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Abstract

This paper addresses the issue of estimating a production function that allows

us to depart from the standard hypothesis of Hicks neutrality while also coping

with the endogeneity of a dummy innovation variable. We consider specifications

that relax Hicks neutrality, and we derive the testable conditions for common

parametric approximations under which Hicks neutrality holds. The model is

estimated through instrumental variables methods, allowing for a heterogeneous

effect of innovation on the production process. The econometric analysis rejects

Hicks neutrality and highlights three main features: i) a capital-saving technology

of innovative with respect to non-innovative firms, ii) a locally progressive technical

change and iii) fully heterogeneous technologies when comparing innovative to

non-innovative firms.

Keywords: Biased technical change; Hicks neutrality; Innovation; Productivity; Knowledge pro-

duction function; CDM model; Instrumental variables; heterogeneous treatment effect
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1 Introduction

Assessing the effect of technical change (TC) on the production process, both theo-

retically and empirically and at all levels of aggregation, is one of the major concerns

amongst economists because TC is largely recognized as one of the fundamental drivers

of economic development. In neoclassical production theory, one of the most commonly

used classifications of TC dates to the seminal work of Hicks (1963). In particular,

according to Hicks, “we can classify inventions according as their initial effects are to

increase, leave unchanged or diminish the ratio of the marginal product of capital to

that of labor” (Hicks, 1963, p.121). The above types of inventions are referred to as

labour-saving, neutral or capital-saving inventions, respectively.

Formally, Hicks neutrality (HN) requires that the marginal rate of technical sub-

stitution (MRTS) between each pair of inputs be independent of technical change.

However, this definition of neutrality has received different interpretations; Hicks’ re-

quirement that the firm be in a state of “internal equilibrium” (Hicks, 1963, p.113, 234,

236) does not specify explicitly whether the effect of TC should be measured along

the firm’s expansion path or at the optimal factor proportions, which has resulted in

controversy (see, e.g., Antle and Capalbo, 1988).

To clarify this ambiguity, Blackorby et al. (1976) consider three different definitions.

The first was suggested by Hicks and is already referred to as HN. The second is implicit

Hicks neutrality (IHN) and accounts for a ray preserving TC. They also introduce a

third definition that they term extended Hicks neutrality (EHN). While HN translates

equivalently to a weak separability assumption between TC and the inputs (Morimoto,

1974), EHN implies TC that is strongly separable from the inputs in a production

function. The three different definitions considered in Blackorby et al. (1976), namely

HN, IHN and EHN, are not equivalent in general and coincide only if the production

function is input homogeneous.

While HN has received significant attention, several streams of literature question

its plausibility. Jones (1965) describes a two-sector economy in which HN is unlikely,

although HN may appear in each industry. Further, Steedman (1985) presents a model

of interconnected industries in which, under weak alternative sufficient conditions,

HN is impossible, ultimately concluding that the compatibility of HN with the other

assumptions of a model should be examined. Acemoglu (2015) also mentions that in

Atkinson and Stiglitz’s (1969) seminal paper, it is implied that when TC is localized

to specific factor proportions, then it is biased. Chambers (1988, p. 206) describes

other fairly common types of TC that depart from being HN. In particular, if TC is

locally progressive or regressive, its effect on productivity results in isoquants of the

production function that intercept the old ones. Obviously, such TC does not follow

HN, IHN or EHN.

Empirically, at a microeconomic level, since the seminal works by Pakes and
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Griliches (1984) and Griliches (1998), the question concerning the effect of TC on

the production process has often been addressed within the framework of the so-called

knowledge production function (KPF), where innovation activity is the main source

of technical and knowledge improvements. The KPF is a conceptual framework that

suggests a possible causal relationship between unobservable knowledge capital and

related observable variables such as innovation inputs (e.g., research and development,

R&D), innovation outputs (e.g., patents) and firms’ performance. The KPF provided

the basis for econometric analyses connecting different and relevant aspects of inno-

vative activities. In their influential article, Crépon et al. (1998) propose a multiple-

equation econometric model – commonly labeled CDM – that has a similar structure to

Griliches’ original conception and uses appropriate estimation methods for taking into

account both the potential endogeneity of some of the explanatory variables and the

particular nature of the dependent variables. In recent years, the availability of survey

data, such as those obtained from the Community Innovation Surveys, has allowed the

use of a direct and binary measure of the innovative output that is then introduced

into a production function framework as an endogenous dummy variable that accounts

for TC (see, e.g., Mairesse and Mohnen, 2010).

Recently, developments and generalizations of the CDM approach have been ac-

complished, such as the introduction of dynamics into the model, the assessment of

measurement errors or the consideration of a Schumpeterian perspective (Lööf et al.,

2016). The extremely vast literature clearly indicates a positive and significant effect

of innovation on productivity (Mohnen and Hall, 2013) and sheds light on many other

relevant relationships among variables.

However, a crucial maintained assumption in this literature is HN. In standard

econometric models, innovation is additively introduced into the production function

specification. Additivity is equivalent to a multiplicative decomposability of the pro-

duction function into a function of innovation and a function of the inputs. Uzawa

and Watanabe (1961) prove the equivalence of HN and the decomposability of the

production function. Therefore, standard econometric models usually impose a strict

condition, specifically HN, when assessing the effect of innovation on productivity.

The present study contributes to the literature on the econometrics of productivity

and TC in two ways. First, we estimate a model that allows us to relax the neutrality

assumption. Second, we extend the analysis by Blackorby et al. (1976) and provide

testable conditions, for common parametric specifications, namely Cobb-Douglas (CD)

and translog (TL), under which HN, IHN or EHN hold.

The econometric analysis developed here exploits recent advances in the econo-

metric theory of instrumental variables (IVs) with cross-sectional data and a binary

endogenous regressor. In the empirical literature, the standard approach considers a

parametric approximation of the production function – typically CD – in which inno-

vation enters additively, and the main focus is on the endogeneity of innovation and
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its binary nature (Musolesi and Huiban, 2010; Mohnen and Hall, 2013). We depart

from this literature by allowing for an heterogeneous effect of the dummy endogenous

innovation variable by adopting the approach proposed by Wooldridge (2003, 2010).

This allows the technology parameters to differ between innovative and non-innovative

firms, finally permitting us to address endogeneity while relaxing the assumption of

neutrality.

The remainder of the paper is organized as follows. Section 2 describes the theory of

TC and presents HN, IHN and EHN, along with their relationships. It also introduces

empirical specifications that allow non-neutrality and provides simple conditions under

which each of the different definitions of neutrality holds. The data set is described

in section 3. This section also presents the results and comments. Finally, section

4 concludes the paper. In supplementary appendices, we present the relationships

among HN, IHN and EHN (Appendix A), and we also provide conditions under which

neutrality holds within a TL framework (Appendix B). Appendix C provides robustness

checks.

2 Hicks neutrality: theory and econometrics

2.1 A selective review of theory

Consider a production function f : Rk+1
+ → R1

+ that is expressed as

Y = f (X, I) . (1)

R+ denotes the positive real numbers. It is commonly assumed that f is twice-

differentiable in X, strictly quasiconcave in X and non-decreasing in I. Y is a measure

of output such as value added. X = {X1, X2, . . . , Xk}T is a k -dimensional vector of

inputs that includes conventional production inputs such as capital and labour. I rep-

resents innovation activity, which is regarded in production theory as the main source

of TC.

