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Abstract. We consider in this paper the problem of reconstructing 3D Computed Tomography
images from limited data. The problem is modeled as a nonnegatively constrained minimization
problem of very large size. In order to obtain an acceptable image in short time, we propose
a scaled gradient projection method, accelerated by exploiting a suitable scaling matrix and
efficient rules for the choice of the step-length. In particular, we select the step-length either
by alternating Barzilai-Borwein rules or by exploiting a limited number of back gradients for
approximating second-order information. Numerical results on a 3D Shepp-Logan phantom are
presented and discussed.

1. Introduction
3D Computed Tomography (CT) is a well known technique used in different areas, such as
medicine, industry or art, to visually represent the interior of a 3D object. The image processing
consists in solving an inverse problem, where the data are represented by the so called projections
that are emitted by a source and are partially absorbed by the object before being collected on a
2D detector. The source moves around the object through a fixed number of positions (angles).
The 3D image visualization consists in a set of 2D images stacked along the third direction.
Different techniques exist for the image reconstruction and they are satisfactory when a large
set of data is available. At present, the case of limited data is of great interest especially in
medical CT, where it is desirable to have less radiations on the patient and to shorten the exam
for different reasons. The sub-sampling of the data usually derives from a limited number of
source angles [1, 2].

The solution of the image reconstruction problem from limited data can be performed by
exploiting priors on the solution, such as the gradient sparsity. The problem is in this case
formulated as a constrained or unconstrained minimization problem and solved by iterative
algorithms [3]. Some different approaches have been proposed for the solution of the optimization
problem, such as first-order methods with the acceleration proposed by Nesterov [4], a soft-
thresholding filtering approach [5] or a fixed point method [6]. Since the problem has huge
dimensions, of millions of variables, the iterative algorithms are appealing in the real systems only
if they obtain a good image reconstruction in very few iterations, i.e. if the convergence speed is
high in the first iterations. In this paper we present a Scaled Gradient Projection (SGP) method
[7] with such a property. The proposed approach exploits both special scaled gradient directions



and suitable step-length selection rules. In particular, we consider two different strategies for the
choice of the step-length: the alternating Barzilai-Borwein rule proposed in [8] and a technique
recently developed in [9] by generalizing to constrained problems the idea given in [10].

Numerical experiments on a 3D Shepp Logan phantom with limited data affected by Poisson
noise are carried out for evaluating the effectiveness of the proposed scaling strategy and step-
length selections.

The paper is organized as follows. In Section 2 we describe the optimization problem modeling
the image reconstruction; in Section 3 we describe the proposed SGP algorithm; in Section 4 we
present some numerical results and finally in Section 5 we report our conclusions.

2. The numerical model
The CT image reconstruction model arising from the discretization of the Lambert-Beer law
[11] in the monochromatic case is:

Ax = b (1)

where b ∈ RNp is the vector of recorded projections affected by noise, x ∈ RNv represents the
discretized 3D object and A ∈ RNp×Nv is the matrix describing the system geometry obtained by
using the Siddon algorithm, based on geometrical ray-tracing. The forward projection process
of an object and the back projection of a data vector are described by matrix-vector products
involving A and AT , respectively. In this work we suppose the Poisson noise deriving from the
particles dynamic dominating with respect to the Gaussian noise due to the digital encoding.
In the case of view angle undersampling, the number of data is less than the number of voxels
of the discretized object (Np < Nv), hence the linear system (1) might have infinite solutions.
Moreover, the problem is ill-conditioned and some of the solutions of (1) are dominated by
noise. Hence we reformulate the problem as a constrained regularized minimization problem of
the form:

min
x≥0

f(x) = J(x) + λR(x) (2)

where J(x) is the fit-to-data function, R(x) is the regularization function and λ is the
regularization parameter. In the case of Poisson noise a suitable function J(x) is the Kullback-
Leibler divergence:

