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A correlation between epilepsy and cellular redox imbalance has been suggested, although the mechanism
by which oxidative stress (OS) can be implicated in this disorder is not clear. In the present study several
oxidative stress markers and enzymes involved in OS have been determined. In particular, we examined the
levels of 4-hydroxy-2-nonenal protein adducts (HNE-PA), a by-product of lipid peroxidation, and the activation
of NADPH oxidase 2 (NOX2), as cellular source of superoxide (O2

−), in surgically resected epileptic tissue from
drug-resistant patients (N = 50). In addition, we investigated whether oxidative-mediated protein damage
can affect aquaporin-4 (AQP4), a water channel implicated in brain excitability and epilepsy. Results showed
high levels of HNE-PA in epileptic hippocampus, in both neurons and glial cells and cytoplasmic positivity for
p47phox and p67phox suggesting NOX2 activation. Interestingly, in epileptic tissue immunohistochemical localiza-
tion of AQP4 was identified not only in perivascular astrocytic endfeet, but also in neurons. Nevertheless, nega-
tivity for AQP4 was observed in neurons in degeneration. Of note, HNE-mediated post-translational
modifications of AQP4were increased in epileptic tissues and double immunofluorescence clearly demonstrated
co-localization of AQP4 and HNE-PA in epileptic hippocampal structures. The idea is that sudden, disorderly, and
excessive neuronal discharges activates NOX2 with O2

− production, leading to lipid peroxidation. The resulting
generation of HNE targets AQP4, affecting water and ion balance. Therefore, we suggest that seizure induces ox-
idative damage as well as neuronal loss, thereby promoting neuronal hyperexcitability, also affecting water and
ion balance by AQP4 modulation, and thus generating a vicious cycle.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Epilepsy, a brain disorder characterized by recurrent, unprovoked
and unpredictable occurrence of seizures, is one of the most common
serious neurological disorders, affecting more than 50 million people
worldwide. As is well known, impaired redox status constitutes a com-
mon mechanism of injury for many neurodegenerative disorders [1].
Oxidative stress (OS) occurs when antioxidant defense against oxidant
production is in imbalance towards oxidation of cellular targets [2].
s and Biotechnology, University
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Due to the low regenerative capacity of neurons, high metabolic rate,
limited antioxidant capacity, high oxygen consumption, and elevated
concentrations of polyunsaturated fatty acids (PUFA) and iron, the
brain is particularly vulnerable to OS [3]. Emergingworks indicate an in-
volvement of redox imbalance in epileptogenesis [4]. Increased oxidant
generation has been demonstrated to be induced in epilepsy either by
recurrent seizures, as well as, by mitochondrial dysfunction [5] with
high levels of OS biomarkers and low antioxidant defenses present in
epileptic subjects [6]. Furthermore, treatment with the antioxidants vi-
tamin E [7] and vitamin C [8], and the component of glutathione perox-
idase, selenium [9], demonstrated protective effects on the oxidative-
induced injury in epilepsy. However, whether OS is a causative factor
or rather a consequence (or both) in mechanisms involved in seizures
is not completely clear [10].
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Although mitochondria are generally thought to be the main source
of OS, a significant involvement for nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX) in O2•

− and H2O2 production
appear evident in brain [11]. NOX2, which catalyzes the reduction of
molecular oxygen to form O2•

−, is a multi-subunit enzyme composed
of the cytosolic proteins, p40phox, p47phox, and p67phox, and at least
two membrane proteins, including gp91phox and p22phox. The assembly
of the NOX2 complex is regulated by p47phox phosphorylation [12,13].
In the brain, normal NOX function appears to be required for processes
such as neuronal signaling andmemory, but overproduction of oxidants
contributes to neurotoxicity and neurodegeneration [14]. Literature
data indicate clearly a NOX-induced O2•

− and H2O2 production in
several epilepsy models (animal and in vitro) [15–21], but as of today,
because of difficulty in recruiting the samples, little has been done in
humans.

The production of O2•
− andH2O2, the lattermostly through superox-

ide dismutase catalyzed dismutation of O2•
− to H2O2 and O2, can con-

tribute to functional molecular impairment and cellular damage,
either directly or through iron-initiated (Fenton chemistry) lipid perox-
idation, which occurs in brain due to its high content in PUFA and
relatively low antioxidant capacity [22]. Lipid peroxidation alters mem-
brane structure, affecting its fluidity and permeability and the activity of
membrane-bound proteins, and produces many cytotoxic and reactive
by-products. Among these, the well known 4-hydroxy-2-nonenal
(HNE) is able to form adducts with biomolecules, including proteins,
lipids and nucleic acids, thereby propagating oxidative damage [23,
24]. HNE-mediated damage to proteins is a known oxidative post-
translational modification (PTM) that leads to functional changes or
deactivation of enzymes, transporters, ion channels and receptors [25].
Furthermore, the accumulation of HNE protein adducts (HNE-PA)
occurs in various pathological conditions, including neurological
diseases, where it contributes to cell death and neurodegeneration
[25,26]. A recent study investigated the generation and potential role
of protein nitration in epileptogenesis [27], another oxidative PTM of
proteins (noted as 3-nitrotyrosine) a common biomarker of disease. In
addition, there is only one work conducted on an epilepsy animal
model, i.e. the kainate-treated rat, which has examined the time course
and distribution of HNE-PA in the damaged hippocampus after kainate
injections [28]. Nevertheless, to our knowledge, there is no published
information regarding HNE-PA levels and localization in epileptic
human tissues.

