)dϕ pTdpT (2.19)

and directed flow coefficient v1 as a function of the particle rapidity

v1(i)(y) =

 2π
0

 +∞
0

dNi

pTdpTdϕdy
(y, pT, ϕ) cos (ϕ)dϕ pTdpT

dNi

dy

. (2.20)

2.3.1 Particle spectra in presence of dissipation

In the presence of finite viscosity coefficients η, and ζ, the thermal distribu-
tion functions for fermions and bosons employed in the Cooper-Frye formula
is modified. Indicating with f0 the ideal particle distribution employed in
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the previous section, the modified distribution can be written as f = f0+δf ,
δf being the viscous correction. The deviation from equilibrium owing to
the stress corrections from η, and ζ are taken in the following form [34,113],

δf =
f0(1∓ f0)

2T 2(e+ P )
[pµpνπ

µν ] , (2.21)

which are based on the relaxation time approximation1.

Therefore, obtaining particle spectra in the presence of viscosities, we
not only need the freezeout temperature, entropy density, and fluid four
velocity at the freezeout, but also the components of viscous stress πµν ,
and Π along the freeze-out surface. The results obtained for the elliptic
flow, and spectra shall be presented and discussed in the next section.

2.3.2 Particles spectra

Since our procedure to determine the freeze-out surface is somehow sim-
pler compared to the algorithms used within other 3+1D codes ( see e.g.
MUSIC’s routine or CORNELIUS [49, 112]), it is essential to compare
our results for the particles spectra with the results obtained using other
codes. For the 2+1D case there are several available codes such as AZHY-
DRO [13,14] (ideal RHD) and UVH2+1 [114] (viscous RHD). We present
here comparisons with results obtained using AZHYDRO, in which a trian-
gular mesh is determined to approximate the hypersurface. In particular,
we have simulated the hydrodynamical stage of heavy-ion collisions with
AZHYDRO and for the calculation of the spectra of primary particles
at decoupling we have used the routines for the freeze-out included in
AZHYDRO and the freeze-out routine of ECHO-QGP described above.
Note that within AZHYDRO the particle distribution function is assumed
to be a Maxwell distribution and the boost invariance allows to compute
analytically the integral on the η variable in the Cooper Frye formula.
Following this procedure, the integral on the η variable of Eq. (2.11) leads
to modified Bessel functions. The parameter set used for AZHYDRO can be
found in Tab. 2.1. In Figs. 2.5-2.6 we compare results for primary pions
transverse momentum spectra and v2 at several impact parameters. The
agreement between our results and the ones obtained within AZHYDRO is
quite satisfying for values of b which are relevant from the experimental
point of view (b ≲ 6− 7 fm). For larger values, deviations of the order of

1the bulk viscosity contribution is still not implemented
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σnn τ0 e0 α b Tfreeze µπ
mb fm Gev fm−3 fm GeV GeV
40 0.6 24.5 1 0,3,6,9,12 0.0622 0.120

Table 2.1: Parameter set used within AZHYDRO while testing the
ECHO-QGP freeze out routine. The pion chemical po-
tential is taken from [14]). The grid spacing here used
is:∆x = ∆y = 0.4fm ∆τ = 0.16 fm.
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Figure 2.5: Transverse momentum pion spectra at different values of
impact parameters. From the top: b = 0, 3, 6, 9, 12 fm.

20% are present in the v2 spectra at low transverse momenta, pT ∼ 0.1

GeV. Also in [49,58] it has been remarked that, in spite of its simplicity,
this method is sufficiently accurate for computing particle spectra and v2.

The comparison between the ECHO-QGP and the AZHYDRO results
for particle spectra in 2+1D presented earlier is a crucial test before extend-
ing our calculations to 3+1D. Having a good agreement with AZHYDRO,
we can now use the ECHO-QGP 2+1D results as a benchmark for the
3+1D calculations. In order to perform this test we have used the initial
conditions specified in Sec. II, for which the energy profile along the η
direction is flat up to ∆η and has then a smooth gaussian drop for larger
values of η. In the transverse direction, the energy profile is the same for
the 2+1D and the 3+1D simulations. The lack of boost invariance in 3+1D
implies that the hydrodynamical quantities in Eq. (2.11) (temperature and
four-velocity) depend on η and thus the integral on this variable must be
calculated numerically. Also, the hypersurface depends now on η. The
parameter set used for these tests of consistence between 3+1D and 2+1D
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Figure 2.6: Comparison of the pT and b dependence of the pion ellip-
tic flow coefficient v2 computed within ECHO-QGP and
AZHYDRO.

descriptions, fully performed with ECHO-QGP, can be found in Table 2.2.

σnn τ0 e0 α b Tfreeze µπ
mb fm Gev fm−3 fm GeV GeV
40 0.6 24.5 1 0 0.0622 0.120

Table 2.2: Parameter set used in the comparison between 2+1D and
3+1D ECHO-QGP output, with different values of ∆η and
ση (see Fig. 2.7).

As one can notice in Fig. 2.7, for ∆η = 1, ση = 3, ∆η = 3, ση = 1 the
3+1D results lie on top of the 2+1D ones apart from the region at low
pT, where in the last case the thermal distributions are approximated by
Maxwell distributions in order to analytically perform the integral over η.
The 2+1D spectrum is thus underestimated. For ∆η = 1 and ση = 1, on
the other hand, the 3+1D curve is lower than the 2+1D one due to the
lower extension of the flat region in the initial ηs-distribution.

In 3+1D, another interesting observable is the rapidity spectrum that
we show in Fig. 2.8. Although we do not present here a comparison with
experimental data, the dependence on y is qualitatively very similar to the
one obtained, for instance, in [112], see their Fig. 21. At y = 0 these spectra
represent just the integral of pT of the transverse momentum spectra of
Fig. 2.8, and we have obtained, consistently, that the ∆η = 1 and ση = 3

and ∆η = 3 and ση = 1 cases provide the same result while for ∆η = 1

and ση = 1 a lower value of the spectrum is obtained. As y is shifted, one
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Figure 2.7: Comparison of the pion transverse momentum spectra
obtained by ECHO-QGP in 2+1D and 3+1D for different
parametrizations of the initial energy density profile in
space-time rapidity.

probes the tails of the freeze-out hypersurface along the η direction. Thus
the larger the value of ση the harder is the spectrum (see the curves corre-
sponding to ∆η = 3, ση = 1 and ∆η = 1 and ση = 3). For a comparison
with the experimental data, such as the ones of the PHOBOS collaboration,
we need to include the contribution of unstable particles on the final pion
spectra.

σnn τ0 e0 α b µπ Tfreeze
mb fm Gev fm−3 fm GeV GeV
40 1.0 30.0 0.15 3,5,7 0.03217 0.130

Table 2.3: Parameter set used in the 2+1D ideal and viscous (η/s =
0.08) simulations (see Fig. 2.11a)

In this work such contributions are not implemented. In fig. 2.9a we
display the transverse momentum spectra of (direct) pions, kaons and
protons. For large values of pT our results are compatible with results
obtained in the 3+1D code developed in [49] (see their Fig. 1) where also
a fit of the experimental data is presented. A value of the pion spectrum
of about 0.1 GeV−2 at pT ∼ 2 GeV. The agreement with [49] is lost at low
pT due to lack of resonance feed-down in our scheme. Indeed in [106] an
enhancement of a factor of 4 is obtained for the pion spectra at pT = 0.
We are thus confident that including the resonances decays will allow to
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Figure 2.8: Pion rapidity spectra with different parametrizations of
the initial energy density profile in space-time rapidity.

correctly reproduce the experimental data. On the other hand, the elliptic
flow results are not so much affected by the resonance feed-down because
it is a ratio of spectra. Considering for instance the pion v2 , we obtain
a value of ∼ 0.19 at pT = 1.5 GeV and b = 7 fm from Fig. 2.8, which is
consistent with results obtained in [49] (see Fig. 7 therein). In 2.10, we
show the rapidity spectra of pions, kaons and protons. This observable will
be important for future developments of ECHO-QGP when comparing with
the experimental data. In particular, it will allow one to better constrain
the initial conditions of the hydrodynamical evolution.

Viscosity provides important corrections to the particle spectra partic-
ularly evident in the pT and b dependence of the elliptic flow coefficient
v2. As first approach, we limited our discussion to 2+1D simulations with
the parameters of Table 2.3, neglecting viscous corrections to the particle
distributions in the Cooper-Frye algorithm; after this stage we included
the contribution to the particle distribution function given by the shear
stress tensor (see Eq. 2.21). As shown in Fig. 2.11, we obtain the standard
result of a suppression of the v2 when including viscosity. At pT = 1.5
GeV, η/s = 0.08 and b = 7.0 fm, the suppression is of the v2 of the order
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Figure 2.9: Panel (a) pT spectra of pions, kaons and protons as ob-
tained in 3+1D ideal hydrodynamics. Panel (b) pT and
b dependence of the elliptic flow v2 as obtained in 3+1D
ideal hydrodynamics.
Parameters are specified in Tab. 2.2. The grid steps are
∆x = ∆y = 0.2 fm ∆ηs = 0.2,∆τ = 0.1 fm/c.
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Figure 2.10: Rapidity spectra of pions, kaons and protons as obtained
in 3+1D ideal hydrodynamics.

of 10%, which is in agreement with [69] (see Fig. 10) and [35,113,115,116],
and when including also the corrections to the distribution function a
suppression of about 15% is reached. Finally, in Fig. 2.12 we display results
for the transverse momentum spectra of pions kaons and protons with b = 5

fm. The effect of the viscosity is qualitatively consistent with previous
results [117]: up to pT ∼ 1 GeV spectra are slightly suppressed with respect
to the ideal case and at larger pT are instead enhanced (almost doubled at
pT ∼ 2 GeV). This enhancement with large pT is due to the growth of the
transverse expansion in presence of viscosity compared to the ideal case.

