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Abstract We study the quasi-projective variety Bird of plane Cremona transforma-
tions defined by three polynomials of fixed degree d and its subvariety Bir◦d where
the three polynomials have no common factor. We compute their dimension and the
decomposition in irreducible components. We prove that Bird is connected for each
d and Bir◦d is connected when d < 7.

Keywords Plane Cremona transformations · Homaloidal nets · De Jonquières
transformations
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1 Introduction

The birational geometry of algebraic varieties is governed by the group of birational
self-maps. In general, it is very difficult to determine this group for an arbitrary va-
riety, and as a matter of fact only few examples are completely understood. The
special case of the projective plane has attracted lots of attention since the 19-th
century. The pioneering work of Cremona and then the classical geometers of the
Italian and German school were able to give partial descriptions of it, but it was
only after Noether and Castelnuovo that generators of the group were described. The
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Noether–Castelnuovo theorem (see [1], for instance) states that the group of bira-
tional self-maps of P2, usually called the plane Cremona group and denoted by Cr(2),
is generated by linear automorphisms of P

2 and a single birational non-biregular
map, the so-called elementary quadratic transformation σ : P2 ��� P

2 defined by
σ([x : y : z]) = [yz : xz : xy].

Even if the generators of Cr(2) have been known for a century now, many other
properties of this group are still mysterious. Only after decades, see [25], a complete
set of relations has been described, and more recently the non-simplicity of Cr(2) has
been shown [9], and a good understanding of its finite subgroups has been achieved;
see [16] and [5]. This brief and fairly incomplete list is only meant to stress the
difficulties and the large unknown parts in the study of Cr(2); for a more complete
picture the interested reader should refer to [15] and [14]. Amid all its subgroups the
one associated with polynomial automorphisms of the plane, Aut(C2), attracted even
more attention than Cr(2) itself [3]. The generators of Aut(C2) have been known
since 1942 [28], and later on [31] it has been proved that Aut(C2) is the amalga-
mated product of two of its subgroups, more precisely of the affine and elementary
ones. Nevertheless, this group is not less mysterious and challenging than the entire
Cremona group. Jung’s description yields a natural decomposition

Aut(C2) = A ∪ G[2] ∪ G[3] ∪ G[2,2] ∪ G[4] ∪ G[5] · · ·
into sets of polynomial automorphisms of multidegree (d1, . . . , dm) and the affine
subgroup A. In [21], Friedland and Milnor proved that G[d1, . . . , dm] is a smooth
analytic manifold of dimension (d1 + d2 + · · · + dm + 6). Later on, Furter [22] com-
puted the number of irreducible components of polynomial automorphisms of C

2

with fixed degree less than or equal to 9 and proved that the variety of polynomial au-
tomorphisms of the plane with degree bounded by the positive integer n is reducible
when n � 4. Edo and Furter [17] studied some degenerations of the multidegrees;
for example, they were able to show that G[3] ∩ G[2,2] �= ∅ using the lower semi-
continuity of the length of a plane polynomial automorphism as a word of the amal-
gamated product [23]. Contrary to what happens in the Cremona group Cr(2), see
[6], the group of polynomial automorphisms G of the plane can be endowed with the
structure of an infinite-dimensional algebraic group. Denoted by Gd the set of poly-
nomial automorphisms of fixed degree d , Furter proved in [24] that Gd is a smooth
and locally closed subset of G.

Inspired by these works on Aut(C2) and by [10], we approach the study of Cr(2)

by forgetting its group structure. Our aim is to study an explicit set of functions
generating a birational map. In this way the same birational map is associated with
different triples of homogeneous polynomials.

Let f1, f2, f3 be homogeneous polynomials of degree d . Whenever f1, f2, f3 are
not all zero, let us denote by [f1 : f2 : f3] the equivalence class of (f1, f2, f3) with re-
spect to the relation (f1, f2, f3) ∼ (λf1, λf2, λf3), for λ ∈C

∗. Consider [f1 : f2 : f3]
as an element of P3N−1=3(d+2

2 )−1=3d(d+3)/2+2, where the homogeneous coordinates
in P

3N−1 are the coefficients of the fi ’s, up to multiplication by the same nonzero
scalar. Setting

γ : P2 ��� P2, γ ([x : y : z]) = [f1(x, y, z) : f2(x, y, z) : f3(x, y, z)], (1)
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let us define

Bird = {[f1 : f2 : f3] | γ is birational} ⊂ P
3N−1.

The natural subset to consider in Bird is the one corresponding to triplets without
common factors. The latter called Bir◦d , which parameterizes birational maps of de-
gree d , will be the main actor of this paper; see Sect. 2 for all the relevant definitions.

Among other things, in [10] the authors describe Bir◦d and Bird for d � 3; see
Sect. 2 for some of their results. Their description is essentially based on a set-
theoretic analysis of the plane curves contracted by a Cremona transformation of
degree � 3.

In this paper, we describe Cremona transformations P2 ��� P2 in the usual classi-
cal way, i.e., we consider the so-called homaloidal net of plane curves in the source
plane corresponding to the net of lines in the target plane. Roughly speaking, this

means studying the span 〈f1, f2, f3〉 ⊂ C
N=(d+2

2 ) in the above setting.
By looking at base points of homaloidal nets, we prove the following; cf. Sect. 3.

Theorem 1 For each d � 2, Bir◦d is a quasi-projective variety of dimension 4d + 6
in P

3d(d+3)/2+2 and, if d � 4, it is reducible.
Each irreducible component of Bir◦d is rational.
Each element of the maximal dimension component of Bir◦d is a de Jonquières

transformation, i.e., it is defined by a homaloidal net of plane curves of degree d with
a base point of multiplicity d − 1 and 2d − 2 simple base points.

If d � 4, there are further irreducible components of Bir◦d having dimension
at most 2d + 12. Indeed, each irreducible component of Bir◦d is determined by
a set of (d − 1)-tuples of non-negative integers (ν1, ν2, . . . , νd−2, νd−1) such that∑d−1

i=1 iνi = 3d − 3 and
∑d−1

i=1 iν2
i = d2 − 1. Each one of these components of Bir◦d

has dimension 8 + 2
∑d−1

i=1 νi and its general element is a Cremona transformation
given by a homaloidal net of plane curves of degree d with νi base points of multi-
plicity i, in general position.

Quite surprisingly, in this setup, we may say that the general Cremona transforma-
tion in Bir◦d is de Jonquières. For small values of the degree d something more can
be said. Our approach yields an explicit description of Bir◦d and allows us to prove its
connectedness, for d � 6.

Theorem 2 For each d � 6, Bir◦d is connected.

Even if, from our point of view, Bir◦d is the right variety to consider, we complete
the study extending the results to the whole Bird .

Theorem 3 For each d � 2, Bird is a connected quasi-projective variety of dimen-
sion

max

{

4d + 6,
d(d + 1)

2
+ 7

}

=
⎧
⎨

⎩

4d + 6 if d � 6,

(d + 1)d

2
+ 7 if d � 7

in P
3d(d+3)/2+2. If d � 3, Bird is reducible.
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Each irreducible component of Bird is rational.
If d � 7, each element of the maximal dimension component of Bird is [hl1 : hl2 :

hl3], where deg(h) = d − 1 and deg(li) = 1, i = 1,2,3.

Also in this case our approach allows a more precise representation of Bird and
an explicit description of it for low d ; see Sect. 3. This also corrects an imprecision
in [10] about Bir3. In principle, one could describe the irreducible components of
Bir◦d and of Bird , for a fixed degree d . As a matter of fact, the combinatorial and
computations become wild when the degree increases. For this reason we think that
it would be interesting to find closed formulas for the numbers N◦(d) and N(d) of
irreducible components of Bir◦d and Bird and to study the connectedness of Bir◦d for
each d .

This study of Bir◦d , as pointed out by Cerveau and Déserti in [10], also allows one
to build a bridge between the classical algebraic geometry of Cr(2) and foliations on
P

k , k � 2. The reconstruction of a foliation from its singular set [7, 8], the study of
irreducible components of foliations on P

k , k � 3 [12, 13], and the description of
the orbits by the action of PGL(3,C) on the foliations of fixed degree 2 on P

2 [11]
have been extensively studied and suggest the possibility of using our methods also
in this context. We will not dwell on this here. However, we investigate the dynamical
behavior of plane Cremona transformations in a work in progress; see [4].

