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disease association were investigated using publicly acces-
sible databases (EntrezGene, UniProt, OMIM). The Gene 
Ontology terms of the biological processes mediated by 
the candidate genes were used to cluster them using the 
GOTermMapper (Lewis-Sigler Institute, Princeton Uni-
versity), speculating on six super-clusters: (a) anatomical 
development, (b) cell division, growth and motility, (c) 
cell metabolism and catabolism, (d) cell transport, (e) cell 
structure organization and (f) organ/system-specific pro-
cesses. This review aims to increase the knowledge on the 
mechanisms underlying the co-occurrence of tooth agen-
esis and orofacial clefts, to pave the way for improving tar-
geted (prenatal) molecular diagnosis and finally to reflect 
on therapeutic or ultimately preventive strategies for these 
disabling conditions in the future.

Introduction

Developmental tooth abnormalities, including mild and 
more severe forms of tooth agenesis (TA), have often been 
reported in patients affected with orofacial clefts (OFCs) 
(Ranta 1986; Aspinall et  al. 2014). We recently observed 

Abstract  Tooth agenesis and orofacial clefts represent the 
most common developmental anomalies and their co-occur-
rence is often reported in patients as well in animal models. 
The aim of the present systematic review is to thoroughly 
investigate the current literature (PubMed, EMBASE) to 
identify the genes and genomic loci contributing to syndro-
mic or non-syndromic co-occurrence of tooth agenesis and 
orofacial clefts, to gain insight into the molecular mecha-
nisms underlying their dual involvement in the develop-
ment of teeth and facial primordia. Altogether, 84 articles 
including phenotype and genotype description provided 9 
genomic loci and 26 gene candidates underlying the co-
occurrence of the two congenital defects: MSX1, PAX9, 
IRF6, TP63, KMT2D, KDM6A, SATB2, TBX22, TGFα, 
TGFβ3, TGFβR1, TGFβR2, FGF8, FGFR1, KISS1R, 
WNT3, WNT5A, CDH1, CHD7, AXIN2, TWIST1, BCOR, 
OFD1, PTCH1, PITX2, and PVRL1. The molecular path-
ways, cellular functions, tissue-specific expression and 
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that the same genes whose mutations were shown to cause 
TA, such as MSX1 and PAX9 (Seo et al. 2013), often also 
contain SNPs as genetic risk factors for OFCs.

Both, TA and OFCs represent two of the most common 
developmental orofacial birth defects. While hypodon-
tia—the agenesis of 1–5 teeth (excluding agenesis of third 
molars)—is highly prevalent (more than 5 % in some popu-
lations), severe TA—oligodontia with agenesis of 6 teeth or 
more (excluding agenesis of third molars)—has been esti-
mated to affect 1 individual in 1000 worldwide (Rakhshan 
and Rakhshan 2015; Polder et  al. 2004). For OFCs, the 
overall prevalence has been estimated as 1 in 700–1000 live 
births (Mossey and Catilla 2003). These statistics, how-
ever, do not convey the considerable variation across stud-
ies depending on the severity of the phenotype; the study 
design, the cohort ethnicity and the geographical location 
also affect the prevalence (Khalaf et al. 2014; Murthy and 
Bhaskar 2009; Vastardis et al. 1996). Both conditions lead 
to significant life-long complications that require extensive 
multidisciplinary treatments, and represent severe psycho-
social and economic burdens for their families and for soci-
ety (Mossey et al. 2009).

Based on the number of missing teeth, TA is convention-
ally divided into three forms: hypodontia, oligodontia and 

anodontia (Klein et  al. 2013). Hypodontia (HD) is used 
for one to five missing teeth, whereas oligodontia (OD) is 
used for six or more missing teeth (Fig. 1). Anodontia (AD) 
is the most severe condition with complete lack of tooth 
development in the deciduous and permanent dentition 
(Fig. 1). As the third molars are missing in up to 20 % of 
the populations worldwide, making it a very common find-
ing, these teeth are excluded from the classification (Vas-
tardis et al. 1996; Graber 1978). Based on the severity and 
the anatomical regions involved, OFCs are also classified 
into different phenotypic categories ranging from micro-
forms to rare complete overt facial clefts, i.e., oblique facial 
cleft, where the gap may extend to the nose, the cheeks, the 
eyes, the ears till the forehead (Fig. 2). The three main OFC 
phenotypes are represented by cleft lip (CL), cleft palate 
(CP) and cleft lip and palate (CLP), which can be uni- or 
bilateral (Fig. 2).

