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Transcribed ultraconserved noncoding RNAs (T-UCR) are 
involved in Barrett’s esophagus carcinogenesis
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ABSTRACT
Barrett’s esophagus (BE) involves a metaplastic replacement of native 

esophageal squamous epithelium (Sq) by columnar-intestinalized mucosa, and it 
is the main risk factor for Barrett-related adenocarcinoma (BAc). Ultra-conserved 
regions (UCRs) are a class non-coding sequences that are conserved in humans, mice 
and rats. More than 90% of UCRs are transcribed (T-UCRs) in normal tissues, and 
are altered at transcriptional level in tumorigenesis. To identify the T-UCR profiles 
that are dysregulated in Barrett’s mucosa transformation, microarray analysis was 
performed on a discovery set of 51 macro-dissected samples obtained from 14 long-
segment BE patients. Results were validated in an independent series of esophageal 
biopsy/surgery specimens and in two murine models of Barrett’s esophagus 
(i.e. esophagogastric-duodenal anastomosis). Progression from normal to BE to 
adenocarcinoma was each associated with specific and mutually exclusive T-UCR 
signatures that included up-regulation of uc.58-, uc.202-, uc.207-, and uc.223- and 
down-regulation of uc.214+. A 9 T-UCR signature characterized BE versus Sq (with the 
down-regulation of uc.161-, uc.165-, and uc.327-, and the up-regulation of uc.153-, 
uc.158-, uc.206-, uc.274-, uc.472-, and uc.473-). Analogous BE-specific T-UCR profiles 
were shared by human and murine lesions. This study is the first demonstration of a 
role for T-UCRs in the transformation of Barrett’s mucosa.
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INTRODUCTION

Longstanding exposure of the esophageal mucosa 
to gastro-duodenal reflux is the primary risk factor for 
Barrett’s esophagus (BE) [1-3]. Chronic inflammation 
of the esophageal mucosa results in its metaplastic 
replacement of the native squamous epithelia by columnar 
(intestinalized) cells. This cancer-prone epithelial 
population becomes the “cancerization field” in which 
intra-epithelial neoplasia (IEN, formerly called dysplasia) 
and Barrett-related esophageal adenocarcinoma (BAc) 
may develop [3-6].

The phenotypic changes from native to cancer 
mucosa result from a composite interaction of genetic 
dysregulations involving epigenetic silencing, 
transcription factors, signaling pathways and growth 
factors [7]. The biological machinery underlying the 
neoplastic transformation has yet to be fully elucidated, 
however.

In recent years, non-coding RNAs (ncRNAs) have 
generated a great deal of interest in cell transformation 
[7-9]. Among several families, ultraconserved regions 
(UCRs) were discovered in 2004 as a result of bio-
informatic comparisons drawn between mouse, rat, and 

human genomes [10-13]. UCRs are composed of at least 
481 genomic sequences more than 200 bp long (range 
200-779 bp) that are absolutely conserved (100% identity 
with no insertions or deletions) among the three vertebrate 
species [10]. Single-nucleotide polymorphisms are under-
represented in UCR genes, and these elements do not 
accumulate mutations in somatic cells under conditions of 
genomic instability [14-17]. A large fraction of UCRs are 
transcribed (T-UCRs) in normal human tissues, and their 
expression levels show both a ubiquitous and a tissue-
specific pattern [14].

The function of T-UCRs is basically unknown, 
but their high trans-species conservation implies 
that they are fundamentally important to mammalian 
ontogenesis/phylogenesis. In their seminal work, Calin 
et al. [14] demonstrated that expression of T-UCRs are 
significantly altered at both DNA and RNA levels in adult 
chronic lymphocytic leukemias, as well as colorectal 
and hepatocellular carcinomas. They also found that 
tumor-associated T-UCRs are frequently located at 
fragile sites and cancer-associated genomic regions [14]. 
Recent genome-wide expression profiling studies have 
shown that T-UCRs exhibit distinct profiles in different 
human cancers, further supporting their role in human 
carcinogenesis [18-22].