2.4 Temperature and Eccentricity evolution

We start considering the time evolution of the central temperature T (τ)
(obtained from the local energy density through the EOS) both for central
(b = 0) and non-central (b ̸= 0) Au-Au collisions with RHIC-type initial
conditions. We assume 2+1D evolution. Simulations are performed in
Bjorken coordinates with a grid size in the transverse (x − y) plane of
201× 201 cells and physical dimensions ranging from -20 fm to 20 fm. For
3+1D runs we use 101 × 101 cells ranging from -20 fm to 20 fm in the
transverse plane, and 151 point along ηs, going from -11 to 11 fm.

The dependence of T (τ) on the EOS, on the impact parameter and
on the shear viscosity is displayed in Fig. 2.13. The temperature is
sensitive to the equations of the state chosen throughout the evolution. As
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expected, the differences are more pronounced in the later stages, when
the temperature drops below T = 150 MeV and the effects of the partial
chemical equilibration plays crucial role. Concerning the dependence on
the shear viscosity, we notice that its effect is very limited in the central
region, where the fluid velocity is small. More important is the dependence
on the impact parameter. It is clear that the larger the value of b, the
earlier the occurrence of freeze-out. This is mainly guided by the impact
parameter dependence of the initial energy density profile.

We then move to consider the evolution of the eccentricity in non-central
collisions. Hydrodynamics translates the initial spatial eccentricity of the
system – arising essentially from the non-vanishing impact parameter of
the A-A collision and giving rise to asymmetric pressure gradients – into a
final anisotropy in the momentum spectra of the produced hadrons. The
spatial anisotropy in the transverse plane is usually quantified, in the case
of smooth initial conditions, in terms of the coefficient [118]

ex =
⟨y2 − x2⟩e
⟨y2 + x2⟩e

(2.22)

where ⟨. . . ⟩e denotes a spatial average over the transverse plane, with
the local energy-density e (or entropy density s, depending on the choice
done in the initialization stage) as a weight. The momentum anisotropy is
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estimated, following [119], in terms of the components of T , as

ep =
⟨T xx − T yy⟩e
⟨T xx + T yy⟩e

(2.23)

where ⟨. . . ⟩ denotes a spatial averaging (over the transverse plane) with
weight factor unity.

Because of the larger pressure gradients along the reaction-plane, during
the hydrodynamic evolution of the system the momentum anisotropy ep
is expected to increase at the expense of the spatial eccentricity ex. The
temporal evolution of ex and ep at RHIC, along with their sensitivity to
the EOS and the magnitude of the viscous effects, are shown in Fig. 2.14
for b = 7 fm in 2+1D. We can observe that, with higher values of η/s, the
growth of the momentum anisotropy is lower throughout the time evolution,
reflecting the role of dissipative effects in taming the collective response of
the system to the pressure gradients. Next, we consider the sensitivity
of ex and ep to the EOSs employed and the impact parameter. The time
evolution of the spatial and momentum anisotropies is shown, for b = 3

fm and b = 7 fm, with EOS-I, EOS-LS and EOS-PCE, with and without
shear viscosity (here we have switched off the bulk viscous effects), in Fig.
2.15. Both the spatial and momentum anisotropies are quite sensitive to
the EOS employed in the simulations. The differences among the various
setups can be observed at the later stages of the collisions both at b = 3 fm

− 57 −



Temperature and Eccentricity evolution

Figure 2.15: Spatial and momentum anisotropies for different EOSs
and impact parameters employed in 2+1D simulations.
The ideal case (the viscous case with η/s = 0.08) is
shown in top (bottom) panels.
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Figure 2.16: Spatial and momentum anisotropies for different values
of the η/s and ζ/s parameters, for b = 3 and b = 7 fm,
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a function of τ in RHIC-type 3+1D simulations, using
EOS-LS. We compare runs with b = 7 fm and for η/s = 0
0 and 0.08 in the plane with ηs = 0 space-time rapidity.

and at b = 7 fm. Differences are more pronounced for the more peripheral
collisions. All these observations still hold in the presence of viscosity.

We now investigate the role of bulk viscosity as far as the time evolutions
of ep and ex is concerned. We have plotted ex and ep at b = 3 fm and
b = 7 fm with and without ζ/s for two of the tabulated equations of state,
EOS-LS and EOS-PCE in Fig. 2.16. In both cases, we set η/s = 0.08. The
value of ζ/s is set to 2η/s(1/3−c2s). We observe that the non-vanishing ζ/s
has a negligible impact at the initial times as compared to role played by
η/s. There are some mild effects seen at lower temperatures (later stages
of the evolution). This is not surprising, since the temperature behavior
ζ/s is governed by the factor 1/3 − c2s . All the above observations are
valid for both EOS-LS and EOS-PCE.

Finally, also 3+1D simulations, with the same set up (RHIC-type
initialization with b = 7 fm, EOS-LS, Bjorken coordinates), have been
performed. Expansion now occurs also in the ηs direction, as expected,
and in Fig. 2.17 we show the time evolution of the ex and ep quantities
calculated at ηs = 0, for both the ideal case and the viscous one, with
η/s = 0.08. The behavior is similar to the corresponding 2+1D case, and
different cuts in the space-time rapidity ηs also produce similar results.
We have found that in some cases the expanding front along ηs shows
instabilities in 3+1D viscous runs (only for Bjorken coordinates). To cure
this problem, we adopt a similar strategy as in [39], where viscous tensor
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components (and the bulk viscous pressure) are decreased proportionally
to P/Pcut when P < Pcut , where the assumed threshold corresponds to a
temperature T ≃ 45 MeV (for the chosen EOS-LS), well below the freeze-
out limit.





3
A study of vorticity formation

in Heavy-ion collisions

An interesting issue to be studied in heavy-ion collisions at ultrarela-
tivistic energies, is the possible formation of vorticity in peripheral colli-
sions [120–122]. Hydrodynamics is a theoretical frame in which vorticity
is easily treated and indeed, its presence may provide information about
the (mean) initial state of the hydrodynamical evolution which cannot be
achieved otherwise. Vorticity is also related to the onset of interesting
new physics in the plasma at high temperature, such as the chiral vortical
effect [123]. Furthermore, it has been shown that vorticity gives rise to
polarization of particles in the final state, so that e.g. Λ baryon polariza-
tion - if measurable - can be used to detect it [124, 125]. Finally, as shown
in [126], numerical calculations of vorticity can be used to make stringent
tests of numerical codes, as the T-vorticity (see sect. 3.1 for the definition)
which is expected to vanish throughout under special initial conditions in
the ideal case.

Vorticity has been recently the subject of investigations in refs. [121,
122] with specific initial conditions in cartesian coordinates, ideal fluid
approximation and isochronous freeze-out. Instead, in [126], different kinds
of vorticity have been calculated with ECHO-QGP [85] including dissipative
relativistic hydrodynamics in the Israel-Stewart formulation with Bjorken
initial conditions, henceforth denoted as BIC. It should be pointed out from
the very beginning that the purpose of this chapter is to make a general
assessment of vorticity at top RHIC energy and not to provide a precision
fit to all the available data. Therefore, the calculations do not take into
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account effects such as initial state fluctuations, viscous corrections to
particle distribution at the freezeout and resonance feed-down.

3.1 Vorticities in relativistic hydrodynamics

Unlike in classical hydrodynamics, where vorticity is the curl of the velocity
field v, several vorticities can be defined in relativistic hydrodynamics
which can be useful in different applications (see also the review [127]).

3.1.1 The kinematical vorticity

This is defined as1:

ωµν =
1

2
(dνuµ − dµuν) =

1

2
(∂νuµ − ∂µuν)

where u is the four-velocity field. This tensor includes both the accelera-
tion Aµ and the relativistic extension of the angular velocity pseudo-vector
ωµ in the usual decomposition of an antisymmetric tensor field into a polar
and pseudo-vector fields:

ωµν = ϵµνρσω
ρuσ +

1

2
(Aµuν −Aνuµ)

Aµ = 2ωµνu
ν = uνdνuµ = Duµ

ωµ = −1

2
ϵµρστω

ρσuτ (3.1)

Using of the transverse (to u) projector 1.4 and the usual definition of
the orthogonal derivative (see 1.10):

∇µ = ∆α
µdα = dµ + uµD.

It is convenient to define also a transverse kinematical vorticity as:

ω∆
µν = ∆µρ∆νσω

ρσ =
1

2
(∇νuµ −∇µuν) (3.2)

Using the above definition in the decomposition (3.1) it can be shown that:

ω∆
µν = ϵµνρσω

ρuσ

1notice that this is still true in Milne coordinates
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that is ω∆ is the tensor formed with the angular velocity vector only. As
shown in the next subsection, only ω∆ shares the “conservation” property
of the classical vorticity for an ideal barotropic fluid.

3.1.2 The T-vorticity

This is defined as:

Ωµν =
1

2
[∂ν(Tuµ)− ∂µ(Tuν)] (3.3)

and it is particularly useful for a relativistic uncharged fluid, such as the
QCD plasma formed in nuclear collisions at very high energy. This is
because from the basic thermodynamic relations when the temperature is
the only independent thermodynamic variable, the relativistic equation of
motion (ε+ p)Aµ = ∇µp can be recast in the simple form (see e.g. [128]
and references therein):

uµΩµν =
1

2
(TAν −∇νT ) = 0 (3.4)

The above (3.4) is also known as Carter-Lichnerowicz equation [127] for an
uncharged fluid and it entails conservation properties which do not hold
for the kinematical vorticity.