Although oxidative generation in cells wasfirst described as contrib-
uting to damage, it is nowwell-established that low level production of
H2O2 participates as a secondmessenger in gene expression and several
signaling pathways [29]. Oxidant generation associated with damage,
can also participate in signaling, although it may be deregulated. It is
also well known that oxidative stimuli can modulate the expression/
activity of extracellular matrix enzymes, including matrix metallopro-
teinases (MMPs) [30]. MMPs have been shown to play an important
role also in neuropathological processes and neurodegenerative disor-
ders [31]. A link between MMPs activity and epilepsy has been re-
peatedly reported both in humans and in animal models [32].

Aquaporin-4 (AQP4) is a member of a family of bidirectional, high-
capacity water channels. In the brain, AQP4 is primarily expressed in
the astrocyte endfeet membranes adjacent to blood vessels and plays
a key role in brain water homeostasis. Emerging evidences demonstrat-
ed dysregulation of water and ions homeostasis in patients with mesial
temporal lobe epilepsy (MTLE) [33]. Moreover, expression and subcel-
lular localization of AQP4 have been shown recently to be altered in
sclerotic hippocampus obtained from patients with mesial temporal
sclerosis [34,35].

Based on these data, the main goal of this study was to elucidate the
presence and the possible source of the redox imbalance in surgically
resected epileptic tissues fromdrug-resistant patients and to investigate
whether oxidative imbalance could affect AQP4 expression and/or
function.
2. Materials and methods

2.1. Patients and controls

Fifty patients operated on for drug-resistant epilepsy between 2003
and 2013 at the University Hospital of “Santa Maria alle Scotte” of Siena
by a same neurosurgeon (A.M.) were included in our study. Main pa-
tient data and clinical findings are reported in Table 1.

Presurgical evaluation included careful analyses of seizure
semeiology, continuous scalp video-EEG monitoring using noninvasive
or invasive (subdural grids) methods, anatomical neuroimaging (MRI)
and functional neuroimaging (SPECT, functional MRI), and neuropsy-
chological assessment.

All patients of this series were submitted to a two-step anterior tem-
poral lobectomy with the temporal neocortex removed first, followed
by resection of the deep structures (uncus, amygdala, hippocampus
and paraippocampus gyrus). In tumoral cases (epilepsy-associated
tumors), the gross-total neoplastic removal was part of the wider
antero-mesial temporal resection.

Themain portion of the resected tissueswas submitted for patholog-
ical evaluation. Samples of temporal neocortex and, in some cases, of
sclerotic hippocampus (approximately 1 cm3) were separated from
each resected tissue and immediately snap-frozen by immersion in liq-
uid nitrogen and stored at−80 °C until analysis as above.

The temporal neocortex of five non-epileptic patients, suffering from
other pathologies (a case of cavernous hemangioma, twomelanomame-
tastases and a case of glioblastoma) was used as control sample. In all
cases an “in block” resection has been performed, and control samples
were taken from areas distant from the lesion sites, which were normal
at histopathological evaluation. In addition, non-sclerotic hippocampal
tissues of epileptic patients were compared to hippocampal sclerotic tis-
sues of the other epileptic patients in immunohistochemistry assay.

This study was approved by the Ethics Committee of the Hospital of
Siena, and informed consent was acquired from enrolled subjects.

It should be noted that due to the difficulty in obtaining fresh and
relatively healthy brain tissue, only 5 cortical control samples were
obtained to be compared with 50 cortical biopsies from patients with
drug-resistant epilepsy. Moreover, as there are very limited non-
epileptic indications allowing removal of temporal mesial structures
(hippocampus, amygdala), relative differences between hippocampus
and neocortex could only bemade within the epilepsy group. Nonethe-
less, as the hippocampuswas involved in the pathology of 70% of the ep-
ilepsy patients, it was important to evaluate the hippocampus despite
this limitation. Then, comparisonsweremade between the group of ep-
ileptic patients with healthy hippocampus (which served as control)
and patients with hippocampal sclerosis (HS).

2.2. Samples

Epileptic surgical samples for histopathological examination always
included temporal neocortex, amygdale, uncus, and hippocampus. Di-
agnoses (see Table 1) were performed according the ILAE classifications
[36,37]. Hippocampal sclerosis (HS) was diagnosed in 34 patients, and
probable HS (only CA1 and CA4 regions were evaluable) in one patient.
HSwas subclassified according to Blümcke et al. [37] on the bases of the
site of neuronal cell loss in the Cornus Ammonis (CA): type I, in CA1 and
CA4; type II, in CA1; type III, in CA4. There were 18 focal cortical dyspla-
sia (FCD), subclassified according to the new ILAE consensus classifica-
tion system [36].

2.3. Western blotting

Brain samples (temporal neocortex from non-epileptic and epileptic
patients, and epileptic sclerotic hippocampus) were lysed in RIPA buffer
containing protease inhibitors and equal amounts of proteins (40 μg)
were separated by SDS–PAGE on a 10% gel and transferred to



Table 1
Main demographic and clinical findings of epileptic drug-resistant patients included in the study.