J(x) =

Np∑
i=1

 Nv∑
j=1

Aijxj + bg − bi − bilog
∑Nv

j=1Aijxj + bg

bi

 (3)

where bg > 0 is the background value. For what concerns the regularization function R(x),
the majority of CT reconstruction algorithms exploit the sparsity in the gradient magnitude
image, using regularization functions involving `1 seminorms, such as the Total Variation (TV)
function [1, 2, 12]. The reason is that since tomographic images are rather uniform inside the
organs, while they have fast variations in the borders of the organs, the TV function seems very
suitable for their approximation. In this paper we consider as regularization function R(x) the
TV function in its discrete smoothed form, denoted by TVβ(x):

R(x) = TVβ(x) =

Nv∑
i=1

(‖∇xi‖22 + β2)1/2 (4)

where β is a positive small parameter. The constraint x ≥ 0 is due to the physical meaning of
the solution x representing the value of the attenuation coefficient, that is nonnegative in each
voxel of the discretized object. Because of the huge size of the problem (Np is of order 106, Nv

is of order 109), in real applications the matrix A is never stored in the computer memory, but
it is re-computed whenever a matrix-vector product (involving A or AT ) is required. Since in
this paper we deal with small size test problems, we store the nonzero elements of A.



3. The SGP algorithm for CT image reconstruction
Due to the possible huge size of the matrix A and the very simple constraints of problem (2), first-
order algorithms exploiting only the gradient of f(x) and the projection onto the feasible region
are very appealing approaches. Among these algorithms, the gradient projection methods are the
most popular and, thanks to recent ideas for accelerating their convergence rate, they have given
rise to very effective image reconstruction algorithms in many different areas. For these reasons,
in the sequel we recall the bases of the main acceleration strategies for gradient methods and
we discuss how they can be exploited for designing an efficient method for our reconstruction
problem. The basic ideas to accelerate gradient projection methods concern essentially the
choice of the gradient-based direction and the selection of the step-length parameter controlling
the movement along this direction. In order to define effective gradient-based directions, very
promising results have been obtained by scaling the negative gradient by means of suitable
positive definite diagonal matrices [13, 7, 14], while, for what concerns the step-length selections,
adaptive rules able to improve the convergence rate of standard gradient methods have been
derived following the pioneering work of Barzilai-Borwein (BB) [15, 16, 8, 10]. A general scheme
able to include both the above strategies is given by the SGP algorithm [7] described in Table
(1).

Table 1: Algorithm SGP (Scaled Gradient Projection).

Initialize: x(0) ≥ 0, δ, σ ∈ (0, 1), 0 < αmin ≤ αmax, α0 ∈ [αmin, αmax], D0 ∈ Dρ0 ;
for k = 0, 1, . . .

d(k) = P+

(
x(k) − αkDk∇f(x(k))

)
− x(k); (scaled gradient projection step)

ηk = 1;

while f(x(k) + ηkd
(k)) > f(x(k)) + σηk∇f(x(k))Td(k)

ηk = δηk; (backtracking step)
end

x(k+1) = x(k) + ηkd
(k);

define the diagonal scaling matrix Dk+1 ∈ Dρk+1
; (scaling updating rule)

define the step–length αk+1 ∈ [αmin, αmax]; (step–length updating rule)
end

3.1. The scaling strategy
In the SGP algorithm, for an Nv dimensional problem, the notation Dρk is used to define the

set of diagonal matrices with entries d
(k)
j,j , j = 1, . . . , Nv, such that 1

ρk
≤ d(k)

j,j ≤ ρk, with ρk > 1,

and P+(z) denotes the euclidean projection of the vector z ∈ RNv onto the nonnegative orthant.
At each SGP iteration, starting from the current iteration x(k), a step along the scaled gradient
direction −Dk∇f(x(k)) is performed by exploiting the parameter αk > 0, defining the length
of the step. The resulting vector is projected onto the feasible region to generate the descent
direction d(k) and the linesearch procedure ensures a sufficient descent of f along d(k). Finally,
the scaling matrix and the step-length need to be updated for the next iteration. Under suitable
assumptions on ρk, that is ρ2

k = 1 + ζk, ζk ≥ 0,
∑∞

k=0 ζk <∞, the sequence generated by SGP
converges to the solution of our strictly convex minimization problem [17].

