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ABSTRACT

Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and 
regeneration are highly organized, with the activation of specific transcription factors, 
proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, 
is one of the most important causes of functional loss of independence in older adults. 
Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good 
health and independent living.

Physical activity represents one of the most effective preventive agents for 
muscle decay in aging.

Several studies have underlined the importance of microRNAs (miRNAs) in the 
control of myogenesis and of skeletal muscle regeneration and function. 

In this review, we reported an overview and recent advances about the role of 
miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal 
muscle, the consequences of different physical exercise training modalities in the 
skeletal muscle miRNA profile, their regulation under pathological conditions and the 
role of miRNAs in age-related muscle wasting.

Specific miRNAs appear to be involved in response to different types of exercise 
and therefore to play an important role in muscle fiber identity and myofiber gene 
expression in adults and elder population.

Understanding the roles and regulation of skeletal muscle miRNAs during muscle 
regeneration may result in new therapeutic approaches in aging or diseases with 
impaired muscle function or re-growth. 
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INTRODUCTION

Skeletal muscle upholsters the important role of 
supporting skeletal structure and movement and it is also 
involved in glycogen synthesis and amino-acid deposits 
[1, 2]. A general physical performance is improved by 
exercise that induces molecular and cellular adaptations 
[2]. Metabolism of muscle and its homeostasis are due 
to protein synthesis/degradation and activity of muscle 

stem cells, whereas the synthesis and degradation of total 
muscle protein is due principally to nutrition and physical 
activity seems to act on both protein synthesis/degradation 
and on satellite cells [2]. 

At the entire muscle level, hypertrophy is the major 
consequence of physical exercise that can be produced 
both by new satellite cell fusion or by amplified protein 
synthesis [3].
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Likely, satellite cells are stimulated when an acute 
stimulus occurs (i.e. strong exercise with eccentric 
contractions, that is a motion of an active muscle while 
it is lengthening under load) and leads to hypertrophy 
enhancing the number of myonuclei and their fiber size, 
thus imitating the regeneration pathway in response to 
injury [4]. Nevertheless, moderate physical activity 
does not stimulate satellite cells and functional over-
load leads to a muscle growth solely through protein 
synthesis [2, 5].

Physical activity is a term used to describe any 
physical training developed by skeletal muscles that 
requires energy cost, which may be unstructured and 
everyday life motion. The term exercise includes 
prearranged, deliberate and repetitive motion and ordinary 
sports and agonistic sports [6].

In chronic degenerative diseases, physical activity is 
one of the most efficient protective agents and it has been 
suggested as effective therapy for chronic diseases such as 
for example osteoarthritis and claudication [7].

Actually, both at genomic and post-genomic levels, 
a regular physical activity exerts a relevant effect on 
different parameters and biological pathways [8].

microRNAs (miRNAs) are a class of small non-
coding RNAs (around 21–25 nucleotides) that play 
a role in modulation of gene expression at the post-
transcriptional level by inhibiting translation or leading to 
RNA degradation [2, 9]. In health prevention there is an 
increasing attention to know more markedly the processes 
involved in stimulation and inhibition of miRNAs 
expression. Several miRNAs are essential as mediators 
of processes associated with exercise training adaptation 
including cardiac and skeletal muscle hypertrophy and 
regeneration in adulthood and elder population. Recently 
it has been shown the effects of regular sport exercise on 
miRNAs regulation. In addition, miRNAs seem to play 
important roles in the acute and chronic resistance training 
(RT), endurance training (ET), in athletes, in animal 
models, in patients and in the general population [10] and 
regulation of miRNAs, controlled by physical activity in 
human skeletal muscle, depends on variety, intensity and 
duration of the training.

Aging is associated with alterations in skeletal 
muscle size, structure and function, that may lead to 
muscle atrophy with increased morbidity and mortality.

During tissue aging, it is well known that both stem 
cell number and function are reduced [11].

Muscle growth and increased strength is the result 
of progressive resistive training in older individuals, 
if the training stimulus is of an adequate intensity and 
duration. Endurance physical activity in aged, where the 
stimulus is repeatedly enhanced, evokes a development of 
muscle capillaries, enhances oxidative enzyme activity, 
and induces important amelioration of maximal oxygen 
consumption (VO2 max) [12].

Despite a quite large and increased number of 
studies on miRNAs in skeletal muscle and aging during 
physical exercise, an analysis that summarized these 
results has not been already described.

With this review we aim to overview how acute or 
chronic physical exercise influences miRNA expression 
and whether the variability of muscle hypertrophy in 
response to exercise may be attributed to differential 
miRNA regulation in the skeletal muscle. We describe how 
miRNAs are differentially expressed in elder age at the 
baseline condition and the relevance of physical activity.

SKELETAL MUSCLE REGENERATION 
AND PHYSICAL EXERCISE

Aspects of myogenesis

A complex and multi-stage process involving 
many regulators is named myogenesis. The myogenic 
progenitor cells confer to proliferating cells commitment 
to the myogenic lineage (myoblasts) [13]. The process of 
myogenesis is determined by the myogenic regulatory 
factors (MRFs) that include four key transcription factors: 
Myf5, MyoD, Myogenin (MyoG) and Myf4 regulating 
the differentiation of muscle cells. The determinants 
of myogenesis are Myf5 and MyoD whereas MyoG 
and Myf4 are greatly expressed during the terminal 
differentiation and they drive myoblasts fusion forming 
myotubes [13]. 

Paired-domain- and homeobox-containing proteins 
are upstream regulators of early MRFs, including Pax3 and 
Pax7, which are in action in embryogenesis. When myoblasts 
move, MyoG and MRF4 are expressed and drive myoblasts 
to differentiate to myotubes. They operate in concert with 
other factors following the terminal differentiation into 
myotubes, including myocyte enhancer factor 2 (MEF2) 
[14, 15] (Figure 1). Mesoderm-derived structures create 
the first muscle fibers of the body proper during embryonic 
myogenesis and consequently waves of additional fibers are 
created along these template fibers [16, 17]. 

