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Abstract

Using matched asymptotic expansions with fractional exponents, we obtain orig-
inal transmission conditions describing the limit behavior for soft, hard and
rigid thin interphases obeying the Saint Venant-Kirchhoff material model. The
novel transmission conditions, generalizing the classical linear imperfect inter-
face model, are discussed and compared with existing models proposed in the
literature for thin films undergoing finite strain. As an example of implemen-
tation of the proposed interface laws, the uniaxial tension and compression
responses of butt joints with soft and hard interphases are given in closed form.

Keywords: Asymptotic analysis, Nonlinear Elasticity, Kirchhoff-Saint Venant,
Imperfect interface

Introduction

Adhesive bonding technology is widely employed in engineering structural
assembly and especially in aeronautics industry, where the use of composite
materials is necessary to lighten structures. Due to the presence of the adhesive
layer, adhesive bonding joints are subjected to a complex state of stress with
high stress concentrations and, consequently, accurate analysis and modeling of
adhesive materials and bonded joints are required.

Because the adhesive layer is usually soft and very thin when compared
with the characteristic dimensions of the structure, a relatively large number of
elements in the thickness direction is necessary to achieve sufficiently accurate
calculations in standard existing finite element codes. This gives rise to a large
number of degrees of freedom and high simulation costs. To successfully deal
with this difficulty, interphase modeling has to precede the computation of the
numerical solution. A classical modeling approach consists in describing the
adhesive as a distinct lower-dimensional continuum, i.e. a material surface.

A simplified two-dimensional modeling can be achieved by introducing suit-
able assumptions concerning the displacement and the stress fields inside the
adhesive [21, 15, 16] or by applying the asymptotic expansion method [23, 24,
20, 29]. The asymptotic expansion method provides a systematic and rigorous
approach to obtain interfacial laws describing the mechanical behavior of the
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limit material surface accounting for the elastic properties of an elastic thin ad-
hesive. In the small deformation theory, interfacial laws appropriate for linear
elastic adhesives have been obtained by many authors, for a not exhaustive list
see the reference works of Klarbring [23, 24], Caillerie [10], Geymonat [19, 20],
Licht [38], and also [1, 6, 25, 28, 29, 31, 41, 43, 44, 45, 46].

The modeling of thin adhesives in finite elasticity has received much less
attention than adhesives undergoing small displacements [4, 16, 17, 18, 26, 37].
In [16], an elastic adhesive joint is considered, with an adhesive made of isotropic
Saint Venant-Kirchhoff material and flexible as compared to the adherents. The
large displacement-small deformation problem is addressed by introducing a
displacement linearly varying through the thickness of the adhesive. A weak
formulation is then obtained for a geometrically non linear two-dimensional
description of the adhesive.

In [17], the asymptotic expansion method is applied to study the mechanical
behavior of a thin nonlinear elastic adhesive made of a material much softer
than those of the two adherents. The Saint Venant-Kirchhoff material model
is assumed for both the adherents and the adhesive and a two dimensional
simplified model for the adhesive is obtained. The convergence of a three-
dimensional solution towards the limit solution is also given, together with error
estimates.

In [18], a thin adhesive layer made of a nonlinear incompressible elastic
material is considered. The three-dimensional equilibrium problem, posed in a
mixed variational form, is analyzed by using the asymptotic expansion method.
Several limit two-dimensional models are obtained for the adhesive, according
to the values of a parameter representing its elastic properties. The existence
and the uniqueness of the solution of the limit problems are established and
Γ−convergence techniques are applied in order to prove the convergence of the
asymptotic expansion.

In [37], an adhesive bonded joint made of nonlinear elastic materials with
nonconvex energy density is studied by using Γ−convergence techniques. In
the limit problem, the adhesive layer is replaced by a constraint condition in
the form of a contact law depending on the relative behavior of the two small
parameters, the thickness and the stiffness of the adhesive.

Within the framework of nonlinear elasticity, two stored energy functions
for the adhesive, the material model of Saint Venant–Kirchhoff and the model
of Ciarlet–Geymonat, are studied in [26]. Using the asymptotic expansions
method, the limit energies associated to the two stored energy functions are
computed and a rigorous mathematical analysis of the two limit models is pre-
sented.

A composite structure consisting of two nonlinearly elastic plates bonded by
a thin and soft adhesive layer is studied in [4]. The materials of the plates are
Saint Venant-Kirchhoff materials, while a more general nonlinear relation is used
for the adhesive. A two-dimensional plate model for the compound structure is
obtained, in which the adhesive is taken into account only through its material
response to a pure shear load.

In the present paper, we consider a joint made of two adherents and a thin
adhesive modeled as Saint Venant-Kirchhoff materials, the simplest hyperelastic
material model extending the linear elastic material to the nonlinear regime [12].

2



The stored energy density of the Saint Venant-Kirchhoff model is

W (E(u)) =

3∑
i,j=1

µ(Eij(u))2 +
λ

2

3∑
i=1

(Eii(u))2 (1.1)

where λ, µ are positive elastic constant called the Lamé’s constants, and

E(u) = 1/2(∇u + (∇u)T + (∇u)T∇u) (1.2)

are the components of the Green-Saint Venant strain tensor for a displacement
field u.

Three different adhesive types are studied: in the first model the adhesive is
“soft”, i.e. the elastic coefficients of the adhesive, λ and µ, rescale as its thickness
ε; in the second model the adhesive is “hard”, i.e. λ and µ are independent of
ε; in the third model the adhesive is “rigid”, i.e. λ and µ rescale as the inverse
of ε.

To obtain transmission conditions mechanically equivalent to the behavior of
the three types of adhesives, an asymptotic method is proposed, using classical
expansions in the hard and rigid case and fractional power series in the soft
case. This proposal is mainly motivated by the analysis of Licht and Michaille
[37], which identifies εp−1, with p the exponent entering the growth conditions
on the adhesive stored energy, as a critical size of the adhesive stiffness. In
particular, above this critical size the stiffness is large enough to provide a limit
model of perfect interface, below this critical size the stiffness is too small to
maintain perfect adherence and at the critical size an imperfect (soft) interface
model that allow displacement discontinuities in the adhesive is obtained. The
choice of expansions with fractional powers in the soft case is also motivated by
a simple one-dimensional example presented in Section 2. The example shows
that for a soft adhesive the jump of the displacement rescales like ε2/3, for the
Saint Venant-Kirchhoff energy (1.1) being p − 1 = 3. The example also gives
insights into the types of transmission conditions arising from different rescaling
of the adhesive elastic stiffness and it highlights the role of the load rescaling and
the possibily occurrence of multiple solutions due to the failure of quasiconvexity
of the energy (1.1).

The three-dimensional equilibrium problem of the adhesive joint is consid-
ered in Section 3, where the strong and weak formulations of the mixed boundary
value problem are introduced.

Section 4 is devoted to the asymptotic analysis, which is based on fractional
matched asymptotic expansions. In Section 5, the transmission conditions ob-
tained via the asymptotic expansion method are summarized, rewritten as in-
terface laws and discussed in light of the existing results for elastic adhesives
undergoing small and finite strains [1, 5, 20, 21, 23, 28, 29, 42].

In Section 6, the interface laws calculated for the soft interface are compared
with the results obtained via Γ-convergence techniques by Licht and Michaille in
[37]. We show that the interface laws calculated in the present paper at the order
zero for the cases of soft and hard interphase are in agreement with the results
of Licht and Michaille, provided the interphase elastic stiffness appropriately
rescales with its thickness. In particular, if the stiffness rescales like ε3, then the
minimization of the Γ−limit gives the variational forms of the zero and higher
order interface laws that we calculate for the soft interphase. The higher order
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Figure 1: Reference configuration of the one-dimensional composite bar made of a Saint
Venant-Kirchhoff material.

laws of imperfect interface that we calculate for the two cases of hard and rigid
interphases do not find counterparts in [37].

Section 7 proposes the analysis of uniaxial tension and compression of a butt
joint as an example of implementation of our contact laws. The example gen-
eralizes some analogous results given in [42] for small strains. The macroscopic
response of the joint is calculated and plotted for the two cases of soft and hard
interface taking into account different ratios of the adhesive/adherent thickness
and stiffness. The example could serve also as elasticity solution benchmark,
the uniaxial tension and compression responses being given in closed form.

In the paper, the usual summation convention is used. Latin indices take
the values 1, 2, 3 and Greek indexes the values 1, 2.

A one-dimensional example

Consider a thin adhesive layer occupying the reference configuration given by
interval (0, ε) in contact with an adherent occupying the reference configuration
(ε, l), as depicted in Figure 1. The materials of the adhesive and the adherent
are both nonlinear and modeled as Saint Venant–Kirchhoff materials. The bar
is fixed at one end, say x = 0, and subjected to a force Q at the other end,
x = l. The thickness ε is small, e.g. ε/l << 1. The equilibrium problem of the
composite bar, stated on the reference configuration, takes the form

(s+ su′)′ = 0 in (0, ε) ∪ (ε, l), (2.1)

s = Eε(u
′ +

1

2
(u′)2) in (0, ε), (2.2)

s = E(u′ +
1

2
(u′)2) in (ε, l), (2.3)

u = 0 x = 0, (2.4)

[s+ su′] = 0 x = ε, (2.5)

[u] = 0 x = ε, (2.6)

s+ su′ = Q x = l, (2.7)

where a prime denotes the first derivative, the symbol [f ] := f(ε+) − f(ε−)
denotes the jump of f : (0, l) → R at the point x = ε and Eε, E denote the
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elastic moduli of the adhesive and of the adherent, respectively. Integrating
(2.1) under the conditions (2.5) and (2.7) gives

s+ su′ = Q in [0, l]. (2.8)

Substituting (2.2) and (2.3) into (2.8) yields the differential equations

(u′)3 + 3(u′)2 + 2u′ = 2
Q

Eε
in (0, ε), (2.9)

(u′)3 + 3(u′)2 + 2u′ = 2
Q

E
in (ε, l). (2.10)

These equations imply that u′ is piecewise constant in the bar and its values are
solutions of the above cubic equations which admit multiple solutions, depending
on the values of Q/Eε, Q/E. The multiplicity of solutions is due to the non
monotonicity of the (cubic) stress-strain response function in the Saint Venant-
Kirchhoff material model. When Q > 0, it is immediately seen that equations
(2.9) and (2.10) have a unique solution u′ = F(z) > 0 with z = Q/Eε and
z = Q/E, respectively. Integrating u′ = F(z) under the boundary conditions
(2.3)-(2.7) gives the solution

u(x) =

{
F(Q/Eε)x, x ∈ [0, ε),
F(Q/E)(x− ε) + F(Q/Eε)ε, x ∈ [ε, l].