We are gong to show that the T-vorticity has the same property as the
classical vorticity for an ideal barotropic fluid.

This can be better seen in the the language of differential forms, rewrit-
ing the definition of the T-vorticity as the exterior derivative of the
1-form Tu, that is:

Ω = d(Tu) (3.5)

We know from the Cartan identity that the Lie derivative along the
vector field u of Ω can be written as

Lu(Ω) = u · dΩ+ d(u · Ω). (3.6)

By using eq. (3.4) and the fact that the exterior derivative is nilpotent
(dd(Tu) = 0), we derive

Lu(Ω) = 0 (3.7)

Eq. (3.7) establishes that the T-vorticity is conserved along the flow and,
thus, if it vanishes at an initial time it will remain null at all times. This
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can be made better explained by expanding the Lie derivative definition in
components:

(LuΩ)µν = DΩµν − ∂σu
µΩσν − ∂σu

νΩσµ = 0 (3.8)

The above equation is in fact a differential equation for Ω precisely showing
that if Ω = 0 at the initial time then Ω ≡ 0 always. Thereby, the T-vorticity
has the same property as the classical vorticity for an ideal barotropic fluid
(Kelvin circulation theorem).

The relation between T-vorticity and kinematical vorticity can be
retrieved by expanding the definition (3.3):

Ωµν =
1

2
[(∂νT )uµ − (∂µT )uν ] + Tωµν

implying that the double-transverse projection of Ω:

∆µρ∆νσΩ
ρσ ≡ Ω∆

µν = Tω∆
µν

Hence, the tensor ω∆ shares the same conservation properties of Ω∆, namely
it vanishes at all times if it is vanishing at the initial time. Conversely, the
mixed projection of the kinematical vorticity:

uρωρσ∆
σν =

1

2
Aσ

does not. It then follows that for an ideal uncharged fluid with ω∆ = 0 at
the initial time, the kinematical vorticity is simply:

ωµν =
1

2
(Aµuν −Aνuµ) (3.9)

3.1.3 The thermal vorticity

This is defined as [125]:

ϖµν =
1

2
(∂νβµ − ∂µβν) (3.10)

where βµ = (1/T )uµ is the temperature four vector. This vector is
defined as (1/T )u once a four-velocity u, i.e. a hydrodynamical description,
is introduced, but it can also be taken as a primordial quantity which
allows to define a velocity through u ≡ β/


β2 [129].

The thermal vorticity features two important properties: it is dimen-
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sionless in natural units2 and it is the actual constant vorticity at the
global equilibrium with rotation [130] for a relativistic system, where β is
a Killing vector field whose expression in Minkowski spacetime is

βµ = bµ +ϖµνx
ν

being b and ϖ constant. In this case the magnitude of thermal vorticity is -
with the natural constants restored - simply ℏω/KT where ω is a constant
angular velocity. In general, (replacing ω with the classical vorticity defined
as the curl of a proper velocity field) it can be readily realized that the
thermal vorticity is a tiny number for most hydrodynamical systems, though
it can be significant for the plasma formed in relativistic nuclear collisions.

Furthermore, the thermal vorticity is responsible for the local polariza-
tion of particles in the fluid according to the formula [124]:

Πµ(x, p) = −1

8
ϵµρστ (1− nF ) ϖ

ρσ p
τ

m
(3.11)

which applies to spin 1/2 fermions, nF being the Fermi-Dirac-Juttner
distribution function.

nF =
1

e−(β(x)·p+µ)/T + 1
(3.12)

Similarly to the previous subsection, the relation between T-vorticity and
thermal vorticity can be written as:

ϖµν =
1

2T 2
[(∂µT )uν − (∂νT )uµ] +

1

T 2
Ωµν (3.13)

Again, the double transverse projection of ϖ is proportional to the one of
Ω:

∆µρ∆νσϖ
ρσ ≡ ϖ∆

µν =
1

T 2
Ω∆
µν =

1

T
ω∆

whereas the mixed projection turns out to be, by using the relation (3.13)

uρϖρσ∆
σν =

1

2T 2
∇νT +

Aν

2T

Again, for an ideal uncharged fluid with ω∆ = 0 at the initial time, by
using the equations of motion (3.4), one has the above projection is just

2in Minkowskian Coordinates
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Aν/T and that the thermal vorticity is simply:

ϖµν =
1

T
(Aµuν −Aνuµ) (3.14)

A common feature of the kinematical and thermal vorticity is that their
purely spacial components can be non-vanishing if the acceleration and
velocity field are non-parallel, even though velocity is vanishing at the
beginning.

3.2 Vorticity in high energy nuclear collisions

In nuclear collisions at very large energy, the QCD plasma is an almost
uncharged fluid. Therefore, according to previous section’s arguments, in
the ideal fluid approximation, if the transversely projected vorticity tensor
ω∆ initially vanishes, so will the transverse projection Ω∆ and ϖ∆ and
the kinematical and thermal vorticities will be given by the formulae (3.9)
and (3.14) respectively. Indeed, the T-vorticity Ω will vanish throughout
because also its longitudinal projection vanishes according to eq. (3.4).
This is precisely what happens for the usually assumed BIC for the flow at
τ0, that is ux = uy = uη = 0, where one has ω∆ = 0 at the beginning as it
can be readily realized from the definition (3.1.1). On the other hand, for
a viscous uncharged fluid, transverse vorticities can develop even if they
are zero at the beginning.

It should be noted though, that even if the space-space components
(x, y, η indices) of the kinematical vorticity tensor vanish at the initial
Bjorken time τ0, they can develop at later times, even for an ideal fluid,
if the spatial components of the acceleration and velocity fields are not
parallel, according to eq. (3.9). The equation makes it clear that the onset
of spatial components of the vorticity is indeed a relativistic effect as, with
the proper dimensions, it goes like (a× v)/c2.

Let us consider the full longitudinally boost invariant Bjorken picture,
that is uη = 0 throughout the fluid evolution. In the ideal case, as ω∆ = 0,
the only non-vanishing components of the kinematical vorticity are ωτx, ωτy

and ωxy. At η = 0 the latter can be different from zero; but, because of
the reflection symmetry in both the x and y axes (see fig. 3.1), it ought to
change sign by moving clockwise (or counterclockwise) to the neighbouring
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quadrant of the x−y plane. For central collisions instead, it simply vanishes.
However, in the viscous case, more components of the vorticities can

be non-vanishing. Furthermore, in more realistic 3+1 D hydrodynamical
calculations, a non-vanishing uη can develop because of the asymmetries
of the initial energy density in the x− η and y − η planes at finite impact
parameter. The asymmetry is essential to reproduce the observed directed
flow coefficient v1(y) in a 3+1D ideal hydrodynamic calculation with BIC,
as shown by Bozek [131], and gives the plasma a total angular momentum,
as it will be discussed later on.

In this chapter, we calculate the vorticities, and especially the thermal
vorticity ϖ by using basically the same parametrization of the initial
conditions in ref. [131]. Those initial conditions are a modification of
the BIC to take into account that the plasma, in peripheral collisions,
has a relatively large angular momentum (see Appendix A). They are a
minimal modifications of the BIC in that the initial flow velocity Bjorken
components are still zero, but the energy density longitudinal profile is
changed and no longer symmetric by the reflection η → −η. They are
summarized hereinafter. Given the usual thickness function expression (see
equation 2.3) we set for this calculation ρ0 = 0.1693 fm−3, δ = 0.535 fm
and R = 6.38 fm 3. Since we are dealing with colliding nuclei of the same
kind, it is convenient to define the following functions:

n1(x; b) = T+


1−


1− σNN

A
T−

A
(3.15)

n2(x; b) = T−


1−


1− σNN

A
T+

A
(3.16)

(again σNN is the inelastic nucleon-nucleon cross section, A the mass
number of the colliding nuclei), and:

T+(x; b) = T


x+

b

2


T−(x; b) = T


x− b

2


(3.17)

where, as in chapter 2, x is the vector of the transverse plane coordinates
and b is the impact parameter vector, connecting the centers of the two
nuclei.

In our conventional cartesian reference frame, the b vector is oriented
along the positive x axis and the two nuclei have initial momentum along the

3the nuclear density, the width and the radius of the nuclear Fermi distribution
respectively
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y

z

x

Figure 3.1: Colliding nuclei and
conventional carte-
sian reference frame.
Also shown the ini-
tial angular momen-
tum vector.

z axis (whence the reaction plane is the xz
plane) and their momenta are directed so
as to make the initial total angular momen-
tum oriented along the negative y axis (see
fig. 3.1).