When this work was finished we were informed by J. Blanc of D. Nguyen Dat’s
PhD thesis, [30]. Some of the results, and the techniques, in this paper overlap the
content of his work. In particular, he was able to compute the dimension of Bir◦d . Our
approach allows one to prove his Conjecture 3 about the irreducible components of
Bir◦d and corrects the wrong statement on the non-connectedness of Hd and Bir◦d , in
[30, Théorème 16, Sect. 6.2], for d � 4.

2 Notation, Definitions, and Known Results

We work over the complex field. Let C[x, y, z]d be the set of homogeneous polyno-
mials of degree d in the variables x, y, z with coefficients in C, including the null
polynomial. In particular, C[x, y, z]d ∼= C

N as C-vector spaces, where

N =
(

d + 2

2

)

= d(d + 3)

2
+ 1

is the number of coefficients of homogeneous polynomials of degree d in 3 un-
knowns.

Whenever f1, f2, f3 ∈ C[x, y, z]d are not all zero, let us denote by [f1 : f2 :
f3] the equivalence class of the triplets (f1, f2, f3) with respect to the relation
(f1, f2, f3) ∼ (λf1, λf2, λf3), for λ ∈ C

∗. Consider [f1 : f2 : f3] as an element of
P

3N−1=3d(d+3)/2+2, where the homogeneous coordinates are all coefficients of the
three polynomials f1, f2, f3, up to multiplication by the same nonzero scalar for all
of them. Setting

γ : P2 ��� P2, γ ([x : y : z]) = [f1(x, y, z) : f2(x, y, z) : f3(x, y, z)],
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let us define, according to [10],

Bird = {[f1 : f2 : f3] | γ is birational} ⊂ P
3N−1.

In [10], the integer d is called the degree of the map γ . However, in algebraic
geometry, if f1, f2, f3 have a common factor, i.e., their greatest common divisor
gcd(f1, f2, f3) = h is a polynomial of positive degree d ′, then the degree of the map
γ is usually considered as d − d ′. If gcd(f1, f2, f3) = 1, the authors of [10] say that
γ has pure degree d and they define

Bir◦d = {[f1 : f2 : f3] ∈ Bird | γ has pure degree d} ⊂ Bird ⊂ P
3N−1.

If [f1 : f2 : f3] ∈ Bir◦d , let us identify it with the birational map γ .
One may check that the subset {[f1 : f2 : f3] | deg(gcd(f1, f2, f3)) > 0} of P3N−1

is Zariski closed, e.g., by using resultants.

Remark 4 When d = 1, write the 3 × 3 nonzero matrix (aij ), whose rows are the
coefficients of fi , i = 1,2,3, thus Bir◦1 = Bir1 = PGL(3) is the Zariski open subset
of P8 where the determinant det(aij ) is nonzero and its Zariski closure is Bir1 = P

8.
Recall that P8 \ Bir1 = Z(det(aij )) is a cubic, irreducible hypersurface, which is

singular along the locus where rank(aij ) = 1.

In [10], Cerveau and Déserti are interested in Bird also for applications to the
study of foliations. Among other things, they prove the following.

Theorem 5 (Cerveau–Déserti) If d = 2, the subset Bir◦2 [Bir2, resp.] in P
17 is a

smooth [singular, resp.], unirational, irreducible, quasi-projective variety of dimen-
sion 14. Their Zariski closures in P

17 coincide.
If d = 3, the subset Bir◦3 ⊂ P

29 is an irreducible, rationally connected, quasi-
projective variety of dimension 18. Furthermore, the subset Bir3 ⊂ P

29 is singular
and contains at least two irreducible components.

Actually, in [10], the authors state that Bir3 has exactly two irreducible compo-
nents. We will see later, in Example 44, that Bir3 has exactly three irreducible com-
ponents.

Now we recall the classical notions which will be used later.

Definition 6 Let γ = [f1 : f2 : f3] ∈ Bir◦d , d � 2. Setting W to be the linear span
〈f1, f2, f3〉 of the polynomials f1, f2, f3 in C

N , the plane P(W) ⊂ P
N−1 is called

the homaloidal net associated with γ , and we denote it by Lγ .
The general element of Lγ defines an irreducible rational plane curve of degree d

passing through some fixed points p1, . . . , pr in P
2, called set-theoretic base points

of Lγ , with certain multiplicities. Let φ : S → P
2 be the blowing up at p1, . . . , pr .

The strict transform of the general element of Lγ may have further base points on the
exceptional curves in S, classically called infinitely near base points; cf. Sect. 2 in
[1]. Equivalently, φ ◦ γ may not be a morphism yet. Eventually, there is a birational
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morphism φ′ : S′ → P
2 such that the strict transform of the net Lγ is a complete

2-dimensional linear system on S′, or equivalently φ′ ◦ γ is a morphism.
Set νi to be the number of base points of Lγ with multiplicity i, i = 1, . . . , d − 1,

including infinitely near base points. The multi-index of the homaloidal net Lγ is

νI = (ν1, ν2, . . . , νd−2, νd−1). (2)

It is an easy consequence of the definition of homaloidal net (cf., e.g., Sect. 2.5 in
[1]) that

d−1∑

i=1

i2νi = d2 − 1,

d−1∑

i=1

iνi = 3(d − 1), (3)

and νi = 0, i � d . Formulas (3) are usually called Noether’s equations.
We say that the multi-index νI is the H-type of the homaloidal net Lγ and of the

Cremona transformation γ .
One usually says that γ is symmetric if its H-type has a unique nonzero νi . By (3),

γ is symmetric if and only if either d = 2 and νI = (3), or d = 5 and νI = (0,6,0,0),
or d = 8 and νI = (0,0,7,0, . . .), or d = 17 and the unique nonzero term in νI is
ν6 = 8 (cf., e.g., Lemma 2.5.5 in [1]).

Finally, let us define the index i(γ ) of γ as follows. We set i(γ ) = 0 if and only if
there is no infinitely near base point of Lγ , i.e., all base points of Lγ belong to P

2.
If Lγ has infinitely near base points, consider birational morphisms ψ : S → P

2 such
that the strict transform L′ of Lγ in S is a net with all base points belonging to S, i.e.,
L′ has no infinitely near base point. Recalling that ψ is the composition of finitely
many blowing ups, each one at the maximal ideal of a single point, define i(γ ) as the
minimum number of such blowing ups among all birational morphisms ψ with the
above property.

Remark 7 If d � 3, the irreducibility of the general member of Lγ implies that∑
i>d/2 νi � 1, i.e., Lγ has at most one base point of multiplicity > d/2.

Remark 8 Usually, the H-type of a linear system L is encoded by listing the multi-
plicities mi of the base points pi of L, which are commonly written in nonincreasing
order, say m1 � m2 � m3 � · · · , instead of a multi-index like νI . Given a multi-index
νI = (ν1, . . . , νd−1) of a homaloidal net Lγ , the multiplicities of the base points of
Lγ , in nonincreasing order, can be computed as follows:

mi = max

{

j :
∑

k�j

νk > i − 1

}

, for each i � 1. (4)

Equivalently, set m1 = max{j : νj �= 0} and then

m1 = m2 = · · · = mR1 > mR1+1 = max{j < m1 : νj �= 0}, R1 = νm1,

mR1+1 = · · · = mR1+R2 > mR1+R2+1 = max{j < mR1+1 : νj �= 0}, R2 = νmR1+1,
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and so on, until mR = min{j : νj �= 0} with R = ∑d−1
i=1 νi = R1 + R2 + · · · + Rs ,

s = |{j : νj �= 0}|.

Definition 9 Let νI = (ν1, . . . , νd−1) be a multi-index with non-negative entries. We
say that the positive numbers m1, . . . ,mr , with r = ∑d−1

i=1 νi , computed in Remark 8
are the multiplicities associated with νI .

