
COMPACT SOBOLEV EMBEDDINGS AND TORSION FUNCTIONS

LORENZO BRASCO AND BERARDO RUFFINI

Abstract. For a general open set, we characterize the compactness of the embedding
for the homogeneous Sobolev space D1,p

0 ↪→ Lq in terms of the summability of its torsion
function. In particular, for 1 ≤ q < p we obtain that the embedding is continuous if and
only if it is compact. The proofs crucially exploit a torsional Hardy inequality that we
investigate in details.
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1. Introduction

1.1. Foreword. Let 1 < p < +∞ and let Ω ⊂ RN be an open set. We denote by D1,p
0 (Ω)

the homogeneous Sobolev space, defined as the completion of C∞0 (Ω) with respect to the
norm

u 7→
(∫

Ω
|∇u|p dx

) 1
p

.
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We recall that this space naturally occurs in the study of Dirichlet boundary value problems
for (quasi)linear operators in general open sets. Classical references for the Hilbertian case
p = 2 are [11] and [15], to which we refer the reader.

The aim of the present paper is to investigate the interplay between the continuity
(and compactness) of the embedding D1,p

0 (Ω) ↪→ Lq(Ω) for 1 ≤ q ≤ p and the integrability
properties of the p−torsion function of Ω, wΩ. The latter is the formal solution of

−∆pwΩ = 1, in Ω, wΩ = 0, on ∂Ω, (1.1)

where ∆p u = div(|∇u|p−2∇u) is the p−Laplacian operator. The reader is referred to
Section 2 for the precise definition of p−torsion function.

An important contribution in this direction has been recently given by Bucur and
Buttazzo, in a different setting. Let us denote by W 1,p(Ω) the usual Sobolev space

W 1,p(Ω) = {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω;RN )},

equipped with the norm

u 7→
(∫

Ω
|∇u|p dx

) 1
p

+

(∫
Ω
|u|p dx

) 1
p

.

In [8] the two authors considered the Sobolev space W 1,p
0 (Ω) obtained as the closure of

C∞0 (Ω) in W 1,p(Ω) with respect to the previous norm and they characterized the com-
pactness of the embeddings

W 1,p
0 (Ω) ↪→ L1(Ω) and W 1,p

0 (Ω) ↪→ Lp(Ω),

in terms of the summability of the formal solution uΩ of

−∆p uΩ + up−1
Ω = 1, in Ω, uΩ = 0, on ∂Ω.

Namely, in [8, Theorems 6.1 & 6.2] they proved that

W 1,p
0 (Ω) ↪→ L1(Ω) is continuous ⇐⇒ uΩ ∈ L1(Ω) ⇐⇒ W 1,p

0 (Ω) ↪→ L1(Ω) is compact,

and

W 1,p
0 (Ω) ↪→ Lp(Ω) is compact ⇐⇒ for every ε > 0, there exists R > 0

such that ‖uΩ‖L∞(Ω\BR) < ε.

We stress that in general D1,p
0 (Ω) 6= W 1,p

0 (Ω), unless Ω supports a Poincaré inequality of
the type

1

C

∫
Ω
|u|p dx ≤

∫
Ω
|∇u|p, for every u ∈ C∞0 (Ω).

Indeed, while by construction W 1,p
0 (Ω) ↪→ Lp(Ω), in general the elements of our space

D1,p
0 (Ω) are not Lp functions. This point deserves a further precision.

Remark 1.1. We recall that for a general open set Ω ⊂ RN , the completion D1,p
0 (Ω) may

not be a functional space, nor a space of distributions, see for example [11, Remark 4.1].
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For 1 < p < N , we have that D1,p
0 (Ω) is a functional space continuously embedded in

LN p/(N−p)(Ω) for every open set, thanks to Sobolev inequality∫
Ω
|∇u|p dx ≥ 1

C

(∫
Ω
|u|

N p
N−p dx

)N−p
N

, u ∈ C∞0 (Ω),

The latter guarantees that every family {un}n∈N ⊂ C∞0 (Ω) which forms a Cauchy sequence
with respect to the Lp norm of the gradient, is in turn a Cauchy sequence in the Banach
space LNp/(N−p)(Ω).

The same can be said for every open set Ω ⊂ RN which supports an inequality of the
type ∫

Ω
|∇u|p dx ≥ 1

C

(∫
Ω
|u|q dx

) p
q

, for every u ∈ C∞0 (Ω),

for some q ≥ 1 and C > 0. In this case D1,p
0 (Ω) is a functional space continuously

embedded in Lq(Ω).

1.2. Main results. In order to present our contribution, for every 1 ≤ q ≤ p we introduce
the Poincaré constant

λp,q(Ω) := inf
u∈C∞0 (Ω)

{∫
Ω
|∇u|p dx :

∫
Ω
|u|q dx = 1

}
.

We remark that the continuity of the embedding D1,p
0 (Ω) ↪→ Lq(Ω) is equivalent to the

condition λp,q(Ω) > 0. We then have the following results. For ease of presentation, we
find it useful to distinguish between the cases 1 ≤ q < p and q = p.

Theorem 1.2 (Case 1 ≤ q < p). Let 1 < p < +∞ and 1 ≤ q < p. Let Ω ⊂ RN be an
open set. Then the following equivalences hold true

λp,q(Ω) > 0 ⇐⇒ wΩ ∈ L
p−1
p−q q(Ω) ⇐⇒ D1,p

0 (Ω) ↪→ Lq(Ω) is compact.

Moreover, we have

1 ≤ λp,q(Ω)

(∫
Ω
w
p−1
p−q q

Ω dx

) p−q
q

≤ 1

q

(
p− 1

p− q

)p−1

. (1.2)

In the case p = q, the equivalence

λp,q(Ω) > 0 ⇐⇒ D1,p
0 (Ω) ↪→ Lq(Ω) is compact,

ceases to be true, as shown by simple examples. In this case, by relying on a result by van
den Berg and Bucur [4], we obtain the following.

Theorem 1.3 (Case q = p). Let 1 < p < +∞ and let Ω ⊂ RN be an open set. The
following equivalence holds true

λp,p(Ω) > 0 ⇐⇒ wΩ ∈ L∞(Ω),

and we have the double-sided estimate

1 ≤ λp,p(Ω) ‖wΩ‖p−1
L∞(Ω) ≤ DN,p, (1.3)
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for some constant DN,p > 1. Moreover, we have

D1,p
0 (Ω) ↪→ Lp(Ω) is compact ⇐⇒ for every ε > 0, there exists R > 0

such that ‖wΩ‖L∞(Ω\BR) < ε.
(1.4)

Remark 1.4. For p = 2 and q = 1, the result of Theorem 1.2 is essentially contained in
[9, Theorem 2.2]. The lower bound in (1.3) generalizes to p 6= 2 the estimate of van den
Berg in [3, Theorem 5]. For Ω smooth and bounded, this was proved in [10, Proposition 6]
with a different argument. As for the upper bound, an explicit expression for the costant
DN,p is not given in [4]. However, a closer inspection of their proof reveals that it could
be possible to produce an explicit value for DN,p (which is very likely not optimal). In
the particular case p = 2, van den Berg and Carroll in [5, Theorem 1] produced the value

DN,2 = 4 + 3N log 2.

1.3. A comment on the proofs. Before entering into the mathematical details of the
paper, the reader may find it useful to have an idea on some key ingredients of the proofs.
In this respect, we wish to mention that a prominent role is played by the torsional Hardy
inequality for general open sets, which is introduced and proved in this paper. The latter
is an Hardy-type inequality where the distance function is replaced by the p−torsion
function. A particular instance is given by∫

Ω

|u|p

wp−1
Ω

dx ≤
∫

Ω
|∇u|p dx, for every u ∈ C∞0 (Ω), (1.5)

though we refer the reader to Theorem 4.3 and Proposition 4.5 below for a more precise
statement and some generalizations. From (1.5) it is then easy to infer for example the
lower bounds in (1.2) and (1.3), when wΩ has the required integrability. We also point out
that (1.5) holds with constant 1 and this happens to be optimal. Observe that inequality
(1.5) is dimensionally correct, since equation (1.1) entails that wΩ scales like a length to
the power p/(p− 1).

1.4. Plan of the paper. In Section 2 we define the p−torsion function of a set and
state some general results needed in the sequel. The subsequent Section 3 proves some
properties of the p−torsion function that will be used throughout the whole paper. The
above mentioned torsional Hardy inequality is stated and proved in Section 4. Then the
proofs of Theorems 1.2 and 1.3 are contained in Section 5. Finally, we conclude the paper
by addressing the sharpness issue for the torsional Hardy inequality, which is indeed the
content of Section 6. For completeness, some known convexity inequalities used in Section
6 are stated in Appendix A, mainly without proofs.

Acknowledgements. This work started with a question raised by our Maestro Giuseppe
Buttazzo, about the possibility of having a torsional Hardy inequality. We wish to thank
him for this initial input. Dorin Bucur kindly pointed out his paper [4], as well as the
paper [10], we are grateful to him. We also acknowledge some lively discussions with our
friend and colleague Guido De Philippis. Finally, the second author has been supported
by a public grant as part of the Fondation Mathèmatique Jacques Hadamard and both
authors have been supported by the Agence Nationale de la Recherche, through the project
ANR-12-BS01-0014-01 Geometrya.



