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Abstract 
 
Mechanisms with lower mobility can be studied by using tools that are directly deduced from those of 

spatial kinematics as screw theory. Nevertheless, ad-hoc tools that fully exploit the peculiarities of the 

displacement subgroups these mechanisms move in are usually more efficient both in showing 

mechanisms’ features and when used to conceive numerical algorithms. Planar displacements constitute a 

three-dimensional subgroup with many peculiarities that allow the use of simplified tools (e.g., complex 

numbers) for studying planar mechanisms. Here, the systematic use of three-dimensional vector spaces to 

represent link poses and velocities in planar motion and planar system of forces is investigated. The result 

is a novel coherent set of tools that make it possible to geometrically describe kinematics and dynamics of 

planar mechanisms in the three-dimensional configuration space of links’ planar poses. The effectiveness 

of this novel approach is shown through a case study. 

Keywords: Displacement group, planar displacements, planar mechanisms, configuration space. 

 

 

1   Introduction  

Mechanics of planar mechanisms [1] is usually studied in the Euclidean plane, E2, since the elements 

(planar displacements) of the special Euclidean group SE(2) can be easily represented through point or 

directed-line displacements lying on the motion plane [2, 3, 4]. Actually, such displacements can be 

described with simple tools in E2, for instance, bi-dimensional vectors or complex numbers [1] are 

commonly employed. 

Nevertheless, tools that are directly deduced from spatial kinematics are also used and concepts like 

planar wrench, planar twist and Clifford algebra of E2 are well established in the literature [2, 3, 5]. Even 

though these tools are able to elegantly reinterpret traditional graphical techniques [2, 6], they still keep 

some drawbacks [5] coming from their six-dimensional origin. Thus, these adapted tools should be 

reformulated to make them as simple as the most commonly used. 



In planar motion, rigid-body’s (link’s) configuration space (c-space) is three-dimensional [2] since 

only the two coordinates of one point and the slope angle of one directed line are sufficient to individuate 

the link pose. These three generalized coordinates (pose coordinates) would suggest representing the link 

as a point of a three-dimensional Cartesian diagram whose xy-coordinate plane is the motion plane, that 

is, E2, and whose z axis gives both the positive direction of the rotation axis and the slope angle in the 

range ]–, ] rad. This Cartesian representation has the drawback that the pose coordinates are not 

homogeneous. Thus, the Euclidean metric cannot be employed to measure the distance between two c-

space points and alternative metrics must be defined [7, 8, 9]. Despite this, such representation can fully 

exploit the fact that, in SE(2), rotations commute and the signed magnitude of link’s angular velocity is 

the time derivative of the slope angle (i.e., the same as the components of point’s velocity are the time 

derivatives of the point coordinates). 

This paper investigates the potentiality of the c-space of link’s planar pose till to deduce the motion 

laws of the c-space point. In particular, the systematic use of three-dimensional vector spaces is adopted 

to represent link poses and velocities in planar motion and planar system of forces. Some concepts, 

usually deduced from spatial kinematics, are autonomously redefined and reinterpreted to make them a 

coherent set of simple tools that geometrically describe kinematics and dynamics of planar mechanisms in 

the c-space. 

The paper is organized as follows. Section 2 reviews the concept of planar wrench; then, section 3 

analyzes the c-space finite and instantaneous kinematics and introduces a three-dimensional vector (pose-

rate vector) which somehow is a redefinition and a reinterpretation of the planar twist. Section 4 states the 

motion laws of the c-space point. Eventually, section 5 presents a case study and section 6 draws the 

conclusions. 

 

 

2   Planar Wrenches 

Figure 1 shows a planar force f [=fx i + fy j = f n = f (cosi + sinj)] applied to P and its equivalent system 

of forces reduced to point A. In Fig. 1, f is the magnitude of f. The positive direction of  is given by a 

90° counterclockwise rotation of the unit vector n (cosi + sinj) and, according to the position of A 

with respect to the line of action of f, PA can be positive, null or negative. Also, mAk = (P–A)f and the 

following relationships hold 

 



(P–A) = (xP – xA)i + (yP – yA)j (1a) 

mA k = f [(xP–xA)sin – (yP–yA) cos] = f PA k (1b) 

PA = (xP – xA) sin – (yP – yA) cos (1c) 

 

With these notations, a planar force system with central axis passing through P, when reduced to point 

A, can be represented by the following three-dimensional vector, $A, (planar wrench about point A) with 

non-homogeneous components1 

 

$A = fx i + fy j + mA k = f (cos i + sin j + PA k) (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Planar force f applied to P and its equivalent system of forces reduced to point A: i, j and k are the 
unit vectors of a right-handed Cartesian system; f is the magnitude of f; the positive direction of  is given by a 
90° counterclockwise rotation of the unit vector n (cosi+sinj); according to the position of A with respect to 
the line of action of f, PA can be positive, null or negative. 