Patient Age at surgery
(years)/sex

Age at seizure
onset

Type of
epilepsy

Lobe Engel's
class⁎

MRI findings Type of surgery Histopathological
classification

#1 57/M 6 PC R TL Ia MTS R T_Lobect. HS 2
#2 46/M 19 PC R TL Ia MTS R T_Lobect. HS 1
#3 55/F 51 PC L TL Ia Cripto L T_Lobect. FCD Ia
#4 35/F 34 PC R TL Ia Cripto R T_Lobect. HS 1
#5 29/M 7 PC/Sotos R TL Ia MTS R T_Lobect. FCDIIIa(FCDIb + HS 1)
#6 28/F 18 PC L TL II MTS+FCD L T_Lobect. FCDIIIa(FCDIb + HS 1)
#7 19/F 19 P+GTC L TL Ia NDMTA +Tum L T_Lobect. + Lesionect. GG
#8 18/F 18 PC L TL Ia NDMTA +Tum L T_Lobect. + Lesionect. GG
#9 43/M 12 PC R TL Ia MTS R T_Lobect. HS 1
#10 36/M 8 PC R TL Ia MTS R T_Lobect. HS 1
#11 34/F 33 PC L TL III NDMTA +Tum L T_Lobect. + Lesionect. GG
#12 13/F 3 PC L TL Ia MTS L T_Lobect. FCDIIIa(FCDIIa + HS 1)
#13 18/M 18 PC L TL Ia MTS L T_Lobect. HS1
#14 28/M 9 PC R TL Ia FCD R T_Lobect. FCD Iia
#15 35/F 8 PC R TL Ia MTS R T_Lobect. HS 1
#16 39/F 7 PC L TL II MTS L T_Lobect. HS 1
#17 5/M 1 PC L TL Ia FCD L T_Lobect. FCDIIIb(FCDIb + GG)
#18 25/F 19 PC L TL Ia MTS L T_Lobect. FCDIIIa(FCDIb+HS1)
#19 28/F 13 PC L TL Ia FCD L T_Lobect. FCDIIIc(FCDIb+VM)
#20 39/M 17 PC L TL Ia DNET L T_Lobect. DNET
#21 41/F 13 PC R TL Ia MTS L T_Lobect. HS 1
#22 37/M 15 PC R TL Ia MTS R T_Lobect. HS 1
#23 56/M 20 PC R TL II MTS R T_Lobect. HS 1
#24 51/F 48 PC L TL Ia NDMTA + Tum L T_Lobect. GG
#25 54/M 20 PC R TL Ia MTS R T_Lobect. HS 1
#26 39/M 33 PC L TL Ia MTS L T_Lobect. HS 3 + PA
#27 41/F 13 PC R TL Ia MTS R T_Lobect. HS 1
#28 39/F 34 PC R TL Ia FCD R T_Lobect. FCDIIIa(FCDIb+HS2)
#29 41/M 34 PC R TL Ia MTS R T_Lobect. HS 1
#30 29/M 3 PC R TL Ia FCD R T_Lobect. FCDIIIa(FCDIb+HS1)
#31 30/M 10 PC L TL Ia MTS L T_Lobect. HS 2
#32 44/F 35 PC L TL Ia Cripto L T_Lobect. CHG
#33 35/F 6 PC R TL Ia FCD R T_Lobect. FCD Iib
#34 42/F 35 PC L TL Ia MTS L T_Lobect. HS 1
#35 41/M 12 PC L TL Ia MTS L T_Lobect. HS 1
#36 34/M 15 PC L TL Ia MTS L T_Lobect. HS 1
#37 42/F 34 PC L TL Ib Cripto L T_Lobect. CHG
#38 28/F 29 PC L TL Ia FCD L T_Lobect. FCDIIIa(FCDIb+HS 1)
#39 21/F 10 PC R TL Ia FCD L T_Lobect. FCDIIIc(FCDIb+VM)
#40 45/F 11 PC R TL Ia MTS+FCD R T_Lobect. FCDIIIa(FCDIb+HS 1)
#41 27/F 17 PC L TL Ia MTS L T_Lobect. HS 1
#42 48/F 46 PC R TL Ia Cripto R T_Lobect. CHG
#43 30/F 17 PC R TL Ib FCD Right Cortic. FCD IIa
#44 45/M 11 PC R TL Ib MTS R T_Lobect. HS 1
#45 29/F 15 PC L TL II MTS L T_Lobect. HS 1
#46 31/F 9 PC L TL IV Post-encephalitic scar L T_Lobect. HS 1
#47 37/F 4 PC L TL Ia MTS L T_Lobect. HS 1
#48 33/M 10 PC R TL Ia MTS+FCD R T_Lobect. FCDIIIa(FCDIa+HS 1)
#49 20/F 12 PC L TL Ia MTS+FCD L T_Lobect. FCDIIIa(FCDIb+HS 1)
#50 57/F 20 PC L TL Ia MTS+FCD L T_Lobect. FCDIIIa(FCDIb+HS 1)

Legend: M, male; F, female; PC, partial complex epilepsy; GTC, generalized tonic clonic seizure; Sotos, Sotos Syndrome; R TL, right temporal lobe; L TL, left temporal lobe; MTS, mesial
tempora sclerosis; FCD, focal cortical dysplasia; Cripto, criptogenetic; Tum, tumors; NDMTA, nondefinitemesial temporal abnormalities; R T_Lobect., right temporal lobectomy; L T_Lobect.,
left temporal lobectomy; Lesionect., lesionectomy; Cortic., corticectomy; FCD, focal cortical dysplasia; GG, ganglioglioma; DNET, dysembrioplastic neuroepithelial tumor; PA, pilocytic as-
trocytoma; HS1, 2, 3, hippocampal sclerosis types 1, 2, 3; VM, vascular malformation; CHG, cortical and hippocampal gliosis.
⁎ Class of Engel, Post-surgical Outcome Classification at 1 year after surgery.
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nitrocellulose membranes. The Western blotting procedure was per-
formed as previously described [38] using the following antibodies:
anti-4-hydroxynonenal (Millipore Corporation, Billerica, MA, USA),
anti-aquaporin 4 (Millipore Corporation and Proteintech Group, Inc.,
Manchester, United Kingdom) and β-actin (Millipore Corporation) as
the loading control. The bands were visualized by autoradiography.
Quantification of the bands was performed by digitally scanning the
Amersham Hyperfilm™ ECL and by measuring immunoblotting image
densities with ImageJ software.