(2.11)

The solution (2.11) allows to evaluate the difference u(ε) − u(0) =: [[u]] giving
the jump of the displacement due to the presence of the deformable adhesive
between the point x = ε of the adherent and the constraint at x = 0.
For a soft adhesive, e.g. Eε = εÊ, the solution (2.11) yields

[[u]]soft = F(
Q

εÊ
)ε. (2.12)

For a hard adhesive, e.g. Eε = Ê, the solution (2.11) yields

[[u]]hard = F(
Q

Ê
)ε. (2.13)

Finally, for a rigid adhesive, e.g. Eε = Êε−1, one has

[[u]]rigid = F(
Qε

Ê
)ε. (2.14)

Equation (2.12) deserves some discussion. In view of the smallness of ε, one
could use the asymptotic behavior F(y) ∼ (2y)1/3 as y → +∞ to conclude that

[[u]]soft = F(
Q

εÊ
)ε ∼ (2

Q

εÊ
)1/3ε = (2

Q

Ê
)1/3ε2/3 as

Q

εÊ
→ +∞. (2.15)

Thus, this transmission condition can be interpreted as arising from a force
scaling Q ∼ εq with q < 1, which incorporates the special case q = 0 of a
force Q independent of ε. Notably, equation (2.15) cannot be used to recover
the classical soft interface law of linear elasticity. The latter can however be
reobtained from (2.12) by linearizing F about the origin, F(y) ∼ y as y → 0,
thus

[[u]]soft = F(
Q

εÊ
)ε ∼ Q

εÊ
ε =

Q

Ê
as

Q

εÊ
→ 0. (2.16)
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Clearly, this last result relies on a force scaling Q ∼ εq with q > 1.
In the remaining part of the paper, we will assume that the loads are inde-

pendent of ε. This choice is simple and it brings to a non linear behavior of the
adherents in the limit as ε→ 0.

The three-dimensional problem

Let Ω be a composite body comprising two adherents, Ωε±, joined by an
interphase, Bε, as represented in Figure 2. The interphase occupies a cylindrical
region of height ε and cross-section S ⊂ R2, with ∂S a smooth boundary. An
orthonormal Cartesian basis (O, e1, e2, e3) is introduced, and let (x1, x2, x3) be
taken to denote the three coordinates of a particle in Ω. The origin lies at the
center of the interphase midplane and the x3−axis runs perpendicular to the
the interphase midplane, thus the domains Ωε± and Bε are defined by

Ωε± = {(x1, x2, x3) ∈ Ω : ±x3 >
ε

2
}, (3.1)

Bε = {(x1, x2, x3) ∈ Ω : |x3| <
ε

2
}. (3.2)

Let Sε± denote the interfaces between the adherents and the interphase:

Sε± = {(x1, x2, x3) ∈ Ω : x3 = ±ε
2
}. (3.3)

Figure 2: Reference configuration of the joint viewed as a composite body made of two
adherents in contact via a thin adhesive layer (left) and rescaled configuration of the joint
(right).
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On a part Γ1 of ∂Ω, an external load g is applied, and on a part Γ0 of ∂Ω such
that Γ0 ∩Γ1 = ∅ the displacement is imposed to vanish. It is also assumed that
Γ0 ∩Bε = ∅ and Γ1 ∩Bε = ∅. A body force f is applied in Ωε±.

The equations governing the equilibrium problem of the composite structure
are written as follows:

(sεij + sεkju
ε
i,k),j + fi = 0 in Ωε±,

(sεij + sεkju
ε
i,k)nj = gi on Γ1,

(sεij + sεkju
ε
i,k),j = 0 in Bε,

[[sεi3 + sεk3u
ε
i,k]] = 0 on Sε±,

[[uεi ]] = 0 on Sε±,
uεi = 0 on Γ0,
sεij = A±ijhkEhk(uε) in Ωε±,

sεij = AεijhkEhk(uε) in Bε,

(3.4)

where sε is the second Piola-Kirchhoff stress tensor, E(uε) is the Green-Lagrange
strain tensor defined in (1.2), A±, Aε are the elasticity tensors of the deformable
adherents and the interphase, respectively. In the sequel, they will be considered
isotropic, with Lamé’s coefficients equal to λ±, µ± in the adherents and λε, µε

in the interphase.
The existence and uniqueness of the problem (3.4) is not generally guaran-

teed. Indeed, the Saint-Venant Kirchhoff energy is not even rank-one convex
[32], and thus the direct method of the calculus of variations does not apply.
By using the implicit function theorem, an existence result can be established
for the case when the pure displacement boundary value condition is considered
and the body force is sufficiently small [14, 39, 36].

Asymptotic analysis

Because the thickness of the interphase is very small, it is natural to seek
the solution of problem (3.4) by using asymptotic expansions with respect to
the small parameter ε. The domain is rescaled using a classical procedure [12].
First, the following sets are introduced:

• Ω± = {(x1, x2, x3) ∈ Ω : ±x3 >
1

2
} (the rescaled adherents);

• B = {(x1, x2, x3) ∈ Ω : |x3| <
1

2
} (the rescaled interphase);

• S± = {(x1, x2, x3) ∈ Ω : x3 = ±1

2
}.

Next, the interphase is rescaled into a domain of unit thickness (cf. Figure 2).
In particular,

• in the interphase, the following change of variable is introduced

(x1, x2, x3) ∈ Bε → (z1, z2, z3) ∈ B, with (z1, z2, z3) = (x1, x2,
x3

ε
)

and it is set

ûε(z1, z2, z3) = uε(x1, x2, x3), (4.1)

ŝε(z1, z2, z3) = sε(x1, x2, x3). (4.2)
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• In the adherents, the following change of variable is introduced

(x1, x2, x3) ∈ Ωε± → (z1, z2, z3) ∈ Ω±, (4.3)

with (z1, z2, z3) = (x1, x2, x3 ± 1/2∓ ε/2), and it is set

ūε(z1, z2, z3) = uε(x1, x2, x3), (4.4)

s̄ε(z1, z2, z3) = sε(x1, x2, x3). (4.5)

External forces are assumed to be independent of ε. As a consequence, it is set
f̄(z1, z2, z3) = f(x1, x2, x3) and ḡ(z1, z2, z3) = g(x1, x2, x3). Under the change
of variables, the domains Γ0 and Γ1 are transformed into the domains denoted
by Γ̄0 and Γ̄1, respectively.
The governing equations of the rescaled problem are as follows:

(s̄ij + s̄kj ūi,k),j + f̄i = 0 in Ω±,
(s̄ij + s̄kj ūi,k)nj = ḡi on Γ̄1,
(ŝiα + ûi,β ŝβα),α + 1

ε{(ûi,3ŝ3α),α + (ŝi3 + ûi,β ŝβ3),3}
+ 1
ε2 (ûi,3ŝ33),3 = 0 in B,

s̄i3 + s̄k3ūi,k = ŝi3 + ŝα3ûi,α + 1
ε ŝ33ûi,3 on S±,

ūi = ûi on S±,
ūi = 0 on Γ̄0,
s̄ij = A±ijhkĒhk(¯̄u) in Ω±,

ŝij = AεijhkÊhk(ˆ̄u) in B,

(ˆ̄u)

(4.6)

where Ē, Ê are the Green-Lagrange strain tensors in the rescaled adherents and
interphase domains, respectively, having components:

Ēij(ū) =
1

2
(ūi,j + ūj,i + ūk,j ūk,j), i, j = 1, 2, 3, (4.7)

Êαβ(û) =
1

2
(ûα,β + ûβ,α + ûk,αūk,β), α, β = 1, 2, (4.8)

Êα3(û) =
1

2
(
1

ε
ûα,3 + û3,α +

1

ε
ûk,αûk,3), α = 1, 2, (4.9)

Ê33(û) =
1

2ε2
(û3,3 + ûk,3ûk,3). (4.10)

If the interphase is isotropic, the constitutive equation of the rescaled inter-
phase takes the form

ŝ(Ê(û)) = 2µεÊ(û) + λε(I · Ê(û))I, (4.11)

with I the identity tensor. In the following, to simplify the notation, we
drop the dependence of ŝ on Ê(û) and later on of s̄ on Ē(ū) ). Substituting
(4.8)-(4.10) into (4.11), one obtains

ŝαβ = µε(ûα,β + ûβ,α + û,α · û,β)

+λε(ûγ,γ +
1

2
| û,γ |2 +

1

ε
û3,3 +

1

2ε2
| û,3 |2)δαβ , α, β = 1, 2,(4.12)

ŝα3 = µε(û3,α +
1

ε
ûα,3 +

1

ε
û,α · û,3), α = 1, 2, (4.13)

ŝ33 = (2µε + λε)(
1

ε
û3,3 +

1

2ε2
| û,3 |2) + λε(ûγ,γ +

1

2
| û,γ |2). (4.14)