In a production function with multiple inputs, i.e., for k > 1, technical change

may affect the marginal productivity of each input differentially. Therefore, it can

be classified as biased or neutral, according to whether the ratios between marginal

products are changed. Hicks (1963) is the first to distinguish inventions according

to the above observation. Particularly, he focuses on cases with two input factors,

namely capital and labour. Under the requirement that the firm remains in a state

of “internal equilibrium”, he defines an invention as labour-saving, neutral or capital-

saving according to whether its initial effect is to increase, leave unchanged or decrease

the ratio of the marginal product of capital to that of labour, respectively. Uzawa and

Watanabe (1961) generalize Hicks’ classification to cases of more than two factors of

production.
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Hicks’ classification has resulted in controversial interpretations concerning whether

the effect described above should be observed along the expansion path of the firm or

along the optimal factor proportions. In particular, while Blackorby et al. (1976) state

that this effect should be considered along the firm’s expansion path, Kennedy and

Thirlwall (1972, 1977) consider HN along a ray from the origin and argue that Hicks’

definition of neutrality does not imply an expansion path preserving innovation.

Nevertheless, Blackorby et al. (1976) attempt to clarify this ambiguity by distin-

guishing three different definitions of neutrality. The first generalizes Hicks’ definition

for cases of firms with more than two inputs; neutrality holds if the MRTS between

each pair of inputs is independent of I . This definition is denoted HN and translates

to the following expression:

∂f(X, I)/∂Xr

∂f(X, I)/∂Xl
= φrl(X), ∀r 6= l (2)

where φrl, r, l = 1, 2, . . . , k, r 6= l are functions of X. Therefore, HN requires that the

MRTS for every Xr, Xl, r 6= l component of X be a function of X only. Blackorby

et al. (1976) refer to innovation as HN if it is expansion path preserving. Further, it

is proven (see Morimoto, 1974) that HN holds if and only if the inputs X are weakly

separable from I in f , such that the production function is described by:

f(X, I) = g(h(X), I) (3)

where g and h are real functions. The above implies that HN and weak separability of

X from I impose equivalent restrictions on f .

Blackorby et al. (1976) introduce a second definition of neutrality, namely IHN, that

requires the MRTS between each pair of inputs to be independent of I , at constant

factor proportions. This definition implies that the MRTS is homogeneous of degree

zero in the inputs X. Further, they refer to innovation as IHN if it is ray preserving and

prove that IHN holds if and only if the transformation function f̃(X, Y, I) = max
λ
{λ >

0 : f(λ−1X, I) ≥ Y } can be written in the following form:

f̃(X, Y, I) = g̃(h̃(X, Y ), Y, I), (4)

where g̃ and h̃ are real functions. f̃ is a distance function that uniquely represents the

technology f . According to (4), I is IHN if it is separable from X in f̃ .

A third definition of neutrality accounts for cases in which I is strongly separable

from X in the production function f (see Chambers, 1988, p.45). By definition, EHN

holds if:
∂

∂Xr
[ln f(X, I)] = φr(X), ∀r = 1, 2, . . . , k, (5)

where φr, r = 1, 2, . . . , k are functions of X. Moreover, it is proven that EHN holds if

and only if the production function can be multiplicatively decomposed into a function

h̄ of inputs only and a function ḡ of I only, such that:

f(X, I) = ḡ(I)h̄(X). (6)
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Obviously, if innovation is EHN, it is also HN, because eq.(6) implies eq.(3).

In general, the three definitions of neutrality are not equivalent. Antle and Capalbo

(1988, p.38) note that innovation that results in a renumbering of the isoquants is

also neutral in terms of the MRTS at points on the expansion path but may not

be neutral in terms of optimal factor proportions. Moreover, a priori, neither HN

nor IHN is sufficient for EHN. Nevertheless, there are conditions under which HN,

IHN and EHN coincide. First, under the assumption that the production function is

input homogeneous, the three definitions are equivalent (see Morimoto, 1974; Blackorby

et al., 1976). IHN and HN are equivalent if and only if the production function is input

homothetic, while the equivalence of IHN and EHN implies the homotheticity of f .

A detailed presentation of the relationships among HN, IHN and EHN is provided in

Appendix A.

2.2 Econometric specification: relaxing and testing Hicks neutrality

The above definitions of neutrality can be assessed using a suitable econometric frame-

work. We assume that the inputs of production are the conventional factors capital

(K) and labour (L). The innovation activity of the firm is described by a binary

variable I ∈ {0, 1}, as in many previous works (see, e.g., Mairesse and Mohnen, 2010;

Mohnen and Hall, 2013). We consider a specification that allows us to relax the neu-

trality assumption. This is achieved by focusing on a model in which innovation not

only produces a shift in the production technology – as is usually imposed in econo-

metric analyses – but is also interacted with labour and capital inputs, thus allowing

the technology parameters to differ between innovative and non-innovative firms. For

simplicity, comparability with previous studies and data congruence, the main analy-

sis is conducted assuming a CD technology, while in Appendix B, we derive testable

conditions concerning the TL form and its relationship with HN.

Empirical studies usually consider a CD production function in which innovation

enters additively. Given a sample of n observations, the econometric model is described

by:

lnYi = ln fCD (Ki, Li, Ii, εi) = α+ αI Ii + αK lnKi + αL lnLi + εi, (7)

where i denotes the i-th observation, and ε is the error term. Then, the MRTS1 between

L and K is given by:

MRTSCD
i = −αL

αK

Ki

Li
, (8)

which, being independent of I, implies that HN holds. Moreover, IHN is also im-

posed because for constant factor proportions, the MRTS is both independent of I and

1Computation of the MRTS involves deriving the marginal products of the inputs. The marginal

product of Xr, r = 1, 2, . . . , k at (Yi,Xi, Ii), i = 1, 2, . . . , n is given by ∂E(Yi|Xi, Ii)/∂Xr,i, which

assumes the exogeneity of all variables, that is, E(εi|Xi, Ii) = 0, i = 1, 2, . . . , n. (see Verbeek, 2008, for

a discussion of marginal effects in the linear model) This assumption is considered in this section only

to simplify the presentation without losing any relevant information.
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constant. Finally, I is EHN because (5) holds, that is:

∂

∂Ki
E [lnYi|Ki, Li, Ii] = αK

1

Ki
&

∂

∂Li
E [lnYi|Ki, Li, Ii] = αL

1

Li
.

Alternatively, it suffices to observe that I is strongly separable from the inputs in

fCD. In summary, in the case of a CD production function with added innovation

as described by (7), all definitions of neutrality described above are satisfied. This

equivalence is also implied by the input homogeneity of fCD.

In (7), innovation additively enters the production function. To relax HN, we

consider a CD production function in which innovation also interacts with the inputs,

as given by:

lnYi = ln fCDh (Ki, Li, Ii, εi) = α+αI Ii+αK lnKi+αKI Ii lnKi+αL lnLi+αLI Ii lnLi+εi.

(9)

Then, the MRTS between L and K becomes:

MRTSCDh
i = − αL + αLI Ii

αK + αKI Ii

Ki

Li
. (10)

In this case, neither HN nor IHN hold, unless the following condition holds:

αKIαL = αLIαK . (11)

Moreover, the definition of EHN does not hold, generally, because:

∂

∂Ki
E [lnYi|Ki, Li, Ii] = (αK + αKI Ii)

1

Ki
&

∂

∂Li
E [lnYi|Ki, Li, Ii] = (αL + αLI Ii)

1

Li
.

Alternatively, it suffices to show that I is not strongly separable from the inputs in

fCDh, unless the following condition holds:

αLI = αKI = 0. (12)

In summary, in the case of a CD production function with interactions as described in

(9), the definitions of HN, IHN and EHN are not satisfied, unless particular conditions

are met.

