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Targeting the Notch pathway is a new promising therapeutic approach for cancer patients.
Inhibition of Notch is effective in the oncology setting because it causes a reduction of
highly proliferative tumor cells and it inhibits survival of cancer stem cells, which are consid-
ered responsible for tumor recurrence and metastasis. Additionally, since Delta-like ligand
4 (Dll4)-activated Notch signaling is a major modulator of angiogenesis, anti-Dll4 agents
are being investigated to reduce vascularization of the tumor. Notch plays a major role in
the heart during the development and, after birth, in response to cardiac damage. There-
fore, agents used to inhibit Notch in the tumors (gamma secretase inhibitors and anti-Dll4
agents) could potentially affect myocardial repair. The past experience with trastuzumab
and other tyrosine kinase inhibitors used for cancer therapy demonstrates that the pos-
sible cardiotoxicity of agents targeting shared pathways between cancer and heart and
the vasculature should be considered. To date, Notch inhibition in cancer patients has
resulted only in mild gastrointestinal toxicity. Little is known about the potential long-term
cardiotoxicity associated to Notch inhibition in cancer patients. In this review, we will focus
on mechanisms through which inhibition of Notch signaling could lead to cardiomyocytes
and endothelial dysfunctions. These adverse effects could contrast with the benefits of
therapeutic responses in cancer cells during times of increased cardiac stress and/or in
the presence of cardiovascular risk factor.

Keywords: Notch inhibitors, cardiac remodeling, cardiotoxicity, endothelial dysfunctions, cancer therapy

INTRODUCTION
The development of new therapeutic strategies for many types
of cancers has prolonged the cancer-free survival time of an

Abbreviations: ADAM, a disintegrin and metalloprotease; AMI, acute myocardial
infarction; AngII, angiotensin II; ApoE, apolipoprotein E; BM, bone marrow;
CADASIL, cerebral autosomal-dominant arteriopathy with subcortical infarcts and
leukoencephalopathy; cGMP, cyclic guanosine monophosphate; CHF, congestive
heart failure; CPCs, cardiac progenitor cells; CREC, Cardiac Review and Evaluation
Committee; CXCR4, chemokine (C–X–C motif) receptor 4; Dll4, delta-like ligand
4; ECD, endothelial dysfunction; eNOS, endothelial nitric oxide synthase; GSI,
γ-secretase inhibitor; HER2, human epidermal growth factor receptor 2; HF, heart
failure; HUVECs, human umbilical veins endothelial cells; ICAM-1, intracellular
adhesion molecule-1; IL1β, interleukin 1β; LV, left ventricle; LVEF, left ventricle
ejection fraction; MDR1, multi-drug resistant gene product 1; MSCs, mesenchy-
mal stem cells; NF-κB, nuclear factor-kappa-light-chain-enhancer of activated
B-cell; NIC, Notch intracellular; NO, nitric oxide; NT-proBNP, N-terminal of the
pro-hormone brain natriuretic peptide; PEA3, polyomavirus enhancer activator 3;
RBP-Jk, recombinant signal binding protein 1 for Jk; RT-3DE, three-dimensional
echocardiography; ROS, reactive oxygen species; RV, right ventricle; Sca1, stem cell
antigen 1; SDF-1, stromal derived factor 1; SOD, super oxide dismutase; T-ALL,
T-cells acute lymphoblastic leukemia; T-DM1, trastuzumab (T) linked to the
cytotoxic agent mertansine (DM1); TNFα, tumor necrosis factor α; VCAM-1,
vascular cell adhesion molecule-1; VEGF, vascular endothelial growth factor;
VSMCs, vascular smooth muscle cells.

increasing number of patients. Since chemotherapeutic agents,
radiation therapy, and biological agents all have the potential to
injure the cardiovascular system, it is not surprising that cardiotox-
icity has revealed to be an important side effect of many oncology
drugs and, depending on the drug type, between 5 and 25% of can-
cer patients develop some type of cardiac dysfunctions (1–3). The
definition of cardiotoxicity comes from the Cardiac Review and
Evaluation Committee (CREC), a retrospective study that sought
to estimate the cardiotoxicity of trastuzumab, a receptor tyrosine
kinase inhibitor (4). The CREC defined cardiotoxicity the devel-
opment of (1) cardiomyopathy characterized by a decrease in left
ventricle ejection fraction (LVEF) that was either global or more
severe in the septum; (2) symptoms of congestive heart failure
(CHF); (3) associated signs of CHF, including but not limited to S3
gallop, tachycardia, or both; and (4) decline in LVEF of at least 5 to
<55% with accompanying signs or symptoms of CHF, or a decline
in LVEF of at least 10% to below 55% without accompanying signs
or symptoms. Any one of the four criteria was sufficient to confirm
a diagnosis of cancer drug-induced cardiotoxicity. It is important
to point out that this definition does not include subclinical car-
diovascular damage and it does not take in consideration toxicity,
which appears long after the treatment has been interrupted (1).
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Furthermore, cardiotoxicity can also manifest as valvular disease,
pericarditis and myocarditis, or as an effect on the vasculature
(hypertension, alteration of coagulation cascade, endothelial cells
damage) that could indirectly affect heart function (1).