8



Motivated by (2.12), the following asymptotic series with fractional powers for
the second Piola-Kirchhoff stress and the displacement in the original unrescaled
domain are assumed:

sεij = s0
ij + ε1/3s

1/3
ij + ε2/3s

2/3
ij + εs1ij + ε4/3s4/3ij + ε5/3s5/3ij + ε2s2ij + o(ε2),

(4.15)

uεi = u0
i + ε1/3u

1/3
i + ε2/3u

2/3
i + εu1

i + ε4/3u
4/3
i + ε5/3u

5/3
i + ε2u2

i + o(ε2),

(4.16)

for i, j = 1, 2, 3. According to (4.15) and (4.16), the following asymptotic series
in the rescaled interphase and adherents domains are obtained:

ŝεij = ŝ0
ij + ε1/3ŝ

1/3
ij + ε2/3ŝ

2/3
ij + εŝ1

ij + ε4/3ŝ
4/3
ij + ε5/3ŝ

5/3
ij + ε2ŝ2

ij + o(ε2),

(4.17)

ûεi = û0
i + ε1/3û

1/3
i + ε2/3û

2/3
i + εû1

i + ε4/3û
4/3
i + ε5/3û

5/3
i + ε2û2

i + o(ε2),

(4.18)

s̄εij = s̄0
ij + ε1/3s̄

1/3
ij + ε2/3s̄

2/3
ij + εs̄1

ij + ε4/3s̄
4/3
ij + ε5/3s̄

5/3
ij + ε2s̄2

ij + o(ε2),

(4.19)

ūεi = ū0
i + ε1/3ū

1/3
i + ε2/3ū

2/3
i + εū1

i + ε4/3ū
4/3
i + ε5/3ū

5/3
i + ε2ū2

i + o(ε2),

(4.20)

for i, j = 1, 2, 3.

Expansions of the equilibrium equations in the interphase

Substituting the expansions (4.17) and (4.18) into the equilibrium equations
of the rescaled interphase (third equation in (4.6)), we obtain that the following
conditions hold in B :

• Order −2 :
(û0
i,3ŝ

0
33),3 = 0, (4.21)

• Order −5/3 :

(û0
i,3ŝ

1/3
33 + û

1/3
i,3 ŝ

0
33),3 = 0, (4.22)

• Order −4/3 :

(û0
i,3ŝ

2/3
33 + û

1/3
i,3 ŝ

1/3
33 + û

2/3
i,3 ŝ

0
33),3 = 0, (4.23)

• Order −1 :

(û0
i,3ŝ

0
3α),α + (ŝ0

i3 + û0
i,β ŝ

0
β3),3

+(û0
i,3ŝ

1
33 + û

1/3
i,3 ŝ

2/3
33 + û

2/3
i,3 ŝ

1/3
33 + û1

i,3ŝ
0
33),3 = 0,

(4.24)

• Order −2/3 :

(û0
i,3ŝ

1/3
3α + û

1/3
i,3 ŝ

0
3α),α + (ŝ

1/3
i3 + û0

i,β ŝ
1/3
β3 + û

1/3
i,β ŝ

0
β3),3

+(û0
i,3ŝ

4/3
33 + û

1/3
i,3 ŝ

1
33 + û

2/3
i,3 ŝ

2/3
33 + û1

i,3ŝ
1/3
33 + û

4/3
i,3 ŝ

0
33),3 = 0,

(4.25)

9



• Order −1/3 :

(û0
i,3ŝ

2/3
3α + û

1/3
i,3 ŝ

1/3
3α + û

2/3
i,3 ŝ

0
3α),α

+(ŝ
2/3
i3 + û0

i,β ŝ
2/3
β3 + û

1/3
i,β ŝ

1/3
β3 + û

2/3
i,β ŝ

0
β3),3

+(û0
i,3ŝ

5/3
33 + û

1/3
i,3 ŝ

4/3
33 + û

2/3
i,3 ŝ

1
33 + û1

i,3ŝ
2/3
33 + û

4/3
i,3 ŝ

1/3
33 + û

5/3
i,3 ŝ

0
33),3 = 0,

(4.26)

• Order 0 :

(ŝ0
iα + û0

i,β ŝ
0
βα),α + (û0

i,3ŝ
1
3α + û

1/3
i,3 ŝ

2/3
3α + û

2/3
i,3 ŝ

1/3
3α + û1

i,3ŝ
0
3α),α

+(ŝ1
i3 + û0

i,β ŝ
1
β3 + û

1/3
i,β ŝ

2/3
β3 + û

2/3
i,β ŝ

1/3
β3 + û1

i,β ŝ
0
β3),3

+(û0
i,3ŝ

2
33 + û

1/3
i,3 ŝ

5/3
33 + û

2/3
i,3 ŝ

4/3
33 + û1

i,3ŝ
1
33

+û
4/3
i,3 ŝ

2/3
33 + û

5/3
i,3 ŝ

1/3
33 + û2

i,3ŝ
0
33),3 = 0. (4.27)

Expansions of the equilibrium equations in the adherents

Substituting the expansions (4.19) and (4.20) into the equilibrium equations
of the rescaled interphase (first equation in (4.6)), we obtain the following con-
ditions:

P̄ 0
ij,j + f̄i = 0 in Ω±, (4.28)

P̄
1/3
ij,j = 0 in Ω±, (4.29)

P̄
2/3
ij,j = 0 in Ω±, (4.30)

P̄ 1
ij,j = 0 in Ω±, (4.31)

with P̄ lij , l = 0, 1/3, 2/3, 1, the components of the first Piola-Kirchhoff stress
tensor in the adherents:

P̄ 0
ij = s̄0

ij + ū0
i,ks̄

0
kj , (4.32)

P̄
1/3
ij = s̄

1/3
ij + ū0

i,ks̄
1/3
kj + ū

1/3
i,k s̄

0
kj , (4.33)

P̄
2/3
ij = s̄

2/3
ij + ū0

i,ks̄
2/3
kj + ū

1/3
i,k s̄

1/3
kj + ū

2/3
i,k s̄

0
kj , (4.34)

P̄ 1
ij = s̄1

ij + ū0
i,ks̄

1
kj + ū

1/3
i,k s̄

2/3
kj + ū

2/3
i,k s̄

1/3
kj + ū1

i,ks̄
0
kj . (4.35)

Substituting the expansions (4.19) and (4.20) into the boundary conditions on
Γ̄1 (second equation in (4.6)), we obtain the conditions

P̄ 0
ijnj = ḡi on Γ̄1, (4.36)

P̄
1/3
ij nj = 0 on Γ̄1, (4.37)

P̄
2/3
ij nj = 0 on Γ̄1, (4.38)

P̄ 1
ijnj = 0 on Γ̄1. (4.39)
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Expansions of the continuity condition of the traction at S±

Now we substitute the expansions (4.17) and (4.19) into the the continuity
condition of the traction at S± (fourth equation in (4.6)) and we obtain the
following conditions which hold on S± :

• Order −1 :
0 = û0

i,3ŝ
0
33, (4.40)

• Order −2/3 :

0 = û0
i,3ŝ

1/3
33 + û

1/3
i,3 ŝ

0
33, (4.41)

• Order −1/3 :

0 = û0
i,3ŝ

2/3
33 + û

1/3
i,3 ŝ

1/3
33 + û

2/3
i,3 ŝ

0
33, (4.42)

• Order 0 :

P̄ 0
i3 = ŝ0

i3 + û0
i,β ŝ

0
β3 + û0

i,3ŝ
1
33 + û

1/3
i,3 ŝ

2/3
33 + û

2/3
i,3 ŝ

1/3
33 + û1

i,3ŝ
0
33, (4.43)

• Order 1/3 :

P̄
1/3
i3 = ŝ

1/3
i3 + û0

i,β ŝ
1/3
β3 + û

1/3
i,β ŝ

0
β3

+û0
i,3ŝ

4/3
33 + û

1/3
i,3 ŝ

1
33 + û

2/3
i,3 ŝ

2/3
33 + û1

i,3ŝ
1/3
33 + û

4/3
i,3 ŝ

0
33, (4.44)

• Order 2/3 :

P̄
2/3
i3 = ŝ

2/3
i3 + û0

i,β ŝ
2/3
β3 + û

1/3
i,β ŝ

1/3
β3 + û0

i,β ŝ
2/3
β3

+û0
i,3ŝ

5/3
33 + û

1/3
i,3 ŝ

4/3
33 + û

2/3
i,3 ŝ

1
33 + û1

i,3ŝ
2/3
33 + û

4/3
i,3 ŝ

1/3
33 + û

5/3
i,3 ŝ

0
33,

(4.45)

• Order 1 :

P̄ 1
i3 = ŝ1

i3 + û0
i,β ŝ

1
β3 + û

2/3
i,β ŝ

2/3
β3 + û

2/3
i,β ŝ

1/3
β3 + û1

i,β ŝ
0
β3

+û0
i,3ŝ

2
33 + û

1/3
i,3 ŝ

5/3
33 + û

2/3
i,3 ŝ

4/3
33 + û1

i,3ŝ
1
33 + û

4/3
i,3 ŝ

2/3
33 + û

5/3
i,3 ŝ

1/3
33 + û2

i,3ŝ
0
33.

(4.46)

Expansions of the constitutive equations of the interphase

The equations written so far are general in the sense that they are indepen-
dent of the constitutive behavior of the material. Three specific cases of elastic
material are now considered for the interphase: a “soft” material, character-
ized by elastic moduli linearly rescaling with the thickness ε, a “hard” material,
characterized by elastic moduli independent of the thickness ε, and a “rigid”
material, characterized by elastic moduli linearly rescaling with ε−1.

For the soft case, the full expansions (4.17)-(4.20) including the terms with
fractional powers have been considered.