We recall also the definition of the mean
number of binary collisions (see eq. 2.2):

ncoll(x; b) = σNNT+(x; b)T−(x; b) (3.18)

For the purposes of this study we will
change the definition of the wounded nu-
cleons weight function given in 2.1, adding
into it a dependence from the space-time
rapidity, and we will call it WN :

WN (x, η; b) = 2 (n1(x; b)f−(η) + n2(x; b)f+(ηs)) (3.19)

where:

f−(ηs) =


1 ηs < −ηm
−ηs + ηm

2ηm
−ηm ≤ ηs ≤ ηm

0 ηs > ηm

and

f+(ηs) =


0 ηs < −ηm
ηs + ηm
2ηm

−ηm ≤ ηs ≤ ηm

1 ηs > ηm

Finally, the initial proper energy density distribution is assumed to be:

ε = ε0
α ncoll(x;b)H(ηs) + 2(1− α)WN (x, ηs; b)

αncoll(0; 0) + (1− α)WN (0, 0; 0)
(3.20)

where we define:

H(ηs) = exp


− η̃2

2σ2η
θ(η1)


η̃ = |ηs| − ηflat/2 (3.21)

We recall that α is the collision hardness parameter, which can vary between
0 and 1. Notice that in the denominator, the dependence from ηs of WN

is just formal: when we set ηs = 0 the function WN assumes the value
of npart of equation 2.1. The parametrization (3.20) essentially respects
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the causality constraint that the plasma cannot extend beyond η = ybeam.
Indeed, at

√
sNN = 200 GeV ybeam ≃ 5.36 while the 3 σ point in the

gaussian profile in Eq. (3.21) lies at η = ηflat/2 + 3ση ≃ 4.4.
The free parameters have been chosen following ref. [132], where they

were adjusted to reproduce the data in Au-Au collisions at
√
sNN = 200

GeV. We performed simulations within ECHO-QGP for both the ideal and

Parameter Value√
sNN 200GeV
α 0.
ϵ0 30GeV/fm3

σin 40mb
τ0 0.6 fm/c
ηflat 1
ση 1.3
Tfo 130MeV
b 11.57fm

ηm ideal 3.36
ηm viscous 2.86

η/s 0.16

Table 3.1: Parameters defining the initial configuration of the fluid in
the Bjorken coordinates. The last two parameter values
have been fixed for the last physical run.

viscous modes with the parameters reported in table 3.1 and the equation
of state reported in ref. [102]. The impact parameter value b = 11.57 was
chosen as, in the optical Glauber model, it corresponds to the mean value
of the 40-80% centrality class (9.49 < b < 13.42 fm [133]) used by the
STAR experiment for the directed flow measurement [134]. The initial
flow velocities ux, uy, uη were set to zero, according to BIC. The freezeout
hypersurface - isothermal at TFO = 130 MeV - is determined with the
methods described in section 2.3 (and also in refs. [85, 135,136]).

3.3 Vorticities in ECHO-QGP: novel tests

While in section 1.4 we showed that ECHO-QGP is well suited to model
the evolution of the matter produced in heavy-ion collisions exploiting
“canonical” tests, we must demonstrate the extension of its suitability to
carry out the study on the development of vorticity. In such an environment,
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we have performed two calculations, referring to an ideal and viscous
scenario respectively, providing a very stringent numerical test.

Before describing these tests, it should be pointed out that the vorticities
components must to be calculated in Bjorken coordinates, whose metric
tensor is gµν = diag(−1, 1, 1, τ2), hence they do not all have the same
dimension nor they are adimensional as it is desirable (except the thermal
vorticity, as it has been emphasized in Sect. 3.1). For a proper comparison
it is better to use the orthonormal basis, which involves a factor τ when
the η components are considered. Moreover, the cumulative contribution
of all components is well described by the invariant modulus, which, for a
generic antisymmetric tensor Aµν is:

A2 = AµνA
µν = 2[A2

xy −A2
τx −A2

τy + (A2
ηx +A2

ηy −A2
ητ )/τ

2]. (3.22)

Furthermore, we have always rescaled the T-vorticity by 1/T 2 in order
to have an adimensional number. Since the T-vorticity has always been
determined at the isothermal freezeout, in order to get its actual magnitude,
one just needs to multiply it by T 2

FO.

3.3.1 T-vorticity for an ideal fluid

Since the fluid is assumed to be uncharged and the initial T-vorticity Ω is
vanishing with the BIC, it should be vanishing throughout, according to the
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Figure 3.2: Mean of the absolute value of T-vorticity components,
divided by τT 2, at the freeze-out as a function of the grid
resolution.
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Figure 3.3: Contour plot of Ωxη/τT
2 at the freeze-out hypersurface

at y = 0.

discussion in sect. 3.1). However, the discretization of the hydrodynamical
equations entails a numerical error, thus the smallness of Ω in an ideal run
is a gauge of the quality of the computing method. In fig. 3.2 we show the
mean of the absolute values of the six independent components, in Bjorken
coordinates, of the T-vorticity divided by T 2 to make it adimensional, as
a function of the grid resolution (the boundaries in x, y, η being fixed).
It should be pointed out that, throughout this work, by mean values of
the vorticities we mean simple averages of the (possibly rescaled by 1/τ)
Bjorken components over the freezeout hypersurface without geometrical
cell weighting. Therefore, the plotted mean values have no physical meaning
and they should be taken as descriptive numbers which are related to the
global features of vorticity components at the freeze-out. Nonetheless, when
referring to Bjorken coordinates this quantity (whose we show a component
in 3.3) is the one that can give us a hint of what is the path to walk. As it is
expected, the normalized T-vorticity decreases as the resolution improves.
Because of the relation (3.13), the residual value at our best resolution

of 0.15 fm can be taken as a numerical error for later calculations of the
thermal vorticity.

3.3.2 T-vorticity for a viscous fluid

Unlike the case of an ideal uncharged fluid, T-vorticity can be generated in
a viscous fluid even if it vanishes at the initial time. Thus, the T-vorticity
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Figure 3.4: Mean of the absolute values of Ωµν/T
2 components at

the freeze-out as a function of η/s. Note that the
Ωxη,Ωyη,Ωτη have been multiplied by 1/τ . Upper panel:
log scale. Lower panel: zoom on the zero region.

can be used as a tool to estimate the numerical viscosity of the code in the
ideal mode by extrapolating the viscous runs.

In general, in addition to standard truncation errors due to finite-
difference interpolations, all shock-capturing upwind schemes are known
to introduce numerical approximations that behave roughly as a diffusive
effect, especially in the simplified solution to the Riemann problems at cell
interfaces [137]. It is therefore important to check whether the code is not
introducing, for a given resolution, numerical errors which are larger than
the effects induced by the physics. In the following we will refer to the
global numerical errors generically as numerical viscosity.

We have thus calculated the T-vorticity for different physical viscosities
(in fact η/s ratios), in order to provide an upper bound for the numerical
viscosity of ECHO-QGP in the ideal mode. The mean value of the T-
vorticity is shown in fig. 3.4 and its extrapolation to zero occurs when
|η/s| < 0.002 which is a very satisfactory value. The good performance
is due to the use of high-order reconstruction methods that are able to
compensate for the highly diffusive two-wave Riemann solver employed [85].

3.4 Directed flow, angular momentum and ther-
mal vorticity

With the initial conditions reported at the end of the Sect. 3.2 we have
calculated the directed flow of pions (both charged states) at the freezeout
and compared it with the STAR data for charged particles collected in the
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centrality interval 40-80% [134]. Directed flow is an important observable
for several reasons and it has been calculated with an ideal 3+1D hydro
code first by Bozek [131]; here, we extend that calculation to the viscous
regime.

Figure 3.5: Directed flow of pions for different values of ηm parameter
with η/s = 0.1 compared with STAR data [134].

The amount of generated directed flow at the freezeout depends of
course on the initial conditions, particularly on the parameter ηm (see
Sect. 3.2), as shown in fig. 3.5. The directed flow also depends on η/s, as
it can be appreciated quantitatively in fig. 3.6, and could then be used
to measure the viscosity of the QCD plasma along with other azimuthal
anisotropy coefficients. The dependence on ηm and η/s makes it possible
to fit the best ηm parameter for a given η/s value. We have carried out a
physical ECHO-QGP run with a fixed η/s = 0.16, approximately twice the
conjectured universal lower bound, with a corresponding ηm ≃ 2.86. This
couple of values results in a very good agreement with the observed v1 (see
fig. 3.7). It is worth discussing more in detail an interesting relationship
between the value of the parameter ηm and that of a conserved physical
quantity, the angular momentum of the plasma, which, for BIC is given by
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Figure 3.6: Directed flow of pions for different values of η/s parameter
with ηm = 3.36 compared with STAR data [134].
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Figure 3.7: Directed flow of pions at η/s = 0.16 and ηm = 2.86
compared with STAR data [134].
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the integral (see A for the derivation):

Jy = −τ0


dxdydη x sinh η ε(x, y, η) (3.23)

Since ηm controls the asymmetry of the energy density distribution in
the η − x plane, one expects that Jy will vary as a function of ηm. Indeed,
if the energy density profile is symmetric in η, the integral in eq. 3.23
vanishes. Yet, for any finite ηm ̸= 0, the profile (3.20) is not symmetric and
Jy ̸= 0 (looking at the definition of f+ and f− it can be realized that only
in the limit ηm → ∞ the energy density profile becomes symmetric). The
dependence of the angular momentum on ηm with all the initial parameters
kept fixed is shown in fig. 3.8. For the value ηm = 2.86 it turns out to
be around 2.7103 in ℏ units. It is also interesting to estimate an upper

Figure 3.8: Angular momentum (in ℏ units) of the plasma with
Bjorken initial conditions as a function of the parameter
ηm.

bound on the angular momentum of the plasma by evaluating the angular
momentum of the overlap region of the two colliding nuclei. This can be
done by trying to extend the simple formula for two sharp spheres. In our
conventional reference frame, the initial angular momentum of the nuclear
overlap region is directed along the y axis with negative value and can be
written as:

Jy =


dx,dy w(x, y)(T+ − T−)x

√
sNN
2

(3.24)
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where T± are the thickness functions like in eq. 3.17 and

w(x, y) =
min(n(x+ b/2, y, 0), n(x− b/2, y, 0))

max(n(x+ b/2, y, 0), n(x− b/2, y, 0))

is the function which extends the simple product of two θ functions used
for the overlap of two sharp spheres. Note that the ω̃(x, y) is 1 for full
overlap (b=0) and implies a vanishing angular momentum for very large
b (see fig. 3.9). At b = 11.57 fm the above angular momentum is about
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Figure 3.9: Estimated angular momentum (in ℏ units) of the overlap
region of the two colliding nuclei as a function of the
impact parameter

3.5103 in ℏ units. This means that, with the current parametrization of
the initial conditions, for that impact parameter about 77% of the angular
momentum is retained by the hydrodynamical plasma while the rest is
possibly taken away by the corona particles.