Figure 1: T-UCR expression is altered in esophageal metaplastic lesions. (A) T-UCRs significantly dysregulated (p<0.001) in 
intestinal-type esophageal metaplasia (BE) by comparison with normal squamous esophageal epithelium (Sq). Rows represent individual 
T-UCRs; columns represent individual tissue samples. Pseudo-colors indicate transcript levels below, equating to, or above the mean 
(green, black, and red, respectively). The scale represents the intensity of gene expression (log2 scale ranges between -3 and +3). The up-
regulation of uc.158- (B), uc.472- (C), and uc.473- (D), and the down-regulation of uc.165- (E) was confirmed in an independent series of 
biopsy samples for four of the nine dysregulated T-UCRs. The expression of the four T-UCRs was tested in multilayered epithelium (MLE), 
which is a pre-metaplastic phenotypic change, and showed a similar T-UCRs dysregulation to Barrett’s mucosa (BE).
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This study is the first to demonstrate that a similar 
T-UCR expression profile in humans, rats and mice is 
associated with similar histological lesions involved in the 
morphogenesis of Barrett’s adenocarcinoma. These results 
also support a pivotal involvement of specific T-UCRs 
in BE progression and recognize T-UCRs as a novel 
diagnostic/prognostic tool for the biological profiling of 
BE-associated lesions.

RESULTS

T-UCR expression is altered in Barrett’s mucosa

Epidemiological and clinico-pathological studies 
have consistently shown that BE is the initial event in 
a cascade of phenotypic changes that may lead to BAc. 
A 9 T-UCR signature (p<0.001) distinguished BE from 
squamous epithelium (Figure 1A). In particular, the BE 
signature disclosed three down-regulated (uc.161-,uc.165-, 
and uc.327-) and six up-regulated T-UCRs (uc.153-, 
uc.158-, uc.206-, uc.274-, uc.472-, uc.473-) (p<0.001). 
The up-regulation of uc.158- (Figure 1B), uc.472- (Figure 
1C), and uc.473- (Figure 1D), and the down-regulation of 
uc.165- (Figure 1E) were confirmed by qRT-PCR analysis 
in an independent series of endoscopic biopsy samples 
obtained from 50 long-segment BE patients.

To further confirm the role of T-UCRs in the 
esophageal mucosa’s acquisition of a metaplastic 
phenotype, 10 samples of MLE (recognized as an early-
to-intermediate form of columnar metaplasia with both 

squamous and columnar features [23,24]) were included in 
the analysis. The BE and MLE samples generated similar 
results in the microarray data (Figure 1).

The up-regulation of uc.158- and uc.472- was 
confirmed by ISH in a series of 5 esophagectomy 
specimens (Figure 2). The two T-UCRs revealed both a 
nuclear and a cytoplasmic expression (with perinuclear 
reinforcement). Increased uc.158- expression was detected 
in 5 out of 5 BE specimens compared with matched Sq. 
As for uc.472-, this was moderately expressed in all 5 BE 
specimens, while Sq was weakly positive in the basal and 
suprabasal cell compartments.

Barrett’s mucosa T-UCR dysregulation is 
conserved across different species

 Given that T-UCRs are conserved among humans, 
rats and mice [10-13], we developed two animal 
BE models based on the “Kumagai-Hattori” EGDA 
anastomosis [25] to investigate whether the T-UCR 
expression profiles in the animal models were akin to 
those seen in humans. Gross examination of 5 male 
Wistar Han rats and 5 male C57BL/6 mice sacrificed 
52 weeks after surgery revealed a reddened esophageal 
mucosa with small protruding lesions in all cases (Figure 
3A). All animals had reflux esophagitis proximal to the 
anastomosis. Mucosal ulcers were observed in the middle 

Figure 2: uc.158- and uc.472- are overexpressed in 
Barrett’s mucosa. Confirming microarray and qRT-PCR 
data, Barrett’s mucosa consistently showed uc.158- and uc.472- 
overexpression by comparison with squamous esophageal 
epithelium on in situ hybridization analysis. Scale bars, 100 µm; 
original magnifications, 10x and 20x.