For updating the scaling matrix at each iteration, the strategy introduced in [13], based
on a splitting of the objective gradient, has shown promising results in terms of convergence
acceleration in many applications of scaled gradient methods. This updating strategy consists

in defining the entries d
(k+1)
j,j , j = 1, . . . , Nv, of the diagonal matrix Dk+1 as



d
(k+1)
j,j = min

(
ρk+1,max

(
1

ρk+1
,

x
(k+1)
j

V J
j (x(k+1)) + λV TV

j (x(k+1))

))
,

where the vectors V J(x) and V TV (x) are such that ∇J(x) = V J(x) − UJ(x), V J(x) >
0, UJ(x) ≥ 0, and ∇TV (x) = V TV (x) − UTV (x), V TV (x) > 0, UTV (x) ≥ 0. Taking into
account the structure of ∇J(x), a natural choice for V J(x) is V J(x) = AT1, while we set

V TV (x) as proposed in [14]. The parameter ρk+1 is chosen as ρk+1 =
√

1 + 1015/(k + 1)2.1.

3.2. Two effective choices of the step-length
Aim of this paper is investigating two strategies for an effective choice of the SGP step-
length: the adaptive alternation of the two BB rules suggested in [7], and the updating
strategy proposed in [9], based on the use of a limited number of back gradients for capturing
second-order information. Given the diagonal matrix Dk+1, the scaled version of the BB

rules provides the values αBB1
k+1 = ‖s̄k‖2

s̄Tk yk
, αBB2

k+1 =
sTk ȳk
‖ȳk‖2

, where sk = (x(k+1) − x(k)), s̄k = D−1
k+1sk,

yk = (∇f(x(k+1))−∇f(x(k))), ȳk = Dk+1yk; the adaptive alternation we consider is stated as
follows:

αABB
k+1 =

 min
{
αBB2
j : j = max{1, k + 1−mα}, . . . , k + 1

}
, τ = 0.9 τ, if

αBB2
k+1

αBB1
k+1

< τ

αBB1
k+1 , τ = 1.1 τ, otherwise

(5)

where mα = 2 and the initial value of τ is 0.5. The step-length rule introduced in [9] is obtained
as follows. Denoting by G the Nv ×m matrix defined by means of the last m gradients as

G =
[
D

1/2
k−m+1g̃

(k−m+1), . . . , D
1/2
k g̃(k)

]
, g̃

(k)
j =

{
0 if x

(k)
j = 0,[

∇f(x(k))
]
j

if x
(k)
j > 0,

the matrix T̃ = [R r]ΓR−1 is computed where R is the m×m upper triangular matrix obtained

by the Cholesky factorization of GTG, r is the solution of the linear system RT r = GTD
1/2
k+1g̃

(k+1)

and Γ is an (m + 1) × m bidiagonal matrix with non-zero entries Γj,j = (ηk−m+jαk−m+j)
−1

and Γj+1,j = −(ηk−m+jαk−m+j)
−1, j = 1, . . . ,m. From the upper Hessenberg matrix T̃ an

m × m symmetric tridiagonal matrix T is defined by replacing the strictly upper triangle
of T̃ by the transpose of its strictly lower triangle; the eigenvalues of T , θk, k = 1, . . . ,m,
called Ritz-like values in [9], are used to define the step-lengths for the next m iterations:
αk+j = 1

θj
, j = 1, . . . ,m. The value m = 3 is used in our implementation.