2.4. Immunoprecipitation

For immunoprecipitation, 1 mg of brain tissue protein (temporal
neocortex from non-epileptic and epileptic patients, and epileptic scle-
rotic hippocampus) was incubated with 3 μg of anti aquaporin 4
antibody (Proteintech Group, Inc.) overnight at 4 °C on a rotator. Then,
the immune complex was incubated with 25 μl of Protein A/G agarose
beads (Thermo Fisher Scientific Inc., Waltham, MA, USA) and rotated
at RT for 2 h. Samples were briefly centrifuged and washed six times
with ice-cold RIPA buffer. The pellet was mixed with reducing sample
buffer, boiled and loaded on a 15% SDS-PAGE gel for immunoblotting
with anti-4-hydroxynonenal antibody (Millipore Corporation), as de-
scribed in previous section. Samples processed with normal rabbit IgG
(Sigma-Aldrich S.r.l., Milan, Italy), instead of appropriate antibody,
were used as negative control.

2.5. Gelatin zymography

As previously described [39], tissues lysates (15 μg of protein from
temporal neocortex from non-epileptic and epileptic patients, and



510 A. Pecorelli et al. / Biochimica et Biophysica Acta 1852 (2015) 507–519



511A. Pecorelli et al. / Biochimica et Biophysica Acta 1852 (2015) 507–519
epileptic sclerotic hippocampus) were analyzed by gelatin zymography
in SDS-PAGE gels (8%) containing 0.1% gelatin. Prestained molecular
weight standard (Bio-Rad) were also run with samples. MMPs activity
was visualized as clearance zones at the appropriate molecular weights
in the stained gels. Coomassie-stained gels were scanned and the inten-
sity of molecular forms of MMPs was analyzed by image analysis soft-
ware ImageJ.

2.6. Immunohistochemistry and double immunofluorescence

Paraffin embedded tissue sections (3–4 μm) (temporal neocortex
from non-epileptic and epileptic patients, and epileptic non-sclerotic
and sclerotic hippocampus) were deparaffinized and rehydrated.
After antigen retrieval and blocking, as previously described [40],
the slides were incubated with the following antibodies: anti-4-
hydroxynonenal, anti-p47phox, anti-p67phox, anti-Glial Fibrillary Acidic
Protein, anti-Tubulin, beta III isoform (Millipore Corporation), anti-
aquaporin 4 (Millipore Corporation and Proteintech Group, Inc.), anti-
α-smooth muscle actin and anti-CD34 (Leica Microsystems Srl, Milano,
Italy).

For immunohistochemistry, the slides were incubated with
EnVision + System-HRP (DAKO, Glostrup, Denmark). The reaction
products were stained with diaminobenzidine (DAB), counterstained
with Mayer's hematoxylin, and mounted with Eukitt mounting
medium.

For double immunofluorescence, the slides were incubated with
fluorochrome-conjugated secondary antibodies (Alexa Fluor 488 and
568; Thermo Fisher Scientific Inc.). The nuclei were counterstained by
incubating the sections with 4′,6-diamidino-2-phenylindole (DAPI).
Slides were mounted with Antifade. Negative controls were generated
by omitting the primary antibody. Images were acquired and analyzed
with a microscope Leica AF CTR6500HS (Microsystems).

For automatic visualization of co-localized fluorescent signals were
used ImageJ Software, once determined and set the threshold values
for the two channels, so as to eliminate background noise. White spots
represent positive correlation (co-localization).

2.7. Statistical analysis

Data are presented as means ± SD for 3 experiments in triplicate.
One-way analysis of variance and Student's t-test were used where ap-
propriate, and p b 0.05 between two experimental groupswas regarded
as significant.

3. Results

3.1. Impaired redox status and MMPs activity upregulation in cerebral
tissues from drug-resistant epilepsy patients

To determine the occurrence of redox imbalance in human drug-
resistant epilepsy, the presence of HNE-PA in brain tissues was evaluat-
ed. As it is shown in Fig. 1A, epileptic temporal neocortex had greater
HNE-PA levels compared to control neocortex samples (circa +44%).
Densitometric analysis of bands also indicates a small but significant in-
crease of HNE-PA content (p b 0.05) in epileptic sclerotic hippocampus
respect to the epileptic neocortex (Fig. 1A).
Fig. 1. Western blotting and immunohistochemistry for HNE-PA and gelatin zymography of
patients.Panel A shows up-regulation of HNE-PA levels in representative samples of temp
(n= 50) respect to temporal neocortex from control subjects (n= 5). Quantification of HNE-P
is shown in the bottom panel. Panel B depicts a representative gelatin zymogram gel of brain
normalized per protein concentration (15 μg). Densitometry of MMP-9 gelatinolytic activity in
in the bottom panel. The values represent mean ± SD of three independent experiments. Aver
shows immunohistochemical localization of HNE-PA in epileptic sclerotic hippocampus. Diffuse
cytes (b). Apparently normal neurons (c) show intense reaction for aldehyde-protein adducts in
ma membrane (d). Scale bar: a = 100 μm; b, c, d = 50 μm.
It is well known that oxidants can activate MMPs, which subse-
quently induce the degradation of extracellular matrix [41]. Moreover,
bothOS andMMPs have been implicated in a variety of neurological dis-
eases [31]. On this basis, as the relatively greater HNE-PA suggests redox
imbalance, we therefore assessed the gelatinase activity. As shown in
Fig. 1B, we observed an overall increase of MMP-9 activity in epileptic
neocortex with respect to control neocortex (circa +215%). Epileptic
sclerotic hippocampus showed relatively greater MMP-9 activity com-
pared with epileptic neocortex.
3.2. 4-Hydroxy-2-nonenal protein adducts localize on neurons and glial
cells in epileptic sclerotic hippocampus

Given the relatively larger amount of HNE-PA detected in sclerotic
hippocampal tissue of drug-resistant epilepsy compared with epileptic
neocortex and because 35 of the 50 epilepsy patients had hippocampal
sclerosis, sections from epileptic sclerotic hippocampus were processed
by immunohistochemistry to determine the tissue distribution and
cellular localization of HNE-PA between relatively healthy and damaged
areas. Differences in localization of the proteins between apparently
normal and damaged cells within the same sclerotic hippocampal sam-
ples were clearly observed. Immunostaining revealed the diffuse pres-
ence of HNE-PA in sclerotic epileptic hippocampus (Fig. 1C-a).
Cytoplasmic HNE-PA protein expression was seen in both astroglia
(star-shaped cells), especially in gliotic areas (Fig. 1C-b), and in neurons
(Fig. 1C-c). In contrast, in degenerating neurons showingmorphological
features of apoptosis with shrunken cytoplasm and extensively dark
pyknotic nuclei, it was possible to observe positivity for HNE-PA in the
plasma membrane (Fig. 1C-d).

