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Abstract. We consider the problem of learning both the structure and
the parameters of Probabilistic Description Logics under DISPONTE.
DISPONTE (“DIstribution Semantics for Probabilistic ONTologiEs”)
adapts the distribution semantics for Probabilistic Logic Programming
to Description Logics. The system LEAP for “LEArning Probabilis-
tic description logics” learns both the structure and the parameters of
DISPONTE knowledge bases (KBs) by exploiting the algorithms CELOE
and EDGE. The former stands for “Class Expression Learning for On-
tology Engineering” and it is used to generate good candidate axioms
to add to the KB, while the latter learns the probabilistic parameters
and evaluates the KB. EDGE for “Em over bDds for description loGics
paramEter learning” is an algorithm for learning the parameters of prob-
abilistic ontologies from data. In order to contain the computational cost,
a distributed version of EDGE called EDGEMR was developed. EDGEMR

exploits the MapReduce (MR) strategy by means of the Message Pass-
ing Interface. In this paper we propose the system LEAPMR. It is a
re-engineered version of LEAP which is able to use distributed parallel
parameter learning algorithms such as EDGEMR.

Keywords: Probabilistic Description Logics, Structure Learning,
Parameter Learning, MapReduce, Message Passing Interface.

1 Introduction

In real world domains the information is often uncertain, hence it is of fore-
most importance to model uncertainty in representations of the world, including
Description Logics (DLs).

In [11, 19, 7, 12] the authors studied the use of probabilistic DLs and various
approaches for representing uncertainty in DLs.

Moreover, some works have started to appear about learning the probabilistic
parameters or the whole structure of probabilistic ontologies. These are moti-
vated, on one hand, from the fact that specifying the values of the probabilities is
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a difficult task for humans and data is usually available that could be leveraged
for tuning them, and, on the other hand, from the fact that in some domains
there exist poor-structured knowledge bases which could be improved [11, 10].
A knowledge base with a refined structure and instance data coherent with
it permits more powerful reasoning, better consistency checking and improved
querying possibilities.

In Probabilistic Logic Programming (PLP) various proposals for representing
uncertainty have been presented. One of the most successful approaches is the
distribution semantics [17]. In [3, 16, 13] the authors proposed an approach to
represent probabilistic axioms in DLs called DISPONTE (“DIstribution Seman-
tics for Probabilistic ONTologiEs”), which adapts the distribution semantics for
Probabilistic Logic Programming to DLs.

In the field of Probabilistic Inductive Logic Programming the reasoning task
is composed by three main issues: 1) inference: we want to compute the probabil-
ity of a query, 2) parameter learning : we know the structure (the logic formulas)
of the KB but we want to know the parameters (weights) of the logic formulas
and 3) structure learning : we want to learn both the structure and the parame-
ters.

LEAP [15] for “LEArning Probabilistic description logics” is an algorithm
for learning the structure and the parameters of probabilistic DLs following
DISPONTE. It combines the learning system CELOE [9] with EDGE [14]. The
former, CELOE (“Class Expression Learning for Ontology Engineering”), pro-
vides a method to build new (subsumption) axioms that can be added to the KB,
while the latter is used to learn the parameters of these probabilistic axioms.

EDGE stands for “Em over bDds for description loGics paramEter learning”
and learns the parameters of a probabilistic theory starting from examples of in-
stances and non-instances of concepts. EDGE builds Binary Decision Diagrams
(BDDs) for representing the explanations of the examples from the theory. The
parameters are then tuned using an EM algorithm [6] in which the required
expectations are computed directly on the BDDs. This algorithm is rather ex-
pensive from a computational point of view. In order to efficiently manage larger
datasets in the era of Big Data, it is crucial to develop approaches for reduc-
ing the learning time. One solution is to distribute the algorithm using modern
computing infrastructure such as clusters and clouds.

In order to reduce EDGE running time, we developed EDGEMR [5]. It rep-
resents a distributed implementation of EDGE and uses a simple MapReduce
approach based on the Message Passing Interface (MPI).