2.3 Estimation methods

The particular structure of models in which a dummy endogenous innovation additively

enters the production function (7) is typically referred to as the dummy endogenous

variable model. This specification, which is extremely common in the econometric

literature focusing on the effect of innovation on productivity (Mohnen and Hall, 2013),

can be consistently estimated using, among other methods, the standard IV estimator

(IV-2SLS, hereafter; see, e.g., Wooldridge, 2010; Kelejian, 1971; Angrist and Krueger,

2001) and selecting the instruments within the determinants of the innovation function
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(Musolesi and Huiban, 2010). However, in a model with interactions between the

endogenous dummy and the explanatory variables, the adoption of the IV-2SLS is

more problematic. The main problem arises because each interaction term IXr will

be also endogenous. Therefore, estimating such a model by standard IV-2SLS would

require finding instruments for all the endogenous variables I, IXr, r = 1, 2, . . . , k. If

Z is a set of ρ valid instruments for I, then a natural set of instruments for IXr is

{ZjXr : Zj ∈ Z}. This approach results in a total of (k + 1)ρ IVs, while it is well

known that the estimation by standard IV-2SLS in the presence of many instruments

has a large bias and makes inference inaccurate (see Hansen et al., 2008)

Consequently, we use an alternative IV approach proposed by Wooldridge (2010)

(IV-W), which is more efficient than IV-2SLS and has a number of other interesting

features. The implementation of IV-2SLS requires the zero correlation assumption, i.e.,

E (ε) = E(εX) = E(εZ) =0, whereas to use IV-W, the error term ε should have zero

conditional mean – E (ε | X,Z) = 0 – which is a stronger exogeneity assumption that

ensures that E (ε) = E(εX) = E(εZ) =0 but also implies that ε is uncorrelated with

any function of X and Z. Under the zero conditional mean assumption, the two-step

approach proposed by Wooldridge for a model in which the endogenous dummy enters

additively, as in (7), consists in estimating P (I = 1 | X,Z) = F (X,Z;γ) by (probit)

maximum likelihood (ML) and then estimating the structural equation by IV-2SLS

using 1, X and the estimated conditional probability P̂ as instruments.

This two-step approach has a number of very interesting features since i) although

generated instruments are used, the usual IV-2SLS standard errors and test statistics

remain asymptotically valid for the second stage; ii) provided that the homoskedastic-

ity assumption Var(ε|X,Z) = σ2 holds, the IV-2SLS estimator of the second step is

asymptotically the most efficient for the class of estimators in which the instruments

are functions of (X,Z); and, possibly most important, iii) this estimator possesses an

important robustness property since the estimator of the structural equation in the

second step is consistent, even if the model for P (I = 1|X,Z) is not correctly speci-

fied, while the requirements that are needed for consistency are much weaker (White,

1982). In other words, the innovation function does not have to be correctly speci-

fied to obtain consistent estimates for the parameters in the augmented production

function.

To estimate a model with interactions such as (9), Wooldridge (2003, 2010) proposes

a method (IV-W-H) that is a simple extension of that presented above and provides a

solution to the problem of many instruments in the standard IV-2SLS. This is achieved

by using the optimal – in terms of efficiency – instruments P ≡ P (I = 1|X,Z) for I

and PXr for IXr, r = 1, 2, . . . , k . This approach consists of the following two steps:

a. Estimate P (I = 1|X,Z) = G(X,Z; γ) by ML and obtain the fitted values P̂ .

b. Estimate the structural equation by IV-2SLS using 1, X, P̂ and P̂X as instru-
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ments.

As before, under the zero conditional mean assumption, the IV-2SLS of the struc-

tural equation is a consistent and asymptotically normal estimator, and again, the

binary response model does not need to be correctly specified to achieve consistency.

Some additional remarks are in order.

First, note that to estimate (9), we use the same parametrization as in Wooldridge

(2003, 2010), where the interaction terms are mean centred, i.e., I
(
X−X

)
. Second,

note that X is introduced in
(
X−X

)
as an estimator of E(X) and this should be

accounted for when computing the standard errors. However, according to Wooldridge

(2010), this will not have serious consequences, and heteroskedasticity-robust standard

errors could still be employed; alternatively, bootstrapped standard errors are a viable

alternative. Third, the parameter associated with innovation, αI , measures, under

weak assumptions, the average treatment effect (ATE), i.e., αI = αATE
I

for both the

additive (7) and the interaction model (9). As the interaction terms are mean centered

and using the same notation as in Cerulli (2014), we can define the following:

ATE(X) = E (lnY | X,Z,I = 1)−E (lnY | X,Z,I = 0)

= αI + αKI (lnK − lnK) + αLI
(
lnL− lnL

)
.

(13)

While in the additive model, the innovation effect is constant, specifying (9) allows for

an heterogeneous effect of innovation across firms, which is a function of the production

inputs. This is why, in the heterogeneous case, we will also focus attention on the

estimation of the distribution of such an effect. Finally, suppose that the unobservable

stochastic part of the model, ε, differs between innovative and non-innovative firms,

that is, ε = ε0 + I(ε1 − ε0), ε1 6= ε0. In such a case, under a fairly weak assumption,

the above procedure continues to be consistent. The assumption that is required

for consistency is a mean independence assumption E[I(ε1− ε0)|X,Z] = E[I(ε1− ε0)],

which is generally reasonable for continuously distributed responses (see Angrist, 1991;

Wooldridge, 2010).

3 Data and Results

3.1 Data

The data used for the analysis come from the tenth and last Survey on Manufactur-

ing Firms (”Indagine sulle Imprese Manifatturiere”) provided by Unicredit-Capitalia,

which is complemented with balance sheets sourced from either AIDA (the Italian

Balance Sheet Dataset of the Bureau van Dijk) or from the Chambers of Commerce

Registry (UNICREDIT, 2008). The same survey, although in different waves, has

been widely used in the economics literature on firms’ innovation activities (for exam-

ple Parisi et al., 2006; Hall et al., 2009). Information on the innovation activity of firms
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was derived from the survey that was conducted in 2007 and posed questions referring

to the three-year period 2004-2006, while the variables derived from balance sheets

refer to the year 2006. The initial sample comes from a stratified survey: all firms

with more than 500 employees are included, while for the firms with fewer than 500

employees, a sample is extracted and stratified according to the information collected

from the company registry for the variables size, value added, geographical location

and industry. To estimate the econometric model, the main variables we consider are

as follows:

1. The natural logarithm of value added (lnY ): the measure refers to 2006 and is

reported on the balance sheet.

2. The natural logarithm of the capital stock (lnK): the measure refers to 2006,

is calculated by summing the value of fixed assets, and is estimated through a

perpetual inventory method considering the usual rate of depreciation of 0.05,

including investments. Both measures of fixed assets and investments are avail-

able from 1998 to 2006, and both are deflated with the respective aggregate price

index (derived from ISTAT, the Italian National Statistical Office).

3. The natural logarithm of labour (lnL): number of employees in 2006 reported

on the balance sheet.

4. Innovation, I: an innovation dummy taking value 1 if the firm affirmed having

introduced at least one product or one process innovation in the previous three

years (2004-2006), 0 otherwise.

5. Sectors: the manufacturing firms are classified by sector according to the two-

digit ATECO2002 classification, which derives from the NACE Rev.1.1 Eurostat

classification.

The aim of our preliminary data analysis is to identify the outliers in the sample, and

the econometric sample is obtained by adopting the cleaning procedure detailed below.

First, we drop observations with missing or inconsistent values, resulting in a sam-

ple of 3237 firms. Second, outliers are detected using the boxplot rule (Tukey’s method)

on the variables under investigation. In so doing, another 232 observations (7% of the

total) that exceed the boxplot’s outer fences are dropped, resulting in a dataset of

3005 firms and a significant reduction in the range of the variables. We also search for

outliers with respect to productivity. Consequently, we define total factor productivity

as TFP = Y/(K0.3L0.7) and then again apply the boxplot rule to detect another 81

outlying observations. Therefore, the final dataset consists of 2924 firms.