With the final set of parameters, we have calculated the thermal vorticity
ϖ. As it has been mentioned in Sect. 3.1, this vorticity is adimensional
and it is a constant in global thermodynamical equilibrium [130], e.g. in
a globally rotating fluid with a rigid velocity field. In relativistic nuclear
collisions we are far from a such a situation, nevertheless some thermal
vorticity can be generated, both in the ideal and viscous case. This is
shown in figs. 3.10 and 3.11.

It can be seen that the generated amount of thermal vorticity has
a significant dependence on the viscosity in all of his components and
generally increases as a function thereof. Moreover, as it is evident from
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Figure 3.10: Mean of the absolute value of thermal vorticity covariant
components at the freeze-out as a function of η/s. Note
that the ϖxη, ϖyη, ϖτη have been multiplied by 1/τ .

fig. 3.11, the ϖxη component – which is directed along the initial angular
momentum – has a non-vanishing mean value which also significantly
depends on the viscosity. Its map at the freezeout is shown in fig. 3.12
where it can be seen that it attains a top (negative) value of about 0.07
corresponding to a kinematical vorticity, at the freezeout temperature of
130 MeV, of about 0.046 c/fm = 1.41022s−1. In this respect, the Quark
Gluon Plasma would be the fluid with the highest vorticity ever made in a
terrestrial laboratory. However, the mean value of this component at the
same value of η/s = 0.16 is of the order of 7 10−3, that is about ten times
less than its peak value, as shown in fig. 3.11. This mean thermal vorticity
is consistently lower than the one estimated in ref. [125] (about 0.05) with
the model described in refs. [121, 122] implying an initial non-vanishing
transverse kinematical and thermal vorticity ϖ∆. This reflects in a quite
low value of the polarization of Λ baryons, as it will be shown in the next
section.

3.5 Polarization

As it has been mentioned in the Introduction, vorticity can result in the
polarization of particles in the final state. The relation between the polar-
ization vector of a spin 1/2 particle and thermal vorticity in a relativistic
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fluid was derived in ref. [124] and reads:

Πµ(p) =
1

8m


Σ dΣλp

λnF (1− nF ) pσϵ
µνρσ∂νβρ

Σ dΣλpλ nF
(3.25)

where nF is the Fermi-Dirac-Juttner distribution function (3.12) and the
integration is over the freeze-out hypersurface Σ. The interesting feature of
this relation is that it makes it possible to obtain an indirect measurement
of the mean thermal vorticity at the freezeout by measuring the polarization
of some hadron. For instance, the polarization of Λ baryons, as it is well
known, can be determined with the analysis of the angular distribution of
its decay products, because of parity violation. The polarization pattern
depends on the momentum of the decaying particle, as it is apparent from
eq. (3.25).

The formula (3.25) makes sense only if the components of the integrand
are Minkowskian, as an integrated vector field yields a vector only if the
tangent spaces are the same at each point. Before summing over the
freezeout hypersurface we have then transformed the components of the
thermal vorticity from Bjorken coordinates to Minkowskian by using the
known rules. The obtained polarization vector Π(p) is the one in the
collision frame. However, the polarization vector which is measurable is the
one in the decaying particle rest frame which can be obtained by means of
the Lorentz transformations:

Π0
0 =

ϵ

m
Π0 − p ·Π

m

Π0 = Π− p ·Π
ϵ(m+ ϵ)

p (3.26)

In figure 3.13 we show the Λ polarization vector components, as well
as its modulus, as a function of the transverse momentum pT for pz = 0

expected under the assumptions of local thermodynamical equilibrium for
the spin degrees of freedom maintained till kinetic freezeout. It can be seen
that the polarization vector has quite an assorted pattern, with an overall
magnitude not exceeding 1% at momenta around 4 GeV. As expected, the y
component is negative, oriented along the initial angular momentum vector
and a magnitude of the order of 0.1%. Indeed, the main contribution to the
polarization stems from the longitudinal component Πz0, with a maximum
and minumum along the bisector |px| = |py|.

The obtained polarization values are – as expected – consistently smaller

− 80 −



A STUDY OF VORTICITY FORMATION IN HEAVY-ION
COLLISIONS

|Π0|

-4 -3 -2 -1  0  1  2  3  4

px [GeV]

-4

-3

-2

-1

 0

 1

 2

 3

 4

p
y
 [

G
e

V
]

0.0 10
0

1.0 10
-3

2.0 10
-3

3.0 10
-3

4.0 10
-3

5.0 10
-3

6.0 10
-3

7.0 10
-3

8.0 10
-3

9.0 10
-3

1.0 10
-2

(a)

Π0
x

-4 -3 -2 -1  0  1  2  3  4

px [GeV]

-4

-3

-2

-1

 0

 1

 2

 3

 4

p
y
 [

G
e

V
]

-6.0 10
-4

-4.0 10
-4

-2.0 10
-4

0.0 10
0

2.0 10
-4

4.0 10
-4

6.0 10
-4

(b)

Π0
y

-4 -3 -2 -1  0  1  2  3  4

px [GeV]

-4

-3

-2

-1

 0

 1

 2

 3

 4

p
y
 [

G
e

V
]

-1.8 10
-3

-1.6 10
-3

-1.4 10
-3

-1.2 10
-3

-1.0 10
-3

-8.0 10
-4

-6.0 10
-4

-4.0 10
-4

(c)

Π0
z

-4 -3 -2 -1  0  1  2  3  4

px [GeV]

-4

-3

-2

-1

 0

 1

 2

 3

 4

p
y
 [

G
e

V
]

-1.0 10
-2

-8.0 10
-3

-6.0 10
-3

-4.0 10
-3

-2.0 10
-3

0.0 10
0

2.0 10
-3

4.0 10
-3

6.0 10
-3

8.0 10
-3

1.0 10
-2

(d)

Figure 3.13: Modulus (panel (a)) and components of the polarization
vector of the Λ hyperon in its rest frame.
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than those estimated in ref. [125] (of the order of several percent with a
top value of 8-9%) with the already mentioned initial conditions used in
refs. [121,122]. This is a consequence of the much lower value of the implied
thermal vorticity, as discussed in the previous section.

3.6 Plausibility of the initial conditions for the an-
gular momentum

The fact that in 3+1D the plasma needs to have an initial angular momen-
tum in order to reproduce the observed directed flow raises the question
whether the Bjorken initial condition uη = 0 is a compelling one or, instead,
the same angular momentum can be obtained with a non trivial uη and
with a suitable change of the energy density profile. For a testing purpose,
we have run ECHO-QGP with an initial profile:

uη =
1

τ
tanhAx sinh(ybeam − |ηs|) (3.27)

which meets the causality constraint. In fact, the inequality expressing the
causality constraint in the hydrodynamical picture of relativistic heavy ion
collisions is that the initial longitudinal flow velocity must not exceed the
velocity of beam protons vz < vbeam (assuming vanishing initial transverse
velocity):

|y| =
1
2
log

1 + vz
1− vz

 = | log(u0 + uz)| ≤ ybeam (3.28)

By using the transformation rules (A.10):

log(u0 + uz) = log [(cosh ηs + sinh ηs)(u
τ + τuη)]

= log

eη(


1 + τ2uη2 + τuη)


= ηs + log(

1 + τ2uη2 + τuη)

= ηs + asinh(τuη) ≤ ybeam (3.29)

the inequality (3.28) becomes:

|ηs + asinh(τuη)| ≤ ybeam
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which can be solved for uη:

− 1

τ
sinh(ybeam + ηs) ≤ uη ≤ 1

τ
sinh(ybeam − ηs) (3.30)

The form (3.27) fulfills the above inequality.

It is found that even for very small values of the parameter A (5 · 10−4

corresponding to a Jy = 2.9·103 and −5·10−4 corresponding to Jy = 2.6·103)
keeping the other parameters fixed the directed flow exhibits two wiggles
around midrapidity (see fig. 3.14) which are not seen in the data. From
this very preliminary assessment, we can at least guess that in the Bjorken
scheme an initial longitudinal flow velocity is disfavoured.
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Figure 3.14: Directed flow of pions at η/s = 0.16 and ηm = 2.86 and
with the initial uη in the eq. (3.27) compared with STAR
data [134].

− 83 −



4
A perturbative approach to

the hydrodynamics of
heavy-ion collisions

In recent years, fluid dynamic simulations of relativistic heavy ion collisions
have provided strong evidence that the momentum distributions of soft
hadrons is the result of a fluid dynamic evolution of an initial state that
includes density fluctuations (see Refs. [6, 138–140] for recent reviews).
The research focuses now on understanding in detail the mapping from
fluctuations in the initial state, to experimentally accessible observables in
the final state [53,55,60,62,101,141–147].

The present chapter aims at quantifying to what degree this hydrody-
namic mapping is linear in the strength of initial fluctuations around some
suitably chosen background, and on what scale non-linearities arise. This
is of interest since an approximately linear relation would provide a partic-
ularly simple, and thus useful, tool for relating experimental observables
to the initial conditions of heavy ion collisions and to those properties of
matter that govern their fluid dynamic evolution [148]. Note that when
we say linear relation we mean a mapping in which non-linearities, al-
though unquestionably present, can be understood as small corrections of
a predominantly linear mapping.



A PERTURBATIVE APPROACH TO THE
HYDRODYNAMICS OF HEAVY-ION COLLISIONS

4.1 Theoretical basis

The fluctuating initial conditions used for the hydrodynamic modeling
of heavy ion collisions, are specified in terms of fluid dynamic fields (hi)
slightly varying over a hypersurface at fixed initial time τ0, and depending
on the coordinates (τ, x = r cosϕ, y = r sinϕ, ηs)

hi(τ, r, φ, η) =

w, ur, uϕ, uη, πbulk, π

ηη, . . .

