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A. Calabri ∗

ON THE REPRESENTATION OF ENRIQUES SURFACES AS

DOUBLE PLANES

Abstract. In this paper we give a short proof of the well-known representation of Enriques
surfaces as double planes, by using the properties of the adjoint linear system to the branch
curve.

Enriques surfaces play a fundamental role in the classification of complex algebraic
surfaces: historically they have been the first examples of irrational surfaces with ge-
ometric genuspg = 0 and irregularityq = 0. Indeed, in 1894, Enriques suggested
in a letter to Castelnuovo that these properties were fulfilled by (the normalization of)
a sextic surface inP3(C) having the six edges of a tetrahedron as double lines. Soon
later, in 1896, Castelnuovo proved his celebrated rationality criterion, which states that
an algebraic surface is rational if and only if it is regular and has bi-genusP2 = 0.

In 1906, Enriques proved in [10] that every surface withP2 = 1 andP3 = q = 0
is isomorphic to his original example and he gave a rather complete treatment of these
surfaces, which have justly been named after him. In particular Enriques showed that
they can be represented asdouble planes, i.e. as double covers ofP2, branched along a
reduced curve of degree 8 as in the statement of Theorem 1 below.

A modern approach to Enriques surfaces has been carried out by Averbukh in
[2, 15] and by Artin in [1]. The former one, in particular, showed again how to repre-
sent them as double planes. Equivalently, Enriques surfaces can be realized as double
coverings of a quadric surface inP3, and these models have turned out to be very use-
ful to study them, e.g. they allowed Horikawa to determine the periods of Enriques
surfaces, see [14].

Nowadays, one usually says thatY is an Enriques surface ifq(Y) = 0 andKY is a
non-trivial element of 2-torsion in Pic(Y). In particularY is supposed to be minimal.
It is very well-known that Enriques surfaces form an irreducible family of dimension
10 and they are a distinguished class among surfaces with Kodaira dimension zero,
which include also abelian, hyperelliptic and K3 surfaces.For a detailed account of the
properties of Enriques surfaces, we refer the readers to thevery interesting book [9]
by Cossec and Dolgachev, where they considered Enriques surfaces in any characteris-
tic; in particular see Chapter IV therein for a comprehensive report on their projective
models (cf. also pp. 270–288 in [3]).

In this paper we present a short proof of the well-known representation of Enriques
surfaces as double planes. Namely we will prove the following:
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THEOREM 1. A smooth model of a double planeπ : X → P2 is a surface of Ko-
daira dimension zero with q= pg = 0 if and only if there is a Cremona transformation
γ : P2

99K P2 such that the induced normal double plane, birationally equivalent to
π : X → P2, is branched along a reduced curve of degree 8 which has two lines L1,
L2 as irreducible components and the residual sextic has the following singularities:

1. a double point at p0 = L1 ∩ L2;

2. a tacnode at a point pi ∈ L i , i = 1, 2, where Li is the tacnodal tangent.

Either p1 or p2 may possibly be infinitely near of the first order to p0.

Let π : X → P2 be a double plane and letρ : Y → S be its canonical resolution,
branched over the smooth curveB. One sees that, ifY has Kodaira dimension−∞,
then|B + mKS| = ∅, for everym ≥ 2, and in [5] we saw how to use these conditions
in order to classify rational and ruled double planes.

If Y has Kodaira dimension zero andpg(Y) = q(Y) = 0, i.e. Y is birationally
equivalent to an Enriques surface, one sees thatpa(B/2) = 0, |B/2 + KS| = ∅,
|B + mKS| = ∅ for m > 2 and|B + 2KS| = {D}, whereD is a curve which does not
move (see Lemma 1 below). We will show that these conditions are enough to find a
Cremona transformationγ : P2

99K P2 as in the statement of Theorem 1.

In other words, our proof is based only on the properties of double covers and on
the numerical characters (plurigenera and irregularity) of Enriques surfaces, with no
need to use the geometry of curves on them.

In Section 1, we will fix notation and recall some well-known facts about double
coverings. Then, in Section 2, we will prove Theorem 1.

Let us finally remark that a representation of Enriques surfaces asfourfold covers
of P2 has been described by Verra in [16] and by Casnati and Ekedahlin [8].