SOBOLEV EMBEDDINGS & TORSION FUNCTION 5

2. Preliminaries

Definition 2.1 (Torsion function: variational construction). Let 1 < p < +∞ and assume

that Ω is such that we have the compact embedding D1,p
0 (Ω) ↪→ L1(Ω). Then the following

variational problem admits a unique solution

min

{
1

p

∫
Ω
|∇u|p dx−

∫
Ω
u dx : u ∈ D1,p

0 (Ω)

}
. (2.1)

We denote by wΩ such a solution. The function wΩ is called p−torsion function of Ω. By
optimality, it solves {

−∆pwΩ = 1, in Ω.
wΩ = 0, in ∂Ω,

where ∆p is the p−Laplacian operator, i.e. ∆pu := div(|∇u|p−2∇u).

The previous boundary value problem is intended in the usual weak sense that is∫
Ω

〈
|∇wΩ|p−2∇wΩ,∇φ

〉
dx =

∫
Ω
φdx, for any φ ∈ D1,p

0 (Ω). (2.2)

The definition of wΩ is linked to an optimal Poincaré constant, through the relation(
p

p− 1
max

u∈D1,p
0 (Ω)

{∫
Ω
u dx− 1

p

∫
Ω
|∇u|p dx

})p−1

= max
u∈D1,p

0 (Ω)\{0}

(∫
Ω
|u| dx

)p
∫

Ω
|∇u|p dx

=: Tp(Ω).

In analogy with the quadratic case, the quantity Tp(Ω) is called p−torsional rigidity of Ω.
By using the equation (2.2), one can see that the following relation holds

Tp(Ω) =

(∫
Ω
wΩ dx

)p−1

.

We recall that among open sets with given measure, the quantity Tp is maximal on balls.
In other words, we have the scaling invariant Saint-Venant inequality

Tp(Ω)

|Ω|
p+N (p−1)

N

≤ Tp(B)

|B|
p+N (p−1)

N

, (2.3)

where B is any N−dimensional ball. Inequality (2.3) can be proved by using standard
rearrangement arguments and the variational definition of Tp.

When the embedding D1,p
0 (Ω) ↪→ L1(Ω) fails to be compact, the p−torsion function of Ω

is defined as follows (see also [4, 8]). By BR we note the open ball centered at the origin
and of radius R > 0.

Definition 2.2 (Torsion function: general construction). Let us define

RΩ := inf{R > 0 : |Ω ∩BR| > 0}.
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Then for every R > RΩ, we take wΩ,R ∈ D1,p
0 (Ω∩BR) to be the p−torsion function of the

bounded open set1 Ω ∩ BR, extended by 0 outside. By the comparison principle, we get
that wΩ,R ≥ wΩ,R′ whenever R ≥ R′, thus is well posed the definition

wΩ(x) := lim
R→∞

wΩ,R(x), (2.4)

The limit is intended in the pointwise sense.

Remark 2.3. Of course, in many situations we could have |{x : wΩ(x) = +∞}| > 0.
This is the case for example of Ω = RN , since

wRN ,R = wBR =

(
R

p
p−1 − |x|

p
p−1

)
+

AN,p
, where AN,p =

p

p− 1
N

1
p−1 ,

and thus in this case wRN is the trivial function which is everywhere +∞.

The first simple result shows that Definition 2.2 is coherent with the compact case.
Indeed in this case (2.4) boils down to the usual torsion function given by Definition 2.1.

Lemma 2.4. Let 1 < p < +∞ and assume that the embedding D1,p
0 (Ω) ↪→ L1(Ω) is

compact. Then the function defined by (2.4) is the unique solution of (2.1).

Proof. The first observation is that compactness of the embedding D1,p
0 (Ω) ↪→ L1(Ω)

entails
Tp(Ω) < +∞.

Then we extend each wΩ,R to 0 in Ω \BR, so that wΩ,R ∈ D1,p
0 (Ω). By using the equation

we obtain ∫
Ω
|∇wΩ,R|p dx =

∫
Ω
wΩ,R dx.

On the other hand, the definition of p−torsion implies that∫
Ω
wΩ,R dx ≤

(∫
Ω
|∇wΩ,R|p dx

) 1
p

Tp(Ω)
1
p ,

since wΩ,R is admissible for the variational problem defining Tp(Ω). By keeping the two
informations together, we get∫

Ω
|∇wΩ,R|p dx ≤ Tp(Ω)

1
p−1 , for every R > RΩ.

This implies that (up to a subsequence) wΩ,R converges weakly in D1,p
0 (Ω). Since we have

also L1(Ω) strong convergence (by compactness of the embedding), the limit function has

to be the function wΩ defined by (2.4). This shows in particular that wΩ ∈ D1,p
0 (Ω)∩L1(Ω).

In order to show that wΩ coincides with the torsion function, we take φ ∈ C∞0 (Ω) and
R1 > RΩ large enough so that spt(φ) b Ω∩BR for every R ≥ R1. By minimality of wΩ,R

we get

1

p

∫
Ω
|∇wΩ,R|p dx−

∫
Ω
wΩ,R dx ≤

1

p

∫
Ω
|∇φ|p dx−

∫
Ω
φdx, for every R ≥ R1.

1This is well-defined, since Ω∩BR is a bounded open set and thus in this case D1,p
0 (Ω∩BR) ↪→ L1(Ω∩BR)

is compact.
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By passing to the limit as R goes to +∞ in the left-hand side, we get

1

p

∫
Ω
|∇wΩ|p dx−

∫
Ω
wΩ dx ≤

1

p

∫
Ω
|∇φ|p dx−

∫
Ω
φdx.

For the gradient term, we used the weak lower semicontinuity of the norm in D1,p
0 (Ω).

Finally, by arbitrariness of φ ∈ C∞0 (Ω) the previous inequality shows that wΩ is the
(unique) solution of (2.1). �

Remark 2.5 (Heat-based definition). In the case p = 2, the torsion function of an open set
Ω ⊂ RN can also be defined through the heat equation. We briefly recall the construction,
by referring for example to [2, 3] and [5] for more details. One considers the initial
boundary value problem  ∂tu = ∆u, in Ω× R,

u = 0, on ∂Ω× R,
u = 1, for t = 0.

If UΩ denotes the solution of this problem, we set

WΩ(x) =

∫ ∞
0

UΩ(t, x) dt, x ∈ Ω.

It is not difficult to see that WΩ solves (2.2). For p 6= 2 such a definition is not available.

In what follows, for p 6= N we define

p∗ =


N p

N − p
, if 1 < p < N,

+∞, if p > N.

For 1 < p < N we set

SN,p = sup
φ∈C∞0 (RN )

{(∫
RN
|φ|p∗ dx

) p
p∗

:

∫
RN
|∇φ|p dx = 1

}
. (2.5)

We recall that SN,p < +∞, since by Sobolev inequality we have the continuous embedding

D1,p
0 (RN ) ↪→ Lp

∗
(RN ). Moreover, the supremum above is indeed attained. We will need

the following particular family of Gagliardo-Nirenberg inequalities.

Proposition 2.6 (Gagliardo-Nirenberg inequalities). Let 1 < p < +∞ and 1 ≤ q ≤ p,
then for every u ∈ C∞0 (RN ) we have:

• for p 6= N and q < r ≤ p∗(∫
RN
|u|r dx

) 1
r

≤ C1

(∫
RN
|u|q dx

) 1−ϑ
q
(∫

RN
|∇u|p dx

)ϑ
p

, (2.6)

for some C1 = C1(N, p, q, r) > 0 and

ϑ =
(

1− q

r

) N p

N p+ p q −N q
;
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• for p = N and q < r <∞(∫
RN
|u|r dx

) 1
r

≤ C2

(∫
RN
|u|q dx

) 1
r
(∫

RN
|∇u|N dx

) r−q
N r

, (2.7)

for some C2 = C2(N, q, r) > 0.

Proof. Inequality (2.6) for 1 < p < N is well-known and nowadays can be found in many
textbooks on Sobolev spaces. It can be obtained by combining Sobolev inequality(∫

RN
|u|p∗ dx

) p
p∗

≤ SN,p
∫
RN
|∇u|p dx,

and interpolation in Lebesgue spaces.

The case p > N follows from the well-known Morrey’s inequality (see [7, Théorème
IX.12])

‖u‖L∞(RN ) ≤ C
(
‖u‖Lp(RN ) + ‖∇u‖Lp(RN )

)
,

combined with a standard homogeneity argument and interpolation in Lebesgue spaces.