Figure 3: T-UCR dysregulation is comparable in human 
disease and murine models. Five male Wistar Han rats and 
5 male C57BL/6 mice underwent “Kumagai-Hattori” esophago-
gastroduodenal anastomosis and were sacrificed 52 weeks after 
surgery. Their esophageal mucosa was macroscopically reddened 
with small protruding lesions (A, gross features representative 
of two surgically-treated rats). Areas of esophageal intestinal 
metaplasia (IM) were microdissected manually to assess T-UCR 
expression. An up-regulation of uc.158- (B), uc.472- (C), and 
uc.473- (D) was observed in the samples of IM from all three 
species considered.
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and lower thirds of the esophagus in 2/5 rats and 1/5 mice. 
Regenerative/hyperplastic changes were identified in 4/5 
rats and 4/5 mice, and MLE and intestinal metaplasia 
(IM) in all cases. One rat had esophageal adenocarcinoma 
[25]. Areas of IM were manually microdissected to assess 
T-UCR expression. Three of the four T-UCRs tested 
(uc.158, uc.165, uc.472, and uc.473) showed a similar 
dysregulation in all three species considered (Figure 3B-
D).

T-UCR expression is altered in esophageal 
Barrett’s adenocarcinoma

 Different T-UCR expression profiles were identified 
when Sq and BE were compared with BAc (Figure 4A-
C). In particular, seven T-UCRs were found dysregulated 
in BAc by comparison with Sq (uc.202-, uc.223-, and 
uc.269- were up-regulated, and uc.214+, uc.328+, 
uc.329+, and uc.356+ were down-regulated) and two were 
dysregulated in BAc by comparison with BE (uc.204+ and 

uc.389+ were down-regulated). ISH confirmed the down-
regulation of uc.329+ in BAc in 4/5 cases (Figure 4B). The 
uc.329+ expression was mainly cytoplasmic. A moderate 
expression was observed in the basal and suprabasal cell 
compartments of all five Sq specimens.

T-UCR expression is altered in the carcinogenic 
progression from squamous epithelium to 
Barrett’s adenocarcinoma

 To identify the T-UCR profiles that are dysregulated 
in Barrett’s mucosa, T-UCR microarray analysis was 
performed on a discovery set of 51 macro-dissected 
samples obtained from 14 patients with long-segment 
BE who had undergone esophagectomy. The lesions 
considered were representative of the whole phenotypic 
spectrum of lesions observed in Barrett’s carcinogenesis, 
with 14 samples of Sq, 14 of BE, 7 of LG, 5 of HG, and 11 
of BAc. T-UCR microarray analysis was performed using 
a validated custom microarray platform [14].

Figure 4: T-UCR expression is altered in Barrett’s esophageal adenocarcinoma. T-UCRs significantly dysregulated (p<0.001) 
in Barrett’s adenocarcinoma (BAc) by comparison with normal squamous esophageal epithelium (Sq, A), or Barrett’s mucosa (BE, B). 
Rows represent individual T-UCRs; columns represent individual tissue samples. Pseudo-colors indicate transcript levels below, equating 
to, or above the mean (green, black, and red, respectively). The scale represents the intensity of gene expression (log2 scale ranges between 
-3 and 3). (C) ISH analysis confirmed that uc.329+ was significantly down-regulated in BAc. Sq showed moderate uc.329+ expression in 
basal and suprabasal cell compartments (right, upper panel); which was much decreased in the BAc. Scale bars, 200 and 100 µm; original 
magnifications, 5x and 20x.



Oncotarget7166www.impactjournals.com/oncotarget

The analysis identified five T-UCRs that were 
differently expressed (p<0.001) in cases undergoing 
Barrett’s carcinogenesis (Figure 5A). In particular, 
the signature included four T-UCRs (uc.58-, uc.202-, 
uc.207-, and uc.223-) with a higher expression and one 
(uc.214+) with a lower expression. Three of the Sq-BAc 
dysregulated T-UCRs (i.e. uc.202-, uc.214+ and uc.223) 
were shared with the progression signature from Sq to 
BAc (Figure 5A). QRT-PCR analyses for uc.214+ (Figure 
5B) and uc.202- (Figure 5C) confirmed the microarray 
data.

The chromosomal distribution of the T-UCRs 
dysregulated during Barrett’s carcinogenesis indicated that 
chromosomes 5, 7, 9, 11 and X were the most involved in 
this process. In particular, there were three down-regulated 
T-UCRs (uc.327-, uc.328+, and uc.329+) located at 11p13, 
two up-regulated T-UCRs (uc.206-, uc.207-) at 7p15.3, 
and another two up-regulated T-UCRs (uc.269-, uc.274-) 
at 9q33.3.