Early detection of cardiotoxicity from oncologic treatment is
crucial to design a strategy to limit cardiotoxic effects. Decreased
LVEF is well established as a strong predictor of cardiac morbidity
and mortality in general. Assessment of LVEF is used to prevent
irreversible cardiac damage and heart failure; however, LVEF is not
sensitive enough to reveal a subclinical myocardial dysfunction,
which can lead to symptomatic CHF and death (5). The dissec-
tion of the molecular mechanisms underlying heart dysfunction
caused by cancer treatment could help to identify biomarkers for
early detection of cardiotoxicity and could lead to the develop-
ment of new therapeutic strategies able to interfere with onset and
progression of cancer drug-related cardiac dysfunction.

Cancer continues to be a moving target and the challenge is
to identify new molecular targets to overcome the unsolved issue
of resistance to treatment. The Notch pathway is upregulated in
the majority of cancers where it makes cancer cells resistant to
apoptosis-causing agents. Therefore, Notch inhibition is being
investigated for cancer therapy. In this review, we will first pro-
vide an overview of the clinical relevant cardiovascular side effects
and of the molecular mechanism of cardiotoxicity associated with
some of commonly used cancer treatment. We will then highlight
the biological processes regulated by Notch in the cardiovascular
system to discuss the possibility that these investigational Notch
inhibitors could cause cardiotoxicity.

CARDIOTOXICITY ASSOCIATED WITH COMMON AGENTS
USED FOR CANCER THERAPY
The introduction of anthracyclines (doxorubicin, daunorubicin,
or epirubicin) as chemotherapic agents has added a very effective
tool to cancer therapy. The clinical chemotherapeutic use of dox-
orubicin is limited by cardiotoxicity which in the absence of other
risk factors is tolerated up to a cumulative dose of 300 mg/m2 with
a rate of HF of <2% (3). Above this dosage, the rate increases
exponentially and a study conducted on 630 patients has shown
that an estimated 26% of patients would experience doxorubicin-
related CHF at a cumulative dose of 500 mg/m2 (6). These dosages
refer to patients that were <65 years old and in the absence of
other factors that seem to influence the toxicity such as genetic
predisposition, arterial hypertension, and combination with other
anticancer agents (3).

Owing to these dramatic cardiotoxic effects, high doses are no
longer used but subacute and chronic cardiac effects of anthra-
cycline are still a problem (7). The clinical assessment of the
myocardial damage caused by anthracyclines is difficult since more
than 50% of patients that will develop HF show <30% reduction
of LVEF (6). To identify abnormalities in breast cancer survivors
1 year after treatment with anthracycline, 2D myocardial strain
(rate) imaging is more sensitive than conventional echocardiog-
raphy (8). Three-dimensional echocardiography (RT-3DE) is also
more effective in detecting abnormalities in cardiac function in
long-term survivors of childhood cancer after cardiotoxic therapy
(9). In terms of biomarkers, levels of NT-proBNP (N-terminal
of the pro-hormone brain natriuretic peptide) and prolongation

of QT-interval (which measures the electrical depolarization and
repolarization of the ventricles) are useful markers for course-to-
course evaluation of anthracycline-induced cardiotoxicity (10).

The mechanism of anthracycline-induced toxicity is complex
and not fully understood. Anthracyclines cause the formation
of reactive oxygen species within cardiac cells, partly by react-
ing with intracellular free iron. It has long been postulated that
anthracycline-induced oxidative stress initiates a cascade of alter-
ations eventually leading to cardiomyocyte damage and death.
However, recent evidence suggests that the primary event in the
pathogenesis of anthracycline cardiotoxicity is the inhibition of
topoisomerase II activity (11). Consistent with this hypothesis, a
randomized study performed in breast cancer patients to investi-
gate whether free radical scavenger super oxide dismutase (SOD)
would protect against anthracycline-mediated cardiotoxicity gave
negative results (12). Regardless of the molecular event at the
origin of anthracycline cardiotoxicity, this latter then develops
through the impairment of many cardiac cell functions, such as
decreased expression of key proteins, disruption of Ca2+ home-
ostasis, induction of mitochondrial DNA lesions and perturbation
of mitochondrial bioenergetics, degradation of myofilamental and
cytoskeletal proteins, and interference with various pro-survival
kinases [for an extensive review of these alternative mechanisms
the reader is referred to Simunek et al. (13)]. Of note, anthracycline
toxicity involves not only the population of terminally differenti-
ated cardiomyocytes but also the pool of cardiac progenitor cells
(CPCs). These are c-kit, stem cell antigen 1 (Sca1), and multi-
drug resistant gene product 1 (MDR1) positive, self-renewing, and
multi-potent cells that play a role in cardiac repair (14–17). There-
fore, anthracycline depletion of CPCs may hinder the capability
of cardiac tissue to regenerate following minor injuries (18, 19).
The loss of cardiomyocytes is accompanied by interstitial fibrosis
(20); at present, it is not known whether this is purely reactive or
it is also the consequence of the direct effect of anthracyclines on
fibroblasts.