In this paper we present an evolution of LEAP called LEAPMR which adapts
the LEAP algorithm to use EDGEMR. In addition, due to a software re-engineer-
ing effort, it was possible to remove the RMI module used by LEAP. Compared
with LEAP, the quality of the solutions found with LEAPMR does not change,
the difference consists in the running time which is reduced thanks to EDGEMR

and to the removal of the RMI module to a lesser extent. To the best of our knowl-
edge there are no other algorithms that perform distributed structure learning
of probabilistic DLs.
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Implementing learning algorithms able to elaborate data in a distributed way
paves the way to the development of useful tools for Semantic Web and Data
Mining in the context of Big Data.

The paper is structured as follows. Section 2 introduces Description Log-
ics and summarizes DISPONTE. Sections 3 and 4 briefly describe the EDGE
and EDGEMR algorithms. Section 5 presents LEAPMR. Finally, Section 7 draws
conclusions.

2 Description Logics and DISPONTE

Description Logics (DLs) are a family of logic based knowledge representation
formalisms which are of particular interest for representing ontologies and for
the Semantic Web. For an extensive introduction to DLs we refer to [1, 2].

While DLs are a fragment of first order logic, they are usually represented
using a syntax based on concepts and roles. A concept corresponds to a set of
individuals while a role corresponds to a set of couples of individuals of the do-
main. For the sake of simplicity we consider and describe ALC, but the proposed
algorithm can work with SROIQ(D) DLs.

We use A, R and I to indicate atomic concepts, atomic roles and individuals,
respectively. A role is an atomic role R ∈ R. Concepts are defined as follows.
Each A ∈ A, ⊥ and � are concepts. If C, C1 and C2 are concepts and R ∈ R,
then (C1 � C2), (C1 � C2) and ¬C are concepts, as well as ∃R.C and ∀R.C.

Let C and D be concepts, R be a role and a and b be individuals, a TBox T
is a finite set of concept inclusion axioms C � D, while an ABox A is a finite
set of concept membership axioms a : C and role membership axioms (a, b) : R.
A knowledge base (KB) K = (T ,A) consists of a TBox T and an ABox A.

A KB is usually assigned a semantics using interpretations of the form I =
(ΔI , ·I), where ΔI is a non-empty domain and ·I is the interpretation function
that assigns an element in ΔI to each individual a, a subset of ΔI to each
concept C and a subset of ΔI ×ΔI to each role R. The mapping ·I is extended
to all concepts as:

�I = ΔI

(¬C)I = ΔI \ CI

(C1 � C2)
I = CI

1 ∪ CI
2

(∃R.C)I = {x ∈ ΔI |RI(x) ∩ CI �= ∅}

⊥I = ∅
(C1 � C2)

I = CI
1 ∩ CI

2

(∀R.C)I = {x ∈ ΔI |RI(x) ⊆ CI}

A query over a KB is usually an axiom for which we want to test the entailment
from the KB. The entailment test may be reduced to checking the unsatisfiability
of a concept in the KB, i.e., the emptiness of the concept.

DISPONTE [3] (“DIstribution Semantics for Probabilistic ONTologiEs”) ap-
plies the distribution semantics to probabilistic ontologies [17]. In DISPONTE
a probabilistic knowledge base K is a set of certain and probabilistic axioms.
Certain axioms take the form of regular DL axioms. Probabilistic axioms take
the form p :: E, where p is a real number in [0, 1] and E is a DL axiom. A

3

Hollmén, Papapetrou (editors): Proceedings of the ECMLPKDD 2015 Doctoral Consortium

77



DISPONTE KB defines a distribution over DL KBs called worlds assuming that
the axioms are independent. Each world w is obtained by including every certain
axiom plus a subset of chosen probabilistic axioms.