Definition 10 One says that γ ∈ Bir◦2 is a quadratic transformation. By (3), its H-type
is νI = (3), namely, γ is defined by a homaloidal net of generically irreducible conics
passing through three simple base points p1,p2,p3. We say that γ is a quadratic
transformation centered at p1,p2,p3.

Definition 11 The map γ ∈ Bir◦d is called a de Jonquières transformation if there
exists a base point of Lγ with multiplicity d − 1. If d � 3, irreducibility and (3) force
νd−1 = 1, νi = 0, 2 � i � d −2, and ν1 = 2d −2, hence the H-type of a de Jonquières
transformation of degree d � 3 is (2d − 2,0, . . . ,0,1).

A little work on (3) proves the following (cf., e.g., Proposition 2.6.4 in [1]).

Theorem 12 (Noether’s Inequality) Let γ ∈ Bir◦d , d � 2, and let m1 � m2 � m3 be
the maximal multiplicities of the base points of the homaloidal net Lγ . Then

m1 + m2 + m3 � d + 1. (5)

Furthermore, equality holds if and only if γ is either symmetric or de Jonquières.

The next, classical, lemma is very important for our purposes, and we give here a
proof only for the reader’s convenience.

Lemma 13 (cf. [26, p. 72]) If d � 3, the maximal number of base points of a homa-
loidal net Lγ is

∑d−1
i=1 νi = 2d − 1 and, in that case, γ is a de Jonquières transfor-

mation.

Proof In (3), multiply the second equation by d and then subtract the first equation.
Thus,

(d − 1)(2d − 1) =
d−1∑

i=1

i(d − i)νi . (6)

On the real interval [1, d − 1], the function g(x) = x(d − x) has a maximum at
x = d/2 and a minimum at x = 1 and at x = d − 1, so 1(d − 1) � g(x) � d2/4.
Hence, (6) implies 2d−1 �

∑d−1
i=1 νi . Equality holds if and only if ν1 +νd−1 = 2d−1

and νi = 0, i = 2, . . . , d − 2. Remark 7, formulas (3), and the hypothesis d � 3 force
νd−1 = 1. �

Remark 14 In algebraic geometry, when a family of objects {Xq}q∈Σ like varieties,
maps, etc., is parameterized by the points of an irreducible algebraic variety Σ , one
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usually says that the general object X has a certain property P if the subset of points
q ∈ Σ , such that Xq has the property P , contains a Zariski open dense subset of Σ .

Later we will use finite sets of points in P
2 and in its symmetric products.

Definition 15 (cf. [29]) The r-th symmetric product of P2, denoted by Symr (P2),
is the quotient (P2)/Sr of the Cartesian product (P2)r under the action of the sym-
metric group Sr permuting the factors. One has that Sym1(P2) = P

2, if r = 1; oth-
erwise, Symr (P2) is a rational, singular, irreducible, projective variety of dimension
2r . If p1, . . . , pr ∈ P

2 are distinct points, then Symr (P2) is smooth at the class of
(p1, . . . , pr).

A useful tool to take care of infinitely near points is the Hilbert scheme.

Definition 16 (cf. [19, 20, 27]) The Hilbert scheme Hilbr (P2) parameterizes zero-di-
mensional subschemes of P2 with length r , i.e., whose Hilbert polynomial has degree
0 and is equal to r . It is a rational, smooth, irreducible, projective variety of dimension
2r and is a desingularization of Symr (P2).

Recall that r points in general position in P
2 determine an open dense subset of

either Hilbr (P2) or Symr (P2).

Definition 17 Let d be a positive integer. A multi-index νI := (ν1, ν2, . . . , νd−2, νd−1)

with length ρ and reduced length r is a (d − 1)-tuple of non-negative integers with
r = ∑d−1

i=1 νi and ρ = ∑d−1
i=1 i(i + 1)νi/2. Setting I ∗ = {i | νi > 0}, let us define

HilbνI (P2) =
∏

i∈I∗
Hilbνi (P2).

Thus, a point Z ∈ HilbνI (P2) is Z = ([Zi])i∈I∗ with [Zi] ∈ Hilbνi (P2), for each
i ∈ I ∗.

Let us denote by HilbνI• (P2) the dense open subset of HilbνI (P2) whose ele-
ments are Z = ([Zi])i∈I∗ such that the zero-dimensional scheme Zr = ⋃

i∈I∗ Zi

is supported on r distinct points in P
2; in particular, Zi is a collection of points

pi,1, . . . , pi,νi
in P

2. To a point Z ∈ HilbνI• (P2), we associate the zero scheme [ZνI
]

in Hilbρ(P2) with (ZνI
)red = Zr and ZνI

given by the union of the points pi,j with
multiplicity i, for each i ∈ I ∗ and j = 1, . . . , νi .

Remark 18 Note that [ZνI
] is not a general point of Hilbρ(P2). This is the main

motivation for introducing both length and reduced length. Equations (3) force the
length ρ of νI to be uniquely determined by d , namely, ρ = (d + 4)(d − 1)/2.

Definition 19 We say that a multi-index νI = (ν1, ν2, . . . , νd−2, νd−1) is admissible
if there is an element Z ∈ HilbνI• (P2) such that the linear system ΛZ := |IZνI

(d)| is
non-empty, of the expected dimension

dimΛZ =
(

d + 2

2

)

−
d−1∑

i=1

i(i + 1)νi

2
,
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and the general element of ΛZ is an irreducible curve. In such a case we say that Z

is an admissible cycle associated with νI .

The following theorem is classical; cf., e.g., [18, V.II.20] and [1, Theorem 5.1.1].

Theorem 20 Fix a positive integer d and a multi-index νI . Assume that νI satis-
fies (3). Let Z ∈ HilbνI• (P2) be a point. Then νI and Z are admissible if and only if
ΛZ is a homaloidal net.

Remark 21 There are finitely many multi-indexes νI satisfying (3), when d is fixed,
but not all such multi-indexes are H-types, i.e., do give rise to homaloidal nets in
Bir◦d . The first, classical, example is (6,0,2,0), d = 5. In this case the line through
the two triple points is a fixed component of the linear system of 5-ics with the as-
signed multiplicities. The movable part of the net is given by elliptic quartic curves.
In particular, the point representing it in P

62 is not in Bir5.

To get rid of this behavior we proceed as follows; cf. Hudson’s test in [26] and in
[1].

Definition 22 Let νI = (ν1, . . . , νd−1), d � 2, be a multi-index satisfying (3). When
d = 2, we say that νI = (3) is 1-irreducible. Suppose then that d � 3, and let m1 �
m2 � m3 be the maximal multiplicities associated with νI ; cf. Definition 9.

We say that νI is 1-irreducible if m1 + m2 � d . Let d ′ = 2d − m1 − m2 − m3. By
(3) and d � 3, the same proof of Noether’s inequality (5) in [1] shows that d > d ′ � 2.

Now define a new multi-index q(νI ) = (ν′
1, ν

′
2, . . . , ν

′
d ′−2, ν

′
d ′−1) by the following

steps:

• for each j = 1,2,3, decrease νmj
by 1 (if m3 = m2 = m1, this means decrease νm1

by 3);
• set ε = d − m1 − m2 − m3;
• for each j = 1,2,3, set k = mj + ε and, if k > 0, increase νk by 1;
• finally, for each i = 1, . . . , d ′ − 1, set ν′

i = νi .

We say that νI is irreducible if νI is 1-irreducible, q(νI ) is 1-irreducible, q(q(νI )) is
1-irreducible, and so on, for all new multi-indexes until one stops, when d becomes 2.
A script, which runs this irreducibility test, is listed in the Appendix.

Remark 23 If νI is the H-type of a Cremona transformation γ ∈ Bir◦d , and the maxi-
mal multiplicities m1 � m2 � m3 of the base points of the homaloidal net Lγ occur at
three points p1,p2,p3 such that a quadratic transformation ω centered at p1,p2,p3
is well defined, then q(νI ) is just the H-type of ω ◦ γ ∈ Bir◦

d ′ .
Setting p4, . . . , pr the other base points of Lγ , with respective multiplicities

m4 � · · · � mr , one has (cf., e.g., Corollary 4.2.6 in [1]) that the multiplicities of
the homaloidal net of ω ◦ γ at the points corresponding via ω to p1, . . . , pr are re-
spectively m′

1,m
′
2, . . . ,m

′
r where

m′
i = mi − ε, i = 1,2,3, ε = m1 + m2 + m3 − d, m′

j = mj , j � 4.
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Note that d ′ = d −ε, m′
1 = d −m2 −m3, m′

2 = d −m1 −m3, and m′
3 = d −m1 −m2.