, (4.1)

where we employed a different index i for every independent field. Such
fields can possibly be the enthalpy density h1 = w, three independent fluid
velocity components, the bulk viscous tensor, the independent components
of the shear viscous tensor, etc.
In the following we assume Bjorken boost invariance and drop the rapidity-
argument ηs in the hydrodynamical fields. Following Refs. [148,149], hi are
expressed in terms of a background component hBGi and an appropriately
normalized perturbation h̃i (see Appendix ?? for details). The background
is taken to be a solution of the non-linear hydrodynamic equations initialized
at τ0 with an azimuthally symmetric average over many events, and it is
then evolved with ECHO-QGP. For any sample of events, this background
needs to be determined only once. The time evolution of the normalized
perturbation h̃i is viewed as a perturbative series on top of the background
fields, where the kernels Gij , Hijk (and corresponding terms for higher
orders in h̃i) depend on the time-evolved background hBGi only. In order
to avoid an exceedingly heavy notation, we decide to drop the dependence
of the kernels from the coordinates, specifying them here:

Gij = Gij(τ, τ0, r, r
′, φ− φ′)

Hijk = Hijk(τ, τ0, r, r
′, r′′, φ− φ′, φ− φ′′) (4.2)

Due to the azimuthal rotation symmetry of the background, those kernels
depend on the angles φ, φ′ , φ′′ only via their difference (i.e. φ− φ′).

Making use of this notation, we write down the time evolution of the
normalized perturbation h̃i as:

h̃i(τ, r, φ) =


r′,φ′

Gij h̃j(τ0, r
′, φ′)

+
1

2


r′,r′′,φ′,φ′′

Hijkh̃j(τ0, r
′, φ′) h̃k(τ0, r

′′, φ′′)

+O(h̃3) , (4.3)
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where

r =

∞
0 dr r,


φ =

 2π
0 dφ etc.

We now want to examine the extent of this linearity in the hydrodynamic
frame: we ask whether the expansion (4.3) is possible for a suitably chosen
background and whether it is dominated by the first linear term. To address
this question, we compare in the following numerical results from a full
causal dissipative hydrodynamic evolution to expectations based on the
structure and on the symmetries of the perturbative series (4.3).

It must be remarked that hydrodynamic evolution is governed by non-
linear partial differential equations and it may be chaotic or it may contain
terms that are non-analytic in the initial fluid fields h̃j . Hence, the validity
of the expansion (4.3) cannot be guaranteed as true a priori. Also, such ex-
pansion depends on the choice of the background hBG and on the strength
of the perturbations h̃.

For the initial conditions, we assume once again that the initial trans-
verse velocity components vanish, the longitudinal velocity is Bjorken boost
invariant, the shear stress tensor is initialized by its Navier-Stokes value,
and the bulk viscous pressure is neglected. Initial fluctuations reside then
only in the initial enthalpy density w(τ, r⃗), that we parametrize in terms
of an azimuthally averaged background wBG(τ, r) and the weights w̃(m)

l of
the azimuthal (m) and radial (l) wave numbers of a discrete orthonormal
Bessel-Fourier decomposition [148]:

w(τ0, r, φ) = wBG(τ0, r)


1 +

∞
m=−∞

w̃(m)(τ0, r) e
imφ


,

w̃(m)(τ0, r) =
∞
l=1

w̃
(m)
l Jm


k
(m)
l r


. (4.4)

Here k(m)
l = z

(m)
l /R, where z(m)

l is the l-th zero of the modified Bessel
function Jm and R = 8 fm.
Since w̃(τ, r, φ) is real, we have w̃(m)(τ, r) = w̃(−m)∗(τ, r). Without loss of
generality, we can take the weights with m ≥ 0 as the independent ones
and write

w̃
(m)
l = |w̃(m)

l |e−imψ
(m)
l . (4.5)

The corresponding modes with m < 0 are then not independent and are
defined by the condition

|w̃(m)
l | = |w̃(−m)

l |
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η/s ∆x ∆y ∆τ Courant algorithmic
fm fm fm/c number kernel

1/4π 0.2 0.2 10−3 0.2 MPE5

Table 4.1: Setup for the study of the non-linearity of hydrodynamic
evolution. The MPE5 scheme is the most accurate one
available in ECHO-QGP (fifth order for smooth flows).
Following Ref. [150], we use the equation of state s95p-PCE
which combines lattice QCD results at high temperatures
with a hadron resonance gas at low temperatures.

with azimuthal angle ψ(−m)
l = ψ

(m)
l ± π.

4.2 Single mode

We consider first the case for which one single fluctuating basis mode is
embedded on top of wBG(τ0, r). For example, we specify this mode with
the weight w̃(2)

1 , so that the initial enthalpy density reads

w(τ0, r⃗) = wBG(τ0, r)

1 + 2|w̃(2)

1 |J2

k
(2)
1 r

cos

2(φ− ψ

(2)
1 )


. (4.6)

For one single mode, we can set without loss of generality ψ(2)
1 = 0.

The background wBG used throughout in this work is initialized at
τ0 = 0.6 fm/c with an azimuthally symmetric average of Glauber model
initial conditions for Pb+Pb collisions at the LHC, described in Ref. [149].
We assume Bjorken-boost invariance, letting ECHO-QGP evolve this initial
profile with the setup in table 4.1 in 2+1 dimension.

The time-evolved fluctuation w̃(2)(τ, r) is determined from the full
hydrodynamic evolution via Fourier analysis. Results are shown in fig. 4.1
for τ = τ0 + 5 fm/c and τ = τ0 + 10 fm/c after initialization and for
different weights w̃(2)

1 . Fluctuations at time τ0 are cut-off in the region
of very low background density, see e.g. w̃(2)(τ0, r) in fig. 4.1 – we have
checked that this does not affect our results. This analysis suggests that
at all relevant times and even for relatively large initial amplitudes w̃(2)

1 ,
the fluid dynamic response wBGw̃(2)(τ, r⃗) to an initial perturbation scales
approximately linearly with the weight w̃(2)

1 , in fact the perturbation scales
as its initial weight (see middle and lowe panel). We observe this linear
dependence with similar accuracy also for other basic modes (data not
shown).
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Figure 4.1: Results for the hydrodynamic evolution of the initial con-
dition (4.6), obtained with ECHO-QGP. Upper row: the
time dependence of the enthalpy density is shown sepa-
rately for the background wBG(τ, r) and for the perturba-
tion w̃(2)(τ, r) initialized with w̃(2)

1 = 0.5. Middle row: the
dependence of the perturbations w̃(2) on the initial weight
for τ = τ0 + 5fm/c (left) and scaled by the initial weights,
w̃(2)(τ, r)/w̃

(2)
1 (right). This scaling establishes that the

fluid dynamic response to perturbations is approximately
linear. Lower row: same results as shown in middle row,
but for τ = τ0 + 10fm/c.

This linear behavior of the response of w̃(m)(r, τ) with the initial weights
w

(m)
l , is expected from the linear term in eq. (4.3), but it does not imply

that non-linearities are absent. To see that, consider the Fourier series

h̃i(τ, r, φ) =
1

2π

∞
m=−∞

eimφ h̃
(m)
i (τ, r),

where h̃(m)
i (τ, r) are in general complex expansion coefficients, but h̃(m)

i (τ, r) =

h̃
(−m)∗
i (τ, r) since h̃(τ, r, φ) ∈ R. Since the kernels in (4.2-4.3) depend only

on the background field, they are invariant under azimuthal rotation and
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their Fourier expansions read1

Gij =
1

2π

∞
m=−∞

eim∆φG
(m)
ij (τ, τ0, r, r

′) ,

Hijk =
1

(2π)2

∞
m′=−∞
m′′=−∞

ei(m
′∆φ′+m′′ ∆φ′′) H

(m′,m′′)
ijk (τ, τ0, r, r

′, r′′) ,
(4.7)

and so on. From Gij ∈ R and Hijk ∈ R one can write

G
(m)
ij (. . . ) = G

(−m)∗
ij (. . . ) and H

(m′,m′′)
ijk (. . . ) = H

(−m′,−m′′)∗
ijk (. . . ) .

Then from eq. (4.3), one obtains:

h̃
(m)
i (τ, r) =


r′

G
(m)
ij (τ, τ0, r, r

′) h̃
(m)
j (τ0, r

′)

+
1

2


r′,r′′

1

2π


m′
m′′

δm,m′+m′′H
(m′,m′′)
ijk (τ, τ0, r, r

′, r′′) h̃
(m′)
j (τ0, r

′) h̃
(m′′)
k (τ0, r

′′)

+ . . . (4.8)

Going back to the studied case, in which initial conditions contain only
fluctuations of enthalpy density, we have h̃

(m)
j (τ0, r) = δj1 w̃(m)(τ0, r).

Using the orthonormal expansion (4.4) for w̃(m)(τ0, r), one can write eq.
(4.8) as

h̃
(m)
i (τ, r) =


l′

G
(m)
i1 ; l′(τ, τ0, r) w̃

(m)
l′

+
1

4π


m′,l′

m′,l′′

δm,m′+m′′H
(m′,m′′)
i11 ; l′l′′ (τ, τ0, r) w̃

(m′)
l′ w̃

(m′′)
l′′

+ . . . (4.9)

with
G

(m)
i1 ; l′(τ, τ0, r) =


r′

G
(m)
i1 (τ, τ0, r, r

′) Jm


k
(m)
l′ r′


, (4.10)

and similarly for Hi11 ; l′l′′ .