1. Notation and preliminaries.

We consider algebraic varieties defined over the field of complex numbersC. Letκ(X)

denote the Kodaira dimension of an algebraic varietyX. A double planeπ : X → P2

is a double covering of the projective planeP2, i.e.π is a finite flat morphism of degree
2. Two double planesπ andρ : Z → P2 are said to bebirationally equivalentif there
exists two birational mapsγ : P2

99K P2 andϕ : Z 99K X such thatπ ◦ ϕ = γ ◦ ρ.

In particular, if X is normal, a Cremona transformationγ : P2
99K P2 uniquely

determines the birational mapϕ : Z 99K X, whereZ is normal, and we will say that
ρ : Z → P

2 is the double plane induced byπ andγ .

Let us recall some well-known facts about double coverings (see, e.g., [3]). A
double coveringρ : Y → S of any smooth rational surfaceS is uniquely determined
by its branch curveC in S. MoreoverC is smooth if and only ifY is smooth, andC is
reduced if and only ifY is normal. IfC is not reduced, sayC =

∑

i mi Ci , where the
Ci ’s are the irreducible components ofC andmi ≥ 1, then the normalizationYν of Y
is a double covering ofS branched over

∑

i εi Ci , whereεi = mi mod 2∈ {0, 1}.
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Let π : X → P2 be a normal double plane, branched along a reduced curveC.
If C is not smooth, there exists a birational morphismσ : S → P2 such that the
normalizationY of X ×P2 S is smooth. The induced double coveringρ : Y → S is
usually calledthe canonical resolutionof π (see [3, p. 87] or [6]).

Let B be the branch curve ofρ and C̃ be the strict transform inS of C. Then
B = C̃ +

∑

i εi Ei , whereεi ∈ {0, 1} and theEi ’s are the irreducible exceptional
curves inS. Let us say thatEi is branchedif εi = 1, andunbranchedotherwise.
Recall thatB is anevendivisor in S, i.e. B/2 is well-defined in the Picard group Pic(S)

of S, andρ∗(OY) ∼= OS ⊕ OS(−B/2), thus theplurigeneraof Y are

Pm(Y) = h0(S, mB/2 + mKS) + h0(S, (m − 1)B/2 + mKS),

for all m ≥ 1, whereas itsirregularity is q(Y) = pg(Y) − pa(B/2).

In order to describe the singularities ofC, it is convenient to recall and to use the
classical notions of infinitely near points (cf. [13, p. 392], [12, v. 2, pp. 336–386],
[7], or [5] in this setting). Let us write the birational morphism σ : S → P2 as
σ = σn ◦ · · · ◦ σ1 ◦ σ0, whereσi : Si → Si−1 is the blow-up at a pointxi ∈ Si−1 and
P2 = S−1, S = Sn. One says thatxk is infinitely nearto x j , and we writexk > x j , if
xk ∈ (σk−1 ◦ · · · ◦ σ j )

−1(x j ). By xk >s x j we mean thatxk is infinitely nearof order s
to x j . We say thatxk is proper if it is not infinitely near tox j , for any j 6= k. In other
words, a proper point really belongs toP

2.

Let us denote byEi (E∗
i , resp.) the strict (total, resp.) transform inS of the excep-

tional curveσ−1
i (xi ) ⊂ Si of σi . Recall thatEi = E∗

i −
∑

j qi j E∗
j in Pic(S), where

qi j ∈ {0, 1}. One says thatx j is proximateto xi if and only if qi j = 1.

In Pic(S), write C̃ = 2dL −
∑

i ci E∗
i , whereL is a total transform of a line,

2d = C̃ · L = deg(C) andci = C̃ · E∗
i is usually called themultiplicity of C at xi .

ThenB = C̃+
∑

i εi Ei = 2dL−
∑

i bi E∗
i , wherebi = B · E∗

i = ci −εi +
∑

j 6=i ε j q j i .
Let us say thatbi is thevirtual multiplicity of the branch curve ofπ at xi .

Notice that ifxk > x j , thenck ≤ c j , becauseC̃ · E j ≥ 0. But the same is not
true for thebi ’s: it may happen thatxk >1 x j andbk > b j . This occurs if and only
if bk = b j + 2, ck = c j andε j = 1. In that case, let us say thatx j (xk, resp.) is a
defective(excessive, resp.) point. One can check thatx j is defective if and only ifEi

is a branched andE2
i = −2, or, equivalently, if and only ifρ−1(Ei ) is a(−1)-curve in

Y (see, e.g., [6] for more details).