In CL, the nasal and lip primordia fail to fuse resulting 
in a gap of the upper lip and the disruption of the orbicu-
laris oris muscle, with a variable degree of severity rang-
ing from microforms, i.e., forme fruste CL, to complete 
unilateral or bilateral clefting. CP is characterized by either 
a submucosal or an overt cleft in the anterior hard pal-
ate or posterior soft palate, with variable disorientation of 
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Fig. 1   Forms of tooth agenesis. Panel of tooth agenesis (TA) forms 
in the permanent dentition, listed according to the number of absent 
teeth. Frontal intraoral pictures and orthopantograms (OPTs) of 
two adult patients affected with hypodontia, a without cleft and b 
with cleft (repaired cleft lip involving the alveolar ridge, marked by 
dashed blue circle), respectively. Frontal intraoral pictures and OPTs 
of two adult patients affected by oligodontia, c without cleft and d 
with cleft (repaired cleft lip and palate involving the alveolar ridge, 

marked by dashed blue circle), respectively. e Internal intraoral pic-
tures (maxillary dental arch, left; mandibular dental arch, right) and 
OPT of an adult patient affected by complete anodontia, without 
orofacial clefts (copyright: Wang et  al. 2013). X-axis: presence or 
absence of orofacial cleft in combination with TA. Y-axis: number of 
absent teeth (hypodontia, 1–5 missing teeth; oligodontia 6–31 miss-
ing teeth; anodontia, 32 missing teeth)



Hum Genet	

1 3

palatal muscles, arising from the fusion failure of lateral 
palatal shelves. The mildest form of soft CP involves only 
the uvula, while in the most severe cases the cleft extends 
through soft and secondary hard palate. CLP is a combi-
nation of the previously described phenotypes, usually 

divided into two classes: incomplete CLP (a.k.a. cleft lip 
and alveolus) when the upper lip, alveolar ridge and part 
of the hard palate (primary palate) are affected, or com-
plete CLP, when the cleft develops along the entire mouth 
length from the nostrils to the uvula. Despite their common 
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Fig. 2   Forms of orofacial clefts. Panel of orofacial cleft forms, listed 
according to the severity based on the cleft extension and orofacial 
regions affected. Cleft lip types (frontal views): microform (a) (copy-
right: Cleft lip—A comprehensive review. Shkoukani et  al., Front 
Pediatr. 2013); unilateral incomplete cleft lip (b); bilateral incomplete 
cleft lip (c); unilateral complete cleft lip (d); bilateral complete cleft 
lip (e). Cleft palate types (occlusal views): bifid uvula (f); cleft of the 
soft palate (g); cleft of hard and soft palate (h). Unilateral cleft lip 
and palate (i): frontal view of the patient in childhood and occlusal 

view of the same patient in adulthood, where the cleft palate has been 
repaired (surgical scars marked with blue arrows). Bilateral cleft lip 
and palate (j): frontal view of the patient in childhood, with protrud-
ing vermilion, and occlusal view of the same patient in adulthood, 
where the cleft palate is still partially open. Unilateral facial cleft 
extending from the oral region till the eye (K) (copyright: Garg and 
Goyal 2009). X-axis: type of orofacial cleft. Y-axis: severity based on 
the cleft extension (intraoral region, perioral region, whole face)
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features, CLP, CP and CL emerge from the disruption of 
distinct morphogenetic processes at different stages of 
embryological development (Shkoukani et al. 2013).

Both TA and OFCs can occur as isolated conditions 
without any other recognizable anomaly (non-syndro-
mic forms) or associated with structural abnormalities of 
other anatomical regions (syndromic forms) (Cobourne 
2004; Klein et  al. 2013). Over 80 syndromes include TA 
among their typical features, especially HD, while over 
275 syndromes include at least one of the different sub-
types of OFCs (Klein et  al. 2013; Leslie and Marazita 
2013). Interestingly, syndromic forms of TA and OFCs 
may arise within the same syndromes: this is the case 
for van der Woude syndrome (VWS) (OMIM# 119300), 
which includes OFCs with dental anomalies and lip fistulas 
(Kondo et al. 2002).