Trastuzumab is a humanized monoclonal antibody that inter-
feres with human epidermal growth factor receptor 2 (HER2), a
member of the epidermal growth factor receptor family involved
in modulation of cell proliferation and survival, which is over-
expressed in 25–30% of all breast cancers (21). Trastuzumab
treatment causes HF and asymptomatic decline in systolic func-
tion in around 25% of patient when administered sequentially or
in combination with anthracyclines (22). In a mouse model of
cardiotoxicity that recapitulates the clinical therapeutic protocols
of consecutive cycles of doxorubicin followed by trastuzumab, a
detrimental synergistic global cardiac injury extending to both the
LV and RV chambers was observed (23). Cardiomyocytes express
HER2, which activates survival pathways, in response to stressor
agents. It is thought that inactivation of HER2 by trastuzumab in
cardiomyocytes impairs their ability to activate reparative path-
ways following anthracycline-induced damage (20). The use of
trastuzumab alone or in combination with paclitaxel, a first line
generic cytoskeletal drug, is also associated with cardiotoxicity,
even though in a lower number of patients (24). Remarkably,
the mechanism by which trastuzumab monotherapy damages
cardiomyocytes remains rather unclear, since in the absence of
noxious stimulus the activity of HER2, if any, may be very low (25).
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Furthermore, the cardiac dysfunction rate of novel HER2-targeted
therapies (lapatinib, pertuzumanb, T-DM1, neratininf, and afa-
tinib) is significantly lower than that related to trastuzumab (26).
In any case, and differently from anthracyclines, trastuzumab-
induced cardiotoxicity has been so far considered reversible if
treatment is interrupted (27) and no structural changes have been
identified in cardiomyocytes following trastuzumab treatment
(28). Newer reports are challenging this view and show changes
in myocardial genes essential for DNA repair, cardiac and mito-
chondrial functions associated with impaired LV performance
in mice (29). Recently, it has been reported that trastuzumab
may exert adverse effects also on the coronary and peripheral
vasculature (30). In order to limit cardiac damages, newer pro-
tocols recommend 1 year of trastuzumab therapy in patients with
HER2-positive breast cancer ≥1.0 cm in size; even after 1 year,
treatment still is interrupted due to cardiotoxicity in 13.6% of
patients (31).

Interference with tumor angiogenesis is a promising avenue for
cancer therapy (32). Vascular endothelial growth factor (VEGF)
targeting by antibodies (bevacizumab) or by small-molecule tyro-
sine kinase inhibitor (sunitinib, sorafenib) has become an option
for treatment of patients with a variety of solid tumors. Similarly
to trastuzumab, bevacizumab causes heart dysfunction in 3.8% of
patients (3). Cardiotoxicity has been reported for 4.1 and 1% of
sunitinib- and sorafenib-treated patients, respectively. The mole-
cular mechanism of cardiotoxicity of these drugs is still unclear.
No ultrastructural changes in cardiomyocytes have been observed
and since they cause arterial hypertension, it has been suggested
that heart dysfunction could be a secondary effect (3).

NOTCH INHIBITION FOR CANCER THERAPY
The Notch pathway is a fundamental signaling system involved
in making decision on “cell fate” (33). Mammals have four Notch
receptors (Notch 1–4) and five ligands (Delta-like-1, -3, -4 and
Jagged-1 -2) both located on the cell surface and involved in the
communication of adjacent cells.

Notch proteins display a selective cellular and tissue distrib-
ution. Notch1 is broadly expressed in diverse cell types, whereas
Notch 4 is preferentially expressed in the endothelium (34, 35).
Delta-like ligand 4 (Dll4) was primarily described as endothelial-
restricted molecule (36) but its expression has been recently
reported in a wider number of tissues (37). Notch receptors are
synthesized as single-chain precursors and cleaved into an extracel-
lular and a transmembrane subunit in the Golgi apparatus. These
two subunits are held together on the cell membrane by non-
covalent bonds. Binding of ligand triggers the removal of the extra-
cellular subunit by a disintegrin and metalloprotease (ADAM)
followed by an intramembranous cleavage by γ-secretase, a multi-
subunits membrane protease. This last cut by γ-secretase releases
the active form of Notch intracellular (NIC), which translocates
into the nucleus where it displaces corepressors and activates
coactivators that modulate transcription via the recombinant sig-
nal binding protein 1 for Jκ (RBP-Jκ) transcription factor (38).
The most well-known Notch target genes belong to the Hes and
Hey gene families, which are negative regulators of transcription
but recent work has revealed that the number of target genes
is even higher than once thought (33). Notch activity is tightly

regulated by post-translational modifications such as phosphory-
lation, glycosylation, ubiquitination-mediated degradation (39),
and by cross-talks with other key proteins including the inflam-
matory cytokines tumor necrosis factor α (TNFα) and interleukin
1β (IL1β) (40), the nuclear factor-kappa-light-chain-enhancer of
activated B-cell (NF-κB), the PEA3 family of transcription factors
(41, 42), the estrogen (43), and the vascular epidermal growth fac-
tor (VEGF) receptors (44). As a result, the consequence of Notch
activation is exquisitely cell-context dependent and the output very
difficult to predict.