To confirm the cellular localization of HNE-PA in the epileptic scle-
rotic hippocampus compared to non-sclerotic hippocampal tissue, a
double immunofluorescence was performed for HNE-PA with Glial Fi-
brillary Acidic Protein (GFAP), an astrocyte-specific marker, and Tubu-
lin, beta III isoform (β-III TUB), a neuron-specific marker. As shown in
Fig. 2, there was a more diffuse immunoreactivity for HNE-PA (green
fluorescence) in the sclerotic hippocampus (Fig. 2B) respect to the
non-sclerotic epileptic sample (Fig. 2A). A clear localization of HNE-PA
in both glial cells (GFAP, red fluorescence) and neurons (β-III TUB, red
fluorescence) was evident in merged images (yellow color) of the scle-
rotic hippocampus (Fig. 2B).
3.3. NOX2 associated p47phox and p67phox translocate in plasmamembrane
of degenerating hippocampal neurons

To determine the possible source of O2•
− production, the presence

and the cellular localization of NOX2 associated proteins in epileptic
lesional tissues were investigated. Intense immunopositivity for
p47phox and p67phox was found especially in neurons of the Ammon's
horn CA1 area in HS (Fig. 3). Immunohistochemical staining reveals a
preferential cytosolic distribution of NOX2 associated proteins in appar-
ently normal neuronal cells, indicatingNOX2 inactivity (Fig. 3a, b and c).
On the other hand, at higher magnification, it is possible to appreciate
that degenerating neurons have immunoreactivity for p47phox and
p67phox in plasma membrane (arrows), implying the activation of the
enzyme (Fig. 3b and d).
MMP-9 in temporal neocortex and sclerotic hippocampus from drug-resistant epileptic
oral neocortex and sclerotic hippocampus from patients with drug-resistant epilepsy
A, normalized to β-actin and determined by densitometric analysis of the scanned images,
samples from control subjects (n = 5) and epileptic patients (n = 50). All samples were
control and epileptic temporal neocortex and in epileptic sclerotic hippocampus is shown
ages of the values from all the samples are expressed in arbitrary units. *p b 0.05. Panel C
positivity for HNE-PA in area of gliosis (a) with hypertrophic, reactive, star-shaped astro-
the cytoplasm; degenerating neurons present residual HNE-PA immunopositivity in plas-
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3.4. Expression of water channel aquaporin 4 does not change in brain of
drug-resistant epileptic patients

Evidences indicate the potential involvement ofwater channel AQP4
in modulation of brain excitability and in epilepsy [42]. However, its
pattern of expression and distribution in epileptic tissues remains con-
troversial (downregulation vs mislocalization) [43]. The immunoblot-
ting results indicated that there were not significant changes in AQP4
expression between control neocortex and epileptic brain tissues
(temporal neocortex and hippocampus) (Fig. 4A), although a trend
showing a decreased expression in epileptic sclerotic hippocampus
was noticed.

After determining by immunoblotting that there are no significant
quantitative variations of AQP4 expression in the analyzed tissues, we
have proceeded in identifying AQP4 tissue distribution. In all cases, in-
cluding epileptic lesional tissues and controls, AQP4 was positive in
subpial areas and, as shown in Fig. 4B, in the neuropil. Of note, although
AQP4 is a water channel predominantly found in astrocytes in the CNS,
our immunohistochemical findings revealed its presence also in some
apparently healthy neurons (Fig. 4B-a, -b and -c), while AQP4 positivity
in degenerating neurons was mainly observed in the cell periphery
(Fig. 4B-a, and -b, thin arrows). On the other hand, negativity for
AQP4 was usually observed in neurons of nonepileptic temporal neo-
cortex (Fig. 4B-d). When the number of AQP4 positive neurons was
quantified (Fig. 4C), there was a clear and strong difference between
the control and epileptic neocortex (means ± SD: 1.45 ± 1.9% vs
14.2 ± 10.5% respectively; p b 0.001). Furthermore, the number of pos-
itive neurons for AQP4 was also significant different between non-
sclerotic and sclerotic hippocampus (means ± SD 12.5 ± 9.2% vs
22.0 ± 12.7%; p b 0.05). Furthermore, AQP4 was also detected in the
perivascular astrocytic endfeet and in few endothelial cells of several
small vessels (Fig. 1s).

Double AQP4-Beta III tubulin immunoflorescence showed
colocalization of both the proteins in several cortical (Fig. 5a–o) as
well as hippocampal (Fig. 5p–t) neurons. In degenerating neurons
(Fig. 5p–t) the positivity was limited to the cytoplasm periphery.

3.5. Oxidative post-translational modification of aquaporin-4 and its
co-localization with 4-hydroxy-2-nonenal protein adducts in sclerotic
hippocampus from drug-resistant epileptic patients

To explore the possible formation of HNE-AQP4 adducts, we per-
formed the immunoprecipitation of AQP4 from samples obtained from
non-epileptic and epileptic tissues, followed by Western blotting for
HNE. As it is evidenced in Fig. 6A, our results revealed a significant in-
crease of HNE-AQP4 adducts levels in epileptic temporal neocortex
compared to the control temporal neocortex. In addition, we evaluated
in situ co-localization of HNE-PA and AQP4 in sclerotic hippocampus
from drug-resistant epileptic patients. A clear co-localization of AQP4
(red fluorescence) with HNE-PA (green fluorescence) was evident in
the same structures in epileptic hippocampal tissue (Fig. 6B-c, yellow
in merged image). These data suggest a possible HNE-mediated oxida-
tive post-translational modification of AQP4.