Descriptive statistics of the main inputs and output are presented in Table 1, while

the Z variables are described in Table 4 of Appendix C. Note that the percentage

of innovating firms in the final dataset employed in this work is 64%. This value
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is the same as in Hall et al. (2009), who construct a panel data set starting from

different waves of the same survey used in this work. This value is also very close to

the percentage of innovating firms obtained using the Italian CIS survey (Hall et al.,

2008).

3.2 Main results

First, we focus on the choice of the set of the Z variables. Importantly, as explained

in subsection 2.3, Wooldridge’s approach for both the additive and non-additive spec-

ifications (IV-W and IV-W-H) is consistent even if the model for P (I = 1|X,Z) is not

correctly specified. This is an important robustness property.

In Table 2, we report the main results, which are obtained by using Wooldridge’s

approach and selecting the Z variables using a backward selection procedure, with a

threshold of 0.10 for the p-value. The presentation of this single set of results, leaving

the remaining to Appendix C, is chosen because of the extreme stability of the results

across the different specifications. Appendix C presents many additional results. These

results are obtained using alternative definitions of the vector Z and also adopting the

standard IV-2SLS method, where the instruments are selected to be strong and valid.

Examining the results reported in the first two columns of Table 2, which are

obtained estimating the additive specification, reveals their consistency with previous

empirical work. While the baseline OLS approach does not provide evidence supporting

the positive role of innovation in the production process, with α̂I = 0.0189 and being

non-significant, when we use the IV-W method, we find a positive and significant Hicks-

neutral effect of innovation, with α̂I = 0.285, which is in line with the existing literature

(Hall, 2011), where this parameter ranges from approximately 0.2 to approximately

0.3. Moreover, the estimated coefficients of labour and capital are also in line with

previous work, with α̂K = 0.179 and α̂L = 0.741, and a resulting elasticity of scale

equal to 0.92.

We then turn to the estimation of the non-additive specification using the IV-W-H

method, which is the main interest of this paper. The estimated average effect of inno-

vation (0.272) is very close to that estimated using the additive model IV-W (0.285).

Note that the results presented in Table 2 are all obtained using heteroskedasticity-

robust standard errors. As stressed in subsection 2.3, when adopting the IV-W-H

approach, bootstrapping the standard errors can be a viable solution to account for

the fact that mean-centered variables are used for the interaction terms. We also ap-

ply a bootstrap with 1000 replications, which does not affect the results. The second

important result that emerges is that the estimated parameters associated with the

interaction terms, α̂KI and α̂LI , also appear to be statistically significant. This is a

crucial result from this paper indicating that innovation does not have a neutral effect

on production output. In fact, the production technology of innovative firms differs

significantly from that of non-innovative firms, and this difference is produced by two
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elements: 1) a significant estimated parameter allowing for a shift, α̂I ; 2) a significant

change in the slope parameters, which is measured by α̂KI and α̂LI , thus also affecting

the shape of the production function.

Moreover, the additive specification can be tested against the non-additive one

using a modified F test (Wooldridge, 1995). Unlike the standard F test, this statistic

uses the sum of squared residuals from the second stage of the IV-2SLS regressions in

the second step of the IV-W and IV-W-H approaches. The test rejects the additive

specification in favour of the non-additive specification at the 5% significance level. In

other words, the test rejects the condition (12) under which EHN is true. Further, we

examine the condition under which HN and IHN hold in the non-additive specification

using a Wald-type test; the test rejects, at the 5% level, the null hypothesis that (11)

holds. Therefore, all definitions of Hicks neutrality are firmly rejected.

By examining the estimated parameters, we can obtain further insights into how

technology differs between innovative and non-innovative firms. The estimated elas-

ticity of labour for innovative firms equals 0.94 and is much higher than that for

non-innovative firms, which is estimated at 0.43. The opposite holds for capital, with

elasticity values equal to 0.33 for non-innovative and to 0.08 for innovative firms. As

explained below, we find evidence of a capital-saving innovation. This supports the

idea that innovation has an heterogeneous effect on the production process, which de-

pends substantially on the production input with which it interacts. The consequences

of the different interaction effects are visible in the shape of the estimated production

function (fig.1).

The estimated ATE(X) is equal to 0.272+0.510
(
lnL− lnL

)
−0.248(lnK− lnK),

where α̂I = 0.272 is the estimated ATE, and we can focus our attention on the es-

timation of the underlying density function using the kernel approach. We use a

second-order Gaussian kernel and cross-validation to choose the smoothing parame-

ter. The estimated density is plotted in fig.2. As noted above, in our case, the ATE

corresponds to the innovation coefficient. The estimated ATE returns an increase in

value added of approximately 27% if innovation is introduced. Note that the ATE is

the mean value of the ATE(X). The estimated ATE(X) is positive for most of the

domain of the inputs: it ranges from -.677 to 1.453 and is positive for approximately

82% of the observations. Innovative firms are only less productive than non-innovative

firms given very low values of labour associated with relatively high values of capital.

On the contrary, the highest ATE(X) appears for high values of labour associated

with low values of capital. These results are directly related to the notion of locally

progressive TC, which according to Chambers (1988), is fairly common in practice

and has relevant implications. To the best of our knowledge, this is the first paper

providing empirical evidence of such a situation.

Next, we discuss the elasticity of scale (see Basu and Fernald, 1997, for a through

discussion on estimated returns to scale). While non-innovative firms are characterized
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by decreasing returns to scale, with an estimated elasticity of scale α̂K + α̂L = 0.75,

innovative firms exhibit slightly increasing returns to scale, with an estimated elasticity

of scale α̂K+α̂KI+α̂L+α̂LI = 1.02. Using Wald tests, the hypothesis of constant returns

to scale is not rejected at the 10% significance level for innovative firms, while it is

rejected at the 0.1% level for non-innovative firms. Instead, when we estimated a model

assuming a common technology (the additive one), the elasticity of scale equals 0.92. In

this case, the hypothesis of constant returns to scale is rejected at the 0.1% level. This

indicates that when estimating a production function with added innovation, we face a

kind of heterogeneity bias since the value 0.92 is obtained mingling two heterogeneous

technologies: that of innovative firms characterized by constant returns to scale and

that of non-innovative firms with decreasing returns to scale.

A final object that is of great relevance is the MRTS, the analysis of which provides

us with information on the nature of technological progress. To obtain insights into

such an object, we first use contour plots (in figure 3) to represent the estimated pro-

duction function. Such isolines have a direct economic interpretation as the estimated

isoquants. Given the shapes of the isoquants in figure 3, we find that the MRTS – the

slope of the isoquants – is higher for innovative than for non-innovative firms. The

substitution opportunities are reduced for innovative firms. The values of the relative

MRTS tell us that to compensate for a 1% change in labour, an innovative firm should

change capital by approximately 12%, while a non-innovative firm needs a change in

capital of only approximately 1.3%.

To obtain complementary information, we also calculate the MRTS using (10) and

then focus on the estimation of its density function (figure 4). We specifically estimate

the conditional density of the MRTS, conditional to innovation. With innovation being

a discrete variable, we adopt the approach of (Hall et al., 2004), which uses generalized

product kernels to deal with mixed data and cross-validation to choose the smoothing

parameters. Interestingly, the smoothing parameter associated with innovation goes

to zero. This not only suggests that innovation is relevant – meaning that the two

densities are not the same –but also indicates that the generalized estimator collapses

to the standard frequency estimator. This result goes further in the direction of fully

heterogeneous technology.

