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Abstract— In this report, we propose an effective route to 

reduce the cell-to-cell variability in 1T-1R based RRAM arrays 

by combining the excellent switching performance of Hf1-xAlxOy 

with an optimized Incremental Step Pulse with Verify Algorithm 

(ISPVA) for programming. The strongly reduced cell-to-cell 

variability improves the thermal and post-programming stability 

of the arrays, which is relevant for many applications of the 

RRAM technology. Finally, the retention study at 150 °C enables 

the prediction of the data storage capability. 

 
Index Terms—RRAM, Hf1-xAlxOy, variability, data retention.  

 

I. INTRODUCTION 

ESISTIVE Random Access Memories (RRAM) are based 

on the electrical modification of the conductance of 

Metal-Insulator-Metal stacks: the set operation switches the 

cell into a Low Resistive State (LRS), whereas reset operation 

brings the cell back to a High Resistive State (HRS) [1]. HfO2 

based RRAM is one of the most promising technologies for 

the next generation of non-volatile memory applications [2]. 

However, the large cell-to-cell variability in RRAM arrays is 

still a relevant issue. The random conductive filament 

formation and rupture process is generally regarded as a 

critical non-uniformity parameter of resistive switching. Ionic 

doping of HfO2 is one effective way to improve the switching 

stability of the resistive switching [3]. Using a program 

algorithm is another option to reduce the resistance variability, 

although post-programming shifts were reported recently [4].  

In this study, we demonstrate the drastic reduction of the cell-

to-cell variability and post-programming instabilities using 

 
This work was supported by the European Union’s H2020 research and 

innovation programme under grant agreement Nº 640073. This work was also 
supported by ENIAC Joint Undertaking 2013-2, PANACHE No. 621217. 

E. Perez is with IHP, Frankfurt (Oder), Germany, (e-mail: perez@ihp-

microelectronics.com) 
A. Grossi is with Dipartimento di Ingegneria, Universitá degli Studi di 

Ferrara, Ferrara, Italy (e-mail: grslsn@unife.it) 

C. Zambelli is with Dipartimento di Ingegneria, Universitá degli Studi di 
Ferrara, Ferrara, Italy (e-mail: cristian.zambelli@unife.it) 

P. Olivo is with Dipartimento di Ingegneria, Universitá degli Studi di 

Ferrara, Ferrara, Italy (e-mail: piero.olivo@unife.it) 
R. Roelofs is with 3ASM Belgium, Leuven, Belgium, (e-mail: 

robin.roelofs@asm.com) 

Ch. Wenger is with IHP, Frankfurt (Oder), Germany, (e-mail: 
wenger@ihp-microelectronics.com) 

 

Hf1-xAlxOy as switching oxide and optimized program 

algorithms with verify procedures. 

II. EXPERIMENTAL 

The 1T-1R RRAM cells in the 4 kbit arrays are constituted 

by a NMOS transistor manufactured in IHP’s 0.25 μm CMOS 

technology, whose drain is connected in series to a variable 

resistor, as illustrated in Fig. 1. The resistor is a Metal-

Insulator-Metal (MIM) device integrated on the metal line 2 of 

the CMOS process. This MIM resistor consists of a planar 

TiN/ Hf1-xAlxOy /Ti/TiN stack. One additional mask is 

required for patterning the MIM stack. The Hf1-xAlxOy layers 

with thickness of 6 nm are grown by Atomic Layer Deposition 

(ALD with an Al content of 10 % using an ASM A412 Batch 

Furnace. After patterning the MIM cells with area of about 0.4 

μm2, an additional thin Si3N4 layer was deposited to protect 

the MIM cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. RESULTS AND DISCUSSION 

To activate the resistive switching behavior, the RRAM 

cells require a preliminary forming operation. This initial 

operation plays a fundamental role in determining the 

subsequent devices performance. Therefore, the Incremental 

Form and Verify (IFV) algorithm is used [5]. The 

functionality of the forming and programming algorithms has 

been verified over 1000 cycles on the arrays. 

In order to suppress the reported post-program instabilities, 

the Incremental Step Pulse with Verify Algorithm (ISPVA) 

was applied [5], consisting of a sequence of increasing voltage 

pulses on the drain terminal during set operation and on the 
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Fig. 1: TEM cross-sectional image of 1T1R architecture with a NMOS 

access transistor (1T, marked by a blue square) and a 0.6×0.6 μm2 

MIM cell (1R, marked by a white square); BL, SL and WL denote the 
bit line, source line and word line, respectively. 
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source terminal during reset operation. After every pulse a 

read and verify operation is performed. Averaged, 6 Voltage 

pulses with a width of 12 µs are required for the set process, 

respectively 12 pulses with the same width for resetting the 

resistive cells. 

The determination of the correct threshold values for the 

ISPVA is a trade-off between high On/Off ratio, high 

programming yield and low cell-to-cell variability. By simply 

increasing the On/Off ratio, the cell-to-cell variability will be 

raised too, while the programing yield will be reduced. In 

addition, the threshold values are also affected by the choice 

of the resistive oxide.  

In order to determine the optimum threshold values for 

HfO2 and Hf1-xAlxOy, the ISPVA is applied by using the two 

different LRS thresholds of 18 and 30 µA. Similarly a current 

value of 5 μA was considered for HRS in order to target a 

HRS/LRS ratio of 3 respectively 6. The cumulative 

distributions of the read currents after reset and set 

programming cycles, using the ISPVA are illustrated in Fig. 2. 