4. Discussion

Several reports have already indicated the presence of OS in epilep-
sy, mainly using animal models and to a lesser extent by means of
studies in humans [44]. In the present work, we report the evidence
of lipid peroxidation and oxidative-mediated protein damage, i.e.
Fig. 2 Double immunofluorescence for HNE-PA/GFAP and HNE-PA/β-III TUB in sclerotic hippo
depicting very low HNE-PA expression in non-sclerotic hippocampal tissue (green fluorescence
GFAP (glial cells, redfluorescence; boxes: a, b) andβ-III TUB (neurons, redfluorescence; box: c)
e, f) in sclerotic hippocampus is seen in both astrocytes (GFAP, red fluorescence; boxes: d, e) an
boxes: d, e, f). Scale bar: a, d = 100 μm; b, c, e, f = 25 μm.
significantly higher levels of HNE-PA, in human neocortical tissue
from drug-resistant epileptic patients versus neocortical control tissue
and alteration in location and expression of HNE-PA in non-sclerotic
vs sclerotic hippocampus. Moreover, the present study uncovers anoth-
er important finding related to the source of OS, as it has been shown by
the activation of NOX2 in neurons within the epileptic area. Finally, al-
though we did not document significant changes in the AQP4 protein
expression between control and epileptic brain specimens, a critical ob-
servation is that the water channel is a target for HNE, which therefore
can negativelymodulate its structure, stability and functions. The impli-
cations of all these observations can bring new insight to better under-
stand the mechanisms of epileptogenesis.

Oxidant production is clearly implicated in the pathogenesis of sev-
eral neurodegenerative disorders [1]. Research into pathophysiology of
epileptic seizures is primarily done in experimental models and only
rarely on human samples because of the obviously limited availability
and the greater difficulty in collection of human brain samples.
Although seizure models havemade important contributions to the un-
derstanding of the role of redox imbalance in epileptogenesis, evidence
also suggests that OS does not always appear to follow the same pattern
in all models [45]. In addition, animal studies do not always reliably pre-
dict human outcomes. For this reason the use of samples from epilepsy-
surgical brain specimens of drug-resistant patients is one of themost re-
liable models to study themechanism underlying this pathology. Alter-
natively, it is possible to collect samples from post-mortem tissues,
although also in this case there are several limitations due to timing is-
sues; the tissue needs to be collected within a few hours after the de-
cease and often the cause of death can affect brain tissue protein
expression independently of what epilepsy has caused [46].

Several mechanisms related to OS have been proposed to be in-
volved in epileptic seizures, such as impairment of antioxidant systems
and mitochondrial dysfunction. Moreover, different strategies using so-
called “antioxidants” have proven effective for seizure treatments [45],
although the actual mechanism cannot involve radical scavenging ex-
cept by vitamin E [47].

In particular, numerous data support a key role of mitochondrial
dysfunction in the increased susceptibility to seizures [48,49]. Although
the brain is particularly rich in mitochondria and suggesting that mod-
ifications of mitochondrial activity can be the main source of OS in this
tissue, a growing body of evidence supports also the role for abnormal
NOX activation as an important potential source of O2•

− and H2O2 gen-
eration in neuronal cells [14,50]. In line with our work, there is the
study of Shimohama et al. that has demonstrated in post-mortem
brain tissue from Alzheimer patients an increased accumulation of neu-
ronal cytosolic NOX2 subunits p47phox and p67phox at the cell surface of
diseased brain regions, suggesting chronic activation of this enzyme
[51]. It is possible that the repeated seizures can induce the upregulation
and activation of NOX2 in hippocampal neurons of epileptic brain. Effec-
tively, in our study neuronswith a normal aspect showed an intense re-
activity for p47phox and p67phox, suggesting high NOX2 expression that
may be involved in the degeneration and loss of hippocampal neurons.
This proposed mechanism is corroborated by some studies in various
experimental forms of epilepsy models. The translocation of NOX sub-
units from hippocampal cytosol to membrane fractions has been dem-
onstrated in kainate-injected rats [16]. Furthermore, the involvement
of NOX in oxidant-mediated damage and neuronal death has been sug-
gested in pilocarpine [17,18,20,52] and kainic acidmodels [16,19]. In ad-
dition, the inhibition of NOX by apocynin reduce O2•

− and H2O2

production and lipid peroxidation after seizure and decrease the num-
ber of degenerating hippocampal neurons in the pilocarpine rat model
campus compared with the non-sclerotic hippocampal tissue.A) Representative images
; boxes: a, b, c); in the merged images (boxes: a, b, c), colocalization of HNE-PAwith both
is virtually absent. B) Increased, diffuse positivity forHNE-PA (greenfluorescence; boxes: d,
d neurons (β-III TUB, red fluorescence; box: f), as evident inmerged images (yellow color;
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Fig. 3. Immunohistochemical localization of the NADPH oxidase subunits in epileptic sclerotic hippocampus. Panels a and b, normal neurons show cytosolic staining for p67phox, whereas
degenerating neuronsmaintain residual positivity on cellmembrane (arrows). Likewise, p47phox immunohistochemistry shows a similar pattern of stain (panels c and d). Arrow indicates
plasma membrane positivity. Scale bar: a, c = 50 μm; b, d = 25 μm.
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[21]. However, there were no reports regarding the NOX2 contribution
to O2•

− and H2O2 generation in epilepsy using human samples prior to
the present studies.