For example, ifC has a triple pointx j ∈ P2 with a triple pointxk infinitely near to
it, i.e. in our notationxk >1 x j andck = c j = 3, thenb j = 2, ε j = 1 andbk = 4, thus
x j is defective andxk is excessive.

Regarding Cremona transformationsγ : P2
99K P2, recall that Noether-Castel-

nuovo Theorem states thatγ is the composition of finitely manyquadraticCremona
transformations, i.e. such that the pull-back of the net of lines is a net of conics passing
through three simple points, which can be proper or infinitely near. In particular, if
these three points arex0, x1, x2, with virtual multiplicity b0, b1, b2, one checks that the
branch curve of the induced normal double plane has degree 4d − b0 − b1 − b2 and
virtual multiplicities 2d−b1−b2, 2d−b0−b2, 2d−b0−b1 at the points corresponding
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to x0, x1, x2, respectively (cf., e.g., Lemma 5.1 in [5]).

2. Proof of Theorem 1.

First we determine some properties of the branch curve, and its adjoint linear systems,
of a double plane whose canonical resolution is a surfaceY of Kodaira dimension zero
with pg = q = 0. This clearly forcesP2n = 1 andP2n+1 = 0, for everyn ≥ 1, and
the minimal modelW of Y is such thatK 2

W = 0 (see, e.g., Lemma VIII.1 in [4]).

LEMMA 1. Let π : X → P2 be a normal double plane andρ : Y → S its
canonical resolution, branched over the smooth curve B in the smooth rational surface
S. If Y is such thatκ(Y) = pg(Y) = q(Y) = 0, then

(i) |B/2 + KS| = ∅;

(ii) pa(B/2) = 0;

(iii) h0(S, B + 2KS) = 1, i.e. |B + 2KS| = {D};

(iv) |B + mKS| = ∅ for m > 2.

Proof. The double cover formulas forpg(Y) andq(Y) recalled in §1 imply trivially
(i) and (ii). If m ≥ 3 is odd, saym = 2n + 1 with n > 0, thenPm(Y) = 0 forces
|nB + mKS| = ∅, therefore|B + mKS| = ∅, becauseB is effective.

Since P2(Y) = 1, one has either|B + 2KS| = ∅ or |B/2 + 2KS| = ∅, where
the former (the latter, resp.) linear system corresponds tothe invariant (anti-invariant,
resp.) part of|2KY|. Note that the Riemann-Roch Theorem andK 2

W = 0 imply that
h0(−2KW) > 0, henceOW(2KW) ∼= OW. This means that the invariant part of|2KY|

is not empty, i.e.|B+2KS| = {D} is a curve which does not move. SinceP2n(Y) = 1,
n > 1, it follows that|B + 2nKS| ⊂ |nB + 2nKS| = {nD}, and the inclusion is strict
becauseB is effective andB cannot be part ofD. Therefore|B + 2nKS| = ∅, for
n > 1, which concludes the proof.

Now we want to show how to use the above properties (i)-(iv) inorder to find a
Cremona transformationγ : P2

99K P2 as in the statement of Theorem 1. This can
be easily shown by applying the techniques we used to classify rational double planes.
Indeed, the key results in [5] are Propositions 9.4 and 9.12,which can be stated together
as follows:

PROPOSITION 1. Let π : X → P2 be a normal double plane, branched along
a reduced curve C of degree2d, and letρ : Y → S be its canonical resolution,
branched along the smooth curve B (cf. notation in§1). Suppose that pa(B/2) ≥ −1.
If |B+mKS| = ∅ for every m≥ m0, where m0 is a fixed integer with m0 ≤ 2d/3, then
there exists a Cremona transformationP2

99K P2 such that the induced double plane
is branched along a curve of degree2d′ with a point x0 of maximal virtual multiplicity
> 2(d′ − m0).
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The main idea of the proof of the previous proposition is thatthe conditions
|B + mKS| = ∅, m ≥ m0, imply that the branch curve has singularities of “large”
multiplicity at some points. This should imply that one can apply a quadratic Cre-
mona transformation, centered at these points, which makesthe branch curve some-
what “simpler”, and then go on inductively. Proposition 9.4in [5] shows that the
following configuration of the singular pointsx0, . . . , xn of the branch curve is such
that one does not easily see which quadratic Cremona transformation “simplifies” the
branch curve:

(⋆) there is a pointx0 with b0 ≥ 2(d−m0) and each pointxi such thatbi > d−b0/2,
say fori = 1, . . . , h, is excessive, sayxi >1 xh+i , with bi = 2 + d − b0/2 and
such that there is a lineL i passing throughx0, xi , xh+i .