For the hard and the rigid cases, classical the terms with fractional powers
have been eliminated when using (4.17)-(4.20), because they give rise to many
useless equations. In other words, classical expansions have been used for the
hard and the rigid cases.

11



Interphase made of a “soft” material

The Lamé’s coefficients are assumed as follows:

λε = λ̂ ε, µε = µ̂ ε. (4.47)

Substituting the expansion (4.17) into the constitutive equations (4.12)-(4.14)
and using (4.47), one obtains the following conditions:

• Order −1 :
0 = û0

k,3û
0
k,3, (4.48)

• Order −2/3 :

0 = û0
k,3û

1/3
k,3 , (4.49)

• Order −1/3 :

0 = 2û0
k,3û

2/3
k,3 + û

1/3
k,3 û

1/3
k,3 , (4.50)

• Order 0 :

ŝ0
αβ = λ̂(û0

3,3 + û0
k,3û

1
k,3 + û

1/3
k,3 û

2/3
k,3 )δαβ , (4.51)

ŝ0
α3 = µ̂(û0

α,3 + û0
k,αû

0
k,3), (4.52)

ŝ0
33 = (2µ̂+ λ̂)(û0

3,3 + û0
k,3û

1
k,3 + û

1/3
k,3 û

2/3
k,3 ),

(4.53)

• Order 1/3 :

ŝ1
αβ = λ̂(û

1/3
3,3 + û0

k,3û
4/3
k,3 + û

1/3
k,3 û

1
k,3 +

1

2
û

2/3
k,3 û

2/3
k,3 )δαβ ,

α, β = 1, 2,(4.54)

ŝ
1/3
α3 = µ̂(û

1/3
α,3 + û0

k,αû
1/3
k,3 + û

1/3
k,αû

0
k,3), α = 1, 2, (4.55)

ŝ
1/3
33 = (2µ̂+ λ̂)(û

1/3
3,3 + û0

k,3û
4/3
k,3 + û

1/3
k,3 û

1
k,3 +

1

2
û

2/3
k,3 û

2/3
k,3 ). (4.56)

The conditions at the next orders are not considered here because they are
expected to yield transmission conditions of higher orders. From (4.48-4.55) it
follows that

û0
,3 = 0 in B ⇒ [û0] = 0, (4.57)

û
1/3
,3 = 0 in B ⇒ [û1/3] = 0, (4.58)

ŝ0
ij = 0, i, j = 1, 2, 3, in B, (4.59)

ŝ
1/3
α3 = 0, α = 1, 2, in B, (4.60)

where, given any f : B 7→ R3, it has been set [f ](z1, z2) := f(z1, z2, (1/2)−) −
f(z1, z2, (−1/2)+). Substituting (4.57)-(4.60) into the expansions of the equi-
librium equations in the interphase and into the expansions of the continuity
condition of the traction at S±, we find that the equations (4.21)-(4.23) and
(4.40)-(4.42) are identically satisfied. Combining together the equations (4.24)
and (4.43), (4.25) and (4.44), (4.26) and (4.45), (4.27) and (4.46) and taking
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into account (4.57)-(4.60), we obtain the continuity of the first Piola-Kirchhoff
stress vector

[P̄le3] = 0, l = 0, 1/3, 2/3, 1. (4.61)

Lastly, substituting (4.57)-(4.60) into (4.56) and substituting the result back
into (4.24), we find that

(µ̂+
1

2
λ̂)(| û2/3

,3 |2 û
2/3
i,3 )3 = 0 in B, (4.62)

which implies that the vector û
1/3
,3 is independent of z3. Solving with respect

to û
1/3
,3 and integrating with respect to z3 between 1/2 and −1/2 with the

boundary condition P̄0e3 = û
2/3
,3 ŝ

1/3
33 (coming from (4.43)), it gives

[û2/3] =
1

(µ̂+ 1
2 λ̂)1/3

1

|P̄0e3|2/3
P̄0e3. (4.63)

Interphase made of a “hard” material

The Lamé’s coefficients are now assumed to be independent of ε :

λε = λ̂, µε = µ̂. (4.64)

Substituting the expansion (4.17) deprived of the terms with fractional expo-
nents into the constitutive equations (4.12)-(4.14) and using (4.64), we obtain
that the following conditions hold in B :

• Order −2 :
0 = û0

k,3û
0
k,3, (4.65)

• Order −1 :

0 = û0
k,3û

1
k,3 + û0

3,3, (4.66)

0 = û0
α,3 + û0

k,αû
0
k,3, (4.67)

• Order 0 :

ŝ0
αβ = µ̂(û0

α,β + û0
β,α + û0

k,αû
0
k,β) + λ̂(û0

γ,γ +
1

2
(û0
k,γ û

0
k,γ))δαβ

+λ̂(û1
3,3 +

1

2
û1
k,3û

1
k,3)δαβ , α, β = 1, 2, (4.68)

ŝ0
α3 = µ̂(û0

3,α + û1
α,3 + û0

k,αû
1
k,3 + û1

k,αû
0
k,3), α = 1, 2, (4.69)

ŝ0
33 = (2µ̂+ λ̂)(û1

3,3 +
1

2
û1
k,3û

1
k,3) + λ̂(û0

γ,γ +
1

2
(û0
k,γ û

0
k,γ)). (4.70)

As before, conditions at the next orders are not considered because they are
expected to yield transmission conditions of higher orders. Equation (4.65)
implies that û0

,3 = 0 in B, thus

[û0] = 0. (4.71)

Using this latter result, the remaining conditions (4.68)-(4.70) simplify as

ŝ0 = µ̂(Ĥ0 + ĤT
0 + ĤT

0 Ĥ0) + λ̂(I · Ĥ0 +
1

2
|Ĥ0 |2)I (4.72)
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with I the identity matrix and

Ĥ0 := û0
,1 ⊗ e1 + û0

,2 ⊗ e2 + û1
,3 ⊗ e3. (4.73)

For later use, we note in passing that equation (4.72) takes the component form

ŝ0
αβ = µ̂(û0

α,β + û0
β,α + û0

k,αû
0
k,β) + λ̂(û0

α,α +
1

2
(û0
k,αû

0
k,α))δαβ

+λ̂(û1
3,3 +

1

2
(û1
k,3û

1
k,3))δαβ , α, β = 1, 2,(4.74)

ŝ0
α3 = µ̂(û1

α,3 + û0
3,α +

1

2
(û0
k,αû

1
k,3)), α = 1, 2,(4.75)

ŝ0
33 = (2µ̂+ λ̂)(û1

3,3 +
1

2
(û1
k,3û

1
k,3)) + λ̂(û0

γ,γ +
1

2
(û0
k,γ û

0
k,γ)).

(4.76)

Substituting (4.71) into (4.21) makes (4.21) identically satisfied, while (4.24)
reduces to

(ŝ0
i3 + û0

i,αŝ
0
α3 + û1

i,3ŝ
0
33),3 = 0. (4.77)

Integrating thelatter equation with respect z3 and using (4.32) and (4.43), one
obtains the first contact conditions

[P̄0e3] = 0. (4.78)

implying the continuity of the traction vector at the order zero
To complete the analysis and obtain the remaining contact conditions, a

first step is to prove that, the vectors ŝ0e3 and û1
,3 are independent of z3. The

following Lemma, whose proof is postponed in Appendix, shows that this is true
under suitable assumptions.

LEMMA 1 Let K be taken to denote the matrix

K :=

 µ̂ 0 0
0 µ̂ 0

0 0 2µ̂+ λ̂

 , (4.79)

and let ∇φ := I + Ĥ0. If ∇φ and (∇φK(∇φ)T + ŝ0
33I) are invertible, then

the vectors ŝ0e3 and û1
,3are independent of z3.

In the following, we assume that the hypotheses of the Lemma are satis-
fied. The condition that ∇φ be invertible is considered an acceptable hy-
pothesis in view of the large-displacement small-strain situation depicted by
the Saint Venant-Kirchhoff material model. The question of the invertibility of
(∇φK(∇φ)T + ŝ0

33I) appears to be more complicated and it is not addressed
here.

In view of the Lemma, the displacement vector field û1 can be represented
in the form

û1 = [û1]z3 + S(û1), (4.80)

where it has been set S(f)(z1, z2) := 1/2(f(z1, z2, 1/2) + f(z1, z2,−1/2)) for a
given f : B 7→ R3.
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Next, assuming that the hypotheses of the Lemma hold, we integrate (4.77)
with respect to z3 under the condition of continuity of the traction at S± and
we use (4.80) and the definition (4.73) to get:(

I + Ĥ0

)
ŝ0e3 = P̄0e3, (4.81)

where now one has

Ĥ0 = û0
,1 ⊗ e1 + û0

,2 ⊗ e2 + [û3]⊗ e3. (4.82)

After eliminating ŝ0
α3, α = 1, 2, and ŝ0

33 in (4.81) by using (4.75), (4.76) and
(4.80), the following relation between the traction P̄0e3 and the jump [û1] is
deduced:

P̄0e3 =
(
I + Ĥ0

){
µ̂(Ĥ0 + Ĥ0

T + Ĥ0
T Ĥ0) + λ̂(I · Ĥ0 +

1

2
|Ĥ0 |2)I

}
e3 (4.83)

Finally, integrating (4.27) with respect to z3 and using (4.46) and the Lemma,
we obtain

[P̄ 1
i3] = −(ŝ0

iα + û0
i,β ŝ

0
βα + [û1

i ]ŝ
0
3α),α, (4.84)

which, using (4.72), gives the condition

[P̄1e3] = −divp

((
I + Ĥ0

)(
µ̂(Ĥ0 + Ĥ0

T + Ĥ0
T Ĥ0) + λ̂(I · Ĥ0 +

1

2
|Ĥ0 |2)I

))
.