DISCUSSION

Only fragmentary information is available on the 
molecular changes driving the phenotypic shift from native 
squamous esophageal epithelium to metaplastic Barrett’s 

mucosa, and to the latter’s neoplastic transformation. 
The fact that no well-established biomarkers of disease 
progression are available currently prevents any molecular 
monitoring of Barrett’s disease or molecular-based 
strategies for the secondary prevention of BAc [7,8].

It has recently been established non-coding RNAs 
as key-role players molecules in human carcinogenesis 
and several different new classes of non-coding RNAs 
(e.g. miRNAs, T-UCRs, lincRNAs, and snoRNAs) have 
been identified [26,27]. Previous findings identified a 
pivotal function of miRNA dysregulation in generating 
the Barrett’s phenotype and driving its neoplastic 
transformation [8,9,24,28].

Ultraconserved regions (UCRs) form a subset of 
conserved sequences located in both intra- and inter-
genic regions [22]. They are absolutely conserved (100%) 
between orthologous regions of the human, rat and mouse 
genomes, and they exhibit almost no natural variation in 
the human population [14]. The majority (93%) of UCRs 
are transcribed (T-UCRs) in normal human tissues, both 
ubiquitously and in a tissue-specific manner [14]. Most 
importantly, recent data suggest that T-UCRs are altered at 
transcriptional level in human tumorigenesis and aberrant 
T-UCR expression profiles may discriminate between 
different human cancers. Like known cancer-related 

Figure 5: T-UCR expression is altered in the carcinogenic progression from squamous epithelium to Barrett’s 
adenocarcinoma. (A) T-UCRs significantly dysregulated in the Barrett’s carcinogenic cascade (normal squamous epithelium [Sq] - 
Barrett’s mucosa [BE] - low-grade intra-epithelial neoplasia [LG] - high-grade intra-epithelial neoplasia [HG] - Barrett’s adenocarcinoma 
[BAc]) as assessed on microarray data. Rows represent individual genes; columns represent individual tissue samples. Pseudo-colors 
indicate transcript levels below, equating to, or above the mean (green, black, and red, respectively). The scale represents the intensity 
of gene expression (log2 scale ranges between -3 and 3). The down-regulation of uc.214+ (B) and the up-regulation of uc.202- (C) were 
confirmed by qRT-PCR in a separate set of biopsy samples.
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genes, some T-UCRs have been found to undergo CpG 
island hypermethylation-associated silencing [10]. Only 
very few T-UCRs have been described functionally in 
vitro, however: uc.73, for example, was found to influence 
apoptosis in colon cancer cells, and uc.338 to inhibit the 
growth of hepatocellular carcinoma cells [19,20].

Different putative functions have been hypothesized 
for T-UCRs, including an antisense inhibitory role in 
protein coding genes or other non-coding RNAs [14]. 
Although UCRs are significantly depleted among 
segmental duplications and copy-number variants [29], 
the deletion of some of these regions in knock-out mice 
was not associated to any notable phenotypic abnormality 
[30]. Most recently, T-UCRs have been implicated: (i) in 
long-range enhancer-like activities; (ii) in the homeostatic 
maintenance of splicing factor expression levels; and (iii) 
in regulating transcription, both as epigenetic modification 
marks, and as transcriptional co-activators [31-38].

Here, we examined the expression of transcripts 
encoded by the 481 UCR genes in Barrett’s carcinogenesis. 
The present findings demonstrate that: (i) T-UCR 
dysregulation occurs early in BE morphogenesis; (ii) 
similar T-UCR dysregulations are found in both human 
and murine intestinalized columnar metaplasia, and this 
supports a “basic” biological consistency between T-UCR-
related oncogenic pathways; (iii) T-UCR signatures show a 
“progressive” dysregulation along the path from squamous 
epithelia to adenocarcinoma, supporting their oncogenic 
role in Barrett’s carcinogenesis. 

The T-UCR profiles that we obtained are unlike 
those previously reported in other types of human cancer 
(e.g. leukemia, colon cancer, liver cancer, prostate cancer, 
and neuroblastoma) [18-22,39,40] and this underscores the 
fact that T-UCR expression is specific to a given tissue and 
cancer histotype, reminiscent of the miRNA expression 
patterns described in human solid tumors [41].

The clustering of dysregulated T-UCRs in specific 
chromosome loci (7p15.3, 9q33.3, and 11p13) previously 
described as being deleted and/or amplified in Barrett-
related lesions [42-45] points to genome instability having 
a significant influence on T-UCR expression profiles. 
Comparative genomic hybridization analysis was not 
feasible in the present study due to the limited size of 
the pre-neoplastic lesions within BE mucosa considered, 
and most of the material available was needed for T-UCR 
profiling.