Beginning with the first reports of an involvement of Notch1 in
the development of 10% of T-cells acute lymphoblastic leukemias
(T-ALL), investigations conducted in the last 20 years have shown
Notch activation in the majority of solid tumors and hematolog-
ical malignancies (45). Activation of Notch signaling in vitro and
in vivo increases cancer cell survival in the presence of commonly
used chemotherapy agents (38). Active Notch signaling is needed
for survival of cancer stem cells (46) and to sustain angiogenesis
within the tumor environment (44).

The requirement of an active Notch signaling for cancer growth
has generated high enthusiasm in the recent years about the possi-
bility to target this pathway for cancer therapy. There are about
30 clinical trials ongoing to evaluate safety and efficacy of γ-
secretase inhibitors (GSI), administered alone or in combination
with standard care treatments (registered at www.clinicaltrials.
com) in cancer patients. In order to minimize toxicity, more
specific approaches are being developed such as targeted anti-
bodies directed against individual Notch family members (47).
Blocking Dll4, the Notch ligand specifically involved in modu-
lation of angiogenesis, has given promising results in interfering
with cancer growth: administration of anti-Dll4 agents in breast
cancer xenografts promotes excessive sprouting, which leads to
unproductive angiogenesis (48).

ROLE OF NOTCH IN CARDIOVASCULAR SYSTEM
While the role of Notch receptors and ligands in vasculogenesis
during the development is well established,we are just beginning to
understand the complex and multiple roles played by this pathway
in post-natal vasculature. Notch receptors 1, 2, 3, and 4 and Delta-
like ligands 1, 4 and Jagged 1, 2 ligands are expressed in the adult
vasculature (49). Notch1 and Notch4 are predominantly endothe-
lial, prominent in both arteries and veins, while the expression of
Notch2 is confined to the pulmonary endothelium and Notch3 is
primarily expressed in adult arterial vascular smooth muscle cells
(VSMCs) in large conduit, pulmonary, and systemic resistance
arteries (50, 51). Notch plays a major role in the modulation of
angiogenesis and therefore this aspect of the Notch signaling has
been object of intensive investigation during the last 15 years due
to the importance of angiogenesis for tumor growth (52). Notch
is activated in the context of vascular injury, suggesting an impor-
tant role for this pathway also in limiting damages to the vascular
structure (49).

Notch1 and Jagged1 play a pivotal role in organogenesis of the
heart (53). In the post-natal heart, Notch signaling is absent under
physiological condition but its reactivation in the overloaded or
damaged myocardium suggests a role in the biological processes
involved in heart repair (15, 54–58).
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ROLE OF NOTCH IN ENDOTHELIAL DYSFUNCTIONS
The endothelium controls vascular functions such as vasomotion,
thrombosis, platelet aggregation, and inflammation. Endothelial
dysfunction (ECD) is a broad term that includes not only denuda-
tion caused by apoptosis of endothelial cells and by inability to
replace desquamating cells but also reduced synthesis of molecules
with a protective effect on the vasculature (i.e., nitric oxide) and
the expression of proteins, such as intercellular adhesion molecule-
1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1),
which mediate the adhesions of inflammatory cells on the sur-
face of endothelium (endothelium activation) (59). ECD induced
by inflammatory conditions is not only the first step toward the
formation of atherosclerotic plaques (60, 61) but is also thought
to be involved the progression of cardiac disease (62). Consis-
tently, epidemiological studies have shown an association between
systemic inflammation and poor prognosis in patients with cardio-
vascular diseases (63–65) and human umbilical veins endothelial
cells (HUVECs) cultivated in the presence of serum from HF and
acute myocardial infarction (AMI) patients show increased levels
of apoptosis (66, 67), a critical marker of ECD.