(4.85)
The notation divp indicates the divergence in the plane of the interphase, e.g.

divp P = (Pe1),1 + (Pe2),2. (4.86)

Interphase made of a “rigid” material

The Lamé’s coefficients are now assumed as follows:

λε =
1

ε
λ̂, µε =

1

ε
µ̂. (4.87)

Substituting the expansion (4.17) deprived of the terms with fractional expo-
nents into the constitutive equations (4.12)-(4.14) and using (4.87), the following
conditions are found to hold in B :

• Order −3 :
0 = û0

k,3û
0
k,3, (4.88)

• Order −2

0 = û0
k,3û

1
k,3 + û0

3,3, (4.89)

0 = û0
α,3 + û0

k,αû
0
k,3, (4.90)
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• Order −1

0 = µ̂(û0
α,β + û0

β,α + û0
k,αû

0
k,β) + λ̂(û0

γ,γ +
1

2
(û0
k,γ û

0
k,γ))δαβ

+λ̂(û1
3,3 + û0

k,3û
2
k,3 +

1

2
û1
k,3û

1
k,3)δαβ ,

α, β = 1, 2,(4.91)

0 = µ̂(û0
3,α + û1

α,3 + û0
k,αû

1
k,3 + û1

k,αû
0
k,3),

α = 1, 2, (4.92)

0 = (2µ̂+ λ̂)(û1
3,3 + û0

k,3û
2
k,3 +

1

2
û1
k,3û

1
k,3)

+λ̂(û0
γ,γ +

1

2
(û0
k,γ û

0
k,γ)). (4.93)

Equation (4.88) imply that û0
,3 = 0, in B, thus (4.71) is reobtained.

Introducing û0
,3 = 0 in (4.91)-(4.93) gives

µ̂Ê + λ̂(I · Ê)I = 0, (4.94)

where the components of Ê are defined as follows:

Êαβ(û0) =
1

2
(û0
α,β + û0

β,α) +
1

2
û0
k,αû

0
k,β , α, β = 1, 2, (4.95)

Êαβ(û0, û1) =
1

2
(û0

3,α + û1
α,3) +

1

2
û0
k,αû

1
k,3 α = 1, 2, (4.96)

Ê33(û1) = û1
3,3 +

1

2
û1
k,3û

1
k,3. (4.97)

Equation (4.94) implies

Êαβ(û0) = 0, α, β = 1, 2, (4.98)

Êα3(û0, û1) = 0, α = 1, 2, (4.99)

Ê33(û1) = 0, (4.100)

which are equivalent to the following conditions

û0
1,1 +

1

2
| û0
,1 |2 = 0, (4.101)

û0
2,2 +

1

2
| û0
,2 |2 = 0, (4.102)

û0
1,2 + û0

2,1 + û0
,1 · û0

,2 = 0, (4.103)

(û0
,1 + e1) · ([û1] + e3) = 0, (4.104)

(û0
,2 + e2) · ([û1] + e3) = 0, (4.105)

| [û1] + e3 |2 = 1. (4.106)

Integrating (4.24)-(4.26) and using (4.43)-(4.45) the transmission conditions
(4.78) are reobtained. Note that (4.104)-(4.106) imply that [û1] is independent
of z3, thus integrating (4.24) with respect to z3 under the condition of continuity
of the traction at S± and using (4.43), (4.71), (4.73) yields again (4.81). The
latter allows to evaluate ŝ0e3 and shows that it is independent of z3. Using these
results together with (4.27) and (4.46), we reobtain equation (4.84), in which
ŝα,β , α, β = 1, 2, are now undetermined.
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Matching external and internal expansions

The transmission conditions obtained in Section 4.4 are appropriate for the
rescaled equilibrium problem, prescribing the jump defined as [f ](z1, z2) :=
f(z1, z2, 1/2) − f(z1, z2,−1/2), with f : B 7→ R3. In this Section, the transmis-
sion conditions are related to interface laws appropriate for the limit equilibrium
problem, in which the interphase is replaced by the limit interface

S0 = {(x1, x2, x3) ∈ Ω : x3 = 0} (4.107)

and the adherents by the domains

Ω0
± = {(x1, x2, x3) ∈ Ω : ±x3 > 0}. (4.108)

Taking into account the asymptotic expansion (4.16) and assuming that the dis-
placement in the adherent uε can be expanded in a Taylor series representation
along the x3−direction (external expansion), it results:

uε(x̄,±ε
2

) = uε(x̄, 0±)± ε

2
uε,3(x̄, 0±) + · · ·

= u0(x̄, 0±) + ε1/3u1/3(x̄, 0±) + ε2/3u2/3(x̄, 0±)

+ε
(
u1(x̄, 0±)± 1

2
u0
,3(x̄, 0±)

)
+ · · ·

(4.109)

In view of the continuity of the displacements at the interfaces Sε± and S± we
also have

u0(x̄, 0±) + ε1/3u1/3(x̄, 0±) + ε2/3u2/3(x̄, 0±)

+ε
(
u1(x̄, 0±)± 1

2
u0
,3(x̄, 0±)

)
+ · · · (4.110)

= û0(z̄,±1

2
) + ε1/3û1/3(z̄,±1

2
) + ε2/3û2/3(z̄,±1

2
) + εû1(z̄,±1

2
) + · · ·

(4.111)

= ū0(z̄,±1

2
) + ε1/3ū1/3(z̄,±1

2
) + ε2/3ū2/3(z̄,±1

2
) + εū1(z̄,±1

2
) + · · ·

(4.112)

Identifying the terms in the same powers of ε in the above external expansion
and in the asymptotic expansions for ûε (internal expansion) and for ūε, it is
deduced that:

u0(x̄, 0±) = û0(z̄,±1

2
) = ū0(z̄,±1

2
),

u1/3(x̄, 0±) = û1/3(z̄,±1

2
) = ū1/3(z̄,±1

2
),

u2/3(x̄, 0±) = û2/3(z̄,±1

2
) = ū2/3(z̄,±1

2
),

u1(x̄, 0±)± 1

2
u0
,3(x̄, 0±) = û1(z̄,±1

2
) = ū1(z̄,±1

2
). (4.113)

17



Analogous results can be obtained for the tractions:

P0(x̄, 0±)e3 = P̂0(z̄,±1

2
)e3 = P̄0(z̄,±1

2
)e3,

P1/3(x̄, 0±)e3 = P̂1/3(z̄,±1

2
)e3 = P̄1/3(z̄,±1

2
)e3,

P2/3(x̄, 0±)e3 = P̂2/3(z̄,±1

2
)e3 = P̄2/3(z̄,±1

2
)e3,

P1(x̄, 0±)e3 ±
1

2
P0
,3(x̄, 0±)e3 = P̂1(z̄,±1

2
)e3 = P̄1(z̄,±1

2
)e3. (4.114)

Given now a function f : Ω0
+ ∪ Ω0

− 7→ R3, we define

[[f ]] := f(x, 0+)− f(x, 0−), (4.115)

S(f) :=
1

2

(
f(x, 0+) + f(x, 0−)

)
. (4.116)

Then, the contact conditions appropriate for the limit equilibrium problem,
i.e. expressed in terms of the fields defined on Ω0

+ ∪ Ω0
−, can be obtained by

substituting the following relations into the interphase laws:

[ūl] = [[ul]] l = 0, 1/3, 2/3, (4.117)

[ū1] = [[u1]] + S(u0
,3), (4.118)

[P̄le3] = [[Ple3]] l = 0, 1/3, 2/3, (4.119)

[P̄1e3] = [[P1e3]] + S(P0
,3e3). (4.120)

Expansions of the constitutive equations of the adherents

Substituting the expansions (4.19) into the constitutive equation of the re-
scaled adherent (seventh equation in (4.6)) and taking into account that they
have to be satisfied for any value of ε give the simple relations

s̄lij = A±ijhkĒhk(ūl) l = 0, 1/3, 2/3, 1, in Ω±. (4.121)

Summary and discussion of the contact laws

This Section summarizes the transmission conditions obtained for the three
material models of interphase considered in this paper: “soft”, “hard” and
“rigid”. Next, using the matching conditions studied in the previous Section,
interface conditions are obtained from the proposed transmission conditions.
Lastly, these interface conditions are discussed in view of the laws calculated for
soft and hard interphases in linear elasticity and modeling an imperfect contact
because they allow for displacement discontinuities.

Interface laws for soft interphases

For the soft interphase, our asymptotic analysis yields the following results
up to the second order:

[ū0] = 0, [P̄0e3] = 0, (5.1)

[ū1/3] = 0, [P̄1/3e3] = 0, (5.2)

[ū2/3] =
1

(µ̂+ 1
2 λ̂)1/3

1

|P̄0e3|2/3
P̄0e3, [P̄2/3e3] = 0. (5.3)
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Using the matching relations (4.117) and (4.119), the transmission conditions
for the soft interphase can be rewritten in the final configuration Ω0

+ ∪Ω0
− ∪ S0

in a form involving only the fields in the adherents:

[[u0]] = 0, [[P0e3]] = 0, (5.4)

[[u1/3]] = 0, [[P1/3e3]] = 0, (5.5)

[[u2/3]] =
1

(µ̂+ 1
2 λ̂)1/3

1

|P0e3|2/3
P0e3, [[P2/3e3]] = 0. (5.6)

Recalling that for the soft interphase µε = µ̂ε, λε = λ̂ε, taking into account the
expansions (4.15), (4.16) and the relations (4.32)-(4.34), we obtain

Pεe3 = P0e3 +O(ε1/3), (5.7)

[[Pεe3]] = ε2/3[[P2e3]] +O(ε), (5.8)

[[uε]] = ε2/3[[u2]] +O(ε), (5.9)

which, substituted into (5.4)-(5.6), give

[[Pεe3]] = 0 + o(ε), (5.10)

Pεe3 =
1

2ε3
(2µε + λε)

∣∣∣[[uε]]∣∣∣2[[uε]] + o(ε1/3). (5.11)

These equations can be viewed as extending to the three-dimensional case the in-
terface law (2.15) obtained in the one-dimensional case. Moreover, even though
the Saint Venant-Kirchhoff material reduces to the linear elastic material under
the approximation of small strains [12], a simple inspection of the transmission
conditions (5.10), (5.11) shows that they do not reduce to the classical imperfect
contact laws for soft interfaces in linear elasticity

[[Te3]] = 0, T̄e3 = K33[[u]], (5.12)

with T the Cauchy stress. This occurrence is completely analogous to the
behavior of the one-dimensional interface law (2.15).