On the contrary, the conformal case (2.7) seems to be more difficult to find in the
literature. We provide a simple proof, which is essentially the same as that of the so-called
Ladyzhenskaya inequality (see [16, Lemma 1, page 10]), corresponding to q = p = N = 2
and r = 4. For every t > 1 we have

|u|t ≤ t
∫ +∞

−∞
|u|t−1 |uxi | dxi, i = 1, . . . , N,

and thus

|u|
N t
N−1 ≤ t

N
N−1

N∏
i=1

(∫ +∞

−∞
|u|t−1 |uxi | dxi

) 1
N−1

.

By integrating over RN we get∫
RN
|u|

N t
N−1 dx ≤ t

N
N−1

∫
RN

N∏
i=1

(∫ +∞

−∞
|u|t−1 |uxi | dxi

) 1
N−1

dx

≤ t
N
N−1

N∏
i=1

[∫
RN−1

∫ +∞

−∞
|u|t−1 |uxi | dxi dx̂i

] 1
N−1

,

where dx̂i denotes integration with respect to all variables but xi. The second inequality
is the classical Gagliardo Lemma, see [14, Lemma 3.3]. From the previous estimate, with
some elementary manipulations and an application of Hölder inequality we get∫

RN
|u|

N t
N−1 dx ≤ t

N
N−1

(∫
RN
|u|(t−1) N

N−1 dx

) (∫
RN
|∇u|N dx

) 1
N−1

. (2.8)

We now observe that if we take t > N and recall that q ≤ p = N , then

q < (t− 1)
N

N − 1
< t

N

N − 1
,
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so that by interpolation in Lebesgue spaces∫
RN
|u|(t−1) N

N−1 dx ≤
(∫

RN
|u|q dx

) 1−α
q

(t−1)N
N−1

(∫
RN
|u|

N t
N−1 dx

) t−1
t
α

,

where

α =
t

t− 1

(
1− N

N (t− q) + q

)
.

By inserting this estimate in (2.8), we get for t > N(∫
RN
|u|

N t
N−1 dx

)1− t−1
t
α

≤ t
N
N−1

(∫
RN
|u|q dx

) 1−α
q

(t−1)N
N−1

(∫
RN
|∇u|N dx

) 1
N−1

. (2.9)

By arbitrariness of t > N , this proves (2.7) for exponents r > N2/(N − 1). When
q < r ≤ N2/(N − 1), it is sufficient to use once again interpolation in Lebesgue spaces,
together with (2.9). We leave the details to the reader. �

3. Properties of the p−torsion function

3.1. Compact case. We present some basic properties of the p−torsion function when
this can be defined variationally, i.e. when the embedding D1,p

0 (Ω) ↪→ L1(Ω) holds and is
compact.

Proposition 3.1. Let 1 < p < +∞ and suppose that D1,p
0 (Ω) ↪→ L1(Ω) is compact. Then

wΩ ∈ L∞(Ω). Moreover, for 1 < p < N we have

‖wΩ‖L∞(Ω) ≤ C
(∫

Ω
wΩ dx

) p′
N+p′

, with C =
N + p′

p′
S

N
N (p−1)+p

N,p , (3.1)

and the constant SN,p is defined in (2.5).

Proof. For p > N , the result follows directly from (2.6) with q = 1 and r = +∞.
Let us focus on the case 1 < p < N . We take k > 0 and test (2.2) with φ = (wΩ−k)+.

This gives ∫
Ω
|∇(wΩ − k)+|p dx =

∫
Ω

(wΩ − k)+ dx. (3.2)

We introduce the notation µ(k) := |{x ∈ Ω : wΩ(x) > k}| and observe that µ(k) < +∞
for almost every k > 0, since wΩ ∈ L1(Ω). By combining Sobolev and Hölder inequalities,
we get ∫

Ω
|∇(wΩ − k)+|p dx ≥ S−1

N,p µ(k)1−p− p
N

(∫
Ω

(wΩ − k)+ dx

)p
.

Thus from (3.2) we obtain(∫ +∞

k
µ(t) dt

)p−1

≤ SN,p µ(k)p+
p
N
−1,

If we set

M(k) =

∫ +∞

k
µ(t) dt,
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the previous estimate can be written as the differential inequality

M(k)
N

N+p′ ≤ C (−M ′(k)), with C := S
N

N (p−1)+p

N,p ,

where p′ = p/(p− 1). If we fix k0 ≥ 0, this implies that we have

M(k)
p′

N+p′ ≤M(k0)
p′

N+p′ +
p′

N + p′
1

C
(k0 − k), for every k ≥ k0.

The previous inequality implies that

M(k) ≡ 0, for k ≥ N + p′

p′
CM(k0)

p′
N+p′ + k0,

and thus

µ(k) ≡ 0, for k ≥ N + p′

p′
CM(k0)

p′
N+p′ + k0.

This finally gives

0 ≤ wΩ(x) ≤ N + p′

p′
CM(k0)

p′
N+p′ + k0 = k0 +

N + p′

p′
C
(∫

Ω
(wΩ − k0)+ dx

) p′
N+p′

.

By arbitrariness of k0 we thus get the L∞ − L1 estimate (3.1), as desired.

Finally, for the case p = N , we start again by testing the equation with (wΩ−k)+. Then to
estimate the right-hand side of (3.2), we now use inequality (2.7) with q = 1 and r = 2N .
This gives(∫

Ω
(wΩ − k)2N

+ dx

) 1
2N

≤ C2

(∫
Ω
|∇(wΩ − k)+|N dx

) 2N−1

2N2
(∫

Ω
(wΩ − k)+ dx

) 1
2N

= C2

(∫
Ω

(wΩ − k)+ dx

) 3N−1

2N2

,

thanks to (3.2), too. Similarly as before, after some manipulations we get(∫
Ω

(wΩ − k)+ dx

)N−1
N

≤ C2 µ(k).

Then the proof goes as in the previous case. �

We list some composition properties of wΩ that will be used many times.

Lemma 3.2. Let 1 < p < +∞ and suppose that D1,p
0 (Ω) ↪→ L1(Ω) is compact. Then:

(i) for every 0 < β ≤ (p− 1)/p, we have wβΩ 6∈W 1,p(Ω);

(ii) logwΩ 6∈W 1,p(Ω);

(iii) for every (p− 1)/p < β < 1, we have wβΩ ∈ D
1,p
0 (Ω), provided wβ p−p+1

Ω ∈ L1(Ω);

(iv) for every β ≥ 1, we have wβΩ ∈ D
1,p
0 (Ω).
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Proof. We treat each case separately.

(i) Case 0 < β ≤ (p− 1)/p. Let us first assume that

0 < β <
p− 1

p
.

In this case, let us define the function

ϕε = (wΩ + ε)β p−p+1 − εβ p−p+1, (3.3)

for ε > 0. Notice that ϕε ∈ D1,p
0 (Ω), since this is the composition of wΩ with the C1

function
ψε(t) = (t+ ε)β p−p+1 − εβ p−p+1, t ≥ 0,

which is globally Lipschitz continuous on [0,+∞) and such that ψε(0) = 0. Plugging ϕε
as a test function in (2.2) we get

(β p− p+ 1)

∫
Ω
|∇wΩ|p (wΩ + ε)β p−p dx =

∫
Ω

εp−1−β p − (wΩ + ε)p−1−β p

εp−1−β p (wΩ + ε)p−1−β p dx,

that is

(p− 1− β p)
∫

Ω

|∇wΩ|p

(wΩ + ε)p−β p
dx =

1

εp−1−β p

∫
Ω

(wΩ + ε)p−1−β p − εp−1−β p

(wΩ + ε)p−1−β p dx. (3.4)

From Proposition 3.1, we already know that wΩ ∈ L∞(Ω), then we take

τ =
‖wΩ‖L∞(Ω)

2
, so that A := |{x ∈ Ω : wΩ > τ}| > 0.

Then from (3.4) we get

(p− 1− β p)
∫

Ω

|∇wΩ|p

(wΩ + ε)p−β p
dx =

1

εp−1−β p

∫
Ω

[
1−

(
ε

wΩ + ε

)p−1−β p
]
dx

≥ 1

εp−1−β p

∫
{wΩ>τ}

[
1−

(
ε

τ + ε

)p−1−β p
]
dx

=

[
1−

(
ε

τ + ε

)p−1−β p
]

A

εp−1−β p .

By taking the limit as ε goes to 0 in the previous estimate and using the Monotone
Convergence Theorem, we get ∫

Ω

|∇wΩ|p

wp−β pΩ

dx = +∞.

This finally shows that ∇wβΩ 6∈ Lp(Ω) for 0 < β < (p− 1)/p.
To treat the borderline case β = (p− 1)/p, we insert in (2.2) the test function

φ = log(wΩ + ε)− log ε,

for ε > 0. In this case we obtain∫
Ω

|∇wΩ|p

wΩ + ε
dx =

∫
Ω

log
(

1 +
wΩ

ε

)
dx,
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and reasoning as before we get again the desired conclusion.

(ii) The logarithm. To prove that logwΩ 6∈W 1,p(Ω), it is sufficient to reproduce the proof
above with β = 0.

(iii) Case (p− 1)/p < β < 1. We test once again (2.2) with ϕε defined in (3.3). In this
case we get the equality

(β p− p+ 1)

∫
Ω
|∇wΩ|p (wΩ + ε)β p−p dx =

∫
Ω

(
(wΩ + ε)β p−p+1 − εβ p−p+1

)
dx.