In this case, moreover,L i is an irreducible component of the branch curve.

Proposition 9.12 in [5] shows that, ifpa(B/2) ≥ −1, then configuration (⋆) may
occur only ifh = 3 andb0 = b1, in which case one can apply two quadratic transfor-
mations centered atx1, . . . , x6 and again one can “simplify” the branch curve.

In our situation Proposition 1 clearly implies the following:

COROLLARY 1. Let π : X → P2 be a normal double plane, branched along a
reduced curve C of degree2d ≥ 10, and letρ : Y → S be its canonical resolution.
If Y is birationally equivalent to an Enriques surface, thenthere exists a Cremona
transformationδ : P2

99K P2 such that the induced double plane is branched along a
curve of degree2d′ with a point x0 of maximal virtual multiplicity b′0 = 2d′ − 4.

Proof. By Lemma 1, we can apply Proposition 1 withm0 = 3. This implies the
assertion withb′

0 ≥ 2d′ −4. On the other hand, ifb′
0 ≥ 2d′ −2, thenκ(Y) = −∞ (cf.,

e.g., Lemma 8.6 in [5]) and we get a contradiction.

Now we are ready to conclude the proof of Theorem 1.

Let π : X → P2 be a normal double plane, branched along a reduced curveC of
degree 2d, with usual notation introduced in §1.

If 2d ≤ 4, thenY has Kodaira dimension−∞.

Suppose that 2d = 6. If the maximal virtual multiplicity isb0 ≥ 4, then again
κ(Y) = −∞. Otherwise,b0 ≤ 2 andpg(Y) = h0(S, B/2 + KS) = h0(S,O(S)) = 1.

This forces 2d ≥ 8. Suppose that 2d = 8. Again, if the maximal virtual multi-
plicity is b0 ≥ 6, thenκ(Y) = −∞. Let h be the number of pointsxi with virtual
multiplicity bi = 4. Lemma 1, (ii), says that 0= pa(B/2) = 3 − h, therefore
h = 3. After re-ordering the indexes, we may assume thatx0, x1, x2 are the points
with b0 = b1 = b2 = 4.

Suppose that all of them are excessive, sayxi >1 xi+3, with bi+3 = 2, i = 0, 1, 2.
Then we may assume thatx3 ∈ P2 and eitherx4 ∈ P2 or x4 >1 x0. In both cases
the quadratic Cremona transformation centered atx0, x3, x4 induces a normal double
plane branched along a curve of degree 8 with a point, corresponding tox1, which is
not excessive and of virtual multiplicity 4.
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So we may assume thatx0 ∈ P2. Note that, if we could find two pointsxi and
x j with bi = 4 andb j ≥ 2 such that there exists a quadratic Cremona transformation
centered atx0, xi , x j , then the induced normal double plane would be branched along
a curve of degree≤ 6, which contradicts our assumptions, according to the previous
discussion.

This implies that bothx1, x2 must be excessive, sayx1 >1 x3 andx2 >1 x4, and
moreover that there are two linesL1, L2 passing throughx0, x3, x1 and x0, x4, x2,
respectively. Note that this is configuration (⋆) with m0 = h = 2 and that

|B + 2KS| = E3 + E4 + |2L − 2E∗
0 − E∗

1 − · · · − E∗
4| = {E3 + E4 + L1 + L2},

which agrees with Lemma 1, (iii), where, abusing a little of notation, we denote byL i

also the strict transform inS of the lineL i , i = 1, 2. Note also thatL i is clearly also
an irreducible component of the branch curveC, because it meetsC at x0, xi , xi+2,
whereC has multiplicityc0 = 4, ci = 3, ci+2 = 3, respectively. Settingp0 = x0 and
pi = xi+2, i = 1, 2, this proves Theorem 1, in case 2d = 8.

In order to conclude the proof of Theorem 1, it suffices to showthat, if 2d ≥ 10,
then there exists a Cremona transformationδ : P2

99K P2 such that the induced normal
double plane has degree< 2d.