Having identified similar T-UCR profiles in 
different species points to T-UCRs having a core role 
in the acquisition of the pre-neoplastic and neoplastic 
phenotypes involved in the cascade of Barrett’s 
carcinogenesis. This study was the first to investigate the 
T-UCR profiles associated with the natural history of a 
given disease in three different mammal species, and the 
results obtained support the trans-species involvement 
of T-UCRs as molecular drivers of cell homeostasis in 
different vertebrates.

Further (microarray and in vitro) studies should 
investigate the influence of chromosomal instability on 
T-UCR expression and the functional role of T-UCRs in 
oncogenesis. Our results can also serve as a starting point 
for further studies on this still little-explored non-coding 
RNA family as biomarkers of BE-associated cancer risk.

MATERIAL AND METHODS

Patients 

A first discovery set used in the T-UCR microarray 
study concerned 14 BE patients who had undergone 
esophagectomy for high-grade intra-epithelial neoplasia 
(HG) and BAc (mean age 63.6±7.9 years, range 52-81; 12 
males, 2 females; all Caucasian). Two 2 mm cores were 
obtained from the paraffin blocks from: (a) the proximal 
native squamous esophageal mucosa (Sq=14 cases; ≥ 3 cm 
far from any BE); (b) IM-positive Barrett’s mucosa (BE= 
14 cases); (c) low-grade intra-epithelial neoplasia (LG= 7 
cases); (d) high-grade intra-epithelial neoplasia (HG= 5 
cases); and (e) BAc (11 cases).

A validation set used in the qRT-PCR study 
consisted of 60 biopsy samples obtained from 50 patients 
with histologically-proven long-segment BE (mean 
age 64.4±8.7, range 54–76; 40 males, 10 females; all 
Caucasian). Cases were retrospectively collected from 
the files of the Veneto Region’s multicenter Barrett’s 
Esophagus Registry (EBRA [www.esofagodibarrett.
it]; Padua Unit) [46]. All patients had endoscopically-
confirmed long-segment BE (≥ 3 cm) and were biopsied 
according to the Seattle protocol (i.e. four-quadrant 
biopsies were obtained from every 2 cm of metaplastic 
mucosa). Biopsy samples were collected from paraffin 
blocks and included: Sq= 10 cases, BE= 10 cases, LG= 10 
cases, HG= 10 cases, BAc= 10 cases. Ten further samples 
of multilayered epithelium (MLE) were also considered. 
MLE is defined as multilayered, flattened squamoid 
epithelium overlaid by columnar mucus-producing, non-
intestinalized cells, and has been proposed as an early 
precursor of Barrett’s metaplastic transformation [23,24]. 
Five BAc esophagectomy specimens were used in the in 
situ hybridization study.

Original slides or serial sections (4-6 microns thick) 
obtained from archival paraffin-embedded tissue samples 
(hematoxylin & eosin [H&E], Alcian-PAS) were jointly 
re-assessed by two GI pathologists (MF and MP). If their 
opinions differed, a third expert GI pathologist (MR) was 
consulted. The institute’s ethical regulations concerning 
research conducted on human tissues were followed, and 
all patients considered in this study gave their written 
informed consent.
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T-UCR microarray

Formalin-fixed, paraffin-embedded samples 
underwent total RNA extraction using the RecoverAll 
kit according to the manufacturer’s instructions (Ambion 
Inc., Austin, TX). RNA labeling and hybridization 
on microarray chips were done as described in detail 
elsewhere [14]. Briefly, 5 μg of total RNA from each 
sample were reverse-transcribed using biotin end-labeled 
random-octamer oligonucleotide primer. Biotin-labeled 
complementary DNA was hybridized on an Ohio State 
University custom miRNA microarray chip (OSU_CCC 
version 4.0) developed with a total of 481 human UCR 
sequences [14]. For each UCR, two 40-mer probes 
were designed, one corresponding to the sense genomic 
sequence (named ‘+’) and the other to the complementary 
sequence (named ‘-’). Each oligo was printed in duplicate 
at two different slide locations, so quadruplicate numerical 
values were available for analysis. The hybridized 
chips were washed and processed for biotin-containing 
transcript detection with streptavidin-Alexa 647 conjugate 
and scanned on an Axon 4000B microarray scanner (Axon 
Instruments, Sunnyvale, CA). Microarray images were 
analyzed using GENEPIX PRO 6.0 (Axon Instruments). 
Average values of the replicate spots of each T-UCR were 
background subtracted, normalized using quantiles to 
enable a comparison between chips, and further analyzed. 
The microarray data are deposited in the Gene Expression 
Omnibus at the National Center for Biotechnology 
Information [GEO: GSE20099]. 