 
 
Also, the moments transport theorem [mBk = mAk + (A–B)f] yields the following relationship 

(planar wrench’s transport formula) between $A and the planar wrench, $B, about another point, B, [(A–B) 

= (xA – xB)i + (yA – yB)j] 

 

$B = $A+f [(xA – xB)sin – (yA – yB) sin] k  $A+f AB k (3) 

 

where AB = (xA – xB)sin – (yA – yB) sin. 

The rules that states the equivalence of two planar force systems [10] bring to conclude that 

- the vector sum of two planar wrenches about point A, say $A
(1) and $A

(2), is the planar wrench about 

point A, say $A
(3), that represents the force system obtained by the union of the two force systems 

represented by $A
(1) and $A

(2); 
                                                           
1 Here, the non-homogeneity is not a problem since these components will be always separately summed.  
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- the product of $A (Fig. 1) by a real number, say , is the planar wrench that represents the force f 

passing through P. 

Therefore, the set of planar wrenches about point A, {$A
(i)}, together with the two above-defined 

operations of vector addition and scalar multiplication is a vector space over the real numbers. The pure 

moments, A= mAk, are elements of {$A
(i)} that are obtained by summing two planar wrenches which 

represents two equal, opposite and not-aligned forces. 

With reference to Fig. 1, the unit planar wrench about point A, A, is defined as follows 

 

A = cos i + sin j + PA k (4) 

 

where PA [ (xP – xA)sin – (yP – yA)cos] is the signed distance of point A from the directed line with 

the direction of n and passing through P. A uniquely identifies a directed line of the plane. It is worth 

noting that Eq. 4 individuates the elements of a continuous bi-dimensional set. 

Even though the components of A are not homogeneous, the mixed product A|1A|2A|3  of  three 

unit planar wrenches yields the sum of three homogeneous terms which are all lengths2. Therefore, a sum 

of planar wrenches can always be dot multiplied by a cross product of two unit planar wrenches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Pose and velocities of link r with respect to the frame (link s): Irs and rsk are the instant center and 
the angular velocity; the positive direction of  is given by a 90° counterclockwise rotation of the unit vector  
(icosA+jsinA), tangent to the path of point A; svA|r [=rsk(A–Irs)  rsrs] is the velocity of point A. 

 

 

                                                           
2  If A|1=cos1i+sin1j+PA|1k, A|2=cos2i+sin2j+PA|2k and A|3=cos3i+sin3j+PA|3k, then A|1A|2A|3PA|1sin(3–2)+ 
PA|2sin(1–3) + PA|3sin(2–1). 
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3   Link’s Planar Motion in the C-Space 

Figure 2 shows the pose and the characteristic vectors, svA|r and rsk, of the velocity field of the relative 

planar motion of link r with respect to the frame, link s. In Fig. 2, i, j and k are the unit vectors of a right-

handed Cartesian system fixed to the frame with the xy-coordinate plane coincident with the motion plane. 

Irs is the instant center. The positive direction of  is given by a 90° counterclockwise rotation of the unit 

vector  (icosA+jsinA), tangent to the path of point A. 

With reference to Fig. 2, the pose of link r can be individuated through the three-dimensional position 

vector (planar-pose vector referred to point A), spA|r, of link’s c-space 

 

spA|r = xA i + yA j + rs k (5) 

 

where xA and yA are the coordinates of point A, which is fixed to link r, and rs]–, ]rad is the slope 

angle of a directed line fixed to link r. Also, the three-tuple (xA, yA, rs) collects the three generalized 

coordinates of link’s c-space. 

The finite difference3 spA|r = (spA|r
(2) –spA|r

(1)) of two planar-pose vectors, spA|r
(2) and spA|r

(1), referred to 

point A is a free vector of the c-space that represents an element of the special Euclidean group SE(2), 

that is, it corresponds to a finite planar displacement. The vector addition of two finite differences, spA|r
(1) 

and spA|r
(2), is the finite difference spA|r

(3) that corresponds to the finite planar displacement performed 

by link r after it sequentially performs spA|r
(1) and spA|r

(2) or vice versa. Thus, link’s c-space together 

with the above-defined planar-pose vectors is an affine space, that is, it has a structure that keeps many 

properties of the Euclidean space E3.  

The time derivative of Eq. (5) yields 

 

sA|r s
A|r A A rsx y θ  p i j k   svA|r+rsk = rs[k(A–Irs)+k] = rs [rs(i cosA + j sinA) + k]  (6) 

 

where the relationships rs = rsθ  and svA|r = rsk(A–Irs) have been used. 

sA|r ( svA|r + rsk = rs [k(A–Irs) + k]) is a three-dimensional vector (pose-rate vector referred to 

point A), tangent to the path of spA|r in the c-space, which uniquely identifies the instantaneous motion of 

link r. The components both of spA|r and of sA|r are not homogeneous. 

                                                           
3 The addition and subtraction of slope angles, rs, must be computed by choosing the values congruent modulo 2 that belong to the 
range ]–, ] rad. 