From the previous, with simple manipulations and using the subadditivity of τ 7→ τβ p−p+1

we get for every ε > 0∫
Ω

∣∣∣∇((wΩ + ε)β − εβ
)∣∣∣p dx ≤ βp

β p− p+ 1

∫
Ω

(
(wΩ + ε)β p−p+1 − εβ p−p+1

)
dx

≤ βp

β p− p+ 1

∫
Ω
wβ p−p+1

Ω dx,

and the latter is finite by hypothesis. Thus the net{
(wΩ + ε)β − εβ

}
ε>0

,

is uniformly bounded in D1,p
0 (Ω). Since the latter is a weakly closed space, we get that

wβΩ ∈ D
1,p
0 (Ω) as desired.

(iv) Case β ≥ 1. This is the simplest case. By Proposition 3.1 wΩ ∈ L∞(Ω), then wβΩ is

just the composition of a C1 function vanishing at 0 with a function in D1,p
0 (Ω) ∩ L∞(Ω).

This gives wβΩ ∈ D
1,p
0 (Ω). �

Remark 3.3. The requirement wβ p−p+1
Ω ∈ L1(Ω) in point (iii) of the previous Lemma

is necessary. Indeed, for every (p − 1)/p < β < 1, it is possible to construct an open set

Ω ⊂ RN such that D1,p
0 (Ω) ↪→ L1(Ω) is compact, but wβ p−p+1

Ω 6∈ L1(Ω) and wβΩ 6∈ D
1,p
0 (Ω).

An instance of such a set is presented in Remark 5.3 below.

3.2. General case. We already said that in general wΩ could reduce to the trivial function
which is +∞ everywhere on Ω. The following elegant and simple result, suggested to us by
Guido De Philippis [12], gives a sufficient condition to avoid this trivial situation. It asserts
that finiteness in a point entails finiteness in the whole connected component containing
the point.

Lemma 3.4 (Propagation of finiteness). Let 1 < p < +∞ and let Ω ⊂ RN be an open
set. Let us suppose that there exist R0 > RΩ, x0 ∈ Ω ∩BR0 and M > 0 such that

wΩ,R(x0) ≤M, for every R ≥ R0. (3.5)

Then wΩ ∈ L∞loc(Ωx0), where Ωx0 is the connected component of Ω containing x0.

Proof. We first observe that the pointwise condition (3.5) does make sense, since each

function wΩ,R is indeed C1,α
loc (Ω ∩ BR) for some 0 < α < 1, thanks to standard regularity

results for the p−Laplacian. In this respect, a classical reference is [13].
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Let K b Ωx0 be a compact set, then there exists a larger compact set K ⊂ K ′ b Ωx0

such that x0 ∈ K ′. We take R1 ≥ R0 large enough, so that Ω ∩ BR1 contains K ′. By
Harnack inequality (see [14, Theorem 7.10]), we have

sup
K
wΩ,R ≤ sup

K′
wΩ,R ≤ CK′

(
inf
K′
wΩ,R + |K ′|

1
N

p
p−1

)
≤ CK′ wΩ,R(x0) + CK′ |K ′|

1
N

p
p−1 ≤ C, for R ≥ R1,

where C = C(N, p,K ′,M) > 0. This ends the proof. �

In general it is not true that (3.5) implies wΩ ∈ L∞loc(Ω), unless Ω is connected as
shown in the next simple counterexample.

Example 3.5. Let us consider

Ω = B1 ∪ {x ∈ RN : xN > 2}.

In this case we have

wΩ(0) =
p− 1

p
N
− 1
p−1 and wΩ = +∞ on {x ∈ RN : xN > 2}.

We present now a sufficient condition for the function wΩ defined by (2.4) to be a
(local) weak solution of

−∆pw = 1.

Proposition 3.6. Let 1 < p < +∞ and let Ω ⊂ RN be an open set. Let us suppose that
wΩ ∈ L1

loc(Ω). Then

∇wΩ ∈ Lploc(Ω). (3.6)

Moreover, wΩ is a local weak solution of (2.2), i.e. for every Ω′ b Ω and every φ ∈ C∞0 (Ω′)
there holds ∫ 〈

|∇wΩ|p−2∇wΩ,∇φ
〉
dx =

∫
φdx.

Proof. To prove (3.6) it suffices to show that for every open set Ω′ b Ω, there exists a
constant CΩ′ > 0 such that

‖∇wΩ,R‖Lp(Ω′) ≤ CΩ′ , for every R > ρΩ′ := min{ρ ∈ [0,∞) : Ω′ b Bρ}. (3.7)

Indeed, if this were true, by weak convergence (up to a subsequence) of the gradients for
every φ ∈ C∞0 (Ω′) we would get

lim
R→∞

∫
Ω

(wΩ,R)xj φdx = − lim
R→∞

∫
Ω
wΩ,R φxj dx = −

∫
Ω
wΩ φxj dx, j = 1, . . . , N,

which implies that ∇wΩ ∈ Lploc(Ω). Observe that we used wΩ,R ≤ wΩ and wΩ ∈ L1
loc(Ω)

to pass to the limit.
To show the uniform bound (3.7), we choose Ω′ b Ω′′ b Ω and a positive cut-off

function η ∈ C∞0 (Ω′′) such that

0 ≤ η ≤ 1, η ≡ 1 on Ω′, |∇η| ≤ C

dist(Ω′, ∂Ω′′)
.
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Then, for a fixed R ≥ ρΩ′′ , we insert the test function φ = wΩ,R η
p in the weak formulation

of the equation solved by wΩ,R. Observe that this is an admissible test function, since it
is supported in Ω′′ b Ω ∩BR. With simple manipulations, we get∫

Ω
|∇wΩ,R|p ηp dx ≤

∫
Ω
ηpwΩ,R dx+ p

∫
Ω
ηp−1|∇wΩ,R|p−1 |∇η|wΩ,R dx

≤
∫

Ω′′
wΩ dx+ ε1−p

∫
Ω
|wΩ|p |∇η|p dx

+ (p− 1) ε

∫
Ω
|∇wΩ,R|p ηp dx,

(3.8)

where we also used that wΩ,R ≤ wΩ by construction. The last term can be absorbed in
the left-hand side of (3.8) by taking ε > 0 small enough. Thus we end up with∫

Ω′
|∇wΩ,R|p dx ≤ C

∫
Ω′′
wΩ dx+

C

dist(Ω′, ∂Ω′′)p

∫
Ω′′
|wΩ|p dx, (3.9)

for some C = C(N, p) > 0, where we also used the bound on |∇η|. In order to conclude, we
need to show that the right-hand side of (3.9) is finite. Since we are assuming wΩ ∈ L1

loc(Ω),
then we can apply Lemma 3.4 in each connected component of Ω and obtain wΩ ∈ L∞loc(Ω).
Thus the right-hand side of (3.9) is finite and we get (3.7).

In order to show that wΩ is a local weak solution of (2.2), we need to pass to the limit in
the equation ∫

〈|∇wΩ,R|p−2∇wΩ,R,∇φ〉 dx =

∫
φdx, (3.10)

where φ ∈ C∞(Ω′) and Ω′ b Ω. We first observe that for p = 2 the local weak convergence
of the gradients already gives the result, by linearity of (3.10).

In the case p 6= 2 we need to improve this weak convergence into a stronger one. For
this, we can use the higher differentiability of solutions of the p−Laplacian. Namely, it is
sufficient to observe that for every (smooth) open sets Ω′ b Ω′′ b Ω, we have

‖D2wΩ,R‖Lp(Ω′) ≤
C

dist(Ω′, ∂Ω′′)
‖∇wΩ,R‖Lp(Ω′′), for 1 < p < 2, (3.11)

and∥∥∥∇(|∇wΩ,R|
p−2

2 ∇wΩ,R

)∥∥∥2

L2(Ω′)
≤ C

dist(Ω′, ∂Ω′′)2
‖∇wΩ,R‖pLp(Ω′′), for p > 2. (3.12)

again for R > ρΩ′′ , so that Ω′′ b Ω ∩ BR. These estimates are nowadays well-known: the
first one comes from [1, Proposition 2.4], while the second one can be found for example
in [6, Theorem 4.2]. Observe that the right-hand sides of (3.11) and (3.12) are uniformly
bounded, thanks to the first part of the proof.