The same formulas hold even if m1,m2,m3 are not the maximal multiplicities of
the base points of Lγ . Note that ε > 0 if and only if m1 + m2 + m3 > d .

The next theorem appears to be classical, and it has been implicitly used by Hud-
son, but it had probably fallen into oblivion; cf. historical remark 5.3.6 in [1] and the
references therein. For a modern proof, see Theorems 5.2.19 and 5.3.4 in [1].

Theorem 24 Fix an integer d and a multi-index νI which satisfies (3) and is irre-
ducible, according to Definition 22. Setting r = ∑d−1

i=1 νi , let m1 � m2 � · · · � mr be
the multiplicities associated with νI ; cf. Definition 9.

Then νI is admissible, and there exists a non-empty Zariski open subset U of
(P2)r (that is, P2 ×· · ·×P

2, r times) such that for each (p1, . . . , pr) ∈ U there exists
a Cremona transformation of degree d which has pi as the base point of multiplicity
mi , i = 1, . . . , r , and has no other base points.

In our notation, this translates as follows.

Corollary 25 In the hypothesis of the previous theorem, there exists an open dense
subset UνI

⊂ HilbνI (P2) such that for any point Z ∈ UνI
, Z is associated with νI and

the linear system ΛZ is a homaloidal net.

The algebraic structure of Bird and Bir◦d is already known; cf. [6, Lemma 2.4].

Lemma 26 The subsets Bird and Bir◦d in P
3N−1 are quasi-projective varieties.

We will use also planes, i.e., linear subspaces of dimension 2, in P
N−1, or equiva-

lently three-dimensional vector subspaces of CN . A convenient setting is Grassman-
nians.

Definition 27 Denote by Gr(3,N) the Grassmannian variety parameterizing three-
dimensional vector subspaces of CN , i.e., planes in P

N−1. It is a smooth, irreducible,
rational, projective variety of dimension 3(N − 3).

3 Cremona Transformations of Fixed Degree

In this section we use notation introduced in Sect. 2. Fix d a positive integer.

Remark 28 For each d � 2, there is a one-to-one map

Bird \Bir◦d →
d−1∐

a=1

(
P(C[x, y, z]a) × Bir◦d−a

)
,

[f1 : f2 : f3] �→
(

h,

[
f1

h
: f2

h
: f3

h

])

,
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where h = gcd(f1, f2, f3). The inverse is the collection of the maps

τa : P(C[x, y, z]a) × Bir◦d−a → Bird , τa(h, [f1 : f2 : f3]) = [hf1 : hf2 : hf3],
(7)

which are injective, for each a = 1, . . . , d − 1.

Let us focus on γ = [f1 : f2 : f3] ∈ Bir◦d ; in particular, gcd(f1, f2, f3) = 1. Let
Lγ = P(〈f1, f2, f3〉) be the homaloidal net associated with γ , recalled in Sect. 2.

Definition 29 We denote by “Bs” the map which sends a Cremona transformation
γ ∈ Bir◦d to its base locus:

Bs : Bir◦d → Hilb(P2), γ = [f1 : f2 : f3] �→ Bs(γ ) = Z(f1, f2, f3), (8)

where Bs(γ ) = Z(f1, f2, f3) is a 0-dimensional subscheme of P2.

Remark 30 The map Bs is algebraic. To see this, fix an irreducible component A ⊂
Bir◦d , take

Ic = {([f1 : f2 : f3], [Z]) | Z ⊂ Z(f1, f2, f3)} ⊂ A × Hilbc(P2),

and let p1,p2 be the projections on the two factors. By (3), each homaloidal net in
Bir◦d has the expected dimension. Hence, for each A there is a unique c such that
p−1

1 ([f1 : f2 : f3]) ∩ Ic is a point. In this setting, Bs = p2 ◦ p−1
1 .

There is no inverse map to Bs in (8), because the map Bs is not injective. The
definition of Bir◦d is such that two different bases of the same homaloidal net gives
different elements in Bir◦d while having the same base locus. This is quite awkward,
at least from the algebraic geometry point of view, but can be, somehow, settled as
follows.

Lemma 31 Let γ = [f1 : f2 : f3] and δ = [g1 : g2 : g3] be in Bir◦d such that Bs(γ ) =
Bs(δ). Then 〈f1, f2, f3〉 = 〈g1, g2, g3〉 = W ⊂ C

d(d+3)/2+1, and there exists a unique
change of basis matrix ω ∈ PGL(3) such that the triplet (g1, g2, g3) = (f1, f2, f3)ω

in W ∼= C
3.

Proof Let Zγ = (Bs(γ ))red = (Bs(δ))red be the reduced base locus of γ and δ. The-
orem 20 says that dimΛZγ = 2 and thus W = 〈f1, f2, f3〉 � gi , i = 1,2,3. Hence,
by definition, the fi ’s and the gi ’s are two bases of the 3-dimensional vector space
W ⊂ C

d(d+3)+1, and there is a unique change of basis ω sending one to the other. To
conclude, observe that [f1 : f2 : f3] and [λf1 : λf2 : λf3], λ ∈ C

∗, represent the same
element in Bir◦d . �

The previous lemma suggests how to change the target space in (8) in order to get
a birational map. For this purpose, we construct suitable morphisms.

Fix a positive integer d and an irreducible (according to Definition 22) multi-index
νI , satisfying (3). By Corollary 25 there is a dense open subset UνI

⊂ HilbνI (P2)
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made of admissible cycles associated with νI . Recall that Z = ([Zi])i∈I∗ ∈ UνI
is

such that [Zi] ∈ Hilbνi (P2) and Zi is a collection of νi points pi,1, . . . , pi,νi
in P

2.
Let us define the map

βνI
: UνI

→ Gr(3,N), βνI
(Z) = [H 0(IZνI

(d))], (9)

which sends Z to the homaloidal net of plane curves of degree d with multiplicity i

at the points pi,j , for each i ∈ I ∗ and j = 1, . . . , νi ; cf. Definition 17.

Remark 32 It is important to stress that the base locus in Hilbρ(P2) of a homaloidal
net associated with a multi-index νI and supported on r = ∑d−1

i=1 νi distinct points
determines a unique admissible cycle in HilbνI (P2) associated with νI . In that case,
we say that such a base locus in Hilbρ(P2) is admissible. Vice versa, an admissible
cycle determines uniquely the homaloidal net.

This, together with Lemma 31, yields that the morphism βνI
is a birational map

onto its image in the Grassmannian Gr(3,N) of planes in P
N−1 = P(C[x, y, z]d).

Next we want to go from the Grassmannian to Bir◦d . This is done by distinguishing
a basis in the general point of the image of βνI

. To do this, choose three general N −3
planes H1,H2,H3 in P(C[x, y, z]d) = P

N−1, e.g., we may choose

H1 = 〈yd, yd−1z〉⊥, H2 = 〈zd, zd−1x〉⊥, H3 = 〈xd, xd−1y〉⊥.

This allows us to universally choose the basis W ∩H1, W ∩H2, W ∩H3 for a general
3-dimensional linear vector subspace W ⊂ C

N . In other words, we have chosen three
sections σi : Gr(3,N) → U of the universal bundle over the Grassmannian Gr(3,N).

Definition 33 In the above setting, define the rational map

ανI
: PGL(3) × UνI

��� Bir◦d ,

(ω,Z) �→ [ω(σ1(βνI
(Z))) : ω(σ2(βνI

(Z))) : ω(σ3(βνI
(Z)))],

where ω ∈ PGL(3) is acting on the 3-dimensional vector subspace W ⊂ C
N as de-

scribed in Lemma 31. The map ανI
is well defined; in fact, ανI

(λω,Z) = ανI
(ω,Z),

for any ω ∈ PGL(3) and λ ∈ C
∗.