The formulas [i.e., svB|r=svA|r+rsk(B–A)] of rigid-body’s instantaneous kinematics [2, 10] bring to 

conclude that the pose-rate vector referred to point A, sA|r, must be related to the pose-rate vector referred 

to point B, sB|r , by the following relationship (pose-rate transport formula) 

 

sB|r = svB|r + rsk = sA|r + rs[(xA – xB)i + (yA – yB)j]k  sA|r + rs[(yA – yB)i – (xA – xB)j] (7) 

 

where the relationship (A–B) = (xA – xB)i + (yA – yB)j has been used. 

The relative motion theorems, which yields the composition rules of rigid-body’s velocity fields [10], 

bring to conclude that 

- the vector sum of two pose-rate vectors, say sA|r
(1) and sA|r

(2), both referred to the same point, A, is 

the pose-rate vector, say sA|r
(3), that identifies the planar velocity field obtained through the composition 

of the two planar velocity fields represented by sA|r
(1) and sA|r

(2); 

- the product of sA|r (Fig. 2) by a real number, say , is the pose-rate vector that represents the planar 

velocity field with the same instant center and angular velocity rsk. 

Therefore, the set of pose-rate vectors referred to point A, {sA|r
(i)}, together with the two above-

defined operations of vector addition and scalar multiplication is a vector space over the real numbers. 

The pure translations, sr=rsk(Irs
(2)–Irs

(1)), are elements of {sA|r
(i)} that are obtained by summing two 

pose-rate vectors, sA|r
(1) and sA|r

(2), with equal and opposite angular velocities, that is, rs=rs
(1) = –rs

(2), 

and non-coincident instant centers, that is, Irs
(1)  Irs

(2). 

With reference to Fig. 2, the following unit pose-rate vector referred to point A can be defined 

 

sA|r = rs(i cosA + j sinA) + k = rs + k (8) 

 

which gives the position of the instant center Irs through the relationship (Fig. 2) 

 

(Irs–A) = k sA|r  rs(j cosA – i sinA) = rs k (9) 

 



It is worth stressing that the cross product A|1A|2 of two unit planar wrenches4 yields a vector 

whose components have the same dimensional units of the homologous components of a unit pose-rate 

vector. 

The pose-rate vector addition 

 

sA|r = s (j)
A|r

j=1,n
 ξ , (10a) 

 

where sA|r is given by Eq. (6) and 

 

sA|r
(j)=svA|r

(j)+rs
(j)k=rs

(j)[k(A–Irs
(j))+k] = rs

(j) [rs
(j)(i cosA

(j) + j sinA
(j)) + k],  j=1,…,n,  (10b) 

 

brings to conclude that the following relationships hold 

 

rs rs cosA = (j) (j) (j)
rs rs A

j=1,n

ω ρ cos  (11a) 

rs rs sinA = (j) (j) (j)
rs rs A

j=1,n

ω ρ sin  (11b) 

rs = (j)
rs

j=1,n

ω  (11c) 

 

Equations (11) are summed up by the following vector relationship 

 

rs (Irs –A) = (j)
rs

j=1,n

ω (Irs
(j) –A) (12) 

 

which can be generalized to the composition of n instantaneous rotations plus m instantaneous 

translations, sr
(p) [rs

(p)k(Irs
(p,2)–Irs

(p,1))] for p=1,…,m, as follows 

 

rs(Irs –A) = (j)
rs

j=1,n

ω (Irs
(j)–A) + k s (p)

r
p =1,m

 
 
 
 ν  (13a) 

rs = (j)
rs

j=1,n

ω  (13b) 

                                                           
4 If A|1=cos1i+sin1j+PA|1k and A|2=cos2i+sin2j+PA|2k, then A|1A|2PA|1(cos2j–sin2i)–PA|2(cos1j–sin1i)+sin(2–1)k. 



 

Equations (12) and (13) shows that 

STATEMENT I: the instant center of a planar instantaneous motion obtained through the composition 

of a number of rigid-body’s instantaneous motions coincides with the centroid of the instant centers of the 

component motions with weights given by the signed magnitudes of their angular velocities. 

This statement, which, here, comes out in a simple and direct way, was first highlighted in [11] where 

it was deduced with a more cumbersome procedure and used to study the singularities of planar 

mechanisms. 

 

3.1  Virtual work and duality between planar wrenches and pose rates 

The power, wrs, that a planar force system, represented by the planar wrench $A, introduces into the 

mechanical system “link r”, when it performs the instantaneous motion represented by the pose-rate 

vector sA|r, can be written as follows (see Figs. 1 and 2) 

 

wrs = $AsA|r = f rsAsA|r= f rs[rs(coscosA+sinsinA)+PA]  f rs[rscos(–A)+PA] (14) 

 

Even though the dot product in {$A
(i)} and in {sA|r

(i)} cannot be defined since the components both of 

$A and of sA|r are not homogeneous, the dot product between one element of {$A
(i)} and one element of 

{sA|r
(i)}, which appears in Eq. (14), is well defined provided that the product of the measurement units of 

the homologous components of $A and of sA|r yields the same measurement unit of the power. 