For each probabilistic axiom p :: E, we decide whether or not to include E
in w. The probability of this choice is p if the probabilistic axiom is included in
the world, 1− p otherwise. A world therefore is a non probabilistic KB that can
be handled in the usual way. By multiplying the probability of the choices made
to obtain a world, we can assign a probability to it. The probability of a query
is then the sum of the probabilities of the worlds where the query is true.

3 Parameter Learning for Probabilistic DLs

EDGE [14] is a parameter learning algorithm which adapts the algorithm EM-
BLEM [4], developed for learning the parameters for probabilistic logic programs,
to the case of probabilistic DLs under DISPONTE. Inspired by [8], it performs
an Expectation-Maximization cycle over Binary Decision Diagrams (BDDs).

EDGE performs supervised parameter learning. It takes as input a DISPON-
TE KB and a number of positive and negative examples that represent the
queries in the form of concept membership axioms, i.e., in the form a : C for
an individual a and a class C. Positive examples represent information that we
regard as true and for which we would like to get high probability while negative
examples represent information that we regard as false and for which we would
like to get low probability.

First, EDGE generates, for each query, the BDD encoding its explanations
using BUNDLE [16]. For a positive example of the form a : C, EDGE looks for
the explanations of a : C and encodes them in a BDD. For a negative example of
the form a : ¬C, EDGE first looks for the explanations of a : ¬C, if one or more
are found it encodes them into a BDD, otherwise it looks for the explanations
of a : C, encodes them in a BDD and negates it with the NOT BDD operator.
Then, EDGE starts the EM cycle in which the steps of Expectation and Max-
imization are iterated until a local maximum of the log-likelihood (LL) of the
examples is reached. The LL of the examples is guaranteed to increase at each
iteration. EDGE stops when the difference between the LL of the current it-
eration and that of the previous one drops below a threshold ε or when this
difference is below a fraction δ of the previous LL. Finally, EDGE returns the
reached LL and the new probabilities πi for the probabilistic axioms. EDGE’s
main procedure is illustrated in Alg. 1.

Procedure Expectation takes as input a list of BDDs, one for each example
Q, and computes the expectations P (Xi = x|Q) for all the random Boolean
variables Xi in the BDD and for x ∈ {0, 1}. According to DISPONTE, each
variable Xi is associated with the probabilistic axioms Ei and has value 1 if the
axiom Ei is included in the world, 0 otherwise.

Function Maximization computes the parameters’ values for the next EM
iteration by relative frequency.

4
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Algorithm 1 Procedure EDGE.
function EDGE(K, PE , NE , ε, δ) � PE , NE : positive and negative examples

Build BDDs � performed by BUNDLE
LL = −∞
repeat

LL0 = LL
LL = Expectation(BDDs)
Maximization

until LL − LL0 < ε ∨ LL − LL0 < −LL0 · δ
return LL, pi for all i � pi: learned probability of the i-th probabilistic axiom

end function

Building BDDs is #P-hard [18]. However, BUNDLE is able to handle do-
mains of significant size. The EM phase, instead, has a linear cost in the number
of nodes since the Expectation requires two traversals of the diagrams.

EDGE is written in Java, hence it is highly portable. For further information
about EDGE please refer to [14].

4 Distributed Parameter Learning for Probabilistic DLs

In this section we briefly describe a parallel version of EDGE that exploits the
MapReduce approach in order to compute the parameters. We called this algo-
rithm EDGEMR [5].

4.1 Architecture and Scheduling

Like most MapReduce frameworks, EDGEMR’s architecture follows a master-
slave model. The communication between the master and the slaves is done by
means of the Message Passing Interface (MPI), specifically we use the OpenMPI3

library which provides a Java interface to the native library.
In a distributed context, the performances depend on the scheduling strategy.

In order to evaluate different methods, we developed two scheduling strategies:
single-step scheduling and dynamic scheduling. These are used during the queries
computation phase.