As described below these transcription factors and 
regulatory proteins are again involved during muscle 
regeneration processes.

The muscle regeneration process and skeletal 
muscle stem cells

During embryogenesis muscle regeneration after 
damage or physical training has analogies to muscle 
development [18].

Skeletal muscle restore is a very synchronized 
mechanism including the stimulation of different 
molecular and cellular responses. In addition the 
coordination among inflammation and regeneration is 
critical for the positive result of the repair mechanism 
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following muscle injury [19]. Muscle tissue restore can be 
described as a mechanism following injury consisting of 
two interdependent phases, degeneration and regeneration, 
whose successful outcome in muscle repair appears to be 
affected by the level of the injury and the interactions 
among muscle and infiltrating inflammatory cells. 

A balance among pro-inflammatory and anti-
inflammatory factors is correlated to muscle regeneration 
process that decides whether the injury will be resolved 
with muscle fiber change and regeneration of a functional 
contractile apparatus, or with scar formation [18]. The 
phases of the recovery mechanism are analogous in 
various causes of injury, and the kinetics and amplitude of 
each phase may depend on the kind of muscle injuried and 
the area of injury [18].

The main stem cell pool of adult skeletal muscle 
are represented by satellite cells [20]. These cells, 
which were first described by Mauro (1961) [21], 
represent undifferentiated myogenic precursor cells 
that lie between the external lamina and sarcolemma of 
skeletal muscle fibers. Under normal conditions, satellite 
cells are quiescent, but with appropriate environmental 
signals they become activated and enter again into the 
cell cycle to either create novel muscle fibers or supply 
novel myonuclei to the parent fiber [22, 23]. Studies 
about genetic ablation and transplantation taken jointly 
confirmed that Pax7+ satellite cells are required for adult 
muscle restore [24–26], in response to muscle injury. 
Satellite cells transition from their normally quiescent 

state to initiate the cell cycle, expand and differentiate 
(exiting again from the cell cycle) thus forming novel 
muscle fibers and regenerating the damaged muscle 
tissue [27].

An increase in the number of satellite cells is 
necessary for full skeletal muscle growth and hypertrophy, 
therefore, the majority of the regeneration process is 
an orderly sequence of activation, proliferation and 
differentiation of satellite cells.

Quiescent satellite cells are present throughout the 
muscle, but the distribution of satellite cells has been 
shown to vary between different individuals and between 
different muscle groups and muscle fiber types [28]. 
Muscles containing mainly type I fibers are very resistant 
to fatigue and capable of producing repeated low-level 
contractions  (e.g. soleus muscle [29]), type II fibers, 
known also as fast glycolytic fibers, produce instead 
fast and strong muscle contractions (e.g. extraocular eye 
muscle, arm muscles) [30]. The population of satellite 
cell is not constant: it has been shown to increase after 
low-frequency exercise and in neuromuscular diseases 
such as Duchenne muscular dystrophy and neurogenic 
atrophy, while it has been reported to decrease in olderly 
men and women compared with a younger population 
[31]. The signaling pathways for satellite cell activation 
are not fully understood, but several mediators such 
as growth factors, nitric oxide (NO), mechanical 
stimulation and physiological stimuli induced by exercise 
have been suggested. Identification of satellite cells 

Figure 1: Schematic representation of the myogenesis process. Quiescent skeletal muscle satellite cell can become activated 
following stimuli. The skeletal myoblasts, express transcriptions factors Pax7 and Pax3, as well as the myogenic regulatory factors Myf5 
and MyoD. Once committed to differentiation, myoblasts arrest cycling and loose expression of Pax7, Pax3 and Myf5. MRF4 is further 
required for hypertrophy of the new fibers.
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has commonly been done using electron microscopy 
and immunohistochemical identification, identifying 
a cell-surface, membrane-bound neural cell adhesion 
glycoprotein (N-CAM) [32].

THE RESPONSE OF SKELETAL 
MUSCLE REGENERATION TO 
DIFFERENT PHYSICAL TRAININGS: 
RESISTANCE AND ENDURANCE

A series of changes in the molecular and structural 
properties of skeletal muscle are promoted by physical 
activity, including changes in mitochondrial biogenesis 
and metabolism, enhanced muscle vascularization and 
the modulation of myofibrillar content [33, 34]. These 
alterations are often related to the amelioration of whole-
body aerobic ability [35] and although its a greatly 
adaptable ability, the skeletal muscle could react in different 
ways to resistance and endurance physical training [34].

Resistance training (RT) is defined as any physical 
activity that lead to muscle contraction against an external 
resistance with the expectation of boost in strength, tone 
and mass. As external resistance, objects can be used such 
as dumbbells, rubber exercise tubing, your own body 
weight, bricks, bottles of water, or any other object that 
leads to muscle contraction to win an external resistance 
including gravity force [36]. Usually, resistance exercises 
happen in short bouts with rest periods between each set 
and are anaerobic.

Endurance training (ET) is the act of exercising to 
increase endurance, in other words, the ability to keep doing 
something difficult, unpleasant, or painful for a long time. 
The term endurance training generally refers to training the 
aerobic system as opposed to the anaerobic system [37]. 
Incresed capillarization, amelioration in energy metabolism, 
mitochondrial biogenesis and the transformation of fast-to-
slow fiber type can be caused by ET, whereas RT elicits 
to the biosynthesis of contractile and structural proteins, 
leading to muscle hypertrophy and increased generation of 
contraction force [34].