Murine models of BE

 This study was approved by the Institutional 
Animal Care Committee of the University of Padua. All 
procedures were performed in accordance with Italian law 
on the use of experimental animals (DL n. 116/92 art. 5) 
and according to the “Guidelines on the Care and Use of 
Laboratory Animals” (NIH publication 85-93, revised in 
1985).

A “Kumagai-Hattori” esophagogastric-duodenal 
anastomosis (EGDA) was performed on 6 eight-week-old 
male Wistar Han rats and 6 eight-week-old male C57BL/6 
mice (Charles River, Lecco, Italy), as described elsewhere 
[25]. Briefly, a side-to-side surgical EGDA was created 
between the first duodenal loop and the gastro-esophageal 
junction, with accurate mucosa-to-mucosa opposition, so 
that duodenal and gastric contents flowed back into the 
esophagus. After 30 weeks from surgery, animals usually 
present numerous patchy MLE-like and BE-like lesions 
across the entire esophageal and upper gastric mucosa.

Postoperatively, the animals had free access to water 
and food. No treatments with any known carcinogenic 
potential were applied. One rat and one mouse died within 
7 days after surgery and were not considered. The animals 

were sacrificed 52 weeks after surgery and, immediately 
afterwards, the esophagus was opened longitudinally 
through the dorsal wall. With the mucosal surface 
uppermost, the margins of the specimen were attached 
to a cork plate with pins. Gross specimens were fixed in 
10% neutral-buffered formalin for 24 hours. All specimens 
were examined grossly and cut serially (2–3 mm thick 
coronal sections). Lung, liver, kidney and spleen tissues 
were also collected for histology.

Quantitative real-time polymerase chain reaction

Formalin-fixed, paraffin-embedded samples were 
manually micro-dissected to obtain 70% of pre-neoplastic 
or neoplastic cells, then deparaffinized before undergoing 
total RNA extraction using the RecoverAll kit according 
to the manufacturer’s instructions (Ambion Inc., Austin, 
TX). T-UCRs were quantified by means of pre-optimized 
T-UCR real-time PCR assays (PrimerDesign Ltd, Hants, 
UK) using SYBR® green chemistry. Each assay was 
validated individually by PrimerDesign Ltd and found 
100% specific and nearly 100% efficient. Normalization 
was done with the small nuclear U6 RNA (Exiqon). 
Comparative real-time PCR was run in triplicate, including 
no-template controls. The fold difference for each sample 
was obtained using the ΔΔCT method.

In situ RNA hybridization (ISH)

 Locked nucleic acid (LNA) probes complementary 
to the 20-22-bp sections of uc.158, uc.329, and uc.472 
were labeled with 5′-digoxigenin and synthesized by 
Exiqon (Denmark). Tissue sections were digested with 
ISH protease 1 (Ventana Medical Systems, Milan, Italy) 
and ISH was performed as described [20]. Negative 
controls included omission of the probe and the use of a 
scrambled LNA probe.

Statistical analysis

For microarray studies T-UCRs that were differently 
expressed in different esophageal lesions were identified 
using a random-variance t-test. Genes were considered 
statistically significant if their p value was less than 0.001 
(such a stringent significance threshold was used to limit 
the number of false positive findings). A linear regression 
model (using normalized log2-transformed expression 
values) was applied to test significant dysregulated 
T-UCRs in the different lesions, and p-values were 
adjusted for multiple testing using false discovery rate 
(FDR) correction (only FDRs with a p<0.0001 were 
considered). Differences between groups in qRT-PCR 
analysis were tested by applying the t-test or the Pearson’s 
correlation test. P values less than 0.05 were considered 
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significant. The statistical analysis was performed using 
STATA 8.0 software (Stata Corporation, College Station, 
TX).
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