Interface laws for hard interphases

For the case of a hard interphase, our asymptotic analysis yields the following
transmission conditions up to the third order:

[ū0] = 0, [P̄0e3] = 0, , (5.13)

[ū1] =
(
I + H̄0

){
µ̂(H̄0 + H̄T

0 + H̄T
0 H̄0) + λ̂(I · H̄0 +

1

2
|H̄0 |2)I

}
e3, (5.14)

[P̄1e3] = −divp

((
I + H̄0

)(
µ̂(H̄0 + H̄T

0 + H̄T
0 H̄0) + λ̂(I · H̄0 +

1

2
|H̄0 |2)I

))
,

(5.15)

with
H̄0 = ū0

,1 ⊗ e1 + ū0
,2 ⊗ e2 + [ū1]⊗ e3. (5.16)
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In (5.13), the continuity conditions (4.113) and (4.114) have been taken into
account. Using the matching conditions (4.117)-(4.120), the interface conditions
in the final configuration can be rewritten in the following form:

[[u0]] = 0, [[P0e3]] = 0, (5.17)

P0e3 =
(
I + H0

){
µ̂(H0 + HT

0 + HT
0 H0) + λ̂(I ·H0 +

1

2
|H0 |2)I

}
e3,

(5.18)

[[P1e3]] = −divp

((
I + H0

)(
µ̂(H0 + HT

0 + HT
0 H0) + λ̂(I ·H0 +

1

2
|H0 |2)I

))
−S(P0

,3e3), (5.19)

with
H0 = u0

,1 ⊗ e1 + u0
,2 ⊗ e2 +

(
[[u1]]− S(u0

,3)
)
⊗ e3. (5.20)

For the hard interphase one has µε = µ̂, λε = λ̂, and taking into account the
expansions (4.15), (4.16) and the relations (4.32)-(4.34), one finds

[[Pεe3]] = ε[[P3e3]] +O(ε), (5.21)

[[uε]] = ε[[u3]] +O(ε), (5.22)

which, substituted into (5.17)-(5.15), allow to rewrite them in the form

P0e3 =
(
I + Hε

){
µε(Hε + HT

ε + HT
ε Hε) + λε(I ·Hε +

1

2
|Hε |2)I

}
e3 +O(ε),

(5.23)

[[Pεe3]] = −εdivp

((
I + Hε

)(
µε(Hε + HT

ε + HT
ε Hε) + λε(I ·Hε +

1

2
|Hε |2)I

))
−S(P0

,3e3) +O(ε), (5.24)

with

Hε = u0
,1 ⊗ e1 + u0

,2 ⊗ e2 +
(1

ε
[[uε]]− S(u0

,3)
)
⊗ e3. (5.25)

Equations (5.23), (5.24) have two peculiarities. First, they prescribe the jump
of the displacement and of the traction vector implicitly, the jump of the dis-
placement field entering both right-hand sides of the equations in a nonlinear
way. Next, for “small” enough strains | Hε |<< 1 and negligeable higher order
terms in Hε, equations (5.23) and (5.24) formally reduce to the higher order
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interface laws obtained for a hard, linear elastic interphase in [28, 29, 42]:

[uε1] = ε
( 1

µε
σ0

13 − u0
3,1 − S(u0

1,3)
)

+O(ε) (5.26)

[uε2] = ε
( 1

µε
σ0

23 − u0
3,2 − S(u0

2,3)
)

+O(ε) (5.27)

[uε3] = ε
( 1

(2µε + λε)
σ0

33 −
λε

(2µε + λε)
(u0

1,1 + u0
2,2)− S(u0

3,3)
)

+O(ε)

(5.28)

[σε13] = −ε
(4µε(µε + λε)

(2µε + λε)
u0

1,11 − µεu0
1,22 −

µε(2µε + 3λε)

(2µε + λε)
u0

2,21

− λε

(µε + λε)
σ0

33,1 − S(σ0
13,3)

)
+O(ε), (5.29)

[σε23] = −ε
(4µε(µε + λε)

(2µε + λε)
u0

2,22 − µεu0
2,11 −

µε(2µε + 3λε)

(2µε + λε)
u0

1,12

− λε

(2µε + λε)
σ0

33,2 − S(σ0
23,3)

)
+O(ε), (5.30)

[σε33] = −ε
(
σ0

13,1 − σ0
23,2 − S(σ0

33,3)
)

+O(ε), (5.31)

with σεij the components of the Cauchy stress in the adherents.

Interface laws for rigid interphases

For a rigid interphase, the asymptotic analysis yields the following transmis-
sion conditions up to the second order:

[ū0] = 0, [P̄0e3] = 0. (5.32)

In addition to this equation, the two sets of conditions (4.101)-(4.103) and
(4.104)-(4.106) have been obtained. Conditions (4.101)-(4.103) can be restated
as

| û0
,1 + e1 |2 = 1, (5.33)

| û0
,2 + e2 |2 = 1, (5.34)

(û0
,1 + e1) · (û0

,2 + e2) = 0, (5.35)

implying that the deformation associated to û0(·,±1/2) is an isometric mapping
of S into R3. Physically, the deformation associated to û0 belongs to the class of
“paper-folding” deformations, the deformations that a flat sheet of paper having
the shape of S can undergo.
Conditions (4.104)-(4.106) give the additional restriction

[û1] + e3 =
(û0
,1 + e1) ∧ (û0

,2 + e2)

|(û0
,1 + e1) ∧ (û0

,2 + e2) |
, (5.36)

implying that the relative position vector (at the first order ) between points on
the top and the bottom of the interphase remains perpendicular to the deformed
middle surface (at the zeroth order ) without stretching.

The lowest order interface model corresponding to the rigid adhesive is
thus the perfect interface model described by the classical continuity condi-
tions [[u0]] = 0, [[P0e3]] = 0, augmented by the further restriction that u0

corresponds to an isometric mapping.
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Comparison of the soft interface laws with the limit model of Licht
and Michaille

In [37], Licht and Michaille consider an elastic body constituted of adherent
and interphase hyperelastic materials with nonconvex bulk energy density. In
our notations and for the case of homogeneous materials, the total energy that
they consider is

Eε,ρε(u) :=

∫
Ωε

±

h(∇u(x))dVx + ρε
∫
Bε

b(∇u(x))dVx − L(u), (6.1)

where ρε is a small parameter taking into account the low stiffness of the inter-
phase and

L(u) :=

∫
Ω

f(x) · u(x)dVx +

∫
Γ1

g(x) · u(x)dAx (6.2)

is the loading potential.
Licht and Michaille identify several limit problems depending on the relative

order of magnitude of ρε with respect to ε3. In [37], three regimes are identified;
in particular, the debonding phenomenon is characterized. For a Saint Venant-
Kirchhoff material, [37] shows that

1. for ρε = εr, 0 < r < 3, the glue stiffness is sufficiently high to maintain
adhesion. Licht and Michaille prove that in the limit problem the jump of
the displacement at the interface vanishes (see space V0 in [37]) and that
the limit energy consists of the joint energy of the adhesives. In other
words, the limit model of the thin adhesive layer is a perfect interface.

2. for ρε = ε3, the three-body limit problem obtained in [37] for a general
energy contains the energy term

L

∫
S

Qb∞,p([[u(x)]]⊗ e3)dAx, (6.3)

where 2L = limε→0+ ρε/(ε)p−1 ∈ [0,+∞), p is the growth exponent of b,
b∞,p is the density of the surface energy defined as follows:

b∞,p(F) := lim
t→+∞

1

tp
b(tF), (6.4)

and Qb∞,p is its quasiconvex envelope. For the Saint Venant- Kirchhoff
energy density, one has p = 4 (cf. (1.1)). Indeed, by evaluating the energy
(1.1) at E = E(tF), with F the deformation gradient associated to u, one
can easily show that leading term of the energy W (E(tF) when t→∞ is

t4

4

(
µ |FTF |2 +

λ

2
|F |4

)
. (6.5)

Now, using (6.6) and assuming to identify ρε with the elastic constant µε,
one finds

b∞,p(F) =
1

4
|FTF |2 +

λ̂

8µ̂
|F |4, (6.6)

where λ̂, µ̂ are the rescaled Lam’e constants and the same rescaling with
ε has been assumed for the two constants. The energy density (6.6) is
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clearly convex and thus Qb∞,p = b∞,p. Therefore, if L 6= +∞ the limit
surface energy (6.3) for b∞,p as in (6.6) takes the form

L

∫
S

(1

4
|(e3 ⊗[[u(x)]])([[u(x)]]⊗ e3) |2 +

λ̂

8µ̂
| [[u(x)]]⊗ e3 |4

)
dAx (6.7)

which, after simplification, becomes

L

∫
S

1

8µ̂
(2µ̂+ λ̂) | [[u(x)]] |4 dAx. (6.8)

3. for ρε = εr, r > 3, [37] shows that adhesion is lost. In the limit problem L
= 0 and that there is no energy of the interphase left in the limit problem
but the bodies can separate.