Single-step Scheduling if N is the number of the slaves, the master divides
the total number of queries into N + 1 chunks, i.e. the number of slaves
plus the master. Then the master begins to compute its queries while, for
the other chunks of queries, the master starts a thread for sending each
chunk to the corresponding slave. After the master has terminated dealing
with its queries, it waits for the results from the slaves. When the slowest
slave returns its results to the master, EDGEMR proceeds to the EM cycle.
Figure 1(a) shows an example of single-step scheduling with two slaves.

Dynamic Scheduling is more flexible and adaptive than single-step schedul-
ing. Handling each query may require a different amount of time. Therefore,
with single-step scheduling, it could happen that a slave takes much more

3 http://www.open-mpi.org/
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time than another slave to deal with its chunk of queries. Hence the master
and some slaves could be idle. Dynamic scheduling mitigates this issue. The
user can establish a chunk dimension, i.e. the number of examples in each
chunk. At first, each machine is assigned a chunk of queries in order. Then,
if the master ends handling its chunk it just takes the next one, instead, if
a slave ends handling its chunk, it asks the master for another one and the
master replies by sending a new chunk of queries to the slave. During this
phase the master runs a thread listener that waits for the slaves’ requests of
new chunks and for each request the listener starts a new thread that sends a
chunk to the slave which has done the request (to improve the performances
this is done through a thread pool). When all the queries are evaluated,
EDGEMR starts the EM cycle. An example of dynamic scheduling with two
slaves and a chunk dimension of one example is displayed in Fig. 1(b).

Master

Slave1 Slave2

q1 q2 q3 q4 q5 qn

Master

Slave1 Slave2

chunk1
q1 q2 q3 q4 q5 qn

chunk2 chunk3

Master

Slave1 Slave2

qnq4

q1q1 q2 q3

(a) Single-step scheduling

Master

Slave1 Slave2

q1 q2 q3 q4 q5 qn

Master

Slave1 Slave2

q1q1

q2 q3

q4 q5 qn

Master

Slave1 Slave2

q1q1

q3 q4q2

q5 qn

(b) Dynamic scheduling

Fig. 1. Scheduling techniques of EDGEMR.

Experimental results conducted in [5] show that dynamic scheduling has usually
better performances than single-step.

It is obvious that for large sizes of the chunk the dynamic scheduling tends to
have the same behavior of single-step. Nevertheless the use of chunks containing
only one query can introduce a lot of overhead and therefore reduce the speedup.
In order to maximize the speedup it is necessary to find an optimal size of the
query chunk.
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5 Structure Learning with Distributed Parameter
Learning

LEAPMR is an evolution of the LEAP system [15]. While the latter exploits
EDGE, the first was adapted to be able to perform EDGEMR. Moreover, after
a process of software re-engineering it was possible to remove the RMI com-
munication module used by LEAP and therefore reduce some communication
overhead.

It performs structure and parameter learning of probabilistic ontologies under
DISPONTE by exploiting: (1) CELOE [9] for the structure, and (2) EDGEMR

(Section 4) for the parameters. Figure 2 shows the architecture of LEAPMR.

probabilistic 
component

non-probabilistic 
component

ad
d 

ax
io

m

LL

CELOE

EDGEMR

BUNDLE

Fig. 2. LEAPMR architecture.

CELOE [9] was implemented in Java and belongs to the open-source frame-
work DL-Learner4. Let us consider a knowledge base K and a concept name
Target whose formal description, i.e. class description, we want to learn. It
learns a set of n class expressions Ci (1 ≤ i ≤ n) from a set of positive and
negative examples. Let K′ = K∪{C} where K is the background knowledge, we
say that a concept C covers an example e if K′ |= e. The class expressions found
are sorted according to a heuristic. Such expressions can be used to generate
candidate axioms of the form Ci � Target.

In order to learn an ontology, LEAPMR first searches for good candidate
probabilistic subsumption axioms by means of CELOE, then it performs a greedy
search in the space of theories using EDGEMR to evaluate the theories using the
log-likelihood as heuristic.