Resistance and endurance exercise training enhances 
the satellite cell pool [38]. It was also demonstrated that 
an increase in the satellite cell pool of skeletal muscle, 
following ET, depends on the intensity rather than duration 
of exercise [38]. However, it is not fully clear which 
factors could induce increase in the proliferative potential 
of satellite cells by physical training. Skeletal muscle has 
been acknowledged as a cytokine producing organ during 
muscular exercise, the so called myokines. To date, the 
list of identified myokines includes IL-6, IL-7, IL-8, IL-
15, leukemia inhibitory factor (LIF), Irisin [39], fibroblast 
growth factor 21 (FGF 21) and brain-derived neurotrophic 
factor (BDNF) [40, 41]. Some myokines have the potential 
to modulate satellite cell proliferation. Previous research 

showed that dramatic increase in plasma IL-6 and LIF 
were observed after endurance exercise [42]. Kurosaka et 
al (2012) [38] confirmed that IL-6 may induce a dose-
dependent increase of satellite cells through activation of 
janus kinase (JAK)/signal transducer and activation of 
transcription 3 (STAT3)/Cyclin D1 pathway that promotes 
cell cycle activation.

RT exercises increase the cross sectional area (CSA) 
of the whole muscle together with individual muscle fibers 
myofibrillar dimension and quantity [43]. The hypertrophy 
response to RT is associated with the stimulation of early 
stage satellite cells and may also promote other changes, 
such as hyperplasia, modifications in muscle fine 
structure, in myofilament density and in the connective 
tissue structure [43]. Structural transformations in skeletal 
muscle during RT are fiber specific: fast-twitch (FT) fibers 
are more sensitive to injury than slow-twitch (ST) ones 
[44]. Damage caused by RT in skeletal muscle has been 
clarified to be also a stimulus for muscle regeneration 
since it promotes signaling events arised from fiber 
mechanical deformation, immune/inflammatory responses 
and hormones production [44]. The synthesis rate of 
myofibrill is enhanced by RT but not by sarcoplasmic 
proteins [45]. 

An age consequence is a slower recovery from 
RT damaging, whereas recovery from small damaging 
metabolic fatigue did not report age-related difference 
[46]. RT increased the level of insulin-like growth factor 1 
(IGF-1) and of mechano growth factor (MGF) in skeletal 
muscle and faster recovery of muscle tissue is supported 
by both these elements [47].

ET exercises is responsible of most modifications in 
muscle fibers type I and IIA. The day after ET, important 
injurious modifications can be observed in these fiber 
myofibrils. This injury involves the decay of myosin 
and actin filaments and the regularity of Z-line in some 
sarcomeres. Myosin filaments were absent after ET in 
some A-discs and the injurious stress may influence 
the whole sarcomere. In response to ET 5’ adenosine 
monophosphate protein kinase (AMPK) is activated and 
is associated to skeletal muscle metabolic adaptation. 
AMPK function involves glucose transport, glycogen 
metabolism, fatty acid oxidation and structural muscle 
genes transcriptional regulation [48]. AMPK α1 isoform 
regulates skeletal muscle growth and α2 isoform controls 
its metabolic adaptation [49]. 

Protein change in skeletal muscle is quite slow. 
Myosin heavy chain (MyHC) and myosin light chain 
(MyLC) isoforms change rate provides a process by which 
the kind and quantity of protein is modified in agreement 
with the necessities of the contractile machinery during 
adaptation to ET. ET increase the satellite cell number 
mainly under the basal lamina of type I and IIA fibers and 
increase their regeneration capacity [50].
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miRNA FUNCTIONS IN SKELETAL 
MUSCLE REGENERATION

To identify the function and modulation of skeletal 
muscle miRNAs during different phases of muscle 
regeneration, in healthy and pathological status, will 
increase our knowledge of skeletal muscle biology 
significantly and may result in novel treatments in 
aging and pathologies related with damaged muscle 
development, regeneration or activity [51].

miRNAs provide a key and powerful tool in gene 
regulation in several cellular roles such as progression, 
differentiation, growth and metabolism. Up to date 
around 2200 miRNA genes have been described in the 
mammalian genome [52, 53].

Several miRNAs, greatly enriched in cardiac and/or 
skeletal muscle (named myomiRs), has been determined 
and involve miR-1, miR-133a, miR-133b, miR-206, miR-
208, miR-208b, miR-486 and miR-499 (Figure 2) [54–57].

Many of these miRNAs (i.e. miR-1-1/133a-2, miR-
1-2/133a-1 and miR-206/133b) are distributed under 
bicistronic clusters on the same chromosome and are 
transcribed together [58].

MyomiRs regulation is under the control of MRFs, 
including MyoD and MyoG [59, 60] as well as by MEF2 
[61], SRF [62] and myocardin-related transcription 
factor-A (MRTF-A) [56]. MyomiRs affect several facets of 
muscle growth and role, regulating key genes controlling 
myogenesis [59, 62]. Despite miR-1 and miR-133 tissue-
specific expression is driven by MyoD and SRF, miR-

133 inhibits SRF expression. In this way, these results 
recognize a negative regulatory loop in which miRNAs 
take part to cellular proliferation and differentiation 
control. Myogenesis is promoted by miR-1 targeting 
histone deacetylase 4 (HDAC4), a transcriptional repressor 
of muscle gene expression (Table 1), whereas myoblast 
proliferation is increased by miR-133 inhibiting SRF [62]. 
Aberrant regulation of some of these muscle-enriched 
miRNAs could disrupt intracellular signaling networks 
[56, 63] which may result in pathological conditions (e.g. 
muscular dystrophies) [64].

Satellite cells and adult muscle stem cells show 
various sets of miRNAs during quiescence or activation, 
contributing to muscle regeneration, suggesting miRNA 
roles in controlling satellite cell homeostasis [65]. In 
addition, during either physical activity and aging, the 
expression profile of miRNAs in satellite cells and muscle 
is modified [66]. The generation of novel muscle fibers 
and the restore of damaged myofibers (a process that lead 
to formation of muscle tissue) need the differentiation of 
myogenic progenitors or satellite cells respectively and 
many miRNAs have been demonstrated to control muscle 
regeneration in adulthood, involving miR-1, miR-206, 
miR-27, miR-378 and miR-181 (Figure 2) [66, 67].