Lemma 34 The map ανI
is birational onto its image.

Proof It is enough to prove that ανI
is generically injective. But this follows imme-

diately by Lemma 31 and Remark 32. �

Lemma 35 Let νI = (ν1, . . . , νd−1) and μI = (μ1, . . . ,μd−1) be two distinct ad-
missible multi-indexes. Then Im(ανI

) and Im(αμI
) lie in two different components of

Bir◦d .

Proof Let r and m be the two reduced lengths of νI and μI , respectively. If r =
m we conclude again by Remark 32. Assume that r > m. Then we have to prove
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that Im(ανI
) �⊃ Im(αμI

). This is equivalent to saying that the base locus of a general
element in Im(αμI

) cannot be obtained as the limit of base loci of general elements
in Im(ανI

).
Assume that this is not the case. Then in Hilbρ(P2) there is a curve whose general

point represents the base locus of an element in Im(ανI
) and with a special point as-

sociated with ZμI
. In other words, we are saying that a bunch of points of multiplicity

mi,1, . . . ,mi,hi
, with ordinary singularities, limits to a point of some multiplicity mi ,

with ordinary singularity, and this is done in such a way that Noether’s equations (3)
are always satisfied.

Fix one point in the limit, say p1 of multiplicity m1, and assume that p1 is the limit
of {q1, . . . , qh1} of respective multiplicity m1,j . The existence of the limit forces

m1(m1 + 1)

2
=

∑

j

m1,j (m1,j + 1)

2
; in particular, m1 �

∑

j

m1,j ,

with strict inequality if h1 > 1. This, together with (3) yields

d2 − 1 =
∑

i

m2
i =

∑

i

⎛

⎝
∑

j

(m2
i,j + mi,j ) − mi

⎞

⎠ = d2 − 1 +
∑

i

(
∑

j

mi,j ) − mi.

Hence we have the contradiction
∑

i (
∑

j mi,j ) − mi = 0. �

In the previous lemmas, we found an irreducible component of Bir◦d for each ad-
missible multi-index νI . In the next lemma, we show that each Cremona transforma-
tion γ ∈ Bir◦d belongs to one of these irreducible components.

Lemma 36 Let γ ∈ Bir◦d be a birational transformation, Zγ = Bs(γ ) its base locus,
and νI = (ν1, . . . , νd−1) the corresponding H-type. Setting ρ to be the length of νI

and r its reduced length, there is a curve C ∈ Hilbρ(P2) such that

(i) [Zγ ] ∈ C,
(ii) the general point [Zt ] ∈ C is a zero-dimensional scheme supported on r distinct

points, with ordinary singularities, in P
2,

(iii) Zt is admissible.

Proof Let Lγ ⊂ |O(d)| be the homaloidal net associated with Zγ . Consider the in-
dex i(γ ) introduced in Definition 6. If i(γ ) = 0, the assertion is immediate, for any
degree d . To conclude, we argue by induction on i(γ ). Assume that i(γ ) = M > 0,
and let p ∈ Zred be a point of multiplicity m with infinitely near other base points.
Let ω : P2 ��� P2 be a quadratic transformation centered in p and two general points
q1 and q2, and L′ = ω∗Lγ the strict transform linear system. Then L′ ⊂ |O(2d −m)|
is a homaloidal net defining γ ′ = ω ◦ γ . By construction, i(γ ′) � i(γ ) − 1 and by
inductive hypothesis we may describe its base locus Zγ ′ = BsL′ as the limit of ad-
missible cycles with two ordinary points of multiplicity d . Then applying ω−1 we get
the desired curve in Hilbρ(P2). �
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Definition 37 Let νI = (ν1, . . . , νd−1) be an admissible multi-index. We denote by
Bir◦νI

the irreducible component of Bir◦d whose general element is defined by a homa-
loidal net of H-type νI . Moreover, we denote by BirνI

the intersection of the Zariski
closure of Bir◦νI

in P
3N−1 with Bird .

Remark 38 It is important to stress that a homaloidal net may degenerate to a linear
system with a fixed component in such a way that the residual part is not a homaloidal
net. In particular, the Zariski closure of Bir◦νI

in P
3N−1 is not contained in Bird . The

easiest occurrences of this behavior are as follows.
Let L be a general homaloidal net in Bir◦(4,1) given by plane cubics with a double

point p0 and four simple base points p1, . . . , p4. If we let p1, . . . , p4 become aligned,
then L degenerates to a net with a fixed line and the residual part is composed with
the pencil of lines through p0.

Let L be a general homaloidal net in Bir◦(3,3,0) given by plane quartics with three
double points p1,p2,p3 and three simple base points. If we let p1,p2,p3 become
aligned, then L degenerates to a linear system with a fixed line and the residual part
is a 3-dimensional linear system of cubics with six simple base points.

The next lemma is classical; see, e.g., [26, p. 73], but the proof therein is not
complete.

Lemma 39 If d � 4 and γ ∈ Bir◦d is not a de Jonquières transformation, then the
number of base points of the homaloidal net Lγ is at most d + 2.

Proof By Lemma 36 (cf. also Theorems 20 and 24), the H-type νI of γ , and hence
the number r = ∑d−1

i=1 νi of base points Lγ , does not depend on the position of the
points in P

2. Therefore, we may and will assume that these base points are in gen-
eral position, in such a way that γ can be factored as a composition of quadratic
transformations, centered at base points of L only, each one decreasing the degree
of γ .

Now we proceed by induction on the degree d of γ .
The base of induction is d = 4. In this case there is only one possible H-type,

which is (3,3,0), i.e., six base points and the assertion is trivially true.
Suppose then that d > 4. We set m1,m2,m3, d̃, ε,μi according to Definition 22;

in particular, d̃ = 2d − m1 − m2 − m3 = d + ε. Recall that r = ∑d−1
i=1 νi and set

r̃ = ∑d̃−1
i=1 μi .

Assume first that μI is the H-type of a de Jonquières transformation, namely,
μI = (2d̃ − 2,0, . . . ,0,1) and r̃ = 2d̃ − 1. Since νI is not the H-type of a de Jon-
quières transformation and d̃ < d , it follows that νI is obtained from μI by per-
forming a quadratic transformation centered at points of multiplicity ej � 1, say
1 � e1 � e2 � e3 � 0. On the other hand, the point with multiplicity e3 for μI would
have multiplicity m3 = e3 + c = d̃ − e1 − e2 for νI , that still have the point of multi-
plicity d̃ − 1 corresponding to the highest multiplicity point of μI . Since m1,m2,m3

are chosen to be the highest multiplicities, this is possible only if e2 = e3 = 0. It fol-
lows that d = 2d̃ −e1, m1 = d̃ , and m2 = m3 = d̃ −e1; hence, r̃ = 2d̃ −1 = d +e1 −1
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and r = r̃ + 3 − e1 = d + 2, where r is the number of base points of Lγ , which is the
assertion.

Now we may and will assume that μI is not the H-type of a de Jonquières trans-
formation, so the inductive hypothesis says that r̃ � d̃ + 2.

The construction of the μi implies that r � r̃ + 3, and one sees that equality holds
if and only if m1 = m2 = m3 = −ε = d/2 = d̃ . Since d > 4, one has r̃ � d̃ + 2 =
d/2 + 2 � d − 1 and therefore r = r̃ + 3 � d + 2, which is the assertion.

Assume then r � r̃ +2: One sees that equality holds if and only if m1 = d̃ > m2 =
m3 = −ε and d = m1 + m2. Since μI is not a de Jonquières transformation, one has
d̃ = m1 � d − 2 and therefore r � r̃ + 2 � d̃ + 4 � d + 2, which is the assertion.

Finally, the remaining case is r � r̃ + 1. Since d̃ � d − 1, one has

r � r̃ + 1 � d̃ + 3 � d + 2,

which concludes the proof of this lemma. �

We are finally ready for the proof of Theorem 1 in the Introduction.