From the algebraic point of view, the dot product of Eq. (14) can be interpreted both as the general 

expression of a linear map {$A
(i)} –> R and as the general expression of a linear map {sA|r

(i)} –> R. 

Therefore, Eq. (14) shows that { sA|r
(i)} is the dual space of {$A

(i)} and vice versa (i.e., {$A
(i)} is the dual 

space of { sA|r
(i)}). 

The virtual work, Lrs, of $A due to the virtual displacement spA|r ( xA i + yA j + rs k = rs [rs(i 

cosA + j sinA) + k]) of link r is 

 

Lrs = $A spA|r = (f AsA|r) rs = f rs [rs(coscosA+sinsinA)+PA]  f rs[rscos(–A)+PA] 

 (15) 

 



Moreover, if spA|r is obtained by combining a number of independent instantaneous virtual motions 

as it happens when link r belongs to a multi-degrees-of-freedom (multi-dof) planar mechanism [11], it can 

be expressed as follows 

 

spA|r = s (j)
A|r

j=1,n
 π rs

(j) = (j)
rs

j=1,n

( )+    k A I k rs
(j) (16) 

 

and Eq. (15) becomes 

 

Lrs = $A spA|r = f  s (j)
A A|r

j=1,n

 σ π rs
(j)  f (j) (j)

rs PA
j=1,n

[ρ cos(θ ) + ζ ] rs
(j) (17) 

 

where the j-th rs
(j) and Irs

(j) are the virtual rotation and the instant center of the virtual motion link r 

performs when all the inputs of the n-dof mechanism are locked, but the j-th one [11]. rs
(j) is related to 

the virtual change, qj, of the j-th input, qj, by a linear and homogeneous relationship [11]. 

If the planar force system represented by $A is applied to link r through an n-dof passive kinematic 

chain5 which joins it to the frame, link s, the virtual work Lrs must be equal to zero. According to Eq. 

(17), this can happen iff A, which identifies the central axis of the force system, is perpendicular to all 

the sA|r
(j), for j=1,…,n, which identify the instant centers Irs

(j). Since the zeroing of Lrs does not depend 

on the choice of the reduction point A, without loosing generality, a point of the force-system central axis 

can be chosen as point A. This choice makes PA equal to zero in Eq. (17) and makes Eq. (17) highlight 

that, with this choice, all the rs
(j) must be equal to zero to give Lrs = 0, that is, the following statement 

holds  

STATEMENT II: a planar passive n-dof kinematic chain can transmit only a force system whose central 

axis passes through all the instant centers Irs
(j) for j=1,…, n. 

The following corollaries come from statement II  

(II.a) a single-dof planar passive kinematic chain can transmit only force systems whose central axis 

belongs to the pencil of lines passing through the unique Irs (Fig. 3(a)); 

(II.b) a two-dof planar passive kinematic chain can transmit only one force with line of action that 

passes through Irs
(1) and Irs

(2) (Figs. 3(b) and 3(c)); 

(II.c) an n-dof planar passive kinematic chain with n  3 cannot transmit any force system. 

                                                           
5 Here, “passive” means without actuators. Moreover, all the kinematic pairs are supposed “ideal constraints” (i.e., without friction). 



Figure 3 shows the force systems that can be transmitted through a passive four-bar linkage (Fig. 

3(a)), a passive RR (Fig. 3(b)) and a passive RP (Fig. 3(c)) kinematic chain6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) 
 

Figure 3: Force systems transmitted through a passive four-bar linkage (a), a passive RR (b) and a passive RP 
(c) kinematic chain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Inertia forces of link r reduced to its center of mass: Gr, r and Jr are the center of mass, the mass 
and the mass moment of inertia about the axis perpendicular to the motion plane and passing through Gr, 
respectively, of link r. 
 

                                                           
6 R and P denote revolute and prismatic pair, respectively. 
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4   Newton’s Laws of the C-Space 

Point kinematics of link’s c-space is completed by further time differentiating Eq. (6) to obtain the three-

dimensional vector (pose-acceleration vector referred to point A) 

 

s£A|r = s
A|rξ  s

A|r A A rsx y θ  p i j k    saA|r+rsk = rs [k(A–Drs) + k] – rs
2 (A–Drs) (18) 

 

where rs rs rsω θ   and Drs is the instantaneous center of acceleration; whereas, saA|r and rsk, are the 

acceleration of point A and the angular acceleration of link r in the planar motion of link r with respect to 

the frame, link s.  

The vector s£A|r gives the acceleration of the point of link’s c-space and sums up the acceleration 

characteristics of the acceleration field of link r. Unfortunately, it has no further properties. 

The characterization of the inertia forces of link r through a planar wrench is more interesting than the 

characterization of its acceleration field. Figure 4 shows the inertia forces of link r reduced to its center of 

mass: Gr, r and Jr are the center of mass, the mass and the mass moment of inertia about the axis 

perpendicular to the motion plane and passing through Gr, respectively, of link r. This force system can be 

represented through the planar wrench (inertia planar wrench) about Gr 

 

$G|r,in = – r saG|r – Jr rsk = – r [saG|r + r
2 rsk] (19) 

 

where saG|r is the acceleration of Gr and the relationship Jr = r r
2, where r is the radius of gyration of 

link r, has been used. 