Beside direct actions, the harmful effects of oxidants generated by
NOX may be linked to the reaction with the PUFA which, leads to the
production of a great variety of reactive species. Among them, HNE is
considered as a “second toxic messenger,” that can propagate and am-
plify initial oxidative injury. HNE can form covalent bonds with three
different amino acyl side chains, i.e., lysyl, histidyl, and cysteinyl resi-
dues, via Michael addition with cysteine favored kinetically, but lysine
favored by abundance. In addition, HNE can modify protein structure
through Schiff base formation with lysyl residues, leading to formation
of pyrrole, and/or form intra- and/or intermolecular cross-links. Due
to its amphiphilic nature, thehydroxy aldehyde can diffuse acrossmem-
branes and covalentlymodify proteins in the cytoplasm and nucleus, far
from their site of origin [25].

High levels of HNE-PA have been found in brain tissues and body
fluids in several neurological and neurodegenerative diseases [25,26,
53–55]. Indeed, our study shows high HNE-PA levels in the brain of
drug-resistant epileptic patients. This confirms the evidence of lipid per-
oxidation and indicates the presence of an oxidative damage of proteins
in human epileptic brain as reported by other authors in human plasma
[6,56–58] or in brain specimens. To date only a limited number of stud-
ies have evaluated HNE levels in epileptic diseases. Frantseva et al. re-
ported high levels of brain HNE during seizures in the kindling model
[59]. Similarly, Jacobsson et al. observed significant increase of brain
HNE in a rodent model of soman-induced seizures [60]; although to
our knowledge this is the first report showing the HNE-PA distribution
in brain tissue of epileptic patients. This observation has important im-
plications in understanding the epileptogenesis. Since the oxidative
PTMs are known to alter protein functions and impair cellular mecha-
nisms [61,62], HNE-PA in human epileptic brain may promote
deleterious subcellular events that trigger and progress the
epileptogenesis. In addition, since it is well known that HNE can be an
apoptotic inducer [63,64], in our study high levels of HNE-PA in appar-
ently healthy neurons may eventually promote cell death, as suggested
by the presence of several nearby neurons in degeneration, showing
morphological features of possible apoptosis. Evidence that the HNE-
PA plays a pivotal role in neuronal death has already been demonstrated
in several neurological diseases [26,53,65–67].

Different molecular studies have provided potential insights into the
pathogenesis of epilepsy, among them is the possible involvement of
water channelopathies that can increase neuronal excitability [68]. In
fact, alterations of water and ions homeostasis can dramatically affect
seizure susceptibility [33]. Recent reports have highlighted the key
role of the water channels AQPs in epilepsy [69]. Among the several
AQPs, of particular interest in neuroscience is AQP4, since it is highly
expressed in brain and spinal cord by glial cells [68]. Medici et al., eval-
uating the AQP4 expression in epileptic and control human cerebral cor-
tex, found a significant increase in AQP4 in the focal cortical dysplasia
(FCD) type IIB samples, with a different protein distribution pattern
[70]. In comparison with the controls, AQP4 immunoreactivity was
more diffuse in the neuropil, particularly around dysmorphic neurons,
and less intense perivascularly. Similar remarks were observed also in
experimental animal models. For example, in the kainic acid model of
epileptogenesis, a loss of positivity for AQP4 occurred on both the
endfeet and fine processes of astrocytes in different hippocampal layers
[71]. In addition, in AQP4 knockoutmice, the susceptibility to seizure ini-
tiation is increased compared with controls, as well as the seizure dura-
tion and intensity [72]. All these data confirm that both the altered
expression and mislocalization of AQP4 can lead to water and ion dys-
regulation in epileptic brain, probably contributing to its hyperexcitabil-
ity. It should be mentioned that the altered levels of AQP4 in epileptic
brain tissues are still controversial, for instance in a recent work by

Image of Fig. 3


Fig. 4.Western blotting and immunohistochemical localization of AQP4 in epileptic tissues. A) No change of AQP4 levels is observed in representative samples of control subjects (n= 5)
and patientswith drug-resistant epilepsy (n=50) (left panel). Quantification of AQP4 normalized toβ-actin and determined by densitometric analysis of the scanned images is shown in
the right panel. Average values were expressed as arbitrary units. Data are means± SD of three independent experiments. *p b 0.05. B) AQP4 positive neurons in the CA1 area of sclerotic
hippocampus (panels a and b) and temporal neocortex (panel c) of an epileptic patient. In degenerating neurons (a, b, thin arrows), the positivity is usually limited to the cytoplasmic
periphery. Thick, short arrow in b indicates an AQP4 positive oligodendrocyte. AQP4 negative neurons in temporal neocortex of a non-epileptic control patient (d, detail in the insert).
Negativity for AQP4 in a negative control section with primary antibody omitted (e, temporal neocortex of a non-epileptic control). Scale bar: a, b = 25 μm; c, d, e = 50 μm. C). For quan-
tification, the neurons positive for AQP4were counted in 10 randomly chosenfields, both in the epileptic temporal neocortex and in the CA area of epileptic hippocampus, with orwithout
HS, and in the temporal neocortex of nonepileptic patients. Counts were expressed as percentages. Results are presented as mean percentage ± SD. *p b 0.001 and **p b 0.05 (panel C).
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Fig. 5. AQP4 and β-III TUB double immunofluorescence staining in epileptic tissues. The immunopositivity for AQP4 (green fluorescence; boxes: b, g, l and q) and β-III TUB (neurons, red
fluorescence; boxes: c, h, m, and r) is dot-like and diffuse, respectively, in the cytoplasm of neurons; the neuropil is also positive to AQP4. The boxes inside themerged images of the tem-
poral neocortex (boxes: a, f and k) and CA of sclerotic hippocampus (box p) of an epileptic patient have been enlarged to better visualize neurons showing AQP4 and β-III TUB
colocalization (yellow stain in boxes: d, i, n, and s;white stain after ImageJ software elaboration in boxes: e, j, o and t). Damaged neurons showAQP4 positivity at the cytoplasm periphery
(boxes: f, j, k and o, arrow). A normal neuron, negative for AQP4, adjacent to a damaged neuron is also shown (boxes: n and o). Scale bar = 50 μm.