Notch plays an important role in protecting endothelial cells
from apoptosis induced by conditions such as inflammation, oscil-
latory blood flow, and ischemia. In vitro and in vivo treatment with
inflammatory cytokines TNFα and IL1β leads to dysregulation of
Notch signaling (down-regulation of Notch4 and induction of
Notch2), endothelial cells activation (ICAM-1 and VCAM-1 pro-
duction), and apoptosis (40, 68). A prominent role, in particular,
for Notch4 in the protection of endothelial cell has been shown
in cardiac allograft vessels in which impaired Notch4 expres-
sion caused by pro-inflammatory cytokines promotes endothelial
cells dysfunction and transplant arteriosclerosis (69). Exposure of
microvascular endothelial cells to high laminar blood flow con-
ditions (which induces a protective gene expression profile in the
endothelium) results in upregulation of Notch1 mRNA, which
enhances cells survival by upregulating the anti-apoptotic pro-
teins Bcl2 (70). Under ischemic conditions, VEGF-A promotes
not only migration and proliferation but also protection endothe-
lial cells from apoptosis. Experiments in cultures of HUVECs
grown in absence of serum to mimic an ischemic environment
have shown that VEGF-A treatment is unable to protect cells from
serum deprivation-induced apoptosis in absence of a functional
Notch 1 signaling (71).

Notch also modulates endothelial cell proliferation in a com-
plex way. When endothelial cells reach confluence, Notch1 is
activated that in turn leads to p21Cip1 down-regulation and to cell
cycle arrest, suggesting a role for active Notch1 in contact inhibi-
tion of the endothelial monolayer (72). On the other hand, it has
been shown that Notch inhibition in HUVECs leads to increased
intracellular ROS formation and inhibition of cells proliferation
(73) and cathepsin K induces endothelial cells proliferation in vivo
by activating Notch1 (74). More recently, Schoeber et al. have
shown that shear stress-induced down-regulation of miR126-5p
leads to upregulation of DLK1 which, by inhibiting Notch1-Hes5
signaling, prevents endothelial cells proliferation and endothelium
repair in the athero-prone regions of the aortic arch (75).

Nitric oxide (NO) production is the main indicator a functional
endothelium. NO diffuses from the endothelium into the adjacent

smooth muscle where it activates guanylate cyclase, which in turn
induces cGMP-mediated reduction of contraction of smooth mus-
cle cells and maintains basal vasodilator tone. NO is also involved
in preventing platelet and leukocyte activation and adhesion to the
vessel wall (76). Notch1 in the tumor vasculature is involved in NO
production by a VEGF-mediated regulation of eNOS (77). Fur-
thermore, in bone marrow (BM)-derived endothelial cells, Notch1
binds to the promoter and inhibits the synthesis of miR155 (78),
a pro-inflammatory miRNA downstream of NF-κB, involved in
down-regulation of eNOS mRNA (79).

ROLE OF NOTCH IN ISCHEMIC TISSUES
Angiogenesis is critical for the reperfusion of ischemic tissues.
As previously discussed, Dll4/Notch1-mediated signaling modu-
lates VEGF-A-driven angiogenesis by regulating the number of
sprouts (new branches) on endothelial cells. According to a widely
recognized model, the interplay between Dll4/Notch1/VEGFR
determines the balance between the number of tip cells (leading
and guiding the blood vessel sprout) and stalk cells (proliferating
cells forming the vascular lumen,) (80). Specifically, the tip cell
expresses Dll4 and has little Notch activity. Dll4 signals through
Notch1 in the adjacent stalk cells and limits sprouting by reducing
the response to VEGF-A through the down-regulation of VEGFR-
2 (81) and the upregulation of VEGFR-1, which functions as a
decoy receptor that sequesters VEGF-A (82). This model is now
been revised and it assumes that tip and stalks cells are not static but
that can exchange roles and that this rearrangement is mediated
by differential dynamics of VE-cadherin junctions regulated by
Notch/VEGFR signaling (83). Recent published work has shown
that Notch-dependent VEGFR3 upregulation allows angiogenesis
in absence of VEGF–VEGFR2 signaling (84).

The importance of the Dll4/Notch1 role in angiogenesis
has been recently further confirmed by studies in zebrafish in
which blood flow-mediated suppression of Dll4/Notch signaling
is required to promote angiogenesis in response to hypoxic sig-
naling (85). The molecular effectors of Notch in this context are
not completely defined. Two newly identified targets of Notch-
mediated angiogenenesis are Sox17 in retina (86) and eNOS in the
tumor vasculature (77).

Arteriogenesis is the maturation of arterio-arteriolar anasto-
moses by the recruitment and coating of pre-formed vessels with
pericytes or VSMCs. Pericytes are among the first cells to invade
newly vascularized tissues and locate at the growing front of
the endothelial sprouts by determining the location of sprout
formation and by guiding newly formed vessels and Notch activ-
ity is required for their proliferation and to mediate pericyte–
endothelial interaction (87). Notch inhibition disturbs vessel sta-
bility and leads to pericytes detachment followed by extravasation
of mononuclear cells (88). Furthermore, changes in hemodynamic
forces caused by the occlusion of an artery promote activation of
Notch and of NF-κB, which are both necessary for arteriogenesis
of the ischemic limb (89).