By Corollary 1, we know thatb0 = 2d − 4. Note that either

(i) x0 ∈ P2, thusc0 ≥ b0 = 2d − 4; or

(ii) there is no proper point of virtual multiplicity 2d − 4 andx0 is excessive, with
x0 >1 xi ∈ P2, for somei , thusc0 = ci = 2d − 5.

Consider first the latter case. Then 2d = 10, otherwise the linexi x0 would be a double
component of the branch curveC, contradicting the assumption thatC is reduced. Thus
b0 = 6, bi = 4 andc0 = ci = 5. By Lemma 1, (i), we have that

∅ = |B/2 + KS| = x0xi + Ei + |L − E∗
0 − · · · |

hence there is a pointx j with b j = 4 such that either the quadratic Cremona trans-
formationδ centered atx0, xi , x j is well-defined, orx j >1 xk, with bk ≥ 2, and the
quadratic Cremona transformationδ′ centered atx0, xi , xk is well-defined. In both
two situations, the branch curve of the induced normal double plane has degree< 10,
which concludes the proof in case (ii).

Consider finally case (i). If there is a pointxi with bi ≥ 6, then apply a quadratic
transformation centered atx0, xi and a general pointx in the plane, thus the branch
curve of the induced normal double plane has degree≤ 2d − 2 and the proof is done.
So we may assume that, apartx0, all otherxi ’s havebi ≤ 4. By Lemma 1, (ii), we have
that 0= pa(B/2) = (d − 1)(d − 2)/2 − h, whereh is the number of pointsxi , say
x1, . . . , xh, with bi = 4.

We claim that there are two pointsxi andx j , with bi = 4 andb j ≥ 2, such that the
quadratic Cremona transformation centered atx0, xi , x j is well-defined, therefore the
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branch curve of the induced normal double plane will have degree≤ 2d − 2 and the
proof of Theorem 1 will be concluded.

Indeed, either all the pointsx1, . . . , xh are excessive, or there is a pointxi , with
bi = 4, and such that eitherxi ∈ P2 or xi >1 x0. If all the xi ’s are excessive, then
xi >1 x j (i ) with b j (i ) = 2, and moreover there is one of them, sayxk, such that either
x j (k) ∈ P2 or x j (k) >1 x0.

Note thatx1, . . . , xh cannot be all proximate tox0, becauseC has multiplicity
2d − 4, or 2d − 5, at x0, with d > 4, andh = (d − 1)(d − 2)/2. Thus we cannot
find a quadratic transformation as above only if the pointsxi are as in configuration
(⋆), with m0 = 2. In that case, letL i , i = 1, . . . , h, be the strict transform inS of the
line passing throughx0, xh+i , xi . For everyi = 1, . . . , h, the curveL i should be a
component ofB and also of|B + 2KS|, which is

|B + 2KS| =

h
∑

i=h+1

E2h + |(2d − 6)(L − E∗
0) −

2h
∑

i=1

E∗
i |

and we get a contradiction with Lemma 1, (iii), which says that h0(S, B + 2KS) = 1,
because we should haveh = (d − 1)(d − 2)/2 such lines.
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[10] ENRIQUESF., Sopra le superficie algebriche di bigenere uno, Mem. Soc. Italiana delle Scienze detta
dei XL, ser. 3,14 (1906), 327–352, also inMemorie scelte di Geometria. 2, Zanichelli 1959, 241–272.

[11] ENRIQUESF.,Le superficie algebriche, Zanichelli 1949.

[12] ENRIQUESF., CHISINI O.,Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche,
Zanichelli 1915–1934.

[13] HARTSHORNER.,Algebraic geometry, Graduate Texts in Mathematics53, Springer 1978.

[14] HORIKAWA E.,On the periods of Enriques surfaces, I, Math. Ann.234(1978), 73–108; II, Math. Ann.
235(1978), 217–246.

[15] SHAFAREVICH I. (ED.), Algebraic surfaces, Proc. Steklov Math. Inst.75 (1967).



8 A. Calabri

[16] VERRA A., On Enriques surfaces as a fourfold cover ofP
2, Math. Ann.266(1983), 241–250.

AMS Subject Classification (2000): 14J28.

Alberto CALABRI, Dipartimento di Matematica, Universitàdegli Studi di Bologna, Piazza di Porta San
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