According to (4.8), if one initializes fluctuations with a single mode of
weight w̃(m)

l , as done in fig. 4.1, then corrections that are quadratic in the

1We keep the arguments for the Fourier expansion, in order to make it distinguishable
from the kernel itself.
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Figure 4.2: Left column: the zeroth, fourth and sixth harmonic per-
turbations induced by an initial fluctuation in the second
harmonic, shown for different values of the initial weight
w̃

(2)
1 . Right column: Same results but rescaled by the

second (third) power of the weight w̃(2)
1 . This scaling

establishes that w̃(0)(τ, r) and w̃(4)(τ, r) (w̃(6)(τ, r)) can
be understood as overtones that are induced by the initial
second harmonic perturbation as a perturbative second
(third) order correction to (4.3). The short-range fluctua-
tions in the rescaled w̃(6)(τ, r) result from amplifying the
numerical uncertainties of very small number by a large
scaling factor (1/w̃

(2)
1 )3 = 1000.

fluctuations h̃i(τ0) will not appear in the time-evolved harmonics h̃(m)
i , but

in the harmonics h̃(2m)
i and h̃

(0)
i instead. Also the third order correction

enters the fluctuating fields in h̃(3m)
i (and it enters in h̃(m)

i as a correction
that is subleading by two orders compared to the leading linear response).

To illustrate this general feature, one can compare the dominant linear
response wBG w̃(2) shown in fig. 4.1 with the leading quadratic (wBG w̃(0),
wBG w̃

(4)) and cubic (wBG w̃(6)) corrections displayed in fig. 4.2. We observe
that quadratic (cubic) corrections scale with the square (the cube) of the
initial weight w̃(2)

1 , as expected from eq. (4.8). Moreover, even for a weight
w̃

(2)
1 = 0.5, quadratic corrections are approximately a factor 5 smaller than
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the linear response, and cubic corrections are another factor 5 smaller
than the quadratic ones. From Ref. [149], we know that for realistic initial
conditions in heavy ion collisions, the average weights of basis modes are
of order O(0.1) and that only the tails of event distributions in w̃(m)

l may
reach values of order 0.5. Fig. 4.2 thus shows that for the studied case,
non-linear corrections, while clearly present, could be treated as small
perturbations for fluctuations of realistic weight.

4.3 Higher harmonics

So far, we have demonstrated with examples that Eq. (4.9) explains the
dominance of linear response and the relative size and ordering of the over-
tones induced by one basis fluctuation. We have also checked that the same
equation explains the structure and the symmetries of the hydrodynamic
interactions between initial perturbations, with different wave numbers.

Fig. 4.3 shows a case for which two perturbations w̃(2)
2 , w̃(3)

1 are em-
bedded on top of the initial background fields. We have checked that the
second and third harmonics of the fluid dynamic response (w̃(2)(τ, r) and
w̃(3)(τ, r)) scale linearly with their respective initial weights (w̃(2)

2 and w̃(3)
1 ).

We also cheked (data not shown here) how they agree to high accuracy
with the response to an initial configuration in which only one mode (w̃(2)

2

or w̃(3)
1 ) is embedded on top of wBG. Also, higher even harmonics (like

w̃(4)(τ, r)) scale with the square of w̃(2)
2 , similarly to the case shown in

fig. 4.2.
In order to study the interactions between different modes, we show

in fig. 4.3 the first and fifth harmonics. According to eq. (4.9) such har-
monics are the only ones that receive (leading) second order contributions
proportional to w̃(2)

2 w̃
(3)
1 . If ψ(2) ̸= ψ(3), then the responses wBGw̃(1) and

wBGw̃
(5) consist of both a real and an imaginary part. Both parts exhibit

the expected scaling with w̃(2)
2 w̃

(3)
1 , as can be seen in fig. 4.3. Also, accord-

ing to (4.9), the phases of the first and fifth harmonics are determined by
the orientations of the initial perturbations. The comparison with the full
numerical results in the middle panel of fig. 4.3 shows that this perturbative
expectation is realized approximately: strong deviations are seen only for
values of the radius r for which either the real part (Re


w̃(m)


) or the imagi-

nary part (Im

w̃(m)


) is approaching zero, making the orientation ill defined.
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Figure 4.3: Results from ECHO-QGP for evolving up to τ = τ0 + 10
fm/c on top of the background of fig. 4.1 an initial condi-
tion composed of two basis modes with weights w̃(2)

2 , w̃(3)
1

and angles ψ(2) = 0 and ψ(3) = −0.2.
Upper row: Real and imaginary part of the first and
the fifth harmonics of the enthalpy. The curves shown
are for the four combinations of w̃(2)

2 = 0.1, 0.25 and
w̃

(3)
1 = 0.1, 0.25 and illustrate scaling behavior.

Middle row: The phase Arg

w̃(m)(τ, r)


of the m-th har-

monic mode (solid) compared to the perturbative expec-
tation (dashed line) based on Eq. (4.9).
Lower row: Real and imaginary part of the sixth harmonic
(solid lines). The dashed and dotted lines show results for
the individual contributions of single basis modes. When
appropriately weighted with the phase factors according
to the perturbative Eq.(4.9), their sum agrees with the
full numerical result.
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To add one level of complication, we consider finally the sixth harmonics
wBGw̃

(6) that, according to (4.9), receives corrections of second order in
w̃

(3)
1 and of third order in w̃(2)

2 . Weighting both contributions with the per-
turbatively expected information on phases and amplitude, provides a full
quantitative understanding of the numerically determined signal wBGw̃(6)

as overtones of the two initial perturbations. This can be appreciated in
fig. 4.3. that illustrates that the interaction between initial perturbations
of different wave numbers can be understood perturbatively.

4.4 Application to realistic initial conditions

Realistic initial conditions for the fluid dynamic evolution of heavy ion
collisions are expected to involve fluctuations on many different length
scales and with large amplitudes. It might be argued that the examples
discussed so far, although initialized with relatively large amplitudes, are
still academic, and that they cannot be extended to deal with the complexity
of a realistic heavy ion collision.

In order to address such concerns, we have embedded simple basis modes
in realistic initial conditions with many and large fluctuations. Fig. 4.4
shows such an initial distribution. It is constructed by subtracting from an
arbitrary initial condition, generated by a Glauber model, the contribution
leading to a second harmonic and adding then the perturbation of (4.6). In
this way, we have built a state that embeds both an analytically controlled
initial perturbation and a realistically fluctuating background. We can
extract the form of the initial perturbation and the time dependence of
its fluid dynamic response via Fourier analysis. The lower panel of fig. 4.4
shows that this dynamical response in an event with realistic fluctuations
is described to high accuracy by the linear response on top of the smooth
background that we had established in fig. 4.1.

The evolution of initial anisotropic density perturbations, as determined
numerically with ECHO-QGP, seems to follow a pattern that can be
understood order-by-order in a perturbative expansion for small deviations
from an azimuthally symmetric event-averaged background. The leading
order is linear and modes with different azimuthal wave numbers do not
mix. Quadratic and higher orders can be seen as next-to-leading order
corrections. They influence modes with azimuthal wave numbers that can
be written as sums (or differences) of the seed wave numbers. Since the
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non-linear couplings are numerically small, the higher harmonics generated
by two-mode or three-mode interactions will often be small in comparison
to initially present and linearly evolving perturbations. This ordering may
be less pronounced for non-central collisions where the elliptic modes (with
m = 2) have a particularly strong weight such that its overtones with
m = 4, 6 etc. may dominate over primordial density perturbations with
these wave numbers. We also note that the relative importance of linear and
non-linear terms depends significantly on the dissipative properties of the
medium. In exploratory studies we found that for increasing η/s, the linear
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Figure 4.4: Upper panels: Left: Example of an initial condition with
many fluctuating modes w̃(m)

l , m ̸= 2, and the mode
w̃

(2)
1 = 0.5 on top of the background wBG. Right: The

same distribution, evolved up to τ = τ0 + 5 fm/c.
Lower panel: The second harmonics w̃(2)(τ, r) extracted
for different times τ . Results extracted from the fluctuat-
ing event shown in the upper panel are compared to the
case shown in fig. 4.1 in which w̃(2)

1 = 0.5 is the only mode
embedded on top of a smooth background. This illustrates
that the assumption of a predominantly linear response
on top of a suitably chosen background is applicable for
realistic initial conditions that display strong fluctuations.
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response is more dominant and the relative weight of higher non-linear
orders decreases. Such a more laminar behavior is expected on general
grounds. All results shown in this chapter are for a rather minimal value
of η/s = 1/4π which maximizes contributions from non-linear corrections.





Conclusions and Outlook

In this Thesis, ECHO-QGP was presented as a state of the art resource
for 3+1-D hydrodynamic simulation of the QGP created during heavy-
ion collisions. It features high accuracy methods for time integration,
spatial interpolation and reconstruction routines (which are essential to
capture small-scale hydrodynamic phenomena and turbulence) together
with the inclusion of second-order treatment of dissipative effects through
the evolution of the Israel-Stewart equations for the bulk and shear stress
tensor components, coupled to hydrodynamical equations. ECHO-QGP
is a branch development of ECHO [86], which is used for astrophysical
purposes, and as its parent features the same shock-capturing approach,
which is essential to treat shocks and other discontinuities that invariably
arise due to the intrinsic nonlinear nature of the hydrodynamic equations.
Its reliability has been shown in chapter 1, where its response to many of
the most common, and nonetheless most stringent, tests was shown. In
particular, we showed how ECHO-QGP reproduces with very high accu-
racy the analytical and semi-analytical solutions of the so-called “Gubser
flow” [68, 92, 94, 95], which represent a very stringent test of the quality
of the algorithm and the suitability for the applications to the dissipative
hydro modeling of the heavy-ion collisions. The discrepancy between the
numerical and the analytical solutions is on average of the order of the
per mil, and the agreement is still excellent up to late times both for the
temperature, and for all the shear-stress tensor components.