By using planar wrenches’ transport formula (Eq. (3)), $G|r,in can be reduced to point A as follows 

 

$A|r,in = $G|r,in – r (Gr–A)saG|r  $G|r,in – r[(xG|r–xA) G|ry – (yG|r–yA) G|rx ]k  

 –r{saG|r+[r
2rs+(xG|r–xA) G|ry – (yG|r–yA) G|rx ]k}  – r {saG|r + [k(Gr–A)saG|r + r

2 rs] k} 

 (20) 

 

where the relationship (Gr–A) = (xG|r – xA)i + (yG|r – yA)j has been used. 



By using the introduced vectors, the motion equation of the c-space point spG|r [=xG|ri+yG|rj+ rsk] can 

be written as follows 

 

$A|r,ex + $A|r,co + $A|r,in = 0 (21a) 

 

or in the form (which is similar to the II Newton’s law of classical mechanics [12]) 

 

$A|r,ex+$A|r,co = r{saG|r+[k(Gr–A)saG|r+r
2rs]k} (21b) 

 

where $A|r,ex and $A|r,co are the planar wrenches about point A of the external force systems and of the 

constraint forces, respectively, applied to link r. 

Equation (21b) suggests defining the following three-dimensional vector (effective-acceleration vector 

of link r referred to point A)  

 

sA|r,ef = saG|r + [k(Gr–A)saG|r + r
2 rs] k (22) 

 

which must be related to the effective-acceleration vector of link r referred to point B, sB|r,ef, through the 

following transport formula  

 

sB|r,ef = sA|r,ef + [k(A–B)saG|r] k (23) 

 

The use of the effective acceleration of link r makes it possible to enunciate the motion law (Eq. 

(21b)) of the mechanics of a point of link’s c-space in a way very similar to the II Newton’s law as 

follows: 

MOTION LAW (II LAW): the resultant of the planar wrenches about A applied to a link is equal to 

product of the effective acceleration of the same link referred to point A by the mass of the link. 

A corollary of this motion law is the following “inertia law” 

INERTIA LAW (I LAW): an isolated link keeps constant its pose-rate vector. 

Eventually, since the interaction forces between links are the constraint forces, the following principle 

of action and reaction can be stated in the c-space 



ACTION-REACTION LAW (III LAW): if link j applies a planar wrench $A|i,j to link i, link i will apply to 

link j an equal and opposite planar wrench $A|j,i = – $A|i,j . 

These “Newton’s laws” of link’s c-space allow planar mechanisms’ dynamics to be modelled as a 

number of c-space’s points that mutually interact by applying planar wrenches and simultaneously 

equilibrate external planar wrenches applied to them. In particular, Eq. (21b) must be written for each 

mobile link of the mechanism by using the same reference point for all the links. Also, the motion of the 

links can be visualized in the c-space as paths of points located by the above-defined planar-pose vectors. 

It is worth stressing that, since the xy-coordinate plane of the c-space is the motion plane, this 

representation of the mechanism motion can keep in the xy-plane all the ordinary representations of the 

mechanism motion that are usually drawn in the motion plane.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The 2RRR-RR parallel planar mechanism: notations (=60°). 
 

 

5   Case Study 

Figure 5 shows a 2RRR-RR7 parallel planar mechanism8 (PPM). This two-dof mechanism features an 

output ternary link, link 7 (r=7), joined to the frame, link 1 (s=1), through two RRR dyads and one RR 

passive kinematic chain. With reference to Fig. 5, q1 and q2 are the actuated-joint variables; a is the length 

of the three cranks, that is, links 2, 3 and 5. The output link, link 7, is an equilateral triangle with side 

length equal to b, center of mass G7 (BG7=b/ 3 ), 7=b/(2 3 ) and planar-pose vector, 1pB|7, referred to 

point B which can be expressed as follows 

 
                                                           
7 Hereafter, an underlined R denotes an actuated R pair. 
8 A PPM with 2RRR-RR architecture has been proposed by Pennock and Israr [13] as an adjustable six-bar linkage. 
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1pB|7 = a cos21 i + a sin21 j + 71 k (24) 

 

Also, d and e are the lengths of the binary links 4 and 6, respectively, and the following relationships 

hold 

 

(B – A) = a cos21 i + a sin21 j (25a) 

(D – A) = a cosq1 i + (a sinq1 – c) j (25b) 

(L – A) = (h + a cosq2) i + a sinq2 j (25c) 

(M – A) = (a cos21+b cos71) i + (a sin21+b sin71) j (25d) 

(E – A) = [a cos21+b cos(71+)] i + [a sin21+b sin(71+)] j (25e) 

(G7 – A) = [a cos21+(b/ 3 )cos(71+/2)] i + [a sin21+(b/ 3 )sin(71+/2)] j (25f) 

 

which yield 

 

(M – L) = [a cos21+b cos71– (h + a cosq2)] i + [a sin21+b sin71– a sinq2] j (26a) 