4. Numerical results
In this section we present some preliminary numerical results performed with Matlab R2016b.
We consider as the exact digital object x a 3D Shepp Logan test phantom constituted by
61 × 61 × 61 voxels, whose central layer is shown in the left panel of Figure 1. The projection
operator is obtained with the functions of the TVReg Matlab toolbox (from http://www.imm.

dtu.dk/~pcha/TVReg) simulating a system where a source moves on a unit semi-sphere emitting
X-ray cone beams from Nθ angles. In our experiments, Nθ has the values 19, 37, 55, while the
plain detector has 61 × 61 pixels, hence the matrix A in (1) has a rectangular shape, with
less rows than columns. The projections obtained as b = Ax are corrupted by random noise
from Poisson distribution with level 109 and bg = 10−5. The regularization parameter λ is
heuristically fixed as 0.03, while the smoothing parameter is β = 0.01. We solve problem (2) for
different Nθ values and with four distinct implementations of the SGP algorithm, in order to



test the effectiveness of the proposed strategies. The relative error (RelErr) between the exact
object and the reconstruction, and the achieved values of the objective function are shown to
evaluate the performance of the methods.

The plots in Figure 1 compare the errors (the middle panel) and the values of the objective
function (the right panel) versus the iterations, for the different SGP implementations. The red
and blue lines refer to the scaled methods with the step-length based on the BB rules (SGP BB)
and the Ritz-like values (SGP R), respectively; the black and green lines denote the non-scaled
methods (GP BB and GP R, respectively), that is, the SGP versions with Dk equal to the
identity matrix at each iteration. Independently of the step-length rule, the scaling strategy
accelerates the GP methods considerably, especially in the first iterations. In Figure 2 we show
the reconstruction of the central layer obtained with the scaled methods, both after 20 and 1000
iterations: the quality of the SGP R reconstruction after 20 iterations is indeed noticeable. In
order to better compare the SGP BB and SGP R results after 20 iterations, we analyse the
profiles highlighted in the image in the left panel of Figure 1: on the left of Figure 3 we show the
plot related to the magenta line in layer 31; on the right we show the plot of the red single pixel
over the 61 layers. We observe that the noise is suppressed almost everywhere and the small
objects represented by narrow peaks are detected, even if the intensity of the signal is somewhere
lower than the exact one. Furthermore, it is evident that the SGP R gets a better reconstruction
in few iterations and this is crucial for medical softwares that must provide reliable images in
at most one minute. To conclude, in Table 2 we report some results obtained by the SGP BB
and SGP R algorithms at 20 iterations, with a different number of source angles (consequently a
different number of data); for Nθ = 19, 37, 55, we report both the value of the objective function
and the relative error. The table confirms that the choice of the step-length based on the Ritz-
like values improves the algorithm speed in all the considered underdetermined cases, providing
useful reduction of the reconstruction error.

Figure 1: The central layer of the exact Shepp Logan phantom with the objects of interest (left),
relative error vs iterations (middle) and objective function vs iterations (right), for Nθ = 37.

Figure 2: The central layer of the scaled reconstructions. From left to right: SGP BB and
SGP R outputs in 20 iterations, SGP BB and SGP R outputs after 1000 iterations.



Figure 3: Vertical profile (on the left) and depth profile (on the right) of the central layer.

Table 2: Behavior of SGP BB and SGP R for different number of Nθ, at 20 iterations.

Nθ = 19 Nθ = 37 Nθ = 55

f(x(k)) RelErr f(x(k)) RelErr f(x(k)) RelErr

k = 20
SGP BB 765.109 0.2140 1055.09 0.1705 1310.77 0.1609
SGP R 553.704 0.1522 590.133 0.0856 661.329 0.0894

5. Conclusions
In this paper we have considered accelerated gradient projection methods based on both the
use of scaling strategies and adaptive step-length selections for the reconstruction of 3D CT
images from limited data. In particular, a generalization of the rule proposed in [10], defining
the step-lengths by means of a small number of back gradients, improves the convergence in
the first iterations with respect to a more traditional selection based on the alternation of the
Barzilai-Borwein rules. This characteristic is essential in the real applications, where, despite
the huge size of the problem, a good restored image must be computed in about one minute.
We have presented preliminary results on a phantom, but the algorithm will also be tested on
real images, in particular breast and head images that have features well detected by TV-like
regularization functions.
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