Endothelial progenitor cells (EPCs) contribute to re-
endothelization and play a role in the neo-vascularization of
ischemic tissues and in tissue repair. Consistently, it has been
reported that the number of circulating EPCs increases in patients
with cardiovascular disease (90) and in diabetic patients with
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diabetic foot syndrome caused by impaired angiogenesis the num-
ber of EPC is reduced (91). Jagged1-derived Notch signals from
the BM microenvironment are critical for EPC-mediated vascu-
logenesis (92). Notch-RBP-Jk signaling regulates the mobilization
and function of EPCs by modulating the expression of CXCR4,
the receptor for stromal derived factor 1 (SDF-1) involved in EPCs
chemotaxis (93). In hypercholesterolemic mice, Notch1 signal-
ing regulates EPCs activity during recovery from arterial injury:
of interest low levels of cholesterol cause a mild inhibition of
Notch, which enhances EPCs activity whereas high cholesterol
levels strongly inhibit Notch causing EPCs apoptosis (94).

Consistently with the data shown so far which highlight the
important role for Notch in angiogenesis and arteriogenesis, tar-
geting Notch has proven to be effective in promoting wound
healing and reperfusion of ischemic limbs (95–97).

ROLE OF NOTCH IN VASCULAR MUSCLE CELLS
Notch3, Jagged1, and Hes1 are expressed in VSMCs, the main cell
type in the arterial wall, which plays a critical role in maintaining
vascular structure and function (98). Age-associated intimal and
medial thickening has been linked to reduced Jagged1-mediated
Notch signaling (99). Furthermore, Notch signaling is downreg-
ulated in medial VSMCs of descending thoracic aortic aneurysm
patients suggesting that impaired Notch signaling in VSMCs may
contribute to the depletion of VSMCs that characterize this pathol-
ogy (100). Down-regulation of Jagged1, Notch3, and Hesr1 in
VSMCs by angiotensin II (AngII) has also been reported (98).
AngII is a peptide hormone that causes vasoconstriction and
subsequent hypertension, which, in turn, elicits structural modi-
fications in small arteries and arterioles and reduction in lumen
diameter (vascular remodeling). Since Notch3 inactivating muta-
tions are present in cerebral autosomal-dominant arteriopathy
with subcortical infarcts and leukoencephalopathy (CADASIL),
an hereditary disease that causes stroke and dementia (101) and
blockade of AngII generation helps to prevent stroke (102), it has
been suggested that down-regulation of Notch could be part of
the molecular mechanism by which AngII induces vascular com-
plications (98). Other authors have shown that activation of Notch
mediates the effect of AngII on vascular remodeling (103) and on
abdominal aortic aneurism in ApoE knockout mice (104): more
studies are needed to clarify the relationship between Notch and
AngII pathways in vascular pathology.

Vascular smooth muscle cells are the main cellular component
of atherosclerotic plaques and VSMCs apoptosis induces features
of plaque instability in atherosclerosis (105). Experiments in vitro
have shown that activation of canonical Notch1 and 3 signaling not
only increases proliferation but also prevent apoptosis of VSMCs
(106). It follows that sustained Notch inhibition in patients with
atherosclerosis could have affect plaque stability and thrombus
formation.

ROLE OF NOTCH IN MYOCARDIAL REPAIR
Pathological cardiac remodeling is defined as molecular, cellular,
and interstitial changes that manifest clinically as changes in size,
shape, and function of the heart after injury or stress stimula-
tion (107, 108). It may occur not only after MI but also after
pressure overload (aortic stenosis, hypertension), inflammation

(myocarditis), idiopathic dilated cardiomyopathy, or volume over-
load (valvular regurgitation). After a MI, there is extensive myocyte
necrosis and degradation of collagen fibers, which leads to infiltra-
tion of inflammatory cells for the re-absorption of necrotic tissue.
The sliding of cardiomyocytes consequent to the degradation of
the collagen fibers causes the thinning of the infarcted cardiac
wall with ensuing regional dilatation. During this phase, fibrob-
lasts deposit collagen on the thinned tissue in order to create a
scar and limit further expansion of the focal dilatation. As a result,
the geometry of the ventricle changes as it remodels: it becomes
less elliptical and more spherical. Biopsies from HF patients show
myocytes with a phenotype resembling fetal life with a pattern of
embryonic myofilaments, down-regulation of sarcoplasmic retic-
ulum calcium ATPase, increased expression of atrial natriuretic
peptide and of ventricular myocytes expressing the if current chan-
nels (109, 110). This series of events exert a beneficial effect on
cardiac function at least for a limited period of time (111, 112).

Notch signaling is involved in crucial steps (cardiomyocytes
survival and regeneration, fibrotic response, angiogenesis) deter-
mining both the extent of post-infarction myocardial damage and
pathological LV remodeling (Figure 1).