Proof of Theorem 1 Fix an integer d � 2. By Lemma 26, Bir◦d is a quasi-projective
variety. By Lemma 36, each irreducible component Bir◦νI

of Bir◦d is determined
by an admissible and irreducible multi-index νI = (ν1, . . . , νd−1) satisfying (3).
By Lemma 34, Bir◦νI

is rational and has dimension 8 + dimUνI
= 8 + 2r , where

r = ∑d−1
i=1 νi is the reduced length of νI . By Lemma 13, the maximum r is 2d − 1

and occurs for νI = (2d − 2,0, . . . ,0,1), which gives an irreducible component of
dimension 8 + 2(2d − 1) = 4d + 6, whose elements are de Jonquières transforma-
tions. By Lemma 39, when d � 4, the other irreducible components have dimension
at most 8 + 2(d + 2) = 2d + 12. �

Definition 40 For any fixed positive integers d and a < d let

Birad = P
(a+2

2 )−1 × Bird−a .

As already observed in Remark 28, there is a natural inclusion of Birad into Bird . For
this we often identify Birad with its image in Bird .

Remark 41 For integers a < b < d we have, with natural identifications,

Birad ∩ Birbd = P
(a+2

2 )−1 × Birb−a
d−a.

Remark 42 When 0 < a < b < d , the general element [f1 : f2 : f3] of τb(Bir◦d−b) ⊂
Bird cannot be the limit of elements in τa(Bir◦d−a) ⊂ Bird because gcd(f1, f2, f3) is
an irreducible polynomial of degree b > a.

We are able to completely describe the behavior of these varieties in low degrees.

Example 43 By Theorem 1, Bir◦2 = Bir◦(3) is irreducible of dimension 14. By Re-

mark 28, Bir2 = Bir◦(3) ∪ Bir1
2. A general element γ in Bir◦(3) is given by a homaloidal
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net of conics with three distinct base points p1,p2,p3. If we let p3 move to a general
point of the line through p1 and p2, the line splits from the net and we get a degen-
eration of γ to an element in Bir1

2. Since each element in Bir1
2 can be obtained in this

way, Bir2 is irreducible.

Example 44 Again by Theorem 1 and Remark 28, Bir◦3 = Bir◦(4,1) is irreducible of

dimension 18 and Bir3 = Bir(4,1) ∪Bir1
3 ∪ Bir2

3, where Bir2
3 = τ2(Bir◦1) has dimension

13 and Bir1
3 contains τ1(Bir◦2), which has dimension 16.

We claim that Bir3 has three irreducible components and is connected.
By Remark 41, Bir1

3 ∩ Bir2
3 = P

2 × Bir1
2 has dimension 12. On the other hand,

a general element γ in Bir◦(4,1) is given by a homaloidal net of cubics with a double
point p and four simple base points q1, . . . , q4. If we let q2 move to a general point
of the line through p and q1, the line splits from the net and we get a degeneration of
γ to an element in Bir1

3. This shows that Bir3 is connected.
Note that any degeneration of an element in Bir◦3 has to contain a double point.

Linear systems of conics with a double point are homaloidal only in the presence
of a fixed component. Then the only possible degenerations of Bir◦3 are either a pair
of fixed lines together with the linear system of lines or a fixed line, say l, and a
linear system of conics with a base point on l. However, the general element in either
Bir1

3 or Bir2
3 is such that there is no base point, of the mobile part, lying on the fixed

component, and therefore it cannot be obtained as a limit of elements in Bir◦3. This
means that Bir1

3 and Bir2
3 give two further irreducible components, other than Bir(4,1).

In [10], it seems that the authors missed the component Bir2
3 in Bir3.

Example 45 By Theorem 1, Bir◦4 has two irreducible components Bir◦(6,0,1) and
Bir◦(3,3,0), having respective dimensions 22 and 20.

Reasoning as in the previous examples, one may check that Bir4 is connected (we
will prove it in Theorem 55 later) and its decomposition into irreducible components
is

Bir4 = Bir(3,3,0) ∪Bir(6,0,1) ∪Bir1
4 ∪ Bir2

4 ∪ Bir3
4,

where the last three components have respective dimensions 17, 19, and 20.

To study the connectedness of Bir◦d , we need to understand degenerations of base
loci of homaloidal systems. This is a hard task, and almost nothing is known. The only
example we are aware of is the one stated in [18, V.III.25, p. 231] of a quartic curve
with three double points degenerating to a quartic with a triple point. This suggests
that the component of Bir◦4 associated with the multi-index (3,3,0) intersects the
component of a de Jonquières transformation.

Example 46 Take the linear system of quartic curves with three double base points at
p1 = [0,0,1], p2 = [t,0,1], p3 = [0, t,1], t �= 0. Its affine equation is

a0x
4 + a1x

3y + a2x
2y2 + a4xy3 + a5y

4 − 2a0tx
3 + a3x

2y + (−a4t + a1t + a3) xy2

− 2a5ty
3 + a0t

2x2 + (−a1t
2 − ta3)xy + a5t

2y2 = 0.
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For t = 0, this is a linear system of quartics, whose general member is irreducible,
with a triple base point at [0,0,1] and three infinitely near simple base points in the
direction of the lines x = 0, y = 0, and x + y = 0, which are the limits of the lines
p1p3 : x = 0, p1p2 : y = 0, and p2p3 : x + y − tz = 0.

By imposing further three simple base points p4,p5,p6 in general position, one
gets a homaloidal net of type (3,3,0) for a general t �= 0 and a homaloidal net of
type (6,0,1) for t = 0. E.g., we choose p4 = [1,−2,1], p5 = [−2,1,1], and p6 =
[2,3,1] and we get the following Cremona transformation, for t = 1,

[(
3x3 − 6x2z + 80xy2 − 107xyz + 3xz2 − 9y3 − 98y2z + 107yz2

)
x

: −3
(
−x2 + 10xy − 12xz − y2 − 12yz + 13 z2

)
xy

: 3 (−y + z)
(

12x2 − 3xy − 12xz − y2 + yz
)

y
]
,

which has the inverse map
[
−

(
−36x2 − 243xy + 42xz − 396y2 + 116yz

)(
−36xy + 39xz − 99y2 + 107yz

)

:
(
−36xy + 39xz − 99y2 + 107yz

)(
36xy − 42xz + 99y2 − 125yz + 10 z2

)

: −108x3z − 1296x2y2 + 1539x2yz − 1152x2z2 − 7128xy3 + 10809xy2z

− 6195xyz2 − 30xz3 − 9801y4 + 15840y3z − 8317y2z2 − 90yz3
]
,

while, for t = 0, we get the de Jonquières transformation
[
−

(
12x3 − 217xy2 + 308xyz − 30y3 + 308y2z

)
x : 6 (−2x2 − 19xy + 28xz

− 2y2 + 28yz)xy : 6
(
−23x2y + 42x2z − 5xy2 + 42xyz − 2y3

)
y
]
,

which has the inverse map
[
−7 (6x + 11y)2 (−3y + 2 z) (−6x − 17y + 4 z)

: 14 (−6x − 17y + 4 z) (6x + 11y) (−3y + 2 z)2

: 216x3z − 2484x2y2 + 4896x2yz − 1368x2z2 − 9648xy3

+ 16710xy2z − 5544xyz2 + 96xz3 − 9555y4

+ 15942y3z − 5854y2z2 + 240yz3
]
.

These computations have been performed by using Maple.

Proposition 47 Bir◦4 = Bir◦(6,0,1) ∪ Bir◦(3,3,0) is connected, dim(Bir◦(6,0,1) ∩ Bir◦(3,3,0))= 19.
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Proof The connectedness follows from Example 46, which shows that the general
element in Bir◦(3,3,0) may degenerate to a special element in the component Bir◦(6,0,1)

of a de Jonquières transformation. The general choice of the base points of such de
Jonquières transformations is one triple point in the plane, three infinitely near simple
points, and further three simple points in the plane. Thus it lies in an open subset of
P

2 × Sym3
P

1 × Sym3
P

2, which has dimension 11, plus 8 dimensions for the action
of PGL(3) on the homaloidal net; cf. Lemma 31. �

Proposition 48 Bir◦5 = Bir◦(8,0,0,1) ∪ Bir◦(3,3,1,0) ∪ Bir◦(0,6,0,0) is connected.