The variability of the LRS can be optimized by the Al-doping 

of the HfO2 layer and by choosing the correct threshold value 

of 30 μA, as shown in Fig. 2b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compared to recently reported distributions [6, 8], the 

window between HRS and LRS is well defined and the cell-

to-cell as well as the cycle-to-cycle variability is strongly 

reduced. 

The mean LRS current values of pure HfO2 devices tend to 

increase with the number of cycles [7]. By doping with Al, 

this trend is eliminated. The current values of HRS and LRS 

of Hf1-xAlxOy remain constant during 1000 cycles. Moderate 

Al-doping of 10% stabilizes the HfO2 matrix, improving the 

endurance properties by hindering oxygen-vacancies 

relaxation without severe change in switching parameters [8]. 

In addition, the Al-doping of HfO2 reduces also the variability 

of the LRS current values, as illustrated in Fig. 3. 

The evolution of the mean reset and set voltage values 

during the 1000 endurance cycles are illustrated in Fig. 4. The 

voltages values of the reset operation are a bit higher in pure 

HfO2 than in Al-doped HfO2, which is in line with reported 

trends [7]. The mean voltage values of Hf1-xAlxOy based cells 

are not impacted by cycling, while the values of HfO2 cells are 

slightly influenced by cycling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to evaluate the post-programming stability, the read-

out operation is continued for 100 sec after the HRS or LRS 

current thresholds are achieved. The programming as well as 

the reading operation is performed at -40 °C and 150 °C. The 

LRS and HRS resistances programmed by ISPVA algorithms 

are illustrated in Fig. 4. Short time instabilities (< 2 s) are 
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Fig. 2.  Cumulative distributions of the read out currents after program-

ming using the ISPVA after 1, 10, 100 and 1k cycles. The character-
istics of HfO2 RRAM cells are illustrated in a), while the impact of 

cycling on the Hf1-xAlxOy array is shown in b).  The threshold values for 

the set and reset operations were marked as dotted lines. 
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Fig. 3.  (a) Mean current values after reset (open circles) and set (closed 

circles) programming operations as function of cycling.  
(b) Dispersion coefficient σ2/µ(ILRS) (closed circles) and σ2/µ(IHRS) 

(open circles) of the read out currents as function of cycling. 
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Fig. 4.  Mean voltage values after reset (open circles) and set (closed 

circles) programming operations as function of cycling in Hf1-xAlxOy 

based RRAM arrays. 
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monitored; a few cross-bit cells are detected in the LRS/HRS 

window. But after 10 seconds, the HRS distribution reverts 

back above the threshold value. As shown in Fig 4, there isn’t 

any remarkable impact of temperature on the relaxation 

characteristics of the HRS. 

Charging effects, filament rearrangement, redistribution of 

vacancies and dielectric relaxation processes in the restive 

oxide layer could cause the short time instability effects. The 

LRS state remains stable after set programming, indicating the 

absence of filament rearrangements or charging effects. After 

finishing the reset ISPVA, dielectric relaxation processes 

could cause the shift of the HRS resistances to lower as well 

as larger values than the initial HRS resistance [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data retention of HfO2 based RRAM devices can be 

improved by increasing the LRS currents [10]. An alternative 

approach to improve the retention is using ISPVA for 

programming Hf1-xAlxOy cells. The high temperature data 

retention is investigated at the temperature of 150 °C.  

1000 Hf1-xAlxOy cells were programmed via ISPVA to LRS 

respectively to HRS then exposed to thermal stress up to 100 

hours. The evolution of LRS and HRS distribution was 

monitored at log spaced sampling times from 0.1 to 100 hours, 

as illustrated in Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 7, the LRS currents continuously decrease 

with cycling numbers and retention time, which could be 

caused by oxygen diffusion related mechanism [11]. The 

degradation of the HRS is different, all currents increase 

similarly after a short time of baking followed by a more or 

less stable plateau. They are not additionally degraded by 

cycling. The number of so-called cross-bit cells; cells which 

current values shifted in between the threshold values for HRS 

(5 µA) and LRS (30µA) during the retention stress test are 

illustrated in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the number of cross-bit cells in the HRS remains less 

than 15% of all Hf1-xAlxOy cells, the percentage of cross-bit 

cells in LRS is strongly raised by cycling and baking time. 

The low formation energy of oxygen vacancies in trivalent 

ion-doped HfO2, which reduces the variability of switching 

parameters, could also lead to worse retention results [12]. 

However, the shorter bond length between Al and O ions 

reduces also the unwanted diffusion of oxygen vacancies. The 

trade-off between good retention and low variability has to be 

balanced by choosing the correct amount of doping. 
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Fig. 5.  Post-programming distribution of resistances programmed by 

set and reset ISPVA. The programming operations of the arrays were 
performed at -40 °C (a) and 150 °C (b). The dotted lines represent the 

threshold values for set and reset programming.  
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Fig. 7.  Distribution of Hf1-xAlxOy based Cross-bit cells in between the 

LRS (open circles) and HRS (closed circles) threshold values as function 
of baking time and switching cycles. 
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Fig. 6.  Cumulative distribution of the read-out currents after 1 and 1000 
cycles. The set and reset threshold values of the programming 

algorithms are illustrated by the dashed lines. The RRAM array is baked 

at 150 °C in log spaced sampling time rates from 0.1 to 100 hours. For 
clarity reasons, just 4 baking times are illustrated in these plots. 
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