The Pax3 expression is downregulated when 
satellite cells/myogenic progenitors are activated. If 
MyoD expression is increased, the Pax3/Pax7 expression 
downregulation is partially mediated by miR-1 and 
miR-206, warranting total inhibition of Pax genes to 
achieve synchronisation of myogenesis regeneration 

Figure 2: miRNAs involved in skeletal muscle regeneration. Schematic representation of the differentiation stages leading from 
progenitor muscle cells to terminally differentiated fibers. The most relevant regulatory circuits between miRNAs and protein factors are 
shown.
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(Table 1) [68]. Moreover, miR-206 and miR-486 have 
been demonstrated to cause myoblast differentiation by 
downregulating Pax7 expression and Pax3 expression is 
inhibited by miR-27 in satellite cells during regeneration 
process [66, 69, 70].

MyoD activation contributes to the upregulation 
of several miRNAs expression during myogenesis, 
including miR-378, an inhibitor of mesenchymal stem 
cell (Msc) proliferation [71]. miR-378 may strengthen the 
formation of muscle fibers by silencing Msc expression 
in the advanced phases of the differentiation process 
[66]. Interestingly, miR-378 is encoded within an intron 
of the peroxisome proliferator-activated receptor gamma 
coactivator 1-beta (Ppargc1β gene) that encodes for 
PGC-1β, a controller of energy metabolism. It has been 
suggested that miR-378 is co-expressed with PGC-1β, and 
it has been confirmed that it play a role in metabolism and 
interactions with target genes [66]. Gagan et al. (2011) 
showed that miR-378 is upregulated by MyoD during 
myogenic differentiation in immortalized mouse myoblast 
(C2C12) cells [72]. Chromatin immunoprecipitation 
(ChIP) and high throughput sequencing studies showed 
that MyoD is located close to miR-378 gene and leads to 
both transactivation and chromatin remodeling. 

Transcriptional activity of MyoD is increased by 
miR-378 [73], partially by inhibiting MyoR that is an 
antagonist. The MyoR 3′ untranslated region (UTR) has 
a direct linking site for miR-378 and the presence of 
this linking site reduced the MyoR capacity to avoid the 
MyoD-driven transdifferentiation of fibroblasts notably.

miRNA expression associated to muscle 
regeneration induced by physical activity

Exercise affects skeletal muscle and it was also 
recently shown it is capable to modify skeletal muscle 
miRNA expression [74, 75].

A group of young and adult males underwent for 
12 weeks to resistance physical training separating the 
group into “low-responders” and “high-responders” 
based on each subject’s modifications in lean body 
mass [76, 77]. In this study it has been analyzed if 
expression levels of the most expressed miRNAs varied 
among the two groups. It has been profiled twenty-
one miRNAs, demonstrating that miRNA expression 
was not influenced in the vastus lateralis muscle in 
the high-responder group whereas the low-responder 
group showing an important modification in miR-451 
and miR-378, with a downward tendency for miR-26a 
and miR-29a in the vastus lateralis muscle. miR-378 
upregulation expression demonstrated an important 
association with lean body mass, leading the authors of 
this study to hypotesize that the expression of significant 
miR-378 levels were necessary for a lean body mass 
increase [76, 77]. In vitro data supported the idea that 
miR-378 contributes to myoblast differentiation by 
targeting MyoR, a negative controller of the myogenic 
transcription factor MyoD [77, 78]. Moreover, 
currently miR-378 has been demonstrated to regulate 
mitochondrial metabolism and bioenergetics via the 
modulation of PGC1-β, and its increased expression 

Table 1: Summarized list of the most studied miRNAs with their target genes and the type of exercise involved

miRNA Main target Type of exercise involved References
miR-1 HDAC4;

Pax3/Pax7;
Cyclin D1.

Acute and Chronic Endurance 
Training

van Rooij E. et al.,2009;
Margolis LM. et al. 2017.

miR-21 PTEN, 
SPRY-1, ERK/MAP

Acute and Chronic Endurance 
Training

Iwasaki H. et al., 2015;
Shen L. et al., 2016.

miR-126 RAAS, VCAM-1 Acute and Chronic Endurance 
Training

Kim E. et al. 2012;
Shen L. et al., 2016.

miR-133a/miR-133b CALM1,
SRF,

PTBP2, 
SP1.

Acute resistance exercise 
Chronic training, Chronic 

resistance exercise

Masi LN. et al., 2016;
Margolis LM. et al., 2017.

miR-181a SIRT1, 
PTEN, 

NFATC1.

Acute and Chronic Endurance 
Training

Silva GJJ. et al., 2017;  
Margolis LM. et al., 2017.

miR-206 Pax3/Pax7,  
BDNF,  

HDAC4.

Acute and Chronic Endurance 
Training

Nielsen S. et al., 2010;  
Nielsen S. et al., 2014.
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would likely be a normal condition as a consequence of 
endurance exercise [77, 79].

These data suggested that miRNAs play an 
important role in regulating the translation of key 
pathways responsible for skeletal muscle growth in 
response to RT in high and low responder individuals. 

Ceccarelli et al (2017) showed that, 4 hours post-
exercise, only a resistance exercise followed by cycling 
(a combination of anaerobic and aerobic exercise) caused 
an important boost in miR-23a-3p (~90%), miR-23b-3p  
(~39%), miR-133b (~80%), miR-181-5p (~50%), and 
miR-378-5p (~41%). A recent review reported gene 
expression regulations by exercise-related miRNAs [2, 80].  
miRNA targets have been reported to be: 1) signaling 
transduction pathways controlled by calcium and activated 
protein kinase (AMP); 2) class IIa histone deacetylases;  
3) muscle specific transcription factors (i.e. MyoD, MyoG); 
4) mitochondrial targets mtTFA and FoxJ-3/MEF-2);  
5) mitogen-activated protein kinases (MAPKs); 6) Run 1, 
Sox9, Pax3; 7) vascular endothelial growth factor (VEGF) 
and IGF-1 (Table 1) [2]. Taken together these findings 
evidenced a role for miRNAs in muscle metabolism 
modulation by physical training [2, 81]. 

myomiRNAs play an important role in the skeletal 
muscle adaptations to ET in both human health and 
diseases. ET can modify the levels of several miRNAs, 
e.g. miR-1, miR-16, miR-21, miR-26a, miR-29a, miR-
126, miR-133a, miR-133b, and miR-206, miR-378, miR-
451 and miR-494. Coordinated changes in the expression 
levels of these myomiRNAs contribute to skeletal muscle 
adaptations to acute and chronic ET. miRNAs can mediate 
the ET-induced changes in the skeletal muscle phenotype 
and exercise can rapidly and transiently regulate several 
miRNAs in the skeletal muscle. 