For 1 < p < 2, from (3.11) by Rellich-Kondrašov Theorem we have strong convergence
(up to a subsequence) in Lp(Ω′) of ∇wΩ,R to ∇wΩ. If one then uses the elementary
inequality2∫

Ω′

∣∣∣|∇wΩ,R|p−2∇wΩ,R − |∇wΩ|p−2∇wΩ

∣∣∣p′ dx ≤ C ∫
Ω′
|∇wΩ,R −∇wΩ|p dx,

2This follows from the fact that z 7→ |z|p−2 z is (p− 1)−Hölder continuous, for 1 < p < 2.
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we obtain strong convergence in Lp
′
(Ω′) of |∇wΩ,R|p−2∇wΩ,R to |∇wΩ|p−2∇wΩ. Thus it

is possible to pass to the limit in (3.10) for 1 < p < 2.
For p > 2, we observe that (3.12), Rellich-Kondrašov Theorem and the elementary

inequality3∫
Ω′

∣∣∣|∇wΩ,R|
p−2

2 ∇wΩ,R − |∇wΩ,R′ |
p−2

2 ∇wΩ,R′

∣∣∣2 dx ≥ C ∫
Ω′

∣∣∇wΩ,R −∇wΩ,R′
∣∣p dx,

imply again that we can extract a sequence such that the gradients strongly convergence
in Lp(Ω′). The limit is of course ∇wΩ,R, since this has to coincide with the weak limit. In
order to conclude, we can observe that for every φ ∈ C∞0 (Ω′) we have∣∣∣ ∫ 〈|∇wΩ,R|p−2wΩ,R − |∇wΩ|p−2wΩ,∇φ〉 dx

∣∣∣
≤ ‖∇φ‖L∞

∫
Ω′

∣∣∣|∇wΩ,R|p−2∇wΩ,R − |∇wΩ|p−2∇wΩ

∣∣∣ dx
≤ C ‖∇φ‖L∞

∫
Ω′

(|∇wΩ,R|p−2 + |∇wΩ|p−2) |∇wΩ,R −∇wΩ| dx.

From the strong convergence of the gradients in Lploc, we get that the last integral tends
to 0, as R goes to +∞. This yields the desired result. �

Remark 3.7. Though we will not need this, we notice that once we obtained that wΩ ∈
W 1,p

loc (Ω) is a local weak solution of the equation, then we have wΩ ∈ C1,α
loc (Ω) for some

0 < α < 1, by classical regularity results (see for example [13]).

Lemma 3.8. Let Ω ⊂ RN be an open set such that |Ω| < +∞. Then wΩ ∈ L1(Ω).

Proof. For every R > RΩ we have(∫
Ω∩BR

wΩ,R dx

)p−1

= Tp(Ω ∩BR).

By using the Saint-Venant inequality (2.3), we obtain for every R > RΩ

Tp(Ω ∩BR) ≤
(
|Ω ∩BR|
|B|

) p+N (p−1)
N

Tp(B) ≤
(
|Ω|
|B|

) p+N (p−1)
N

Tp(B).

Thus we obtain a uniform L1 bound on the functions wΩ,R. By taking the limit as R goes
to +∞ and using the Monotone Convergence Theorem, we get the result. �

4. The torsional Hardy inequality

In this section we are going to prove a Hardy-type inequality, which contains weights
depending on wΩ. The proof of its sharpness is postponed to Section 6.

3Observe that z 7→ |z|
2−p
p z is 2/p−Hölder continuous, i.e.∣∣∣|z| 2−p

p z − |ξ|
2−p
p ξ

∣∣∣ ≤ C |z − ξ| 2p .
The desired inequality is obtained by choosing

z = |∇wΩ,R|
p−2
2 wΩ,R and ξ = |∇wΩ,R′ |

p−2
2 wΩ,R′ .
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4.1. Compact case. We start with the following slightly weaker result.

Proposition 4.1. Let 1 < p < +∞ and let Ω ⊂ RN be an open set such that the embedding
D1,p

0 (Ω) ↪→ L1(Ω) is compact. Then for every u ∈ D1,p
0 (Ω) we have(

p− 1

p

)p ∫
Ω

[∣∣∣∣∇wΩ

wΩ

∣∣∣∣p +
p

(p− 1)

1

wp−1
Ω

]
|u|p dx ≤

∫
Ω
|∇u|p dx. (4.1)

Proof. We first observe that it is sufficient to prove inequality (4.1) for positive functions.
Let u ∈ C∞0 (Ω) be positive. We recall that∫

Ω

〈
|∇wΩ|p−2∇wΩ,∇φ

〉
dx =

∫
Ω
φdx, (4.2)

for any φ ∈ D1,p
0 (Ω). Let ε > 0, by taking in (4.2) the test function

φ = up (wΩ + ε)1−p,

we get∫
Ω

[
(p− 1) |∇wΩ|p + (wΩ + ε)

(wΩ + ε)p

]
up dx = p

∫
Ω
up−1

〈
|∇wΩ|p−2∇wΩ

(wΩ + ε)p−1
,∇u

〉
dx. (4.3)

By Young inequality, for any ξ, z ∈ RN it holds

〈ξ, z〉 ≤ 1

p
|z|p +

p− 1

p
|ξ|

p
p−1 . (4.4)

By applying such an inequality to (4.3), with

z =

(
p

p− 1

) p−1
p

∇u, and ξ =

(
p− 1

p

) p−1
p

up−1 |∇wΩ|p−2∇wΩ

(wΩ + ε)p−1
,

we get that∫
Ω

[
(p− 1) |∇wΩ|p + (wΩ + ε)

(wΩ + ε)p

]
up dx ≤

(
p

p− 1

)p−1 ∫
Ω
|∇u|p dx

+ (p− 1)
p− 1

p

∫
Ω

up |∇wΩ|p

(wΩ + ε)p
dx.

The previous inequality gives(
p− 1

p

)p ∫
Ω

[
|∇wΩ|p

(wΩ + ε)p
+

p

(p− 1) (wΩ + ε)p−1

]
up dx ≤

∫
Ω
|∇u|p dx.

Finally we let ε go to 0, then Fatou’s Lemma gives the inequality (4.1) for u ∈ C∞0 (Ω)

positive. The case of a general u ∈ D1,p
0 (Ω) follows by density. �

As a consequence of the torsional Hardy inequality, we record the following integra-
bility properties of functions in D1,p

0 (Ω). This will be useful in a while.

Corollary 4.2. Under the assumptions of Proposition 4.1, for every u ∈ D1,p
0 (Ω) we have∫

Ω

∣∣∣∣∇wΩ

wΩ

∣∣∣∣p |u|p dx < +∞ and

∫
Ω

|u|p

wp−1
Ω

dx < +∞.
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Moreover, if {un}n∈N ⊂ D1,p
0 (Ω) converges strongly to u ∈ D1,p

0 (Ω), then

lim
n→∞

∫
Ω

∣∣∣∣∇wΩ

wΩ

∣∣∣∣p |un − u|p dx = 0 and lim
n→∞

∫
Ω

|un − u|p

wp−1
Ω

dx = 0.

The following functional inequality is the main result of this section.

Theorem 4.3 (Torsional Hardy inequality). Under the assumptions of Proposition 4.1,

for every δ > 0 and every u ∈ D1,p
0 (Ω) we have

p− 1

δ

∫
Ω

[(
1− δ−

1
p−1

) ∣∣∣∣∇wΩ

wΩ

∣∣∣∣p +
1

(p− 1)wp−1
Ω

]
|u|p dx ≤

∫
Ω
|∇u|p dx. (4.5)

Proof. The proof is the same as that of Proposition 4.1. The main difference is that now
we use Young inequality (4.4) with the choices

z = δ
1
p ∇u and ξ = δ

− 1
p up−1 |∇w|p−2∇w

(w + ε)p−1
,

where δ > 0 is a free parameter. Thus this time we get∫
Ω

[
(p− 1) |∇wΩ|p + (wΩ + ε)

(wΩ + ε)p

]
|u|p dx ≤ δ

∫
Ω
|∇u|p dx+ (p− 1) δ

− 1
p−1

∫
Ω

|u|p |∇wΩ|p

(wΩ + ε)p
dx.

We can now pass to the limit on both sides. By using Corollary 4.2 and the Monotone
Convergence Theorem we get∫

Ω

[
(p− 1) |∇wΩ|p + wΩ

wpΩ

]
|u|p dx ≤ δ

∫
Ω
|∇u|p dx+ (p− 1) δ

− 1
p−1

∫
Ω
|u|p

∣∣∣∣∇wΩ

wΩ

∣∣∣∣p dx.
This gives the conclusion for u smooth and positive. A density argument and Corollary
4.2 gives again the general result. �

Remark 4.4. Observe that one could optimize (4.5) with respect to δ > 0. This leads to
the following stronger form of the torsional Hardy inequality

(
p− 1

p

)p
(∫

Ω

[∣∣∣∣∇wΩ

wΩ

∣∣∣∣p +
1

(p− 1)wp−1
Ω

]
|u|p dx

)p
(∫

Ω

∣∣∣∣∇wΩ

wΩ

∣∣∣∣p |u|p dx)p−1 ≤
∫

Ω
|∇u|p dx.

We leave the details to the interested reader.

4.2. General case. Finally, we consider the case of a general open set Ω ⊂ RN . We will
need the following version of the torsional Hardy inequality.