Algorithm 2 shows LEAPMR’s main procedure: it takes as input the knowl-
edge base K and the configuration settings for CELOE and EDGEMR, then gen-
eratesNumC class expressions by exploiting CELOE and the sets of positive and
negative examples which will be the queries (concept membership axioms) for
EDGEMR. A first execution of EDGEMR is applied to K to compute the initial
value of the parameters and of the LL. Then LEAPMR adds to K one probabilis-
tic subsumption axiom generated from the class expression set at a time. After

4 http://dl-learner.org/
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each addition, EDGEMR is performed on the extended KB to compute the LL
of the data and the parameters. If the LL is better than the current best, the
new axiom is kept in the knowledge base and the parameter of the probabilistic
axiom are updated, otherwise the learned axiom is removed from the ontology
and the previous parameters are restored. The final theory is obtained from the
union of the initial ontology and the probabilistic axioms learned.

Algorithm 2 Function LEAPMR.

1: function LEAPMR(K, LPtype, NumC, ε, δ, Schedul)
2: ClassExpressions = up to NumC � generated by CELOE
3: (PI , NI) = ExtractIndividuals(LPtype) � LPtype: specifies how to extract (PI , NI)
4: for all ind ∈ PI do � PI : set of positive individuals
5: Add ind : Target to PE � PE : set of positive examples
6: end for
7: for all ind ∈ NI do � NI : set of negative individuals
8: Add ind : Target to NE � NE : set of negative examples
9: end for
10: (LL0,K) = EDGE

MR(K, PE , NE , ε, δ, Schedul) � Schedul : scheduling strategy
11: for all CE ∈ ClassExpressions do
12: Axiom = p :: CE � Target
13: K′ = K ∪ {Axiom}
14: (LL,K′) = EDGE

MR(K′, PE , NE , ε, δ, Schedul)
15: if LL > LL0 then
16: K = K′

17: LL0 = LL
18: end if
19: end for
20: return K
21: end function

6 Experiments

In order to test how much the exploitation of EDGEMR can improve the perfor-
mances of LEAPMR, we did a preliminary test where we considered the Moral5

KB which qualitatively simulates moral reasoning. It contains 202 individuals
and 4710 axioms (22 axioms are probabilistic).

We performed the experiments on a cluster of 64-bit Linux machines with
8-cores Intel Haswell 2.40 GHz CPUs and 2 GB (max) memory allotted to Java
per node. We allotted 1, 3, 5, 9 and 17 nodes, where the execution with 1 node
corresponds to the execution of LEAP, while for the other configurations we used
the dynamic scheduling with chunks containing 3 queries. For each experiment 2
candidate probabilistic axioms are generated by using CELOE and a maximum
of 3 explanations per query was set for EDGEMR. Figure 3 shows the speedup
obtained as a function of the number of machines (nodes). The speedup is the
ratio of the running time of 1 worker to the one of n workers. We can note
that the speedup is significant even if it is sublinear, showing that a certain
amount of overhead (the resources, and thereby the time, spent for the MPI
communications) is present.

5 https://archive.ics.uci.edu/ml/datasets/Moral+Reasoner
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Fig. 3. Speedup of LEAPMR relative to LEAP for Moral KB.

7 Conclusions

The paper presents the algorithm LEAPMR for learning the structure of proba-
bilistic description logics under DISPONTE. LEAPMR performs EDGEMR which
is a MapReduce implementation of EDGE, exploiting modern computing infras-
tructures for performing distributed parameter learning.

We are currently working for distributing both the structure and the parame-
ter learning of probabilistic knowledge bases by exploiting EDGEMR also during
the building of the class expressions. We would like to distribute the scoring
function used to evaluate the obtained refinements. In this function EDGEMR

take as input a KB containing only the individuals and the class expression to
test. Finally, the class expressions found are sorted according to the LL returned
by EDGEMR and their initial probability are the probability learned during the
execution of EDGEMR.
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