Russell and colleagues (2013) have performed 
measurements in muscle biopsies of healthy men not 
practicing sports, after only one moderate-intensity 
endurance cycling or after chronic cycling ET [82]. They 
found a rise in muscle-augmented miRNAs, involving 
miR-1, -133a and 133-b, as well as miR-181a and in 
parallel the decrease of miR-9, -23a, -23b and -31; the 
latter miRNAs categories are increased in different muscle 
wasting diseases [82].

After short-term exercise of 10 days miR-1 was 
found upregulated, instead miR-29b and -31 were found 
downregulated [82]. Either loss- and gain-of-function 
experiments have shown that miR-208b and miR-499 
play important roles in muscle fiber identity by activating 
slow and repressing fast myofiber gene program [82, 83].  
Several other studies have shown that after 3 hours of one 
acute exercise miR-1, miR-133a, miR-133-b and miR-
181a were all increased [10, 84, 85] whereas, miR-9, miR-
23a, miR-23b and miR-31 decreased (Table 2). In another 
study, Nielsen and colleagues (2010) demonstrated 
that miR-1 and miR-133a expression levels in the 
vastus lateralis of healthy individuals were significantly 

upregulated after only one cycle ergometer activity at 65% 
of maximal power (Pmax). On the other hand, 12 weeks of 
ET on a cycle ergometer resulted in a decrease in the miR-
1, miR-133a, miR-133b, and miR-206 [86–91]. Likewise, 
Keller et al (2011) showed that 6 weeks of cycling reduced 
the expression of miR-1 and miR-133 with miR-101 and 
miR-455 in human skeletal muscle [77, 92].

Data suggested that miRNA expression levels 
could modify following exercise status in order to control 
exercise adjustments [77]. 

Interestingly, miR-1 and miR-133, clustered on the 
same chromosomal loci, are transcribed together in a tissue 
specific manner during development and have distinct 
roles in the modulating skeletal muscle proliferation and 
differentiation [10]. Furthermore miR-1 and miR-133 are 
both implied in cardiac and skeletal-associated human 
disorders [93]. These results showed that these mature 
miRNAs, originated by the same miRNA polycistron 
and transcribed together, can perform different biological 
roles.

Other analysis showed that ET can modify the 
levels of several miRNAs expressed in skeletal muscle, 
such as miR-1, miR-16, miR-21, miR-26a, miR-29a and 
miR-126 [94, 95] (Table 2). In addition, changes has been 
reported in skeletal muscle miRNA expression such as 
miR-136, miR-200c, miR-376, miR-377, miR-499b and 
miR-558. These miRNAs were up-regulated after chronic 
resistance exercises (i.e. leg press, leg curl, etc.) while, 
several miRNAs, such as miR-28, miR-30d, miR-204 
and miR-330 were on the contrary down-regulated [96] 
(Table 2). Taken together, the studies reported suggest that 
myomiRNAs play an important role in the skeletal muscle 
adaptations to ET in human health and that coordinated 
changes in the expression levels of these miRNAs 
contributed to skeletal muscle adaptations to acute and 
chronic ET.

miRNA expression in skeletal muscle disorders

miRNAs are fundamental modulators of skeletal 
muscle health and it is of high interest their involvement 
in the onset and development of myopathies and chronic 
disorders related with muscle wasting and dysfunction 
[74].

Primary skeletal-muscle diseases include a cohort of 
pathologies, such as muscular dystrophies, inflammatory 
myopathies and congenital myopathies. Although every 
year the gene numbers implied in muscle diseases rise and 
histological pathology of disorder tissue is widely reported, 
the essential molecular mechanisms continue to be little 
described [97]. The most often inherited neuromuscular 
disease in adults is myotonic dystrophy type 1 (DM1) 
and in a study it has been demonstrated that miR-206, a 
regulator of muscle regeneration, was especially increased 
in patients affected by DM1 when compared to healthy 
individuals [98]. Furthermore miR-1 and miR-335 are 
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elevated whereas miR-29b, miR-29c and miR-33 are 
reduced in patients affected by DM1, when compared to 
control individuals not presenting any pathological feature 
[99]. These miRNAs play roles in the regulation of muscle 
development [98]. Moreover, the cellular localization of 
miR-1, miR-133b and miR-206 seems to be scattered 
in DM1 muscle. Likewise, 11 miRNAs, involving the 
muscle enriched miRNA miR-208, are downregulated 
in the phosphatidylinositol-4,5-bisphosphate 3-kinase 
(PI3K)/AKT and in the transforming growth factor-β 
(TGF-β) signaling pathways of patient muscle samples 
affected by myotonic dystrophy type 2 (DM2) [100]. 
In fact, the downregulation of TGF-β cascade has been 
involved in both inherited and acquired unhealthy status 
influencing skeletal muscle, and Akt2 expression is highly 
enhanced during skeletal muscle cell differentiation and 
myocyte growth, indicating an Akt2 crucial function in  
myogenesis [100].