(E – D) = [a cos21+b cos(71+) – a cosq1] i + [a sin21+b sin(71+) – (a sinq1–c)] j (26d) 

 

and the following two scalar closure equations 

 

d2 = (E – D)2 = [a cos21+b cos(71+) – a cosq1]2 + [a sin21+b sin(71+) – (a sinq1–c)]2 (27a) 

e2 = (M – L)2 = [a cos21+b cos71– (h + a cosq2)]2 + [a sin21+b sin71– a sinq2]2 (27b) 

 

Equations (27a) and (27b) allow the determination of the values of the two-tuple (21, 71), that is, of 

the poses of link 7, compatible with assigned values of q1 and q2 (direct position analysis (DPA)) and vice 

versa, that is, the determination of the values of q1 and q2 compatible with an assigned pose of link 7 

(inverse position analysis (IPA)). The DPA of the studied mechanism coincides with the DPA of the 

3RRR planar parallel manipulator [14–16] and it admits up to six solutions [14] that have been 

determined in analytical form in [15]. Also, the IPA simply consists in the determination of the up-to-two 

assembly modes of the two RRR dyads for an assigned position of their ending points (i.e., of points C 

and E for one dyad and of points H and M for the other (Fig. 5)); thus, it admits up to four solutions. 



The theoretical results deduced in Sec. 3 require the determination of the instant centers I71
(j), j=1,2, to 

explain the kinetostatics of the 2RRR-RR mechanism. I71
(1) (I71

(2)) is the position of I71 when q2 (q1) is 

locked. If either q1 or q2 are locked, the 2RRR-RR mechanism becomes a single-dof six-bar linkage [17] 

of Stephenson-III type [18–20] whose four-bar loop makes the determination of the related I71
(j), j=1,2, 

possible [21]. 

In particular (see Figs. 3(a) and 5), when q2 is locked, L becomes a point of the frame and the points A, 

B, M and L become the vertices of the four-bar loop that locates I71
(1) as common intersection between the 

line through A and B, which is fixed to link 2, and the line through L and M, which is fixed to link 6. 

Also, when q1 is locked, D becomes a point of the frame and the points A, B, E and D become the 

vertices of the four-bar loop that locates I71
(2) as common intersection between the same line through A 

and B and the line through D and E, which is fixed to link 4. The coordinates of the points I71
(1) and I71

(2) 

as a function of the mechanism configuration can be easily determined by solving two linear systems of 

two equations in two unknowns (see Appendix A and, for the general case, Ref. [21]). 

The above discussion demonstrates that, in the studied mechanism, the instant centers I71
(1) and I71

(2) 

always lie on the line passing through the points A and B, which is fixed to link 2 (Fig. 5). Thus, 

statement II and its corollary (II.b) indicate this line as the central axis of a force system, applied to link 7, 

that can be equilibrated by the passive structure of the mechanism without applying torques in the 

actuators. Moreover, statement I and Eqs. (13) highlight that, in the studied case, the actual position of I71, 

which may also be a point at infinity, depends on the ratio between the rates of the two actuated-joint 

variables and must lie on the same line, since the centroid of two heavy points lies on the line through the 

two points and depends on the ratio between the two weights. In detail, Eqs. (13a) and (13b), 

particularized to this case, become 

 

71(I71–A) = 71
(1) (I71

(1)–A) + 71
(2) (I71

(2)–A) (28a) 

71 = 71
(1) + 71

(2) = g1 1q + g2 2q  (28b) 

 

with 71
(1) = g1 1q  and 71

(2) = g2 2q  where the coefficients g1 and g2 can be easily computed by time 

differentiating Eqs. (27a) and (27b) and, then, linearly eliminating the passive-joint rate 21  (see 

Appendix B). Equation (28b) reveals that link 7 can translate along the direction perpendicular to the line 

through A and B (i.e., I71 is the point at infinity along this line and 71=0) with translation velocity 

17=71
(2)k(I71

(2)–Irs
(1)), iff 71

(1) = –71
(2), that is, iff 



 

1 2

2 1

q g

q g
 




 (29) 

 

Since the line through the points A and B is fixed to link 2 (Fig. 5) which  rotates  about  point  A, the  

possible finite translation of link 7 can only occur along a circular path with center A. 

Moreover, Eqs. (28a) and (28b) can be exploited to make link 7 rotate about a particular point of the 

line through A and B. In this regard, the two cases I71  A and I71  B are of particular interest since point 

A is the pivot of the lines that, during the mechanism motion, pass through I71
(1) and I71

(2) and point B is 

the center of the R pair that joins links 7 and 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Statics of the 2RRR-RR mechanism (the inertia forces of the binary links are neglected): f27, f47 and 
f67 are the constraint forces applied to link 7; 1k and 2k are the torques applied by the actuators to links 3 
and 5, respectively. 
 

 

If I71  A, links 2 and 7 instantaneously rotate as a unique link (i.e., the R pair centered at B is idle). 