4 Conclusion

In standard econometric models, innovation additively enters the production func-

tion, imposing a strict condition of Hicks neutrality. We depart from this restrictive

framework by considering a production function that allows a heterogeneous effect of

innovation on the production process and relaxes the Hicks neutrality assumption. We

derive conditions, for common parametric specifications under which neutrality holds

that are easily testable through common Wald-type tests. Further, taking into con-
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sideration the endogenous character of innovation, we estimate the model by adopting

Wooldridge’s approach. The econometric analysis rejects Hicks neutrality and indi-

cates that innovation produces a non-neutral effect on the production process, which

is obtained because of the joint presence of a shift in the production technology and

a change in the slope of the isoquants. The latter indicates that innovative firms are

capital saving compared with non-innovative firms. Moreover, as a consequence of the

joint effect described above, a locally progressive technical change is also observed, be-

cause, while for most of the domain of the inputs, innovation has a positive effect, for a

small part of it, innovative firms are less productive than non-innovative firms. Overall,

our results indicate fully heterogeneous production technologies when comparing inno-

vative to non-innovative firms. These findings have interesting policy implications, as

they highlight the complex fashion in which innovation affects the production process.

To the best of our knowledge, this is the first study supporting such evidence.

Further studies may consider extending the analysis to other countries or to spe-

cific sectors. Methodological extensions may be achieved by considering a panel data

framework to account for the time dimension or by adopting nonparametric methods

to highlight the potential presence of localized technical change.
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Table 1: Descriptive statistics

lnVA lnK lnL

All firms I=0 I=1 All firms I=0 I=1 All firms I=0 I=1

minimum 2.52 2.52 2.75 3.65 4.11 3.65 2.30 2.30 2.30

median 7.43 7.25 7.53 7.71 7.50 7.81 3.50 3.30 3.58

mean 7.46 7.32 7.53 7.60 7.46 7.68 3.52 3.40 3.59

maximum 9.32 9.29 9.33 9.78 9.77 9.78 5.50 5.48 5.50

st. deviation 0.81 0.82 0.80 1.11 1.13 1.09 0.73 0.73 0.72

Table 2 - Main results: lnVA as dependent variable
OLS IV-W IV-W-H

lnL .750∗∗∗ .741∗∗∗ .428∗∗∗

(.0166) (.0218) (.1044)

lnK .185∗∗∗ .179∗∗∗ .327∗∗∗

( .0108) (.0135) (.0639)

Innovation .0189 0.285∗∗∗ 0.272∗∗∗

(.0159) (.0774) (.0806)

IlnL 0.510∗∗∗

(.1545)

IlnK -0.248∗∗

(.0970)

intercept 3.228∗∗∗ 2.870∗∗∗ 3.120∗∗∗

(.0578) (.1203) (.2618)
N 2924 2239 2239
R2 .758 .727 .704
adj. R2 .755 .724 .701
Endogeneity test 12.177∗∗∗ 23.341∗∗∗

Montiel-Pflueger F 168.204
[critical value] [37.418]
ATE .019 .285 .272
Elasticity of labour .75 .74
Elasticity of labour (I = 0) .43
Elasticity of labour (I = 1) .94
Elasticity of capital .19 .18
Elasticity of capital (I = 0) .33
Elasticity of capital (I = 1) .08
Elasticity of scale .94 .92
Elasticity of scale (I = 0) .75
Elasticity of scale (I = 1) 1.02
Relative MRTS -4.12 -4.14
Relative MRTS (I = 0) -1.31
Relative MRTS (I = 1) -11.78
Montiel-Pflueger test for weak instruments, null hypothesis that instruments are weak. τ = 5%,
confidence level α = 5%, test not applicable in regressions with one endogenous variable.
Sectors not presented in the table.
Wooldridge’s (1995) robust score test for overidentifying restrictions not applicable.
Endogeneity test according to Wooldridge’s (1995) score test.
Robust standard errors, Huber/White/sandwich estimator
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, robust standard errors in parentheses
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Figure 1: Estimated production function (IV-W-H method)

Figure 2: Distribution of the ATE(X), estimated using gaussian kernels. The band-

width (0.07) is selected by least squares cross validation. The mean value of ATE (X)

corresponds to ATE and is equal to 0.272.
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Figure 3: Contours of the production function estimated with IV-W-H. The grey lines

correspond to the contours of the innovative firms, while the black lines correspond to

those of non-innovative firms.

Figure 4: Density distribution of the MRTS. The dotted line corresponds to the MRTS

estimated by the IV-W approach. The solid line and the dashed line correspond to the

MRTS of non-innovative and innovative firms in the IV-W-H case.
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Supplementary Material

Appendix A: Relationships among HN, IHN and EHN

The definitions of HN, IHN and EHN are described in subsection 2.1. In this ap-

pendix we provide additional insights into the work of Blackorby et al. (1976, sec.4).

Specifically, we provide an illustrative, simplified presentation of the conditions under

which the above definitions are equivalent, and we highlight their relationships using

the following figure.

Figure 5: Illustration of the relationships among the different definitions of Hicks

neutrality; double arrows symbol implies equivalence.

The relationship between EHN and HN

Consider the production function Y = f (X, I), where X is a vector of inputs and I

is a variable that measures innovation. If I is EHN, then I is strongly separable from

X. Therefore, it is also weakly separable from X. For definitions of weak and strong

separability, we refer to Chambers (1988, p. 42-46). Morimoto (1974) proves that weak

separability of I from X is equivalent to I being HN. Therefore, if I is EHN, it is also

HN. In general, the converse does not hold, that is, I being HN does not necessarily

imply that it is also EHN. Uzawa and Watanabe (1961) prove that in the case of an

input-homogeneous production function f , I is HN if and only if f is multiplicatively

decomposable into a function of I and a function of X. Therefore, if the production

function is input homogeneous, then HN implies EHN.
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The relationship between HN and IHN

Moreover, HN and IHN are generally not equivalent terms. Blackorby et al. (1976, fig.I)

describe technical progress that is HN but not IHN, and vice versa. They prove that

HN and IHN are equivalent if and only if the production function is input homothetic.

An obvious consequence of this theorem is that in a homothetic production function,

if I is not HN (IHN), then it is also not IHN (HN). Moreover, if I is HN (IHN) but

not IHN (HN), then f is not input homothetic.

The relationship between IHN and EHN

In general, IHN and EHN are also not equivalent. Blackorby et al. (1976) prove that

if I is IHN and EHN, then the production function is input homothetic. By negation,

it can be shown that if f is homothetic and I is EHN (IHN), then I should also

be IHN (EHN). For example, in (14), we describe an empirical specification of a TL

function with an added I. In this case, I is EHN but, generally, not IHN, unless certain

homotheticity conditions hold.

Finally, note that according to the above, if the production function is input ho-

mogeneous, then HN, IHN and EHN are equivalent. Indeed, baring that homogeneity

implies homotheticity, if f is homogeneous and I follows one of these definitions of

neutrality, then I should also follow the other two (see also fig.5).

Appendix B: Hicks neutrality and the translog specifica-

tion

In this study, we have also estimated by IV-2SLS, IV-W and IV-W-H the TL spec-

ifications that are presented in (14) and (17) below. Nevertheless, the results of the

F-type tests (see Wooldridge, 1995) that compare the CD and the TL models do not

reject the CD specification and the estimations of the TL model provide poor results

in terms of magnitude and significance level for most of the coefficients.2 For these

reasons, the main interest in this paper is on the CD specification. However, as the

TL specification is the most popular Diewert-flexible form and a widely used direct

generalization of the CD specification, we extend the analysis presented in section 2.2

to account for the TL case. Particularly, in this appendix, we provide insights into

HN within a TL framework and provide easily testable conditions for the presence of

HN in TL specifications. Therefore, the following analysis may be useful in empirical

studies that adopt a TL framework while relaxing HN.