The case of a soft adhesive studied in the present paper is concerned with ρε = ε
which is a subcase of the first case above studied by Licht and Michaille. This
is a case where Licht and Michaille obtain perfect adhesion, so does the present
paper (cf. (5.4)). The case of a hard adhesive ρε = 1 and the case of a rigid
adhesive ρε = ε are not strictly sensu studied in [37] since Licht and Michaille
choose the glue stiffness to vanish.

Uniaxial tension and compression of a butt joint

In this Section, two nonlinear elastic isotropic parallelepipeds Ω0
− and Ω0

+ are
considered, having initial dimensions l+1 ×l

+
2 ×l

+
3 and l−1 ×l

−
2 ×l

−
3 respectively, and

Figure 3: Reference configuration of the butt joint studied in the example.
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joined by an interface along a common face S0. In the reference configuration,
the composite structure is subjected to a tensile (compressive) load Q > 0
(Q < 0) aligned parallel to e3 and acting on the upper and the lower bases
Γ+

1 = {(x1, x2, x3) ∈ Ω : x3 = l+3 } and Γ−1 = {(x1, x2, x3) ∈ Ω : x3 = −l−3 }.
On the remaining part of the boundary, ∂lΩ

0, the surface forces are taken to
vanish. The load intensity Q is assumed to be independent of ε and body forces
are null. The parallelepipeds are taken to be made of the same Saint Venant-
Kirchhoff material, with Lamé constants λ, µ, but in the analysis, the related
elastic constants

E = µ
(2µ+ 3λ)

λ+ µ
(7.1)

ν =
λ

2(λ+ µ)
(7.2)

are used. In the following, λε, µε are taken to denote the (unrescaled) Lamé
constants of the interface, and Eε, νε are taken to denote the related (unrescaled)
elastic constants.

In the next Subsections, the equilibrium problem of the composite body
made of two blocks joined by a non linear elastic interface is studied in the
following two cases: i) the interface behavior is soft and it is described by the
interface laws (5.10) and (5.11); ii) the interface behavior is hard and it is
described by the interface laws (5.23) and (5.24).

Butt joint with soft interface behavior
Neglecting the higher order terms in ε, ε1/3 in (5.10) and (5.11), the equilib-

rium problem of the joined structure is written as

DivPε = 0 in Ω0
+ ∪ Ω0

−,
Pε = (I +∇uε)( E

1+νEε + νE
(1+ν)(1−2ν) (I ·Eε)I) in Ω0

+ ∪ Ω0
−,

Eε = 1/2(∇uε + (∇uε)T + (∇uε)T∇uε) in Ω0
+ ∪ Ω0

−,
[[Pεe3]] = 0 on S0,

Pεe3 = 1
2ε3 (2µε + λε)

∣∣∣[[uε]]∣∣∣2[[uε]] on S0,

Pεeα = 0, α = 1, 2, on ∂lΩ
0,

±Pεe3 = ±Qe3 on Γ±1 .

(7.3)

For the displacement field uε : Ω0
+ ∪ Ω0

− 7→ R3 we seek solutions of the form

uε = (λ1 − 1)(x1e1 + x2e2) + {(λ3 − 1)x3}e3 ±
1

2
[[uε]] in Ω0

±, (7.4)

with the λ1, λ3 ∈ (0,+∞), constants to be determined, representing the stret-
ches parallel to the x1 and x3 axes, respectively, and the [[uε]] ∈ R3, a constant
vector to be determined, representing the jump of the displacement at the in-
terface S0.

The Piola-Kirchhoff stress tensor corresponding to (7.4) is

Pε = P ε11(e1 ⊗ e1 + e2 ⊗ e2) + P ε33(e3 ⊗ e3), (7.5)

with

P ε11 =
Eλ1

2(1 + ν)(1− 2ν)
(λ2

1 − 1) +
νEλ1

2(1 + ν)(1− 2ν)
(λ2

3 − 1), (7.6)

P ε33 =
Eλ3

4(1 + ν)(1− 2ν)
(λ2

3 − 1) +
νEλ3

(1 + ν)(1− 2ν)
(λ2

1 − 1). (7.7)
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Clearly, the divergence of Pε vanishes together with the jump of Pε at the
interface S0. To meet the natural boundary conditions on ∂lΩ

0, the vanishing
of P ε11 is imposed, which gives

λ2
1

(1 + ν)
+

νλ2
3

(1 + ν)
= 1. (7.8)

The above condition restricts the stretches λ1 and λ3 to take values in the inter-
vals (0, 1 + ν) and (0, (1 + ν)/ν), respectively. The occurence of limit stretches
can be interpreted as the failure of existence of solutions as in (7.4) for large
strains, possibly related to the development of microstructure in the adherents
[36]. Solving (7.8) with respect to λ1 gives

λ1 =
√

1 + ν − νλ2
3. (7.9)

Substituting (7.9) back into (7.5) gives

Pε =
Eλ3

2
(λ2

3 − 1)(e3 ⊗ e3), (7.10)

which, using the natural boundary condition on Γ±1 , implies

Q =
Eλ3

2
(λ2

3 − 1). (7.11)

This equation determines λ3 as a function of the load Q and, in view of the
restriction λ3 ∈ (0, (1 + ν)/ν), imposes the following restriction on the load

−
√

3

9
E ≤ Q ≤ (1 + ν)(1 + 2ν)

2ν3
E. (7.12)

The solution of (7.11) is

λ3 =

{
2√
3

cos
(

1√
3

arccos(3
√

3QE )
)

if −
√

3
9 ≤

Q
E <

√
3

9 ,
2√
3

cosh
(

1√
3
arccosh(3

√
3QE )

)
if
√

3
9 ≤

Q
E < (1+ν)(1+2ν)

2ν3 .
(7.13)

The jump [[uε]] is determined through the interface condition in (7.3), which
gives

[[uεα]] = 0, α = 1, 2, [[uε3]] =
3
√

2 ε
3
√

2µε + λε
Q

| Q |2/3
. (7.14)

In view of (7.4), the macroscopic stretch along the x3 axes, Λ, is

Λ := 1 +
(u(x1, x2, l

+
3 )− u(x1, x2, l

−
3 )) · e3

l
= λ3 +

[[uε3]]

l
, (7.15)

with l := l+3 + l−3 . The macroscopic response to uniaxial tension/compression
is shown in Figures 4, 5 in terms of applied surface force Q (divided by E)
per unit area in the reference configuration and applied surface force q = Q/λ2

1

(divided by E) per unit area in the deformed configuration versus the logaritmic
strain ε = ln Λ. In the Figures, the Poisson’s ratios of the adherents and the
adhesive are taken to be ν = 0.33 and νε = 0.4, respectively, and the thick solid
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line corresponds to the macroscopic response calculated in absence of the soft
interface.

In Figure 4, the Young modulus of the adherents is 30 times greater than the
Young modulus of the adhesive, E/Eε = 30, and the thin dashed curves corre-
spond to increasing values of the adhesive thickness, namely ε/l = {0.005; 0.025; 0.05},
the dashing space increasing with increasing ε. Figure 4 shows that the (finely
dashed) curve for ε/l = 0.005 and the (solid) curve for ε = 0 run very close
to each other and that the adhesive thickness has a remarkable effect on the
macroscopic response for ε/l = 0.025, 0.05.

In Figure 5, the adhesive thickness is set ε = 0.025/(l+3 + l−3 ) and the thin
dashed curves correspond to increasing values of the Young modulus of the
adherents, E/Eε = {10; 30; 150}, the dashing increasing with increasing E/Eε.

Both Figures also evidentiate a particular feature of the response curves
taking into the presence of the adhesive near the origin: they fail to reproduce
the behavior of the dashed curve at small Λ. This is related to the inability of
(5.10), (5.11) to reduce to the classical imperfect contact laws for soft interfaces
at small strains, as already remaked in Section 5.

Butt joint with hard interface behavior

Neglecting the higher order terms in ε in the interface laws (5.23) and (5.24),
the equilibrium problem of the structure made of two identical blocks joined by
a hard interface is written as

DivPε = 0 in Ω0
+ ∪ Ω0

−,
Pε = (I +∇uε)( E

1+νEε + νE
(1+ν)(1−2ν) (I ·Eε)I) in Ω0

+ ∪ Ω0
−,

Eε = 1/2(∇uε + (∇uε)T + (∇uε)T∇uε) in Ω0
+ ∪ Ω0

−,

[[Pεe3]] = −εdivp

((
I + Hε

)(
µε(Hε + HT

ε + HT
ε Hε)

+λε(I ·Hε + 1
2 |Hε |2)I

))
− S(P0

,3e3) on S0,

P0e3 =
(
I + Hε

){
µε(Hε + HT

ε + HT
ε Hε)

+λε(I ·Hε + 1
2 |Hε |2)I

}
e3 on S0,

Pεeα = 0, α = 1, 2, on ∂lΩ
0,

±Pεe3 = ±Qe3 on Γ±1 ,
(7.16)

with Hε as in (5.25) and u0,P0 the displacement and the corresponding first
Piola-Kirchhoff stress tensor solution of the equilibrium problem without the
interface. In view of the results obtained in the previous subsection, the dis-
placement u0 is given by (7.4), with [[uε]] = 0 and λ1, λ3 satisfying (7.9), (7.11).
The tensor P0 is given by (7.10).