The introduction of this condition into Eq. (28a) yields the relationship 

 

(I71
(1)–A)g1 1q  + (I71

(2)–A)g2 2q = 0 (30) 

 

whose dot product by (B–A) gives the following condition on the ratio of the actuated-joint rates 
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If I71  B, links 2 is at rest and keeps point B at rest while link 7 instantaneously rotates. The 

introduction of this condition into Eqs. (28) yields, after some rearrangements, the relationship 

 

(I71
(1)–B)g1 1q  + (I71

(2)–B)g2 2q = 0 (32) 

 

whose dot product by (B–A) gives the following condition on the ratio of the actuated-joint rates 
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2 1 71

g ( ) ( )q

q g ( ) ( )

  
 

  
I B B A

I B B A




 (33) 

 

Since point A is fixed to the frame and the line through A and B does not change its orientation when B is 

at rest, conditions (31) or (33) can be exploited to obtain also finite rotations of link 7 around A or around 

an assigned point of the circular path of point B.  

All the expressions at the right-hand side of Eqs. (29), (31) and (33) can be analytically computed as a 

function of the mechanism configuration (i.e., as a function of q1 and q2). They can be exploited at the 

design stage to suitably size the mechanism according to a specific task; whereas, Eqs. (29) or (31) or (33) 

are automatically satisfied when q1 and q2 as a function of time have been computed through the IPA by 

imposing that link 7 performs either a finite translation or a finite rotation about A or B to link 7. 

The fact that the studied mechanism can make link 7 either translate along a circular path or rotate 

around A or B reveals that this mechanism with all the actuators on the frame is a good alternative to the 

serial RR one.  

 

5.1  Dynamic Model 

Figure 6 shows the constraint forces f27, f47 and f67 applied to link 7 and the torques 1k and 2k 

applied to links 3 and 5, respectively, by the actuators under the hypothesis that the inertia forces of the 

binary links are negligible. f27, f47 and f67 can be analytically expressed as follows: 

 

27 27

( )
f

a




B A
f  f27 (cos21 i + sin21 j) (34a) 



47 47

( )
f

d




D E
f  –f47{[(a/d)(cos21–cosq1)+(b/d)cos(71+)]i + 

[(a/d)(sin21–sinq1)+(b/d)sin(71+)+(c/d)]j} 

 (34b) 

67 67

( )
f

e




M L
f  f67{[(a/e)(cos21–cosq2)+(b/e)cos71–(h/e)]i + [(a/e)(sin21–sinq2)+(b/e) sin71]j} 

 (34c) 

 

where f27, f47 and f67 are the signed magnitudes of f27, f47 and f67, respectively. Also, the moment 

equilibriums of links 3 and 5 yields 

 

47 1

d
f τ

( ) ( )


   k D C E D
 (35a) 

67 2

e
f τ

( ) ( )


   k L H L M
 (35b) 

 

The corresponding planar wrenches about A are 

 

$A|2,7  27

( )
f

a

B A
 f27 A|2,7 (36a) 

A|4,7 1

d
τ

( ) ( )


   
$

k D C E D
A|4,7 (36b) 

A|6,7 2

e
τ

( ) ( )


   
$

k L H L M
A|6,7 (36c) 

 

where the unit planar wrenches A|2,7, A|4,7 and A|6,7 have the following explicit expressions 

 

A|2,7  (cos21 i + sin21 j) (37a) 

A|4,7  1
{( ) [ ( ) ( )] }

d
     D E k E A D E k   [(a/d)(cosq1–cos21)–(b/d)cos(71+)] i + 

[(a/d)(sinq1–sin21)–(b/d)sin(71+)–(c/d))] j + {[a cos21+b cos(71+)][(a/d)(sinq1–sin21) – 

(b/d)sin(71+)–(c/d))] – [a sin21+b sin(71+)] [(a/d)(cosq1–cos21)– (b/d)cos(71+)]}k 

 (37b) 



A|6,7   1
( ) [ ( ) ( )]

e
     M L k M A M L k   [(a/e)(cos21–cosq2)+(b/e)cos71–(h/e)]i + 

[(a/e)(sin21–sinq2)+(b/e)sin71]j + {(a cos21+b cos71)[(a/e)(sin21–sinq2)+ 

(b/e)sin71] – (a sin21+b sin71) [(a/e)(cos21–cosq2)+(b/e)cos71–(h/e)]}k 

 (37c) 

 

Also, the effective-acceleration vector of link 7 referred to point A is  

 

1A|7,ef = 1aG|7 + [k(G7–A)1aG|7 + 7
2 71]k (38) 

 

and the external wrench about A, $A|7,ex, applied to link 7 can be written as follows 

 

$A|7,ex = fex A|7,ex (39) 

 

The introduction of Eqs. (36), (38) and (39) into Eq. (21b) yields the following dynamic model of the 

studied mechanism 

 

fex A|7,ex + f27 A|2,7 + 1
d

( ) ( )   k D C E D
A|4,7 + 2

e

( ) ( )   k L H L M
A|6,7  7 1A|7,ef  

 (40) 

 