Under the assumption that innovation enters additively, the econometric specifica-

2The results of the estimations of the TL specifications are available upon request.
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tion of a TL production function with conventional inputs K and L is:

lnYi = ln fTL (Ki, Li, Ii, εi) =

= α+ αI Ii + αK lnKi + αL lnLi + αKL lnKi lnLi + αK2

1

2
lnK2

i + αL2

1

2
lnL2

i + εi,

(14)

and the MRTS between L and K is described by:

MRTSTL
i = − αL + αKL lnKi + αL2 lnLi

αK + αKL lnLi + αK2 lnKi

Ki

Li
, (15)

according to which I is HN but not IHN, because the MRTS is not constant along a

ray from the origin, unless αKL + αL2 = 0 and αKL + αK2 = 0. Moreover, EHN holds

because fTL is multiplicatively decomposable into a function of I and a function of the

inputs. Alternatively, it can be shown that:

∂

∂Ki
E [lnYi|Ki, Li, Ii] = (αK + αKL lnLi + αK2 lnKi)

1

Ki
(16a)

∂

∂Li
E [lnYi|Ki, Li, Ii] = (αL + αKL lnKi + αL2 lnLi)

1

Li
(16b)

Note that while in the case of a CD production function with added innovation, all the

above definitions of neutrality are imposed, the TL specification with added innovation

imposes HN and EHN but not IHN.

Further, a TL function with interaction terms between innovation and the explana-

tory variables is described by:

lnYi = α+ αI Ii + αK lnKi + αKI Ii lnKi + αL lnLi + αLI Ii lnLi + αKL lnKi lnLi+

+ αKLI Ii lnKi lnLi + αK2

1

2
lnK2

i + αK2I

1

2
Ii lnK2

i + αL2

1

2
lnL2

i + αL2I

1

2
Ii lnL2

i + εi.

(17)

In this case, the MRTS between L and K is given by the following equation:

MRTSTLh
i = − αL + αLI Ii + (αKL + αKLI Ii) lnKi + (αL2 + αL2I Ii) lnLi

αK + αKI Ii + (αKL + αKLI Ii) lnLi + (αK2 + αK2I Ii) lnKi

Ki

Li
. (18)

Generally, the definitions of HN and IHN are not satisfied because the MRTS in (18)

is dependent on I. By contradiction, it is proven that the definition of EHN does not

hold either, unless αLI = αKI = αKLI = αK2I = αL2I = 0. Finally, assuming non-zero

coefficients, HN holds only if at least one of the following conditions is satisfied:

αK
αL

=
αKL
αL2

=
αK2

αKL
=
αKI
αLI

=
αK2I

αKLI
=
αKLI
αL2I

, or (19a)

αLI
αL

=
αKI
αK

=
αKLI
αKL

=
αK2I

αK2

=
αL2I

αL2

(19b)

Under condition (19a), I in (17) is also IHN because (8) and (18) coincide. Under

condition (19b), (18) is identical to (15). In this case, I is IHN if, in addition to (19b),

it also holds that αKL + αL2 = 0 and αKL + αK2 = 0.

23



In summary, in the case of a TL production function with interactions, the defi-

nitions of HN, IHN and EHN are not satisfied, unless particular conditions are met.

These conditions are summarized in Table 3.

Table 3 - Conditions for neutrality

Type TL additive TL non-additive

HN –

α
K
α
L

=
α
KL
α
L2

=
α
K2
α
KL

=
α
KI
α
LI

=
α
K2I
α
KLI

=
α
KLI
α
L2I

or

α
LI
α
L

=
α
KI
α
K

=
α
KLI
α
KL

=
α
K2I
α
K2

=
α
L2I
α
L2

IHN
αKL + αL2 = 0 and

αKL + αK2 = 0

α
K
α
L

=
α
KL
α
L2

=
α
K2
α
KL

=
α
KI
α
LI

=
α
K2I
α
KLI

=
α
KLI
α
L2I

or
α
LI
α
L

=
α
KI
α
K

=
α
KLI
α
KL

=
α
K2I
α
K2

=
α
L2I
α
L2

, αKL + αL2 = 0,

αKL + αK2 = 0

EHN – αLI = αKI = αKLI = αK2I = αL2I = 0

Appendix C: Robustness checks

In this appendix, we provide robustness checks of the main results presented in sub-

section 3.2. A natural approach is first to estimate the additive model by IV-2SLS

and focus attention on the choice of the IVs. We apply the IV selection method de-

scribed below and arrive at different choices of sets Z of strong and valid instruments.

Then, we apply Wooldridge’s approach to perform IV-W and IV-W-H estimations us-

ing the Z sets selected previously. As presented below, the results are very robust in

all estimations.

We first select an initial set of potential IVs according to the literature on KPF

(see, e.g., Hall et al., 2009; Musolesi and Huiban, 2010). This set is given in the table

below.
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Table 4 - Initial set of IVs
Category Variables Description Type

Firm Char-

acteristics
NW, NE, C, S, Age, Group, Consortium

Firm’s characteristics including

geographical location; age and group or

consortium membership

binary

(0,1)

Human

capital
RD Personnnel

Percentage of employees in Research and

Development activities

nu-

meric

Objectives

of

investment

BetterProd, MoreProd, NewProd, Env,

CostRed, Advert, SellNet, SellAss

Objectives including ameliorating the

product, produce more, introduce a new

one, reduce the environmental impact,

reduce costs, to increase the selling

network or to ameliorate it, respectively

binary

(0,1)

Market

penetration

MarkPenEU15, MarkPenEU2004,

MarkPenRussia, MarkPenOtherEU,

MarkPenAfrica, MarkPenAsia,

MarkPenCina, MarkPenUSMex,

MarkPenSouthAm, MarkPenOce

Market penetration in different world

regions, including EU member states,

Africa, Asia, China, U.S., Canada,

Mexico, South America and Oceania

binary

(0,1)

Commercial

agreements

CommAgrEU15, CommAgrEU2004,

CommAgrRussia, CommAgrOtherEU,

CommAgrAfrica, CommAgrAsia,

CommAgrCina, CommAgrUSMex,

CommAgrSouthAm, CommAgrOce

Commercial agreements in world regions,

as mentioned above

binary

(0,1)

Patent

acquisition

PatBuyEU15, PatBuyEU2004,

PatBuyRussia, PatBuyOtherEU,

PatBuyAfrica, PatBuyAsia, PatBuyCina,

PatBuyUSMex, PatBuySouthAm,

PatBuyOce

Location of the aforementioned world

regions where the firm acquired patents

binary

(0,1)

Production

overseas

ProdAbroadEU15, ProdAbroadEU2004,

ProdAbroadRussia,

ProdAbroadOtherEU, ProdAbroadAfrica,

ProdAbroadAsia, ProdAbroadCina,

ProdAbroadUSMex,

ProdAbroadSouthAm, ProdAbroadOce

Production located in the aforementioned

world regions

binary

(0,1)

Competi-

tiveness

LowCompet, HighCompet,

SmallProdScale

Perceived level of competitiveness and

scale of production compared to

competitors

binary

(0,1)

Financial

specs
ListedComp, FinanIncent

Listed company or receiving financial

incentives

binary

(0,1)

As highlighted in Bound et al. (1995), a major pitfall that results in inconsistency and

large finite sample bias exists when selecting instruments that are weakly correlated

with the endogenous variable. To avoid the presence of weak instruments and ensure

the validity of the IVs, we follow a two-step procedure.

First, we regress innovation on X and the above set and adopt a backward selection

algorithm to choose an initial set of potential IVs that could be strongly correlated

with innovation. The sets corresponding to a 10% and a 5% threshold are presented

in the table below.