For the displacement field uε : Ω0
+ ∪ Ω0

− 7→ R3 we seek again a solution of
the form (7.4). The constants λ1, λ3 are still chosen to satisfy (7.9) and (7.11),
in order to match the constitutive equations of the adherents and the boundary
conditions. Thus,

uε = u0 ± 1

2
[[uε]] in Ω0

±, (7.17)

Hε = λ1(e1 ⊗ e1 + e2 ⊗ e2) + (
1

ε
[[uε]]− (λ3 − 1)e3)⊗ e3. (7.18)

The first Piola-Kirchhoff stress corresponding to (7.17) is still given by (7.10),
i. e. Pε = P0. The (constant) jump [[uε]] is determined in order to satisfy the
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Figure 4: Uniaxial tension and compression response of a butt joint with a soft thin inter-
phase. Normalized applied surface force per unit area in the reference configuration, Q/E,
and normalized applied surface force per unit area in the deformed configuration, q/E, versus
the macroscopic logaritmic strain ε for the values E/Eε = 30, ν = 0.33, νε = 0.4 and dif-
ferent values of the interphase thickness. The thick solid line corresponds to to the response
without the thin interphase (i.e. vanishing thickness ε ), the thin dashed curves to differ-
ent adhesive/adherents thickness ratios ε/l = {0.005; 0.025; 0.05}, the dashing increasing with
increasing ε/l.
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Figure 5: Uniaxial tension and compression response of a butt joint with a soft thin inter-
phase. Normalized applied surface force per unit area in the reference configuration, Q/E,
and normalized applied surface force per unit area in the deformed configuration,q/E, versus
the macroscopic logaritmic strain ε for the adhesive/adherents thickness ratio ε/l = 0.025 and
Poisson’s ratios ν = 0.33, νε = 0.4. The thick solid line corresponds to the response without
the thin interphase, the thin dashed curves to increasing ratios E/Eε = {10, 30, 150}, the
dashing space increasing with increasing E/Eε.
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interface laws in (7.16). Since Hε and P0 are constant tensors, the first interface
law reduces to [[Pεe3]] = 0, which is identically satisfied. The second interface
law gives the following conditions:

0 = µελ1[[uε1]](2 +
1

ε
[[uε3]]− λ3), (7.19)

0 = µελ1[[uε2]](2 +
1

ε
[[uε3]]− λ3) (7.20)

Q =
(1− νε)Eε

(1 + νε)(1− 2νε)
(2 +

1

ε
[[uε3]]− λ3)×

(
(2 +

1

ε
[[uε3]]− λ3)2 − 1− 4νε

(1− νε)
(1− λ1)

)
. (7.21)

The first two of these conditions are satisfied by taking [[uε1]] = 0 = [[uε2]].
In view of (7.11), the solution of the third (cubic) equation determines [[uε3]]

as a function of λ3. In general, the solution to (7.21) is not unique and, as
a selection criterion, the root of smallest modulus can be considered. This
provides the continuity of the respone curve Q/Λ through the origin, with Λ
given again by (7.15).

Figures 6 and 7 shown the macroscopic responses Q/ε and q/ε, with q =
Q/λ2

1 the load per unit area in the deformed configuration and ε = ln Λ the
logaritmic strain. The thick solid line corresponds to the macroscopic response
calculated without taking into account the presence of the hard interface. To
plot the Figures, the following values of the elastic constants have been assumed:
ν = 0.33, νε = 0.4. In Figure 6, it has been set E/Eε = 1 and an increasing dash-
ing corresponds to increasing values of ε/(l+3 + l−3 ) in the set {0.005, 0.025, 0.05}.
In Figure 7, it has been set ε/(l+3 + l−3 ) = 0.025 and an increasing dashing corre-
sponds to increasing values of E/Eε in the set {0.5, 10, 50}. From the Figures, it
can be noted that the curves are almost overlapped, meaning that the presence
of the hard interphase scarcely affects the macroscopic response for the given
set of geometric and material parameters.

Conclusion

Using matched asymptotic expansions with fractional exponents, we have
obtained original transmission conditions, appropriated for soft, hard and rigid
adhesive materials obeying the Saint Venant-Kirchhoff model. The particular
type of expansion chosen in the present paper, cf. (4.15) and (4.16), is strictly
related to the exponent (p = 4) appearing in the growth conditions of the Saint
Venant-Kirchhoff energy density. The same exponent enters the transmission
conditions calculated for the soft adhesive, cf. (5.10), (5.11).

In the present paper, we restrict to a Saint Venant-Kirchhoff constitutive
model, for which the exponent 1/3 of the small parameter ε appears, following
the soft case of the one-dimensional example. In a more general situation, the
fractional exponent of the asymptotic expansion is expected to depend on the
exponent p appearing in the growth conditions of the energy density [37].

The transmission conditions proposed in the present paper find agreement
with the results obtained via Γ−convergence techniques by Licht and Michaille
for the case of a soft adhesive [37]. Conditions (5.23) and (5.24) obtained for a
hard interphase do not find analogous counterparts.
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Figure 6: Uniaxial tension and compression response of a butt joint with a hard thin inter-
phase. Normalized applied surface force per unit area in the reference configuration, Q/E, and
normalized applied surface force per unit area in the deformed configuration, q/E, versus the
macroscopic logaritmic strain ε for the elastic constants E/Eε = 1, ν = 0.33, νε = 0.4. The
thick solid line corresponds to to the response without the thin interphase, the thin dashed
curves to ε/l = {0.005; 0.025; 0.05}, the dashing increasing with increasing thickness ratio ε/l.
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Figure 7: Uniaxial tension and compression response of a butt joint with a hard thin inter-
phase. Normalized applied surface force per unit area in the reference configuration, Q/E, and
applied surface force per unit area in the deformed configuration, q/E, versus the macroscopic
logaritmic strain ε for the thickness ratio ε/l = 0.025, and Poisson’s ratios ν = 0.33, νε = 0.4.
The thick solid line corresponds to the response without the thin interphase, the thin dashed
curves to increasing ratios E/Eε = {0.5, 10, 50}, the dashing space increasing with increasing
E/Eε.
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The nonlinear contact law calculated by Ganghoffer and Schultz in [17],
which is similar to the one obtained by Edlund and Klarbring in [16], can not
be compared with the interface laws obtained in the present paper for a soft
interface. Indeed, an appropriate rescaling of the out-of-plane deformation com-
ponent inside the interphase is assumed in [17], which is not used in our analysis.

Transmission conditions for a Saint Venant-Kirchhoff soft interface have been
obtained also in [26]. Under the assumption of a linear scaling of the charges
with the adhesive thickness, the limit behavior in the adherents is that of linear
elasticity whereas it remains nonlinear in the adhesive. After linearization, the
transmission conditions calculated in [26] provide the classical linear contact
laws of spring-like type. The limit problem and the transmission conditions for
a nonlinear Saint Venant-Kirchhoff soft interface obtained in this paper differ
from the ones obtained in [26], having been obtained without applying any load
scaling. In our approach, the limit behavior of the adherents remains nonlinear.
As already remarked in Section 5.1, by linearizing the transmission conditions
of the soft interface (eqns. (5.10), (5.11)) for small strains, one cannot recover
the classical contact laws of a linear elastic soft interface.

The situation is different for the case of a hard interface. Indeed, by lineariz-
ing the transmission conditions (5.23), (5.24) for small strains, one recovers the
transmissions conditions calculated in [1, 28, 29, 42] in the linearly elastic setting
and generalizing the perfect interface case by taking into account higher order
terms. Thus, the transmission conditions calculated in the present paper for a
hard adhesive can be viewed a generalization of the transmission conditions for
a hard interface in lienar elasticity.

In [7, 8, 9, 11], different cases of plate-like and shell-like linear elastic in-
terphases are considered by scaling the intermediate layer stiffness with 1/ε
(membrane interface) and 1/ε3 (inextensible flexural interface). The external
loads, applied to the adherents, remain unscaled with respect to ε. Moreover,
the asymptotic models are mathematically justified by virtue of a strong con-
vergence argument. For an intermediate layer stiffness scaling with 1/ε, in [8] it
is found that the interphase behaves as an elastic membrane in the limit. This is
different from the result obtained in the present paper, where it has been found
that the rigid interface behaves as a perfect interface model at the zeroth order
with the restriction that the deformation associated with the limit displacement
is an isometric mapping. We believe that the difference may be due to our choice
of the leading order in the inner expansion of the second Piola-Kirchhoff stress
tensor (4.17), where the leading order has been simply chosen ε0. A different
choice of the leading order in (4.17) is expected to give rise to a completely
different limit interface model for the rigid case.

The interface laws calculated in the present paper are expected to find signif-
icant applications in different contexts; definitely, they should be of importance
in the analysis of adhesive joints, especially for all those applications requir-
ing an accurate modeling of the nonlinear pre-peak behavior of the adhesive
[2, 3, 13, 22, 33, 40].

The proposed interface laws could also serve as generalization of the classical
linear spring-type interface model in simulations of imperfect nonlinear bonding
between the constitutive components of composites, in particular to study the
influence of interfacial imperfections on the effective macroscopic behavior [34,
35].
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Appendix

LEMMA 1 Let K be taken to denote the matrix

K :=

 µ̂ 0 0
0 µ̂ 0

0 0 2µ̂+ λ̂

 , (A.1)

and let ∇φ := I + Ĥ0. If ∇φ and (∇φK(∇φ)T + ŝ0
,33I) are invertible, then

the vectors ŝ0e3 and û1
,3are independent of z3.

Proof. From (4.77) one has (∇φŝ0)e3 independent of z3. In other words,

∇φ(̂s0e3),3 + (∇φ),3ŝ
0 = 0. (A.2)

From û0 independent of z3, we have

∇φ,3 = û1
,33 ⊗ e3, (A.3)

and
(∇φ),3ŝ

0e3 = ŝ0
,33û

1
,33. (A.4)

From (4.69) and (4.70),

(̂s0e3),3 = K(∇φ)T û1
,33. (A.5)

Inserting (A.4) and (A.5) in (A.2), one obtains

(∇φK(∇φ)T + ŝ0
,33I)û1

,33 = 0. (A.6)

If (∇φK(∇φ)T + ŝ0
,33I) is invertible, then the system (A.6) admits only the

trivial solution û1
,33, implying that û1

,3 is independent of z3. Therefore, in view
of (A.5) and of the invertibility of ∇φ, ŝ0e3 is also independent of z3.
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