Notch1 reactivation in the damaged myocardium has been
linked to cardimomyocytes survival. In cardiomyocytes near the
border with the infarct zone, increased Notch1 coincides with
increased phosphorylation of the pro-survival protein Akt and
reduced apoptosis (54). Similarly, there is decreased number of
apoptotic cells following MI in mice overexpressing the active
form of Notch1 in cardiomyocytes (113). Cardiomyocytes apop-
tosis caused by increased hemodynamic load in hypertensive mice
is higher in absence of cardiac Notch1 signaling (15). Further-
more, in cardiomyocytes grown under hypoxia, Notch1 activation
induced expression of anti-apoptotic genes (114) and inhibition
of Notch signaling caused increased apoptosis (113).

In comparison to wild type, in mice overexpressing active
Notch1 in cardiomyocytes, MI led also to increased number of
ki67-positive cardiomyocytes, suggesting their re-entry in cell cycle
and proliferation. However, no differences were found in this con-
text in the number of phospho-Hist3 positive cardiomyocytes,
suggesting that Notch activation induces incomplete cell cycle pro-
gression in adult cardiomyocytes (113). In agreement with these
data, forced activation of Notch2 in mature cardiomyocytes led
to cell cycle progression followed by G2/M interphase arrest block
and apoptosis (115). These results suggest that following a myocar-
dial damage, temporary activation of Notch1 would increase car-
diomyocytes survival. It remains to be established whether, under
these conditions, prolonged Notch activation would also be able
to induce their proliferation.

The response to myocardial injury also includes the activa-
tion of CPCs (116). The ability of CPCs present in the adult
myocardium to differentiate into cardiomyocytes in a post-
infarction environment has been questioned by studies that have
shown c-kit+ precursors support post infarction myogenesis in
the neonatal, but not in the adult heart (117).

Notch is a fundamental pathway for proliferation and differ-
entiation of resident CPCs. When they are actively proliferating,
CPCs express high levels of active Notch1 (118). In contrast,
Notch1 expression becomes undetectable when these cells lose
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FIGURE 1 | Role of Notch in pathological remodeling. Myocardial infarction
causes cells injury (necrotic area) and the formation of an ischemic area in
which cells are at risk of injury (left panel). This damage, exacerbated in
absence of Notch signaling, leads to pathological left ventricle remodeling
characterized by fibrotic scar, thinned myocardium wall, change of the ventricle

shape and consequently, impaired cardiac function (middle panel). Activation
of Notch1 in the infarcted myocardium reduces pathological remodeling by (1)
increasing cardiomyocytes survival, (2) enhancing the proliferation of cardiac
stem cells and favoring their differentiation into cardiomyocytes rather than
fibroblasts, and (3) promoting angiogenesis (right panel).

their proliferative ability (119) indicating that active Notch1 sig-
naling is required for the expansion of CPCs, but has to be
downregulated to achieve terminal differentiation. CPCs express
mainly Notch1 receptor (118). Its activation by Jagged1 on the sur-
face of adjacent cardiomyocytes induces the expression of Nkx2.5,
a transcription factor, which promotes proliferation and expres-
sion of cardiomyogenic transcripts, and inhibits the expression
of markers of vascular cells (120). Thus, Notch1 favors myocyte
lineage specification of CPCs and maintains them in a high prolif-
erative state. By doing so, Notch1 exerts control not only of heart
homeostasis but also of its adaptation to stresses and injuries:
Notch1 inhibition in newborn healthy mice causes a 56% reduc-
tion of cardiomyocytes and induces dilated cardiomyopathy (118).
Additionally, Notch1 inhibition causes a decrease of Nkx2.5 pos-
itive cells and a reduction in the generation of new myocytes
in a mouse model of MI (120). In transgenic mice overexpress-
ing Jagged1 on cardiomyocytes, remodeling caused by transaortic

constriction is attenuated and there is improved cardiac function
due to Notch1 activation in CPCs, which promotes their differ-
entiation into Nkx2.5-positive cardiac precursor cells, rather than
into fibrosis-causing myofibroblasts (56).

The number of BM-derived EPCs and mesenchymal stem cells
(MSCs) is increased in the blood of patients with MI or HF (90,
121, 122). These cells participate to endothelial repair and neo-
vascularization of ischemic organs, but they could be also involved
in myocardium regeneration since they have been shown to differ-
entiate in vitro to a cardiomyogenic phenotype (123). Experiments
of co-colture of EPCs with Jagged1-expressing cardiomyocytes
have shown that activation of Notch1 is necessary for the expres-
sion of cardiomyocytes markers in these cells (123). Additionally,
deletion of Notch1 in BM-derived MSCs impairs their recruit-
ment, proliferation, and survival leading to a decreased ability to
repair the myocardium damage compared to MSC with a func-
tional Notch1 signaling (124). Activation of Notch1 signaling
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in BM MSCs by soluble Jagged1 increases their differentiation
rate into cardiomyocytes in vitro (125). Conversely, activation
of Notch1 in immature cardiomyocytes by Jagged1 on MSCs
enhances their proliferation (126).