Table 5 - IV sets
set instruments

10% set FinanIncent, BetterProd, MarkPenEU15, C, EUCompet, NewProd, MarkPenEU2004,
ProdAbroadEU15, Age, CommAgrAfrica, RD Personnnel, MoreProd, HighCompet

5% set FinanIncent, BetterProd, MarkPenEU15, C, EUCompet, NewProd, HighCompet, Age
IV1 BetterProd, MarkPenEU15, EUCompet
IV2 FinanIncent, BetterProd, MarkPenEU15, C, EUCompet
IV3 FinanIncent, BetterProd, MarkPenEU15, EUCompet, NewProd

Generally, the bias of the IV-2SLS estimator increases as the correlation between

the IVs and the endogenous variable decreases and as the number of instruments
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increases. For this reason, in a second step, we estimate by IV-2SLS the additive

specification using all the possible combinations of IVs from the 10% set. Since

heteroskedasticity-robust standard errors are considered, for each specification, we

apply the robust score tests by Wooldridge (1995) to test endogeneity and overiden-

tifying restrictions. We also use the Montiel-Pflueger test to detect the presence of

weak instruments (Montiel Olea and Pflueger, 2013). Unlike traditional tests, the

Montiel-Pflueger test also accounts for heteroskedastic, serially correlated errors.

The above post-estimation tests indicate IV sets of strong and valid instruments.

According to the Montiel-Pflueger test, 42 combinations provide strong IVs. We also

find that for 54 sets, the robust score test cannot reject the validity of the IVs. We

finally select 13 sets of valid and strong instruments for which the exogeneity test

is not rejected. These combinations provide very robust results; both the estimated

coefficients and the significance levels are stable across choices of sets. For reasons

of brevity, in Table 6, we present the IV-2SLS, IV-W and IV-W-H estimations using

these three sets3, while Table 7 shows the averages of the IV-2SLS, IV-W and IV-W-H

estimations for the CD specifications using the above 13 sets.

The first three columns of Table 6 present the IV-2SLS results of the additive

specification. The estimated effect of innovation on productivity is between 0.24 and

0.31 and is significant at 0.01 level. In columns 4 to 6, we present the results of the IV-

W estimations. The estimated effects of labour, capital and innovation are similar to

those from the IV-2SLS estimations, in terms of both the magnitude of the coefficients

and the confidence levels. The estimated innovation parameter is between 0.23 and 0.28

and significant at the 0.01 level. Finally, in the last three columns, we also present the

results of the IV-W-H estimation. The estimated innovation parameter is significant

at the 0.05 level, ranges between 0.22 and 0.31 and is similar to the IV-2SLS and IV-W

estimates. An exhaustive presentation of the IV-W-H results and the comparison to

the other approaches is given in subsection 3.2.

3The remaining sets and the results they provide are available upon request.

26



T
ab

le
6

-
C

ob
b

D
ou

gl
as

es
ti

m
at

io
n

s
IV

-2
S

L
S

IV
-W

IV
-W

-H
IV

1
IV

2
IV

3
IV

1
IV

2
IV

3
IV

1
IV

2
IV

3
ln
L

.7
35

∗∗
∗

.7
3
7∗

∗∗
.7

3
7∗

∗∗
.7

3
7∗

∗∗
.7

3
8
∗∗

∗
.7

3
7
∗∗

∗
.4

5
7
∗∗

∗
.4

7
1∗

∗∗
.4

8
2∗

∗∗

(.
01

97
)

(.
0
2
0
0
)

(.
0
2
0
0
)

(.
0
1
9
6
)

(.
0
2
00

)
(.

0
2
0
0
)

(.
1
0
0
2
)

(.
0
9
3
9
)

(.
0
9
0
0
)

ln
K

.1
79

∗∗
∗

.1
8
1∗

∗∗
.1

8
1∗

∗∗
.1

7
9∗

∗∗
.1

8
1
∗∗

∗
.1

8
1
∗∗

∗
.2

9
4
∗∗

∗
.2

9
4∗

∗∗
.3

0
0∗

∗∗

(.
01

25
)

(.
0
1
2
6
)

(.
0
1
2
6
)

(.
0
1
2
3
)

(.
0
1
25

)
(.

0
1
2
5
)

(.
0
6
4
6
)

(.
0
6
0
1
)

(.
0
5
9
5
)

I
n
n
ov
a
ti
on

.3
12

∗∗
∗

.2
4
7∗

∗∗
.2

4
2∗

∗∗
.2

8
3∗

∗
.2

3
3
∗∗

∗
.2

2
9
∗∗

.3
0
8
∗∗

∗
.2

2
1∗

∗
.2

1
9∗

∗

(.
10

97
)

(.
0
8
6
2
)

(.
0
8
9
0
)

(.
1
1
0
2
)

(.
0
8
6
2
)

(.
0
9
0
3
)

(.
1
1
7
)

(.
0
9
0
3
)

(.
0
9
3
5
)

I
ln
L

.4
5
1
∗∗

∗
.4

3
8∗

∗∗
.4

2
0∗

∗∗

(.
1
5
3
6
)

(.
1
4
3
0
)

(.
1
3
7
2
)

I
ln
K

-.
1
9
3∗

-.
1
8
9∗

∗
-.

1
9
8
∗∗

(.
1
0
2
0
)

(.
0
9
3
3
)

(.
0
9
2
3
)

in
te

rc
ep

t
2.

85
0
∗∗

∗
2
.9

4
3
∗∗

∗
2
.9

4
9
∗∗

∗
2
.8

8
5
∗∗

∗
2
.9

6
0
∗∗

∗
2
.9

6
4∗

∗∗
3
.2

5
6
∗∗

∗
3
.2

7
0
∗∗

∗
3
.1

8
9
∗∗

∗

(.
14

81
)

(.
1
2
2
3
)

(.
1
2
4
6
)

(.
1
4
8
9
)

(.
1
2
3
0
)

(.
1
2
6
5
)

(.
2
9
6
9
)

(.
2
5
3
5
)

(.
2
5
8
6
)

N
26

35
2
4
7
4

2
4
7
4

2
6
3
5

2
4
74

2
4
7
4

2
6
3
5

2
4
7
4

2
4
7
4

R
2

.7
25

.7
3
6

.7
3
7

.7
3
1

.7
3
8

.7
3
8

.7
1
0

0
.7

2
3

0
.7

2
4

ad
j.
R

2
.7

23
.7

3
3

.7
3
4

.7
2
8

.7
3
5

.7
3
6

.7
0
7

.7
2
0

.7
2
1

R
ob

u
st

sc
or

e
te

st
4.

52
1

5
.5

7
3

6
.4

9
2

E
n

d
og

en
ei

ty
te

st
7.

68
5
∗∗

∗
6
.8

7
8
∗∗

∗
6
.0

0
4
∗∗

6
.0

9
4
∗∗

5
.9

7
4
∗∗

5
.1

8
2∗

∗
1
6
.0

4
4∗

∗∗
1
6
.1

8
7∗

∗∗
1
5
.9

0
4∗

∗∗

M
on

ti
el

-P
fl

u
eg

er
F

24
.8

14
2
1
.0

5
5

2
0
.7

8
7

7
4
.1

6
0

1
0
9
.3

2
9

1
0
4
.6

4
3

[c
ri

ti
ca

l
va

lu
e]

[1
5.

76
0
]

[2
0
.9

8
1
]

[2
0
.7

5
1
]

[3
7
.4

1
8
]

[3
7
.4

1
8
]

[3
7
.4

1
8
]

F
ir

st
st

a
g
e

re
g
re

ss
io

n
P

ro
b

it
F

in
an

In
ce

n
t

.1
1
0∗

∗∗
.1

0
9∗

∗∗
.3

3
3
∗∗

∗
.3

3
1
∗∗

∗

(.
0
2
2
4
)

(.
0
2
2
4
)

(.
0
6
98

)
(.