Proposition 4.5. Let Ω ⊂ RN be an open set. Then for every u ∈ C∞0 (Ω) we have∫
{x∈Ω :wΩ(x)<+∞}

|u|p

wp−1
Ω

dx ≤
∫

Ω
|∇u|p dx. (4.6)
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Proof. Let u ∈ C∞0 (Ω), then we take as always R1 > RΩ large enough so that the support
of u is contained in Ω ∩ BR, for every R ≥ R1. We can then use Theorem 4.3 with δ = 1
and obtain ∫

Ω

|u|p

wp−1
Ω,R

dx ≤
∫

Ω
|∇u|p dx, R ≥ R1.

If we now take the limit as R goes to +∞ and use Fatou’s Lemma once again, we get the
desired conclusion by appealing to the definition of wΩ. �

5. Proofs of the main results

5.1. Proof of Theorem 1.2. For ease of notation, we set

γ :=
p− 1

p− q
q.

We start by proving the first equivalence, i.e.

λp,q(Ω) > 0 ⇐⇒ wΩ ∈ Lγ(Ω).

Let us assume that λp,q(Ω) > 0. We recall that wΩ,R satisfies∫
Ω∩BR

〈|∇wΩ,R|p−2∇wΩ,R,∇φ〉 dx =

∫
Ω∩BR

φdx,

for every φ ∈ D1,p
0 (Ω ∩ BR). By Lemma 3.2, the function φ = wβΩ,R is a legitimate test

function for every β ≥ 1, since Ω∩BR is an open bounded set and thus D1,p
0 (Ω) ↪→ L1(Ω)

is compact. By using this, we get with simple manipulations

β

(
p

β + p− 1

)p ∫
Ω∩BR

∣∣∣∣∇w β+p−1
p

Ω,R

∣∣∣∣p dx =

∫
Ω∩BR

wβΩ,R dx. (5.1)

We now observe that (β + p − 1)/p ≥ 1, thus w
(β+p−1)/p
Ω,R ∈ D1,p

0 (Ω ∩ BR), still thanks to
Lemma 3.2. Moreover, the inclusion Ω ∩BR ⊂ Ω implies

0 < λp,q(Ω) ≤ λp,q(Ω ∩BR).

Then we can apply the relevant Poincaré inequality in the left-hand side of (5.1) and get

β

(
p

β + p− 1

)p
λp,q(Ω)

(∫
Ω∩BR

w
β+p−1
p

q

Ω,R dx

) p
q

≤
∫

Ω∩BR
wβΩ,R dx.

This is valid for a generic β ≥ 1. In order to obtain the desired estimate, we now choose

β = γ =
p− 1

p− q
q so that

β + p− 1

p
q = β,

which is feasible, since γ ≥ 1. By using that p/q > 1, after a simplification we get

λp,q(Ω)

(∫
Ω∩BR

wγΩ,R dx

) p−q
q

≤ 1

q

(
p− 1

p− q

)p−1

.

We now take the limit ar R goes to +∞, then Fatou’s Lemma gives that wΩ ∈ Lγ(Ω),
together with the upper bound in (1.2).
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Let us now assume wΩ ∈ Lγ(Ω). The latter entails |{x ∈ Ω : wΩ(x) < +∞}| = |Ω|. Then
for every u ∈ C∞0 (Ω) with unit Lq norm, by combining Hölder inequality and the torsional
Hardy inequality (4.6), we get

1 =

∫
Ω
|u|q dx ≤

(∫
Ω

|u|p

wp−1
Ω

dx

) q
p (∫

Ω
wγΩ dx

) p−q
p

≤
(∫

Ω
|∇u|p dx

) q
p
(∫

Ω
wγΩ dx

) p−q
p

.

By taking the infimum over admissible u, we get λp,q(Ω) > 0. The result comes with the
lower bound in (1.2).

In order to complete the proof, we are now going to prove the equivalence

λp,q(Ω) > 0 ⇐⇒ D1,p
0 (Ω) ↪→ Lq(Ω) is compact.

The implication “⇐=” is straightforward, we thus focus on the converse implication. Let
us assume that

λp,q(Ω) > 0. (5.2)

From the first part of the proof, we already know that this implies (and is indeed equivalent

to) wΩ ∈ Lγ(Ω). By recalling Remark 1.1, we also observe that (5.2) implies that D1,p
0 (Ω)

is a functional space, thus we can extend by density both the Poincaré inequality

λp,q(Ω)

(∫
Ω
|u|q dx

) p
q

≤
∫

Ω
|∇u|p dx, (5.3)

and the torsional Hardy inequality (4.6) to the whole D1,p
0 (Ω). Let {un} ⊂ D1,p

0 (Ω) be a
bounded sequence, i.e.

‖∇un‖Lp(Ω) ≤ L, for every n ∈ N. (5.4)

By (5.3) we have that {un}n∈N is bounded also in Lq(Ω). Thanks to the Gagliardo-
Nirenberg inequalities of Proposition 2.6 applied with r = p, we thus get that {un}n∈N
is bounded in Lp(Ω) as well. By uniform convexity of D1,p

0 (Ω) and Lp(Ω), we get that

{un}n∈N converges weakly (up to a subsequence) in D1,p
0 (Ω) and Lp(Ω) to a function

u ∈ D1,p
0 (Ω) ∩ Lp(Ω). Finally, we observe that we also have u ∈ Lq(Ω).

Let us take the new sequence

Un := un − u ∈ D1,p
0 (Ω) ∩ Lp(Ω) ∩ Lq(Ω),

that we consider extended by 0 outside Ω. From the previous discussion, this is a bounded
sequence in W 1,p(RN ). From Rellich-Kondrašov Theorem we thus obtain that {Un}n∈N
strongly converges (up to a subsequence) in Lq(BR+1), for every R > 0, and the limit is
0. Thus for every ε > 0 and every R > 0 there exists nε,R ∈ N such that∫

BR+1

|Un|q dx < ε, for every n ≥ nε,R. (5.5)

In order to control the integral on RN \BR+1 uniformly, we use again the torsional Hardy
inequality. For every R > 0, we take a positive function ηR ∈ C∞(RN \BR) such that

ηR ≡ 1 in RN \BR+1, ηR ≡ 0 in BR, 0 ≤ ηR ≤ 1, |∇ηR| ≤ C,
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for some universal constant C > 0. Each function Un ηR belongs to D1,p
0 (Ω), then by

combining Hölder inequality and (4.6) as before, we have∫
RN\BR+1

|Un|q dx ≤

(∫
Ω

|Un ηR|p

wp−1
Ω

dx

) q
p
(∫

Ω\BR
wγΩ dx

) p−q
p

≤
(∫

Ω
|∇(Un ηR)|p dx

) q
p

(∫
Ω\BR

wγΩ dx

) p−q
p

.

(5.6)

In the first inequality we used the properties of ηR, which imply in particular that Un ηR ≡
0 on BR. We now observe that the first term in the right-hand side of (5.6) is bounded
uniformly. Indeed, by (5.4) and the triangle inequality(∫

Ω
|∇(Un ηR)|p dx

) 1
p

≤ ‖∇Un‖Lp(Ω) + C ‖Un‖Lp(Ω),

which is bounded, as showed before.
On the other hand, since wΩ ∈ Lγ(Ω), by the absolute continuity of the integral for

every ε > 0 there exists Rε > 0 such that(∫
Ω\BRε

wγΩ dx

) p−q
p

≤ ε.

By spending these informations in (5.6), we finally get∫
RN\BRε+1

|Un|q dx < C̃ ε, for every n ∈ N, (5.7)

for some C̃ > 0 independent of n and ε. By collecting (5.5) and (5.7), we proved that for
every ε > 0 there exists Rε > 0 and nε ∈ N such that∫

RN
|Un|q dx =

∫
BRε+1

|Un|q dx+

∫
RN\BRε+1

|Un|q dx < (1 + C̃) ε, for every n ≥ nε.

This finally shows that Un = un − u strongly converges to 0 in Lq(Ω).

5.2. Proof of Theorem 1.3. The fact that wΩ ∈ L∞(Ω) implies λp,p(Ω) > 0 follows as
before by using the torsional Hardy inequality (4.6). Indeed, for every u ∈ C∞0 (Ω) with
unit Lp norm we have

1 =

∫
Ω
|u|p dx ≤ ‖wΩ‖p−1

L∞

∫
Ω

|u|p

wp−1
Ω

dx ≤ ‖wΩ‖p−1
L∞

∫
Ω
|∇u|p dx.

This also shows the first inequality in (1.3). The converse implication is exactly the van
den Berg–Bucur estimate of [4, Theorem 9].

As for the characterization (1.4) of the compact embedding D1,p
0 (Ω) ↪→ Lp(Ω), we first

observe that when this holds, then λp,p(Ω) > 0 and this in turn implies wΩ ∈ L∞(Ω). The
proof of the implication “=⇒” can now be proved exactly as in [8, Theorem 6.1] by Bucur
and Buttazzo.
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The implication “⇐=” can be proved by appealing again to the torsional Hardy in-
equality. Indeed, the hypothesis on wΩ implies that bounded sequences {un}n∈N ⊂ D1,p

0 (Ω)
are bounded in Lp(Ω) as well, since wΩ ∈ L∞(Ω) and thus λp,p(Ω) > 0. Moreover, the
bound on the Lp norms of the gradients guarantees that translations converge to 0 in
Lp(Ω) uniformly in n, i.e.

lim
|h|→0

(
sup
n∈N

∫
RN
|un(x+ h)− un(x)|p dx

)
= 0.