Some reports linked miRNAs with several muscle-
related diseases, such as Duchenne muscular dystrophy 
(DMD), Becker muscular dystrophy, facioscapulohumeral 
muscular dystrophy, limb-girdle muscular dystrophies 
types 2A and 2B, Miyoshi myopathy, nemaline myopathy, 
polymyositis, dermatomyositis, and inclusion body 
myositis [54, 97]. miRNAs such as miR-1, miR-21, 
miR-33, miR-133 and miR-206 derived from patient 
serum affected by Duchenne muscular dystrophy showed 
that specific muscle-enriched miRNAs were widely 
upregulated in expression related with the development 

of the dystrophic disease [101]. The same findings 
were reported in dystrophic mdx mouse muscles (these 
spontaneous mdx mutant mice do not express dystrophin 
and may be useful for studying Duchenne muscular 
dystrophy, they are also known as DMD), which revealed 
that expression levels of miR-206 were widely enhanced 
in the muscle when correlated with normal mouse 
muscles [102], indeed, miR-206 levels are elevated 
in the diaphragm muscle of an animal mouse model of 
muscular dystrophy [54]. In addition, in a murine model 
of skeletal-muscle hypertrophy the expression levels 
of miR-1 and miR-133a were reduced [54]. In murine 
models, these downregulations could be overcome with 
therapeutic treatments, such as HDAC inhibition or 
recovery of nitric oxide (NO) signaling [103]. In DMD 
derived samples, miR-31 and miR-486 were recognized 
as regulators of muscle regeneration. In DMD myoblasts 
from humans, miR-31 silencing enhances dystrophin and 
therefore miR-31 regulation is suggested as a probable 
curative approach to ameliorate the DMD phenotype 
[104]. miR-486 expression was not modified in patient 
muscles affected by Becker muscular dystrophy who 
displays in part functional dystrophin protein [97]. miR-
486 is suggested to play a significant regulatory role in the 
phosphatase and tensin homolog (PTEN)/Akt signaling 
pathway in dystrophin deficient and normal muscle [56]. 
miRNA expression profiling of the serum from the beagle-
based canine X-linked muscular dystrophy in Japan 
(CXMDJ) model also demonstrated a downregulation of 

Table 2: Sport exercise affect skeletal muscle miRNA expression

miRNA  
upregulated

miRNA down regulated Type  
of exercise

References

miR-1, miR-133a,  
miR-133b, miR181a

miR-9, miR-23a, miR-23b, miR-31 Acute exercise Russell AP. et al., 2013.

miR-1, miR-23a, miR-133a, miR-133b,  
miR-206

Acute resistance 
exercise, Chronic 
training, Chronic 
resistance 
exercise

Ringholm S. et al., 2011; 
Drummond MJ. et al., 2008, 
Nielsen S. et al., 2010, 
Mueller M. et al., 2011.

miR-1, miR-29b Endurance Russell AP. et al., 2013.

miR-133a, miR-378, miR-486 Resistance 
exercise

Fyfe JJ. et al., 2016.

miR-136, miR-200c, 
miR-376, miR-377, 
miR-499b, miR-558

miR-28, miR-30d, miR-204, miR-330,  
miR-345, 
miR-375, miR-449c, miR-483, miR-509,  
miR-520a, miR-548, miR-628, miR-653,  
miR-670, miR-889, miR-1245a, miR-1270, 
miR-1280, miR-1322, miR-3180

Chronic 
resistance 
exercise

Ogasawara R. et al., 2016.

miR-451 miR-26a, miR-29a, miR-378 Resistance
exercise

Davidsen PK. et al., 2011.

The list summarize which miRNA is up-or down-regulated in skeletal muscle after physical activity.
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miR-1, miR-133a, and miR-206 [105]. Further analysis 
of serum obtained from DMD boys showed that besides 
three myomiRs (miR-1, miR-133a/b and miR-206) being 
enhanced in expression, two other muscle-enriched 
miRNAs, miR-208b and miR-499 raised [106]. miR-199a-
5p is elevated in human DMD samples when correlated 
to the irrespective healthy subjects. It has been showed 
that miR-199a-5p turns off the expression of different 
members of the Wnt signaling pathway, a pathway that 
controls satellite cell sustenance and differentiation [107].

Overall miRNA expression-profiling analysis 
reported that a total of 185 miRNAs were downregulated 
in samples of pathological muscle tissue from ten muscle 
diseases (Duchenne muscular dystrophy, Becker muscular 
dystrophy, facioscapulohumeral muscular dystrophy, 
limb- girdle muscular dystrophies types 2A and 2B, 
Miyoshi myopathy, nemaline myopathy, polymyositis, 
dermatomyositis, and inclusion body myositis). Among 
those, five miRNAs (miR-146b, miR-221, miR-155, 
miR-214 and miR-222) were widely regulated by a post-
transcriptional mechanism in almost all samples derived 
from all diseases that were examined [97, 108]. A direct 
genetic link has been associated to miRNA role in muscle 
hypertrophy [109, 110]. An aberration responsible for 
the extraordinary muscularity of Texel sheep has been 
mapped to a single G-to-A mutation into the 3′ UTR 
of the mRNA encoding myostatin, a component of the 
TGF-β family; myostatin role is to inhibit muscle growth. 
This alteration generates a linking site for miR-1 and 
miR-206, contributing to the translational inhibition of 
myostatin, which phenocopies the “muscle doubling” 
that results from the loss of myostatin in mice, cattle and  
humans [110–112]. 