516 A. Pecorelli et al. / Biochimica et Biophysica Acta 1852 (2015) 507–519
Bebek et al. it has been shown that AQP4 levels (mRNA and protein) did
not differ between controls and patients. One reason for these results
could be the limited number of samples, as the authors suggested [73].

In our study, we have found that the expression of AQP4 was not
affected in epileptic specimens when compared with the control neo-
cortex, but immunohistochemistry and double immunofluorescence
showed that in epileptic tissues AQP4 was present not only in
perivascular astrocytic endfeet, but also in apparently healthy neurons,
whereas there was a clear loss of AQP4 positivity in degenerating neu-
rons. Of note was also the fact that only few endothelial cells of several
small vessels showed positivity to AQP4, whereas the endothelium of
larger vessels and of most small vessels was negative, partly confirming
the ongoing controversial debate present in the literature regarding
the possible role of AQP4 in the endothelium [74,75]. Therefore,
our results coincide with some, but not all previous studies. Most
previous immunohistological brain studies showed AQP4 expression
only in astrocytes and ependymal cells without strong evidence in
neurons [76]. Nevertheless, others have detected AQP4 in neurons of
the supraoptic and paraventricular nuclei of the hypothalamus [77]
and in enteric neurons [78]. Moreover, in a study of in situ hybridization
performed in the rat brain, Venero et al. showed mRNA staining for
AQP4 in hippocampal pyramidal cells, granular cells of dentate gyrus,
and neuronal cells of the cortex. [74] Although it is possible that the
mRNA was not translated, it is more likely that the negative results
stemmed from a failure of immunodetection due to low expression
and/or a poor antibody. The AQP4 presence in neurons of epileptic
brain could make these cells more vulnerable to water and ions trans-
port, modulating neuronal transmission and excitability. Anyhow, fur-
ther studies will need to be undertaken for the interpretation of our
data in relation to epileptogenesis.

In addition our data clearly showed the formation of HNE-AQP4 ad-
ducts by two differentmethods (immunoprecipitation and immunoflu-
orescence). In fact, we observed that the water channel co-localized
with HNE-PA in the same structures in epileptic sclerotic hippocampus

Image of Fig. 5


Fig. 6. Immunoprecipitation/Western blotting and double immunofluorescence for AQP4 and HNE in epileptic tissues. A) Representative images of the HNE-AQP4 adduct formation in
control and epileptic temporal neocortex and in epileptic sclerotic hippocampus are shown in the left panel. Quantification of HNE-AQP4 adducts determined by densitometric analysis
of the scanned images is shown in the right panel. Average values were expressed as arbitrary units. Data are means ± SD of three determinations. *p b 0.05. B) Representative AQP4
(a, red) and HNE-PA (b, green) immunofluorescence images in the epileptic hippocampus show co-localization of two antigens (c, yellow) in the same structures. Scale bar = 50 μm.
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and by Western blot we have demonstrated the formation of covalent
binding between HNE and AQP4. These findings support the idea
that this protein could be a critical target for aldehyde adduction. The
impairment of structural integrity resulting by the covalent bonds
with the aldehyde can modify the biological activity of AQP4. The for-
mation of HNE-AQP4 adducts might also be responsible for the changes
in number and localization of water channel, promoting for example its
greater proteolytic degradation. Indeed, Grune and coworkers have
shown that HNE modification often leads to increased degradation
[79]. In this perspective, the HNE-mediated modulation of AQP4
would provide a newbase for the altered neuronal excitability of epilep-
tic brain.

Finally, we also observed an oxidant-dependent activation of MMP-
9 in epileptic tissues. A key role for the aberrant activity of MMPs in
chronic neurodegenerative diseases has been extensively reported
[31]. In addition, evidence from both in humans and animal models
indicate the involvement of MMPs in epilepsy [32,80]. In the brain, the
MMPs-mediated degradation of the extracellular matrix or membrane-
bound proteins may increase the permeability of the blood brain barrier,
resulting in edema and alterations of neuronal excitability [81]. In addi-
tion, it is known that the dystrophin-dystroglycan complex has a critical
role in the distribution and the maintenance of the AQP4 tetrameric
complex on cell membranes [82] and MMP-9 is able to degrade dystro-
glycan [83]. Therefore, the upregulation ofMMPs could contribute to dis-
organization of the tissue/cell distribution of water channel in epileptic
brain.

5. Conclusions

In conclusion, our data reinforce the theory that OS may play a
key role in epilepsy. The recurrent seizures can trigger a vicious
circle, where the redox imbalance is both the cause and result of the
brain damage. The activation of NOX2 and MMPs could act in concert
to cause neuronal loss and negatively modulate the AQP4, either
inducing the structural and functional alterations due to the HNE-
adduct formation than promoting its abnormal cellular distribution
(Scheme 1). Finally, any change in biologic activity of AQP4 that com-
promises the ions and water balance, promoting neuronal hyperexcit-
ability, could result in enhanced propensity for seizures and thereby
contribute to the generation and perpetuation of the epileptogenesis
process.

In addition,we should also remind that seizure can cause brain dam-
age not only in epileptic patients but also in patients who do not suffer
from epilepsy but are affected by seizure episodes. Of course to better
understand the role of OS in epileptogenesis further mechanistic inves-
tigations are needed, but this aspect can anyway bring new insights for
therapeutic targets.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2014.11.016.
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