We would also like to stress that ECHO-QGP was designed to be
publicly released, and for this reason it praises some very useful features: it
is user-friendly, well documented and provides a high level of customization
of the simulation without any change in the source code. In particular:



Application to realistic initial conditions

• It offers the possibility to perform a simulation both in the simple
Minkowski metric, as well as in Bjorken coordinates. In both cases
the evolution can be carried out in any dimensionality (1+1D, 2+1D
and 3+1D).

• It is possible to use customized any Equation of State, be it tabulated
(passing to the code an external table file) or analytical (specific
files have been arranged for this kind of usage). In particular we
have tested the ideal ultra-relativistic EoS P = e/3, a tabulated one
arising from weak-coupling QCD calculations often adopted in the
literature [102]. Also tabulated hybrid EoS’s, obtained by matching
those for a hadron resonance gas [35,151] with lattice-QCD results,
have been tested.

• The same level of customization goes with the initializing conditions.
Among the available setups, one can find the one specially designed
to reproduce the RHIC results: the initial hydrodynamic quantities
are computed through the optical or Monte Carlo Glauber model
with both participants and binary collisions contributions, and with
different choices for the impact parameter b. This initialization can
be used both in in 2+1D and 3+1D, and for different colliding nuclei.

• The decoupling routine, based on the Cooper-Frye prescription, is
implemented in the ECHO-QGP package. Although the bundle still
does not include a kinetic approach to be coupled to the hydrody-
namic stage, the output has been designed to handle this matching
procedure. The very next step we plan to do towards this direction
is to find a suitable candidate for the afterburner, among the ones
available [152], and include it in the package. The decoupling proce-
dure has been successfully tested against other available routines in
the literature, both in 2+1D and in 3+1D.

Our efforts, so far devoted to the development of the code and to
its validation, from now on should be focused on an activity of tuning
ECHO-QGP, through a systematic comparison with the experimental data,
in order to eventually release a tool for the entire scientific community to
address soft-physics studies in heavy-ion collisions.

Given its unique features, ECHO-QGP has been an essential resource
for the physics studies of the QGP features. We have in fact derived the
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vorticities developed in peripheral nuclear collisions at
√
sNN = 200 GeV,

in a model where the most commonly used initial conditions in the Bjorken
hydrodynamical scheme were adopted. In such case, the thermal vorticity
over the freeze-out hypersurface can be as large as 0.05 c/fm. Yet, its mean
value is not large enough to produce a polarization of Λ hyperons larger
than 1%, which is a significantly lower estimate in comparison with other
recent calculations based on simpler assumptions.

We have found that the magnitude of directed flow, at this energy, has a
sizeable dependence on both the shear viscosity and the longitudinal energy
density profile asymmetry parameter ηm which in turn governs the amount
of initial angular momentum retained by the plasma. We also showed
that finding a model for the initial profile of flows that meets causality
constraint, and different from the usual Bjorken initial condition, is not
trivial: the directed flow in this case proves to be a good discriminating
factor.

ECHO-QGP has also been exploited to study the nature of the relation
between the initial and final states of the hydrodynamic evolution. In
particular it allowed to provide a useful ordering scheme for a more detailed
understanding of the evolution of fluctuations in hydrodynamic fields, as
discussed in chapter 4. We provided evidence from full numerical solutions
that the hydrodynamical evolution of initial density fluctuations can be
understood order-by-order in a perturbative series in deviations from a
smooth and azimuthally symmetric background solution. To leading linear
order, modes with different azimuthal wave numbers do not mix. When
quadratic and higher order corrections are numerically sizable, they can be
understood as overtones with corresponding wave numbers in a perturbative
series.

Having a look to future perspectives, we actually could think of many
possible and interesting physics scenarios that can be explored through
ECHO-QGP. Here we collect some of them:

• It would be interesting to extend the calculation of the vorticity in
order to see how it scales with different centralities and collision ener-
gies, and how it affects observables. The directed flow could indeed be
another precious constraint for the hydrodynamical modeling of the
plasma. It would be also important to perform a more detailed study,
including initial state fluctuations, in order to determine the best
conditions for vorticity formation in relativistic nuclear collisions.
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• The results discussed in chapter 4 offer a motivation for a more formal
and thorough development of this kind of perturbation theory, since
it is still unclear whether all initial perturbations in hydrodynamic
fields follow a similar pattern. In particular, from general fluid
dynamic considerations one may expect that non-linear terms are
more important for vorticity excitations [153].

Another open question concerns the freeze-out from hydrodynamic
fields to particle spectra. A mode-by-mode treatment of fluid dynamic
perturbations to linear order was discussed recently [154], however it
was found that non-linear corrections arise there as well. It would
be interesting to see how large these non-linearities are, studying
the relation between the initial stage and the post-freeze-out stage,
and to test scaling laws such as the one proposed in [155], where
v4 ∝ (v2)

2 was conjectured.

• The study of higher flow-harmonics and of event-by-event flow mea-
surements of the particle spectra will provide a rich information on the
initial state and on the transport coefficients of the medium. Equally
interesting will be the application of ECHO-QGP to the case of high-
multiplicity p-A collisions, for which recent theoretical [43,156] and
experimental analyses [157,158] suggest the possibility of formation
of a medium with a collective behavior.

• As a further item to address, we would like to include in ECHO-QGP
the possibility of dealing with a finite-density EoS (with possibly
a first-order phase transition) [159], including the evolution of the
baryon density2, to have a tool able to dynamically explore scarcely
known areas of the QGP phase diagram and to provide predictions
of interest for the heavy-ion program foreseen at FAIR and NICA.

• It is also our intention to recover in ECHO-QGP the possibility of
evolving electric and magnetic fields, either assuming the validity of
the ideal MHD approximation [86], or including magnetic dissipa-
tion with the resistive term in the Ohm law [45]. The motivation
of such studies is that the presence of a strong magnetic field in
ultrarelativistic nucleus-nucleus collisions, which in principle could
be much higher than the one inferred in magnetars (∼ 1011 Tesla), is
supposed to produce a sizeable separation of positive and negative

2ECHO-QGP already solves the evolution equation for the conserved current in the
ideal case, and accepts complete EoSs, but particle diffusion flux is still not taken into
account.
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charges with respect to the reaction plane [160,161] ). Such a tool
would be unique among codes for QGP, and it would represent a very
promising cross-fertilization opportunity between the astrophysical
and high-energy physics communities.
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A
Initial conditions for the

angular momentum

The calculation of the total angular momentum of the plasma can be
done provided that initial conditions are such that energy density falls off
rapidly at large |ηs|. This condition, which is met by the profile in eq. (3.20),
indeed implies that a boundary exists where the angular momentum density
tensor (that is the integrand below) vanishes and the following integral is
conserved:

Jµν =


Σ
dΣλ (xµT λν − xνT λµ) (A.1)

where Σ is any spacelike hypersurface extending over the region where
the angular momentum density vanishes. The obvious choice for Bjorken-
type initial conditions is the hypersurface τ = τ0.

It should be stressed that a vector (or tensor) integral is meaningful in
flat spacetime only if the components are the cartesian ones. Hence, for
the hypersurface τ = τ0, the integration variables are conveniently chosen
to be the Bjorken ones, but the components of the stress-energy tensor
as well as the x vector will be cartesian. Since the only non vanishing
component of the angular momentum in our conventional reference frame
is Jy, orthogonal to the reaction plane, we can write:

Jy = J31 =


Σ
dΣλ


x3T λ1 − x1T λ3


. (A.2)

Finding the hypersurface measure dΣλ in cartesian components, but ex-
pressed through Bjorken variable, requires some reasoning. First, one has



INITIAL CONDITIONS FOR THE ANGULAR MOMENTUM

to remind that:
dΣλ = dΣnλ (A.3)

where n is the unit vector normal to the hypersurface τ = τ0 which is
readily found to be (cartesian covariant components):

nµ = (cosh η, 0, 0,− sinh ηs) (A.4)

Now, since Bjorken coordinates are time-orthogonal (gτi = 0) and with
gττ = 1, the invariant spacetime measure dΩ can be factorized into the
product of the infinitesimal “time” dτ and the infinitesimal measure of the
orthogonal hypersurface dΣ:

dΩ = dτ dΣ

At the same time:

dΩ =

|g|dτ dx dy dηs = τ dτ dx dy dηs

whence:
dΣ = τ dx dy dηs. (A.5)

Using eqs. (A.3), (A.4) and (A.5), eq. (A.2) can be written as:

Jy =τ


dx dy dηs


cosh ηs(x

3T 01 − x1T 03)− sinh ηs(x
3T 31 − x1T 33)


(A.6)

At the time τ = τ0, the stress-energy tensor is supposedly the ideal one
and there is no transverse velocity, so that:

T 01 = 0 T 33 = (ε+ p)uzuz + p

T 31 = 0 T 03 = (ε+ p)u0uz (A.7)

Pluggin these expressions into the (A.6) along with the transformation
equation:

t = τ cosh ηs x = x y = y z = τ sinh ηs (A.8)
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one finally gets:

Jy = τ0


dx dy dηs x{− cosh ηs (ε+ p)u0uz + sinh ηs [(ε+ p)uzuz + p)]}

(A.9)

where:

u0 = cosh ηs u
τ + τ sinh ηs u

η

uz = sinh ηs u
τ + τ cosh ηs u

η (A.10)

being uτ =
√
1 + τ2uη2.

In the case of Bjorken initial conditions with uη = 0 and uτ = 1, the
eq. (A.9) reduces to:

Jy = −τ0


dx dy dηs ε(x, y, ηs)x sinh ηs (A.11)
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