In order to exclude loss of mass at infinity for the sequence {|un|p}n∈N, we observe that
with an argument similar to that of (5.6), by (4.6) we have∫

RN\BR+1

|un|p dx ≤
(∫

Ω
|∇(un ηR)|p dx

)
‖wΩ‖p−1

L∞(Ω\BR),

where ηR is as in the proof of Theorem 1.2. Thus the loss of mass at infinity is excluded,
by using the hypothesis on the decay at infinity of wΩ. This yields strong convergence in
Lp(Ω) (up to a subsequence), thanks to the Riesz-Fréchet-Kolmogorov Theorem.

Remark 5.1. Differently from the case 1 ≤ q < p, the fact that λp,p(Ω) > 0 does not entail

in general that the embedding D1,p
0 (Ω) ↪→ Lp(Ω) is compact. A simple counterexample

is given by any rectilinear wave-guide Ω = ω × R ⊂ RN , where ω ⊂ RN−1 is a bounded
open set. Indeed, it is well-known that λp,p(Ω) > 0 in this case, while every sequence of
the form

un(x′, xN ) = u(x′, xN + n), (x′, xN ) ∈ ω × R, n ∈ N,

with u ∈ C∞0 (ω × R), is bounded in D1,p
0 (ω × R) but do not admit subsequences strongly

convergent in Lp(ω × R).

Example 5.2. For simplicity we focus on the case p = 2, but the very same example
works for every 1 < p < +∞, with the necessary modifications. Let {ri}i∈N ⊂ R be a
sequence of strictly positive numbers, such that

∞∑
i=0

rNi = +∞.

We then define the sequence of points {xi}i∈N ⊂ RN by{
x0 = (0, . . . , 0),

xi+1 = (ri + ri+1, 0, . . . , 0) + xi,

and the set

Ω =
∞⋃
i=0

Bri(xi), (5.8)

which by construction is a disjoint union of open balls, with |Ω| = +∞. On each ball
Bri(xi) the torsion function is given by

wBri (xi) =
(r2
i − |x− xi|2)+

2N
,
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thus we have the explicit expression for the torsion function of Ω

wΩ(x) =
∞∑
i=0

wBri (xi) =
∞∑
i=0

(r2
i − |x− xi|2)+

2N
.

Figure 1. The set of Example 5.2 when ri ↗ +∞. The relevant torsion
function is in L∞loc(Ω) but not in L∞(Ω) and thus λ2,2(Ω) = 0.

We start with the case q = 2. We notice that wΩ ∈ L∞loc(Ω) and we have

wΩ ∈ L∞(Ω) ⇐⇒ lim sup
i→∞

ri < +∞.

In this case λ2,2(Ω) > 0 by Theorem 1.3. We also observe that

for every ε > 0, there exists R > 0
such that ‖wΩ‖L∞(Ω\BR) < ε

⇐⇒ lim
i→∞

ri = 0,

and when the latter is verified D1,2
0 (Ω) ↪→ L2(Ω) is compact.

For 1 ≤ q < 2, by observing that∫
Ω
w

q
2−q
Ω dx '

∞∑
i=1

∫
Bri

(r2
i − |x|2)

q
2−q dx '

∞∑
i=1

r
2 q

2−q+N

i ,

we have

wΩ ∈ L
q

2−q (Ω) ⇐⇒
∞∑
i=1

r
2 q

2−q+N

i < +∞. (5.9)

In this case λ2,q(Ω) > 0 and D1,2
0 (Ω) ↪→ Lq(Ω) is compact by Theorem 1.2.

Remark 5.3. By exploiting Example 5.2, it is not difficult to show that for every 0 < s < 1
there exists an open set Ω ⊂ RN such that wΩ ∈ L1(Ω) \ Ls(Ω) (this in particular means

that the embedding D1,p
0 (Ω) ↪→ L1(Ω)) is compact, by Theorem 1.2). Indeed, with the

notations of the previous example in force, by taking Ω as in (5.8) we only have to show
that there exists a sequence {ri}i∈N such that

∞∑
i=1

r2+N
i < +∞ and

∞∑
i=1

r2 s+N
i =∞.
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Thanks to (5.9), this would entail that wΩ ∈ L1(Ω), while wΩ 6∈ Ls(Ω) (observe that
s = q/(2 − q) implies 2 q/(2 − q) = 2 s). As a straightforward computation shows, an

example of such a sequence is offered by the choice ri = i−1/(2 s+N).

6. Sharpness of the torsional Hardy inequality

Since the essential ingredient of the lower bounds in (1.2) and (1.3) is the torsional
Hardy inequality (4.5), it is natural to address the question of its sharpness. Though
sharpness of (4.5) is not a warranty of optimality of the estimates (1.2) and (1.3), we
believe this question to be of independent interest. As we will see, the following value of
the parameter δ > 0 in (4.5)

δ =

(
p

p− 1

)p−1

,

will play a crucial role.
We warn the reader that for simplicity in this section we will make the stronger

assumption |Ω| < +∞. In this case, it is well-known that we have the compact embedding

D1,p
0 (Ω) ↪→ L1(Ω). Observe that this can also be obtained by joining Lemma 3.8 and

Theorem 1.2.

We start with a standard consequence of the Harnack inequality.

Lemma 6.1. Let 1 < p < +∞ and let Ω ⊂ RN be an open connected set with finite
measure. Let δ ≥ 1 and suppose that u ∈ D1,p

0 (Ω) is a nontrivial function attaining the
equality in (4.5). Then |u| still attains equality in (4.5) and for every compact set K b Ω
there exists a constant C > 0 such that

|u| ≥ 1

C
, on K. (6.1)

Proof. If u 6≡ 0 is an optimal function, then u minimizes in D1,p
0 (Ω) the functional

F(ϕ) =

∫
Ω
|∇ϕ|p dx−

∫
Ω
g |ϕ|p dx,

where

g(x) =
p− 1

δ

[(
1− δ−

1
p−1

) ∣∣∣∣∇wΩ

wΩ

∣∣∣∣p +
1

(p− 1)wp−1
Ω

]
.

Since δ ≥ 1, we have g > 0. Then v = |u| ∈ D1,p
0 (Ω) is still a minimizer and it is of

course positive. The relevant Euler-Lagrange equation associated with this minimization
problem is given by {

−∆pv = g vp−1, in Ω,
v = 0, on ∂Ω.

In particular, v is a nontrivial positive local weak solution of

−∆pv = g vp−1,

and observe that g ∈ L∞loc(Ω). Then v satisfies Harnack inequality (see for instance [18,
Theorem 1.1]) and thus it verifies (6.1). �
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Proposition 6.2 (Existence of extremals). Let 1 < p < +∞ and let Ω ⊂ RN be an open
set with finite measure. Assume that

0 < δ <

(
p

p− 1

)p−1

, (6.2)

then functions of the type

u = cwδ
− 1
p−1

Ω , c ∈ R, (6.3)

give equality in (4.5).

Proof. We first observe that hypothesis (6.2) implies that

δ
− 1
p−1 >

p− 1

p
,

so that by Lemma 3.2, functions of the type (6.3) are in D1,p
0 (Ω). Then the proof is by

direct verification. Indeed, let us take for simplicity c = 1, then we get∫
Ω
|∇u|p = δ

− p
p−1

∫
Ω
|∇wΩ|pwp δ

− 1
p−1−p

Ω dx, (6.4)

and

p− 1

δ

∫
Ω

[(
1− δ−

1
p−1

) ∣∣∣∣∇wΩ

wΩ

∣∣∣∣p +
1

(p− 1)wp−1
Ω

]
|u|p dx

=
p− 1

δ

(
1− δ−

1
p−1

)∫
Ω
|∇wΩ|pwp δ

− 1
p−1−p

Ω dx+
1

δ

∫
Ω
wp δ

− 1
p−1−p+1

Ω dx.

(6.5)

We now have to distinguish two cases:

0 < δ <

(
p2

p2 − 1

)p−1

or

(
p2

p2 − 1

)p−1

≤ δ <
(

p

p− 1

)p−1

. (6.6)

In the first case, we can insert in (2.2) the test function4

φ = wp δ
− 1
p−1−p+1

Ω , (6.7)

then we get

1

δ

∫
Ω
wp δ

− 1
p−1−p+1

Ω dx =

[
−p− 1

δ

(
1− δ−

1
p−1

)
+ δ
− p
p−1

] ∫
Ω
|∇wΩ|pwp δ

− 1
p−1−p

Ω dx. (6.8)

By using this in (6.5) and comparing with (6.4), we get the conclusion.