0
6
9
9
)

M
ar

k
P

en
E

U
15

.1
35

∗∗
∗

.1
2
6∗

∗∗
.1

2
3∗

∗∗
.4

3
1∗

∗∗
.4

2
2
∗∗

∗
.4

1
4
∗∗

∗

(.
02

68
)

(.
0
2
7
5
)

(.
0
2
7
5
)

(.
0
9
4
3
)

(.
0
9
94

)
(.

0
9
9
4
)

B
et

te
rP

ro
d

.1
20

∗∗
∗

.1
0
6∗

∗∗
.1

1
5∗

∗∗
.3

4
8∗

∗∗
.3

1
0
∗∗

∗
.3

3
3
∗∗

∗

(.
01

96
)

(.
0
2
0
3
)

(.
0
2
0
7
)

(.
0
5
8
5
)

(.
0
6
06

)
(.

0
6
1
2
)

E
U

C
om

p
et

.0
58

∗∗
∗

.0
6
4∗

∗∗
.0

6
2∗

∗
.1

7
6∗

∗
.1

9
1
∗∗

∗
.1

8
2
∗∗

(.
02

33
)

(.
0
2
3
9
)

(.
0
2
4
0
)

(.
0
6
9
9
)

(.
0
7
29

)
(.

0
7
2
7
)

C
.0

7
5∗

∗∗
.2

0
6
∗∗

∗

(.
0
2
5
9
)

(.
0
7
3
9
)

N
ew

P
ro

d
.0

9
9
∗∗

.2
8
0
∗∗

(.
0
4
0
5
)

(.
1
2
2
4
)

1s
t-

st
ag

e
p

ar
ti

al
R

2
.0

24
1

.0
3
6
9

.0
3
5
8

.0
2
4
8

.0
3
8
2

.0
3
6
2

1s
t-

st
ag

e
ro

b
u

st
F

25
.4

7
∗∗

∗
2
2
.7

3
∗∗

∗
2
2
.6

1
∗∗

∗
7
4
.1

6
∗∗

∗
1
0
9
.3

3∗
∗∗

1
0
4
.6

4∗
∗∗

A
T

E
.3

12
.2

4
7

.2
4
2

.2
8
3

.2
33

.2
2
9

.3
0
8

.2
2
1

.2
1
9

E
la

st
ic

it
y

of
la

b
ou

r
.7

4
.7

4
.7

4
.7

4
.7

4
.7

4
E

la
st

ic
it

y
of

la
b

ou
r

(I
=

0)
.4

6
.4

7
.4

8
E

la
st

ic
it

y
of

la
b

ou
r

(I
=

1)
.9

1
.9

1
.9

0
E

la
st

ic
it

y
of

ca
p

it
al

.1
8

.1
8

.1
8

.1
8

.1
8

.1
8

E
la

st
ic

it
y

of
ca

p
it

al
(I

=
0)

.2
9

.2
9

.3
0

E
la

st
ic

it
y

of
ca

p
it

al
(I

=
1)

.1
0

.1
1

.1
0

E
la

st
ic

it
y

o
f

sc
al

e
.9

1
.9

2
.9

2
.9

2
.9

2
.9

2
E

la
st

ic
it

y
o
f

sc
al

e
(I

=
0)

.7
5

.7
7

.7
8

E
la

st
ic

it
y

o
f

sc
al

e
(I

=
1)

1
.0

0
1
.0

1
1
.0

0
R

el
at

iv
e

M
R

T
S

-4
.1

1
-4

.0
7

-4
.0

7
-4

.1
2

-4
.0

8
-4

.0
7

R
el

at
iv

e
M

R
T

S
(I

=
0)

-1
.5

5
-1

.6
0

-1
.6

1
R

el
at

iv
e

M
R

T
S

(I
=

1)
-8

.9
9

-8
.6

6
-8

.8
4

M
o
n
ti

el
-P

fl
u

eg
er

te
st

fo
r

w
ea

k
in

st
ru

m
en

ts
,

n
u

ll
h
y
p

o
th

es
is

th
a
t

th
e

in
st

ru
m

en
ts

a
re

w
ea

k
,
τ

=
5
%

,
co

n
fi

d
en

ce
le

v
el
α

=
5
%

S
ec

to
rs

n
o
t

p
re

se
n
te

d
in

th
e

ta
b

le
.

O
n

ly
th

e
in

st
ru

m
en

ts
a
re

p
re

se
n
te

d
in

th
e

fi
rs

t-
st

a
g
e

re
g
re

ss
io

n
o
f

th
e

IV
-2

S
L

S
a
n

d
in

th
e

p
ro

b
it

o
f

th
e

IV
-W

.
R

es
u

lt
s

o
f

th
e

p
ro

b
it

re
g
re

ss
io

n
in

th
e

IV
-W

-H
es

ti
m

a
ti

o
n

a
re

sa
m

e
a
s

in
th

e
IV

-W
ca

se
.

W
o
o
ld

ri
d

g
e’

s
(1

9
9
5
)

ro
b

u
st

sc
o
re

te
st

fo
r

o
v
er

id
en

ti
fy

in
g

re
st

ri
ct

io
n

s.
E

n
d

o
g
en

ei
ty

te
st

a
cc

o
rd

in
g

to
W

o
o
ld

ri
d

g
e’

s
(1

9
9
5
)

sc
o
re

te
st

.
R

o
b

u
st

st
a
n

d
a
rd

er
ro

rs
,

H
u

b
er

/
W

h
it

e/
sa

n
d

w
ic

h
es

ti
m

a
to

r
∗
p
<

0
.1

0
,
∗∗
p
<

0
.0

5
,
∗∗

∗
p
<

0
.0

1
,

ro
b

u
st

st
a
n

d
a
rd

er
ro

rs
in

p
a
re

n
th

es
es

27



Regarding the IV-W and IV-W-H estimations, the results presented in Table 6 are

similar, in both values and significance levels, to the respective results in Table 2. The

robustness of the results is clearly shown in Table 7, where we present the averages

of the estimated parameters that are obtained by the estimations that use the 13 sets

mentioned above. The standard deviations of the parameters are also presented in

parentheses. The results show that the estimated coefficients are stable across the

different IV sets, for all estimation approaches.

In summary, the above sensitivity analysis shows that the results on the estimated

ATE are very stable across the different estimation methods: IV-2SLS, IV-W and

IV-W-H. Moreover, the results are very robust across different sets of Z and, further,

strongly support the results presented in the main text.

Table 7 - Cobb Douglas estimation averages
IV-2SLS IV-W IV-W-H

lnL .737 .738 .440
(.002) (.002) (.054)

lnK .179 .180 .310
(.002) (.002) (.027)

Innovation .285 .266 .256
(.056) (.055) (.053)

IlnL .489
(.090)

IlnK -.218
(.048)

intercept 3.176 3.180 3.233
(.021) (.020) (.073)

ATE .285 .266 .256
Elasticity of labour .74 .74
Elasticity of labour (I = 0) .44
Elasticity of labour (I = 1) .93
Elasticity of capital .18 .18
Elasticity of capital (I = 0) .31
Elasticity of capital (I = 1) .09
Elasticity of scale .92 .92
Elasticity of scale (I = 0) .75
Elasticity of scale (I = 1) 1.02
Relative MRTS -4.12 -4.11
Relative MRTS (I = 0) -1.44
Relative MRTS (I = 1) -10.85
Average values of the estimated parameters, ATEs, elasticities and rel. MRTS. Standard deviations
of the estimated parameters in parentheses.
Use of 13 IV sets of strong and valid instruments, for which the exogeneity test is rejected at 0.05.
Sectors not presented in the table.
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