Proof The decomposition of Bir◦5 into three irreducible components Bir◦(8,0,0,1),
Bir◦(3,3,1,0), and Bir◦(0,6,0,0), having respective dimensions 26, 22, and 20, follows from
Theorem 1.

One has Bir◦(3,3,1,0) ∩ Bir◦(0,6,0,0) �= ∅ for the same reason of the previous proposi-
tion, namely, that a linear system of quintics with three double base points may de-
generate to a linear system of quintics with a triple base point and three infinitely near
simple base points. Using the notation of Example 46, one gets such a degeneration
just by applying a quadratic transformation centered at p4,p5,p6 to the degeneration
of the linear system of quartics.

In order to prove the connectedness of Bir◦5, it is enough to show, with an example,
that Bir◦(8,0,0,1) ∩Bir◦(3,3,1,0) �= ∅. We remark that, if we make collide a triple point and
three double points, in general we get a quintuple point, not a quadruple one. Thus
we perform a special degeneration: We take the linear system L of quintics with an
oscnode at [0,0,1], along the direction of the conic xz + y2 = 0, and a triple point at
[t,0,1], when t �= 0. The affine equation of L is

a0x
5 + a1x

4y + a2x
3y2 + a3x

2y3 + a4xy4 + a5y
5

− 3a0tx
4 − 2a1tx

3y +
(

2a0t
2 − a2t

)
x2y2 +

(
a1t

2 + a5

)
xy3

− a0t
3y4 + 3a0t

2x3 + a1t
2x2y − 2a0t

3xy2 − a0t
3x2 = 0.

When t = 0, we get a linear system of quintics with a quadruple point whose gen-
eral member is irreducible. By imposing further three simple base points in general
position, we get a homaloidal net ⊂ L of type (3,3,1,0) which degenerates to a
homaloidal net defining a de Jonquières transformation. E.g., if we choose [1,1,1],
[1,−1,1], and [2,1,1] as simple base points, we get the following Cremona trans-
formation, for t = 1,

[
10x2y2z + 9xy3z − 18y3x2 + 5y4x + 9y5 + 5x5

− 10xy2z2 + 15x3z2 − 15x4z + −5x2z3 − 5y4z

: y
(

7y2xz + 2y4 − 9y2x2 + 5x4 − 10x3z + 5x2z2
)

: y2
(

4y3 + 4yxz − 5x2z − 8yx2 + 5x3
) ]
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while, for t = 0, we get the de Jonquières transformation
[ − 60y3x2 − 5y4x + 30y5 + 5x5 + 30xy3z : 12y5 − 29y3x2 + 5yx4 + 12xy3z

: 6y5 − 5y4x − 12y3x2 + 5y2x3 + 6xy3z
]
.

We are able to check the properties of these maps and to find their inverse maps by
using Maple, as we did in Example 46. �

Proposition 49 Bir◦6 = Bir◦(10,0,0,0,1) ∪ Bir◦(3,4,0,1,0) ∪ Bir◦(4,1,3,0,0) ∪ Bir◦(1,4,2,0,0) is
connected.

Proof The decomposition of Bir◦6 into four irreducible components follows from
Theorem 1. The usual degeneration of three double base points to one triple point with
infinitely near three simple base points implies that Bir◦(4,1,3,0,0) ∩ Bir◦(1,4,2,0,0) �= ∅.
It can be obtained by that of Example 46 by applying a quadratic transformation
centered at p4, p5, and at a general point in the plane.

To conclude we show, with two examples, that

Bir◦(3,4,0,1,0) ∩ Bir◦(1,4,2,0,0) �= ∅ and Bir◦(3,4,0,1,0) ∩ Bir◦(10,0,0,0,1) �= ∅.

First example: Take the linear system of sextics with a triple base point at [0,0,1],
with an infinitely near double base point in the direction of the line x = 0, and another
triple base point at [t,0,1], t �= 0. When t = 0, we get a linear system of sextics with
a quadruple base point with an infinitely near double base point. By imposing further
three double base points and a simple base point, e.g., we choose [1,1,1], [−1,1,1],
[2,1,1], and [2,−3,1], respectively, we get a homaloidal net of type (1,4,2,0,0)

for a general t �= 0 and a homaloidal net of type (3,4,0,1,0) for t = 0. In particular,
for t = 1, we get the map

[
27x6 − 216y6 − 81x2yz3 + 135x3yz2 − 108x2y2z2

− 368xy3z2 − 27x4yz + +108x3y2z + 520xy4z

− 27x3z3 + 81x4z2 − 81x5z + 324y5z − 27x5y − 260xy5

: 3xy (−z + y)
(
−4y3 + 22y2z − 18xy2 + 9xz2 − 18x2z + 9x3

)

: 9y2 (−z + y)
(

6y3 + 4xy2 − 7yxz − 3x2y + 3x3 − 3x2z
)]

and, for t = 0, we get the map
[
27x6 − 540y6 − 430xy3z2 + 54x4yz + 216x3y2z − 702x2y3z + 644xy4z

+ 648y5z − 108x5y + 513x2y4 − 322xy5

: 3y (−z + y)
(

36y4 + 20xy3 + −20y2xz − 45x2y2 + 9x4
)

: 9y2 (−z + y)
(

6y3 + 2xy2 − 5yxz − 6x2y + 3x3
)]

.
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Second example: Take the linear system of sextics with a double base point at
[0,0,1] with three other infinitely near double base points, each one infinitely near to
the previous one, along the conic xz + y2 = 0, and a quadruple base point at [t,0,1],
t �= 0. When t = 0, we get a linear system of sextics with a base point of multiplicity
5. By imposing further three simple base points, e.g., we choose [1,1,1], [−1,1,1],
and [2,1,1], we get a homaloidal net of type (3,4,0,1,0) for a general t �= 0 which
degenerates to a homaloidal net of de Jonquières type (10,0,0,0,1). In particular,
for t = 1, we get the map

[
−2x6 − 8y6 − 4xy2z3 + 8x2y2z2 − 4x3y2z

+ 5x2y3z − 8xy4z − 2x2z4 + 8x3z3 − 12x4z2

− 2y4z2 + 8x5z − 5x3y3 + 13x2y4 + 5xy5

: −2y
(
−xz + x2 + xy − y2

)(
−xz + x2 − y2

)
(−z + x − y)

: −y2
(
−2xz + 2x2 − xy − 2y2

)(
−xz + x2 + xy − y2

)]

and, for t = 0, we get the de Jonquières transformation

[−3x6 − 20y6 − 20xy4z + 20x3y3 + 23x2y4 :
− y

(
8y5 + 8y3xz + 3x5 − 11x3y2 − 8x2y3

)

: −y2
(

4y4 + 4xzy2 + 3x4 − 4x3y − 7x2y2
)]

.

We again checked the properties of these maps and found their inverse maps by using
Maple, as we did in Example 46. �

Remark 50 We want to stress a difference between Bir◦5 and Bir◦6. It is not difficult to
prove that any pair of components in Bir◦5 intersects. The situation for Bir◦6 is, quite
unexpectedly, different. We claim that Bir◦(4,1,3,0,0) ∩ Bir◦(10,0,0,0,1) = ∅. Let P2 ×
� → � be a degeneration, over a complex disk �, with a linear system L such
that the map induced by L0 is in Bir(10,0,0,0,1) and the map induced by Lt is in
Bir◦(4,1,3,0,0), for t ∈ �\{0}. Let μ : Y → P

2 ×� be the blow up of the unique singular

point p in L0, with exceptional divisor E � P
2. Note that the sections associated

with the singular points of Lt have to intersect in p, because p is the unique singular
point in L0. Hence, the strict transform LY is such that LY

0|E is a curve with degree
equal to the multiplicity of L0 at p, which is 5, and with three triple points and
a double point. This forces, by a direct computation, LY

0|E to be non-reduced and
therefore introduces a fixed component in L0. Hence, the map induced by L0 is in
Bir(10,0,0,0,1) \Bir◦(10,0,0,0,1) and Bir◦(4,1,3,0,0) ∩ Bir◦(10,0,0,0,1) = ∅.