Eventually, the dot product of Eq. (40) by A|2,7A|6,7 and of Eq. (40) by A|2,7A|4,7 

straightforwardly yields the following explicit solution of the inverse dynamics problem 

 

1
1

7 A|7,ef ex A|7,ex A|2,7 A|6,7

A|4,7 A|2,7 A|6,7

[ ( ) ( )](μ f )

d 

      

 

k D C E D χ σ σ σ

σ σ σ
 (41a) 

2
1

7 A|7,ef ex A|7,ex A|2,7 A|4,7

A|6,7 A|2,7 A|4,7

[ ( ) ( )](μ f )
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k L H L M χ σ σ σ

σ σ σ
 (41b) 

 

 



6   Conclusions 

In planar motion, rigid-body’s (link’s) configuration space (c-space) is a three-dimensional space which 

can be equipped with the structure of an affine space. Here, this structure has been introduced by using 

three-dimensional vectors (planar-pose vectors) with non-homogeneous components. 

The proposed affine structure of link’s c-space has been exploited to provide tools useful to study 

link’s planar motion as the motion of a c-space point. Also, these tools combined with the planar 

wrenches have revealed, in a simple and direct way, the role of instant centers in planar mechanisms’ 

statics.  

Eventually, planar wrenches together with the proposed tools made it possible the formulation of the 

“motion laws” of the c-space point and the study of planar mechanisms’ dynamics as a number of c-space 

points that interact one another and stand external planar wrenches. 

The result is a coherent, autonomous and self-contained set of tools and laws that model kinematics 

and dynamics of planar mechanisms in the three-dimensional configuration space of links’ planar poses. 

A two-dof parallel planar mechanism has been studied by using some of the found results. This case 

study clearly shows how visible the kinematic behaviour of a mechanism becomes with these new tools. 
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Appendix A 

The following vector equations can be written (see Fig. 5) 

 

(I71
(1)–A) = w1 (B–A) (A1a) 

(I71
(1)–A) = w2 (M–L) + (L–A) (A1b) 

(I71
(2)–A) = w3 (B–A) (A1c) 

(I71
(2)–A) = w4 (E–D) + (D–A) (A1d) 

 



where the scalar coefficients wj, for j=1,…,4, are unknowns to be determined; whereas, the explicit 

expressions of (B–A), (L–A) and (D–A) are given by Eqs. (25) and those of (M–L) and (E–D) by Eqs. 

(26). 

The linear elimination of (I71
(1)–A) and (I71

(2)–A) from Eqs. (A1) yields the following two vector 

equations 

 

w1 (B–A) – w2 (M–L) = (L–A) (A2a) 

w3 (B–A) – w4 (E–D) = (D–A) (A2b) 

 

which are two linear systems of two scalar equations in two unknowns whose solution is  

1

( ) [ ( )]
w

( ) [ ( )]

   


   
L A k M L

B A k M L
 (A3a) 

2

( ) [ ( )]
w

( ) [ ( )]

   
 

   
L A k B A

M L k B A
 (A3b) 

3

( ) [ ( )]
w

( ) [ ( )]

   


   
D A k E D

B A k E D
 (A3c) 

4

( ) [ ( )]
w

( ) [ ( )]

   
 

   
D A k B A

E D k B A
 (A3d) 

 

Formulas (A3) provide the explicit expressions of the scalar coefficients wj, for j=1,…,4, as a function of 

the mechanism configuration. Eventually, the introduction of such expressions into Eqs. (A1) yields the 

explicit expressions of (I71
(1)–A) and (I71

(2)–A) as a function of the mechanism configuration. 

 

Appendix B 

The time derivative of Eqs. (27a) and (27b) yields 

 

n11 21  + n12 71 + n13 1q = 0 (B1a) 

n21 21  + n22 71 + n23 2q = 0 (B1b) 

 

where 

 

n11 = ab[sin(71+)cos21–cos(71+)sin21]–a2(cos21sinq1 – sin21cosq1)+ca cos21 (B2a) 



n12 = ab[cos(71+)(sin21–sinq1)–sin(71+)(cos21–cosq1)] + cb cos(71+) (B2b) 

n13 = ab[sinq1cos(71+)–cosq1sin(71+)]–a2(sin21cosq1  – cos21 sinq1) – ca cosq1 (B2c) 

n21 = ab(sin71cos21–cos71sin21)–a2(cos21sinq2–sin21cosq2) + ha sin21 (B2d) 

n22 = ab[cos71(sin21–sinq2)–sin71(cos21–cosq2)] + hb sin71 (B2e) 

n23 = ab(cos71sinq2–sin71cosq2)–a2(sin21cosq2 – cos21sinq2) – ha sinq2 (B2f) 

 

The subtraction of the product of Eq. (B1a) by n21 from the product of Eq. (B1b) by n11 yields 

 

(n22n11 – n21n12)71 = n21n13 1q – n23 n11 2q  (B3) 

 

whose comparison with Eq. (28b) gives, for g1 and g2, the following explicit expressions as a function of 

the mechanism configuration 
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