The growth of new capillaries and arterioles is often inadequate
in the post-infarction heart and this lack of adequate blood per-
fusion contributes to MI expansion and transition to HF (127).
Notch1 is active in endothelial cells and VSMCs of cardiac ves-
sels (113). In mouse heart, Notch1 activation by intramyocardial
delivery of a monoclonal antibody (pseudo-ligand), 4 weeks after
infarction, led to higher levels of angiogenesis markers, which were
associated to reduced scar and improved cardiac functions (113).
VEGF administration to chronically ischemic myocardium results
in an upregulation of several Notch receptors and ligands and
increased capillary and arteriolar density compared with ischemia
alone (128). Similarly, transplantation of Dll4 overexpressing EPCs
increases the blood flow to the ischemic zone and improves cardiac
function (129).

POTENTIAL INSULTS CAUSED BY NOTCH INHIBITION TO THE
CARDIOVASCULAR SYSTEM
Considering the many roles of Notch in physiology and patho-
logical states of the heart and of the vascular system, the risks of

detrimental cardiovascular effects of Notch inhibition, especially
in patients already affected by cardiovascular diseases, should be
considered.

Inhibition of Notch signaling could have negative consequences
on angiogenesis in two group of patients: (i) those with dia-
betes mellitus, which are characterized by impairment of neo-
vascularization and wound healing, and (ii) those with coronary
or peripheral atherosclerosis causing ischemia of the heart or other
organs (130, 131), since they all rely on the development of collat-
eral circulation to meet the oxygen needs. Furthermore, given the
key role of Notch in the survival of cardiomyocytes, in the prolif-
eration of CPCs and in the mobilization and functions of EPCs
and MSCs, the possibility that Notch inhibition could interfere
with myocardial repair or exacerbate pathological remodeling of
an already damaged or pressure-overloaded myocardium should
be considered.

Notch inhibition could also worsen atherosclerosis by enhanc-
ing endothelial cells dysfunctions or by causing VSMCs apop-
tosis (Figure 2). Nevertheless, in macrophages activation of
Dll4/Notch3 has been associated with plaque instability (Figure 2)
(132) and inhibition of Dll4-mediated Notch signaling in meta-
bolic syndrome has proven to be effective in slowing down the
progression of atherosclerosis (133). Given the different roles

FIGURE 2 |The Notch signaling plays a major role in regulating the
functions of the cells present in the vascular artery wall. Notch inhibition
could have an effect on the onset and progression of atherosclerosis by

modulating the pro-inflammatory activity of macrophages, by causing
endothelial cells dysfunctions, and by altering the apoptotic and proliferation
rate of the vascular smooth muscle cells.
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played by Notch in the cellular elements of plaques, the conse-
quences of Notch inhibition in atherosclerosis are still unclear and
they should be further investigated.

The clinical studies conducted so far have shown no signs of
cardiotoxicity associated with Notch inhibition for cancer ther-
apy (47). One major side effect that has emerged from these trials
is gastrointestinal toxicity and it has been found that intermit-
tent dosing schedules of a Notch inhibitor can largely spare the
gut, while maintaining anti-tumor efficacy (38). In addition, it has
been found that administration of corticosteroids, which already
are a component of some cancer regimens, may help ameliorate
the gut toxicity of Notch inhibition (134).

Theoretical risks of long-term Notch inhibition have been pos-
tulated, such as damage to normal stem cells or increased incidence
of certain cancers in which Notch acts as a tumor suppressor
(47), and, similarly, these first trials may have missed long-term
consequences of Notch inhibition on the cardiovascular system.
Cardiotoxicity has been detected years after the last anthracycline
dose in patients treated for childhood neoplasms (135) and risks of
several cardiovascular disease has been found to be three to fivefold
increased in 1474 survivors of Hodgkin lymphoma compared with
the general population (136). The risk of anthracycline-induced
cardiotoxicity is affected by gender and menopausal status (1) and
in trastuzumab-treated cancer patients; cardiotoxicity is worsened
by pre-existing cardiac pathologies (137). Since several clinical
studies have found a high incidence of cardiovascular pathologi-
cal conditions among the cancer patients, specific phase1 studies
with Notch inhibitor including selected types of patients could
uncover previously undetected cardiotoxicity. Additionally, as the
clinical studies employing Notch inhibitors move toward combi-
nation treatment of Notch inhibitors with existing cancer drugs
(38), the possibility of an additive/synergistic effect of the two
drugs on cardiotoxicity should also be considered.

CONCLUSIVE REMARKS
As cancer progresses toward the status of chronic disease, new
challenges arise and among them the possible damages of can-
cer treatments to the cardiovascular system. The Notch pathway
has a tremendous potential as a new target in cancer therapy. For
investigational Notch, as with other new anticancer agents, the
interaction between cardiologists and oncologists will be crucial
to design specific studies able to identify which patients could be
at high risk of developing cardiotoxicity and to employ the best
therapeutic strategy based on the assessment of the different risks.
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