The connectedness of Bird is considerably simpler even if not all irreducible com-
ponents intersect each other.
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Remark 51 If νI = (2d − 2,0, . . . ,0,1), i.e., if νI is the H-type of de Jonquières
transformations, then it is easy to check that BirνI

meets Birad , for each a = 1, . . . ,

d − 1.
However, the same statement does not hold for each admissible multi-index νI .
For example, one may check that the minimum d such that there exists an ad-

missible νI = (ν1, . . . , νd−1) with BirνI
∩Bir1

d = ∅ is d = 10. Moreover, there are
exactly two such admissible νI of degree d = 10, namely, (0,0,7,0,0,1,0,0,0) and
(3,0,0,6,0,0,0,0,0).

We already recognized that Birad ∩Birbd �= ∅. Hence, to conclude the connectedness
it is enough to show that for any admissible index νI there is a degeneration with a
fixed component. The following lemmas allow us to produce these degenerations.

Lemma 52 Let χ : P2 × � → � be a one-dimensional family over a complex disk
�. Let Ft be the fiber over the point t ∈ �. Let C1, C2, and C3 be three disjoint
sections of χ . Let pi

t := Ci ∩ Ft be the intersection of the i-th section with the fiber
Ft , i = 1,2,3. Assume that the points pi

t are in general position for any t . Then
there is a birational modification Ω : P2 × � ��� P2 × � such that Ωt := Ω|Ft is the
quadratic Cremona transformation centered at the points {pi

t }. Assume that there is
a linear system H ∈ Pic(P2 × �) such that Ht is a homaloidal net associated with a
multi-index νI and H0 is a homaloidal net associated with a multi-index μI and

∑

i

multZνI
pi

t <
∑

i

multZμJ
pi

0.

Let H′ := Ω∗H be the transformed linear system. Then H′|F0
has a fixed component.

Proof Let Dij be the divisor covered by lines spanning the points pi
t and p

j
t inside

Ft . The general position assumption ensures that Dij is a smooth minimally ruled
surface. Let φ : Y → P

2 × � be the blow up of P2 × � along the disjoint sections Ci

with exceptional divisors Ei . Let DY
ij be the strict transform of Dij on Y and l

ij
t the

strict transform of the line 〈pi
t ,p

j
t 〉 ⊂ Ft , and FY

t the strict transform of the fiber Ft .
Then we have the following intersection numbers.

KY · lijt = KFY
t

· lijt = −1

and

DY
ij · lijt = DY

ij · DY
ij · FY

t = (l
ij
t · lijt )FY

t
= −1.

Moreover, DY
ij is ruled by l

ij
t and all fibers are irreducible and reduced. This shows,

by Mori theory (see, for instance, [2, Theorem 4.1.2]), that l
ij
t spans an extremal ray

and the extremal ray can be contracted to a smooth curve Zij in a smooth 3-fold. Let
ψ be the blow down of the three disjoint divisors Dij . Then ψ is a morphism from
Y to P

2 × �. The required map Ω is just ψ ◦ φ−1. To conclude, observe that for
the general fiber Ωt(Ht ) = H′|Ft

and the degΩt(Ht ) = degH′ = 2d −∑
multZνI

pt
i .



On Plane Cremona Transformations of Fixed Degree 1129

The numerical assumption on the multiplicities forces degΩ0(H0) < degH′. This
yields a fixed component in H′|F0

. �

Remark 53 The usage of the above lemma is to produce degenerations with fixed
components starting from a known degeneration in a different pure degree.

To apply the above lemma we have to construct degenerations. This is the aim of
the next lemma.

Lemma 54 Let νI be an admissible multi-index in degree d . Let ZνI
be a base locus

of a general homaloidal net associated with the multi-index νI , and p1, p2 ∈ ZνI
two

points. Assume that

m1 := multZνI
p1 � multZνI

p2 =: m2.

Then there is a degeneration χ : P2 × � → � and a base scheme Z such that Zt :=
Z|Ft is associated with the multi-index νI and Z0 := Z|F0 has the point p1 infinitely
near to p2.

Proof The multiplicity of p2 is at least the one of p1 and we may degenerate p1 into
p2. Assume that multp1 ZνI

= m1 and multp2 ZνI
= m2. Then a local equation of

such a degeneration can be

tx
d−m1
0 p + x

d−m2
1 (x

m1
2 h + tg) + xd

2 = 0,

where g ∈ C[x0, x1, x2] is such that for t �= 0 the points [1,0,0] and [0,1,0] are
ordinary points of multiplicities m1 and m2, respectively, and for t = 0 the point
[0,1,0] is of multiplicity m2 with an infinitely near point of multiplicity m1. �

Theorem 55 The quasi-projective variety Bird is connected.

Proof As already observed, we have only to prove that for any admissible index νI

the general element admits a degeneration with a fixed component. Let L be a general
homaloidal net associated with νI and ω a standard Cremona transformation centered
in three points of BsL that lowers the degree. Let L′ be the transformed homaloidal
net and q1, q2, q3 the three points of indeterminacy of ω−1. Then by the Noether–
Castelnuovo theorem the qi ’s are not of maximal multiplicity. That is, we may assume
that there is a point x ∈ BsL′ with multx L′ > multq1 L′. Then by Lemma 54 there
is a degeneration χ : P2 × � → � and a base scheme Z such that Zt := Z|Ft is
associated with the multi-index νI and Z0 := Z|F0 has the point q1 infinitely near
to x.

Let Ci be the section of χ associated with the point qi and Ω , H′ the birational
modification and linear system on P

2 × � as in Lemma 52. Then we may apply
Lemma 52 to produce a Cremona transformation Ω−1 : P2 × � ��� P

2 × � that
induces ω−1 on the general fiber and produces a fixed component in the special linear
system H|F0 . In particular, this produces a degeneration of L to a homaloidal net with
a fixed component. �
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We are now ready to complete the proof of Theorem 3.

Proof of Theorem 3 By Remark 28, Bird is the union of Bir◦d and Birad , for each

a = 1, . . . , d −1. Note that Bird−1
d , that is, τd−1(Bir◦1), has dimension 8+(

d+1
2

)−1 =
d(d + 1)/2 + 7, for d � 2. By Theorem 1, irreducible components of Bird coming
from irreducible components of Bir◦d−a , a � d − 2, have dimension at most

4(d − a) + 6 + a(a + 3)/2 = 4d + 6 + a(a − 5)/2 � d(d − 1)/2 + 13.

When d � 7, this implies that Birad , a � d − 2, has components of smaller dimen-
sion. �
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Appendix: Test if a Multi-Index is Irreducible, i.e., Admissible

The following script defines a function “adm” in PARI/GP that checks if a multi-index
νI is irreducible, or equivalently admissible; cf. Definition 22 and Theorem 24.

The input is a vector νI = [ν1, ν2, . . . , νd−1], where the square brackets are used
in GP for denoting row vectors. The output of adm(νI ) is either 1 = true, i.e., νI is
admissible, or 0 = false, i.e., νI is not admissible.

adm(v) = { local( d=1+#v , s=1-(#v+1)^2 ,
m=vector(3) , t=0 , e=0 );

for( i=1,#v , s = s+i^2*v[i] );
if( s , print("ERROR: the self-intersection is not 1");

return(0) );
s = -#v*3;
for( i=1,#v , s = s+i*v[i] );
if( s , print("ERROR: the genus is not 0");

return(0) );
while( d>2,
s = 0; t = d; e = d;
for( i=1,3 , while( !s, t=t-1; s=s+v[t] );

m[i]=t; e=e-t; v[t]=v[t]-1 ; s=s-1 );
if( m[1]+m[2]>d, print("The net is reducible");

return(0) );
for( j=1,3 , t=m[j]+e; if( t , v[t] = v[t] +1 ) );

d = d+e );
1}

For example, after defining this function “adm” in GP, the command
“adm([0,6,0,0])” returns “1”, while the command “adm([6,0,2,0])” prints “The
net is reducible” and returns “0”; cf. Remark 21.
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