It has been reported an increase in miR-23a in 
skeletal muscle of patients affected by amyotrophic 
lateral sclerosis (ALS) when correlated to healthy subjects 
[113]. In vitro it was determined that miR-23a controls 
peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α) negatively [113], that is 
a fundamental stimulator of mitochondrial biogenesis 
and function. It has therefore been hypothesized that 
curative repression of miR-23a could deliver PGC-1α 
function and improve ALS phenotype. Sixteen miRNAs 
such as miR-1, miR-28–5p, miR-19b, miR-100, miR-
127–3p miR-135, miR-192 were downregulated in 
patients affected by laminopathies, a class of myopathies 
inducing alterations in the lamin A/C gene [114]. Pathway 
enrichment analysis in the predicted targets of these 
miRNAs revealed pathways involved in muscle repair, 
such as MAPK, TGF-β and Wnt signaling. miR-100, 
miR-192 and miR-135, were involved in C2C12 myoblast 
growth and differentiation. In children muscle affecting by 
dermatomyositis, it was observed that 33 miRNAs resulted 
elevated [97], miR-126 was significantly decreased in 
subjects in the first stage of pathology when related to 
control subjects [115] and it has been suggested to play a 

particular function in the first but not in the last stage of 
juvenile dermatomyositis by contributing to the expression 
of the vascular cell adhesion molecule 1 (VCAM-1), a 
protein usually demonstrated in the progression but not in 
the complete muscle fibers.

Facioscapulohumeral muscular dystrophy (FSHD) is 
due to genetic modifications including the long (q) arm of 
chromosome 4. This disorder derives from modifications 
in a region of DNA close to chromosome termination 
known as D4Z4. Hypermethylation of the D4Z4 region 
usually keeps a gene named DUX4 that is repressed in 
most adult cells and tissues. The DUX4 gene is placed in 
the segment of the D4Z4 region near to the final part of 
chromosome 4 [116].

The expression of the transcription factor DUX4 
and its transcriptional regulation have been reported to 
play an important downregulation of miRNAs during 
FSHD disorder progression [117]. The upregulation of 
miRNA-411 in FSHD myoblasts has been described 
as a possible process for the interruption of myogenic 
differentiation through direct suppression of transcriptional 
repressor protein YAF2 and YY1 transcriptional role 
[118]. Full transcriptome study of miRNAs dysregulated 
in FSHD myoblasts and serum from FSHD patients 
reported an important enhance in expression of the 
muscle myomiRs (miR-1, miR-133a/b, miR-206) with 
important downregulation of different miRNAs [116]. 
Next-generation sequencing of FSHD myoblasts (RNA 
samples extracted from muscle cells) reported several 
additionally dysregulated miRNAs when compared with 
unaffected patient myoblasts, such as miR-1, miR-133a/b 
and miR-206 [119]. 

The downregulation of myogenic and non-myogenic 
signaling cascades that happen in the FSHD disorder 
status [120] is related to miRNA alterations and influence 
FSHD disease progression.

miRNAs are fundamental in the control of several 
gene networks and signaling cascades in muscle, therefore, 
they are significant regulators of skeletal muscle health 
and several miRNAs are downregulated in specific muscle 
disorders status [121]. Based on the results obtained in 
these studies, miRNAs such as, miR-1, miR-133a/b, miR-
206 could be considered as key regulator in this kind of 
dystrophy [116].

miRNAs have been identified in most biofluids, 
such as serum and plasma and there is a rising interest in 
analyzing circulating miRNAs (c-miRNA) as biomarkers 
of normal or pathological mechanisms [122, 123]. 
Controlling the status of skeletal muscle has been a long-
time concern and there is constant, ongoing research to 
find new blood markers of muscle damage [123]. Data 
published shows that miRNAs are consistent biomarkers 
of both acute and chronic muscle injury and may be a 
result of adaptation to physical activity [123]. Several 
applications could result in both research and medical 
field [123]. Physical activity physiology and sports 
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science could take advantage from novel biomarkers 
able to analyze muscle conditions in response to exercise 
[123]. MyomiRs can also reflect muscle mass or muscle 
loss. Muscle wasting is a mechanism and muscle mass 
a symptom; since both can often determine morbidity 
or mortality, circulating myomiRs are hopefully novel 
diagnostic/prognostic instruments to be used in the medical 
field [123]. Different myomiRs have been identified 
in skeletal muscle as well as in cardiac muscle [123].  
It has been reported that several muscle-specific 
miRNAs, including miR-1/206, miR-133 and miR-208 
are fundamental for normal myoblast differentiation and 
growth and they have also been involved in several cardiac 
and skeletal muscular disorders suggesting that miRNA-
based gene approaches could have a prospective for the 
cure of cardiac and skeletal muscle diseases [124].

SKELETAL MUSCLE REGENERATION 
AND AGING

In our modern society aging is one of the important 
challenges. Advanced adult age is associated with changes 
in many physiologic systems. Of particular interest is the 
musculoskeletal system because it directly contributes to 
mobility and functional independence. Skeletal muscle 
mass and strength decline with age [125]. These changes 
are mostly due to a decrease in the quantity of muscle 
fibers and cellular and molecular changes that reduce the 
force-generation process [23].

In aging, bone mass and architecture are 
compromised and may result in fractures as well as 
tendons and ligaments undergo significant biochemical 
alterations that directly compromise their biomechanical 
function [126].

The age-related reduction in muscle repair efficiency 
contributes to the development of sarcopenia, one of the 
most important factors of disability in elderly people. 
During aging, several tissues undergo modifications 
in stem cell number and fuction, that impact tissue 
homeostasis. Specific extrinsic mediators from local 
and systemic environment are necessary for stem cell 
role. Aging of the stem cell either in local and systemic 
environment is related to stem cell death. Since the first 
evidence that muscle restore was under the control of 
soluble components present in serum, modifications in 
the content of the systemic environment has been the 
predominant model to identify impairments in skeletal 
muscle restore during aging [127].

In studies using old mice, muscle restore is blunted 
in wide part for satellite cell dysfunction [128, 129]. 