If on the contrary the second condition in (6.6) is verified, some care is needed. Indeed,
now the choice (6.7) is not feasible for the equation (2.2). We thus need to replace it by

φn = (wΩ + εn)p δ
− 1
p−1−p+1 − εp δ

− 1
p−1−p+1

n ,

4This is a legitimate test function by Lemma 3.2, since

p δ
− 1

p−1 − p+ 1 >
p− 1

p
⇐⇒ 0 < δ <

(
p2

p2 − 1

)p−1

,

and the latter is true by hypothesis.
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where {εn}n∈N ⊂ (0,+∞) is an infinitesimal strictly decreasing sequence. Then from (2.2)
we get

1

δ

∫
Ω

[
(wΩ + εn)p δ

− 1
p−1−p+1 − εp δ

− 1
p−1−p+1

n

]
dx

=

[
−p− 1

δ

(
1− δ−

1
p−1

)
+ δ
− p
p−1

] ∫
Ω
|∇wΩ|p (wΩ + εn)p δ

− 1
p−1−p dx.

If we now use the Dominated Convergence Theorem on both sides, we obtain as before
(6.8) and thus we get again the desired conclusion. �

Proposition 6.3 (Lack of extremals). Let 1 < p < +∞ and let Ω ⊂ RN be an open
connected set with finite measure. If

δ ≥
(

p

p− 1

)p−1

, (6.9)

equality in (4.5) is not attained in D1,p
0 (Ω) \ {0}.

Proof. We first notice that by using the quantitative version of Young inequality (see
Propositions A.2 and A.4 below) in place of (4.4), we can show the following stronger
version of (4.5)

p− 1

δ

∫
Ω

[(
1− δ−

1
p−1

) ∣∣∣∣∇wΩ

wΩ

∣∣∣∣p +
1

(p− 1)wp−1
Ω

]
|u|p +

C

δ
Rp,Ω(u) ≤

∫
Ω
|∇u|p dx.

Here C = C(p) > 0 is a constant and the remainder term Rp,Ω(u) is given by

Rp,Ω(u) =

∫
Ω

∣∣∣∣δ 1
p ∇u− δ−

1
p (p−1) u

∇wΩ

wΩ

∣∣∣∣p dx, if p ≥ 2,

or

Rp,Ω(u) =

∫
Ω

[
δ

2
p |∇u|2 + δ

− 2
p (p−1) u2

∣∣∣∣∇wΩ

wΩ

∣∣∣∣2
] p−2

2

×
∣∣∣∣δ 1

p ∇u− δ−
1
p−1 u

∇wΩ

wΩ

∣∣∣∣2 dx, if 1 < p < 2.

Let u ∈ D1,p
0 (Ω) \ {0} be such that equality holds in (4.5), by Lemma 6.1 we can assume

that it is positive (by assumption we have δ > 1). From the discussion above, then
necessarily Rp,Ω(u) = 0. This yields

∇u
u

= δ
− 1
p−1
∇wΩ

wΩ
,

and observe that it is possible to divide by u thanks to (6.1) of Lemma 6.1. Then we
arrive at

log u = δ
− 1
p−1 logwΩ + c, a. e. in Ω.

From the previous identity we obtain

u = c′wδ
− 1
p−1

Ω , (6.10)
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almost everywhere in Ω for some constant c′ 6= 0. Observe that the hypothesis (6.9) on

δ implies that δ−1/(p−1) ≤ (p − 1)/p. Thus thanks to Lemma 3.2 we get a contradiction

with the fact that u ∈ D1,p
0 (Ω). �

Remark 6.4. We recall that the weaker information “u > 0 almost everywhere” could
not be sufficient to conclude (6.10). Indeed, one can find functions u and v such that

∇u = u
∇v
v
, for a. e. x ∈ Ω and u, v > 0 for a. e. x ∈ Ω,

but u and v are not proportional. A nice example of this type is in [17, page 84]. In the
proof above we used the stronger property (6.1).

Finally, let us give a closer look at the borderline case

δ =

(
p

p− 1

)p−1

.

In this case (4.5) reduces to (4.1). From the previous result, we already know that equality
can not be attained. Nevertheless, the inequality is sharp.

Proposition 6.5 (Borderline case). Let 1 < p < +∞ and let Ω ⊂ RN be an open set with

finite measure. There exists a sequence {un}n∈N ⊂ D1,p
0 (Ω) \ {0} such that

lim
n→∞

∫
Ω
|∇un|p dx∫

Ω

[∣∣∣∣∇wΩ

wΩ

∣∣∣∣p +
p

(p− 1)wp−1
Ω

]
|un|p dx

=

(
p− 1

p

)p
. (6.11)

Proof. Let us consider the sequence of functions in D1,p
0 (Ω) given by

un = w
p−1
p

+ 1
n

Ω , n ∈ N \ {0}.

Observe that these functions belong to D1,p
0 (Ω) thanks to5 Lemma 3.2. We have

upn = w
p−1+ p

n
Ω and |∇un|p =

(
p− 1

p
+

1

n

)p
w
−1+ p

n
Ω |∇wΩ|p.

So we get(
p− 1

p

)p
≤
(
p− 1

p
+

1

n

)p(∫
Ω

|∇wΩ|p

w
1− p

n
Ω

dx

)(∫
Ω

[∣∣∣∣∇wΩ

wΩ

∣∣∣∣p +
p

(p− 1)wp−1
Ω

]
w
p−1+ p

n
Ω dx

)−1

=

(
p− 1

p
+

1

n

)p(∫
Ω

|∇wΩ|p

w
1− p

n
Ω

dx

)(∫
Ω

|∇wΩ|p

w
1− p

n
Ω

dx+

∫
Ω

p

p− 1
w
p
n
Ω dx

)−1

≤
(
p− 1

p
+

1

n

)p
.

By taking the limit as n goes to ∞, we conclude (6.11). �

5Observe again that the assumption |Ω| < +∞ guarantees that wΩ ∈ Lq(Ω), for every q > 0.
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Remark 6.6. Actually, we are not able to decide whether sharpness holds in the whole
range

δ ≥
(

p

p− 1

)p−1

.

We leave this as an interesting open question.

Appendix A. Convexity inequalities

In order to make the paper self-contained, we recall some results about uniform con-
vexity of power functions. The proofs are well-known, thus we mainly omit them.

A.1. Case p ≥ 2.

Lemma A.1. Let p ≥ 2. For every z, w ∈ RN we have

1

2
|z|p +

1

2
|w|p ≥

∣∣∣∣z + w

2

∣∣∣∣p + C
(
|z|2 + |w|2

) p−2
2 |z − w|2, (A.1)

for some constant C = C(p) > 0.

Proposition A.2 (Young inequality with remainder term). Let p ≥ 2. For every z, ξ ∈
RN we have

〈ξ, z〉 ≤ 1

p
|z|p +

1

p′
|ξ|p′ − 2

p
C
(
|z|2 + |ξ|

2
p−1

) p−2
2
∣∣∣z − |ξ|p′−2 ξ

∣∣∣2 , (A.2)

where C = C(p) > 0 is the constant appearing in (A.1). In particular, we also have

〈ξ, z〉 ≤ 1

p
|z|p +

1

p′
|ξ|p′ − C

∣∣∣z − |ξ|p′−2 ξ
∣∣∣p , (A.3)

possibly with a different C = C(p) > 0.

Proof. By using the “above tangent property” of a convex function in (A.1), we get

〈|w|p−2w, z〉 ≤ 1

p
|z|p +

(
1− 1

p

)
|w|p − 2

p
C (|z|2 + |w|2)

p−2
2 |z − w|2.

If we now make the choice w = |ξ|p′−2 ξ in the previous inequality, we get the desired
conclusion (A.2).

In order to prove (A.3), it is sufficient to observe that by using the concavity of t 7→
√
t

and monotonicity of t 7→ tp−2, we get(
|z|2 + |ξ|

2
p−1

) p−2
2 ≥ 2

2−p
2

(
|z|+ |ξ|

1
p−1

)p−2
.

On the other hand, by triangle inequality∣∣∣z − |ξ|p′−2 ξ
∣∣∣p ≤ (|z|+ |ξ| 1

p−1

)p−2 ∣∣∣z − |ξ|p′−2 ξ
∣∣∣2 .

By using these two inequalities in (A.2), we get (A.3). �
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A.2. Case 1 < p < 2.

Lemma A.3. Let 1 < p < 2. For every z, w ∈ RN such that |z|2 + |w|2 6= 0 we have

1

2
|z|p +

1

2
|w|p ≥

∣∣∣∣z + w

2

∣∣∣∣p + C
(
|z|2 + |w|2

) p−2
2 |z − w|2, (A.4)

for some constant C = C(p) > 0.

Proposition A.4 (Young inequality with remainder term). Let 1 < p < 2. For every
z, ξ ∈ RN such that |z|2 + |ξ|2 6= 0 we have

〈ξ, z〉 ≤ 1

p
|z|p +

1

p′
|ξ|p′ − 2

p
C
(
|z|2 + |ξ|

2
p−1

) p−2
2
∣∣∣z − |ξ|p′−2 ξ

∣∣∣2 , (A.5)

where C = C(p) > 0 is the constant appearing in (A.4).

Proof. The proof of (A.5) is exactly the same as that of (A.2) and we omit it. �
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