In other types of stem cells, such as hematopoietic 
stem cells, not only the role but also the quantity of satellite 
cells decrease with aging. In aged muscle, the quantity 
of stem cells could be reduced during the regeneration 
process [130]. It seems that there is a minimum number 
of muscle stem cells to effectively restore muscle 

mass and the quantity will be due to the fitness of the 
cells and the environmental support. With age, Notch 
pathway stimulation becomes defective for reduced delta 
ligand expression in myofibers and in satellite cells. 
This decrease in Notch stimulation is also expanded by 
excess of TGF-β/phospho-Smad (pSmad), leading to an 
aggregation of cyclin-dependent kinase (CDK) inhibitors 
in muscle stem cells, hence avoiding their regenerative 
responses [131, 132]. Parabiosis and all muscle grafting 
experiments revealed that processes regulating the 
regeneration ability of stem cells may be particularly 
due to modifications of the local environment during 
aging [130]. In elder population indeed, the efficacy of 
muscle regeneration decrease, promoting that the satellite 
cells function and their progeny may be altered. Satellite 
cells are not isolated but are rather encircled and affected 
by several extrinsic components that are in connection 
with the stem cell and the stem cell niche, autocrine and 
paracrine elements (both at rest and after injury) and with 
circulating elements that can modify their function. These 
elements probable modify during aging and induce both 
reversible and irreversible modifications to the satellite 
cells and on their proliferating progeny.

Age-associated miRNA regulation in skeletal 
muscle 

Sarcopenia, the age-related wasting of skeletal 
mass and role, enhances falls and fractures worsening 
the independency of life [133]. Analysis are ongoing 
with a larger sample size to determine if the age-related 
modifications in skeletal muscle are affected by miRNA 
aberrant expression and activity. Moreover, it will be 
significant with regard to the prospective of exercise 
levels and nutritional conditions, to consider all elements 
which can affect muscle miRNA levels, when comparing 
young and older individuals. It has been reported high 
levels of pri-miR-1-1, -1-2, -133a-1 and -133a-2, with no 
modification in pri-miR-206 in skeletal muscle biopsies 
taken from six aged (70 ± 2 years) subjects when related 
with six young (29 ± 2 years) men [88]. The potential 
of miRNAs to modulate aging in model organisms has 
recently attracted the interest of the molecular genetics 
community [134]. Numerous miRNAs, such as miR-71 
in C. elegans and miR-17-92 in mammals, have been 
demonstrated to be particularly up- or down-regulated 
in aging [135, 136]. These advancements have given a 
further comprehension of specific elements that regulate 
aging signaling pathways in different species from C. 
elegans to humans. Interestingly, let-7 miRNA [137] is 
downregulated with age in C. elegans [135, 138]. Indeed, 
analysis in older individuals have determined that two 
miRNA levels from the let-7 family of miRNAs, let-7b 
and let-7e, are higher in skeletal muscle when correlated 
to young participants [88, 139]. The sequence of C. 
elegans (cel)-let-7 differs poorly from human (hsa)-let-7b 
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and hsa-let-7e and this discrepancy could be enough to 
give various mRNA targets for these three miRNAs. In 
both C. elegans and humans the role of the let-7 family 
of miRNAs is similar. The primary function of the let-
7 miRNAs seems to be anti-proliferative, as identified 
in human tumor cells [140–144] and in mouse neuronal 
stem cells [141]. The increase of let-7 miRNAs could 
be the reason for the damaged capacity to stimulate and 
induce the proliferation of satellite cells in the elderly 
skeletal muscle, hence leading to the mitigated skeletal 
muscle regenerative ability in the aged [145]. Therefore, 
bioinformatic studies detected cell cycle control and 
cell cycle progression and proliferation as the cellular 
mechanisms probable to be modulated in humans by the 
2 let-7 miRNAs.

Atrophy of skeletal muscles can origin from either 
primary or secondary muscle diseases or from inactivity 
and/or aging in healthy subjects [146, 147].

Analysis made at bed rest on healthy human 
subjects, as well as animals atrophy models (mouse and 
rat), demonstrated a dysregulation of myomiRs, which 
not contribute to inhibition of pathways such as insulin 
signaling, TNF, TGF-β Smad2, and MAPK inducing 
progression of atrophy, insulin resistance, and metabolism 
and fiber type shift [87, 97, 147, 148].

To distinguish among miRNA modifications in 
“normal” and disorder-induced muscle atrophy, it is 
fundamental to correlate both mechanisms. In healthy 
subjects, skeletal muscle atrophy derives from continued 
immobility, aging, caloric limitation, physical passivity, 
or particular microgravity status, such as space flight and 
is represented by decreased muscle force, lower synthesis 
and higher protein degradation rate, protein carbonylation, 
shift in muscle fiber type from slow type I to fast type 
II, enhanced oxidative stress, development of insulin 
resistance, and intramuscular fat deposits [149]. It was 
demonstrated that age affects myomiR expression in an 
analysis correlating skeletal muscle biopsies of young 
and older healthy men [139]. In older men, let-7a/b/e/f 
and miR-25, miR-98, miR-195, and miR-1268 were 
increased, whereas miR-22, miR-24, miR-27a, miR-27b, 
miR-30d, miR-133a, miR-133b, miR-223, and miR-278 
were dysregulated when compared to young participants 
[139]. There was no difference in the expression of miR-
206 among these cohorts.

CONCLUSIONS

The emergence of the miRNA field contributes 
to a sensational possibility to deepen the knowledge of 
molecular components which regulate skeletal muscle 
development, regeneration and aging. Moreover, miRNA 
biology also provides an avenue to dissect the mechanisms 
which may contribute to genetic and acquired muscle 
diseases and related complications. The impact of 
behavioural choices influencing physical activity has an 

important role in determing our longevity and quality of 
life. The observations that physical exercise may influence 
miRNA levels has important implications to understand 
how to maintain health throughout the lifespan, an issue 
of great relevance considering our aging and sedentary 
communities. A downregulation of different miRNAs 
occurs in myopathies, in chronic disorders associated to 
muscle loss as well as in aging. These studies suggested 
that skeletal muscle miRNAs play an important function 
in muscle adaptation or maladaptation to endurance and 
resistance exercise training. The recognition of miRNAs 
and their modulation following physical activity suggest 
that they could be helpful biomarkers of healthy status and 
might be amenable for future therapeutic intervention.
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