In a recent comprehensive study based on the largest 
international cohort of individuals with OFC investigated 
so far (Howe et  al. 2015), it has been shown that a wide 
spectrum of dental anomalies, characterized by altera-
tion in tooth number, size, shape, timing of formation and 
eruption, is more frequently detected in individuals with 
OFC than in the population without these birth defects, 
although this evidence is restricted to the upper jaw. The 
prevalence of TA in and outside the cleft area, as well as its 
location in the upper versus lower jaw, has been reported 
to be significantly higher in patients with OFC compared 
to individuals without a cleft (Shapira et al. 1999; Aspinall 
et al. 2014). TA has been described to occur approximately 
three times more frequently on the cleft than on the non-
cleft side (Ranta 1972), and its severity increases with the 
OFC phenotype severity (Ranta 1986). The cause of the co-
occurrence of these dental abnormalities and OFCs has also 
been debated. According to Howe et al. (2015), the dental 
features may result from local mechanical circumstances at 
the time of the cleft formation or from conditions of blood 
supply during early postnatal surgical interventions.

In their geometric morphometric study in a Neo/Null and 
Neo/Wt mouse model, Green et  al. (2015) show that the 
facial/nasal prominences can fail to fuse due to their mis-
alignment as a result of decreased mesenchymal growth. 
Failure of tooth germ development can also be caused by 
mutations in genes which regulate mesenchymal cell pro-
liferation (like MSX1), fitting the common genetic origin 
hypothesis (Eerens et  al. 2001). Such gene variants could 
therefore—besides causing TA—also increase the risk for 
OFC development, if a proper alignment of the midfacial 
prominences is not achieved in time. Moreover, the absence 
of developing tooth germ structures (like thickened den-
tal laminas in the growing palatal processes) could itself 
also underlie the subtle volumetric shape changes con-
tributing to the failure of optimal geometric alignment 
of the approaching orofacial prominences. In the Online 

Mendelian Inheritance in Man (OMIM) database an over-
all large genetic heterogeneity for selective TA (STHAG) is 
described, but so far only STHAG type 1 (OMIM# 106600) 
includes the annotation ‘with or without orofacial cleft’, 
which draws back to a heterozygous mutation affecting 
MSX1 (Table 1, Supplementary Table 4) (van den Boogaard 
et al. 2000). Combined TA and OFC phenotypes in humans 
have, however, been also shown to result from rare variants 
of IRF6 and TP63, both in syndromic and non-syndromic 
cases (Celli et al. 1999; McGrath et al. 2001; Brunner et al. 
2002a, b; Kondo et al. 2002).

The present study aims to systematically review the lit-
erature to provide a comprehensive panel of genes and loci 
reported to be associated to the co-occurrence of TA and 
OFCs in patients (syndromic and non-syndromic cases), 
including supporting evidence in animal models when 
available. This will not only increase the knowledge on 
the genetic risk factors and mechanisms underlying the co-
occurrence of TA and OFCs, but will also pave the way to 
improve (prenatal) targeted diagnosis.

Materials and methods

The literature search was systematically performed using 
two publicly available literature databases, PubMed (http://
www.ncbi.nlm.nih.gov/pubmed) and EMBASE (https://
ovidsp.tx.ovid.com/sp-3.17.0a/ovidweb.cgi), in August 
2015. In each database, three separate searches were per-
formed based on search terms belonging to three broad 
topics—genetics, orofacial clefts and tooth agenesis (Sup-
plementary Table  1)—to avoid the risk of overlooking 
interesting articles. The individual searches were carried 
out using free text search combined with subject headings 
(Supplementary Table  1). In each database, the articles 
resulting from the individual searches were then overlapped 
to highlight only those containing terms from the three 
fields of interest in their abstract and title. Next, the final 
lists of overlapping articles from PubMed and EMBASE 
were both exported into EndNote X7 (Thomson Reuters, 
http://endnote.com), where the duplicates were removed 
and the article texts were retrieved.

In the first selection phase, the non-English language 
studies were excluded as well as the conference and meet-
ing reports. Subsequently, the remaining articles were 
entirely screened and hence selected according to the inclu-
sion criteria. In principle, the articles were included when 
describing evidence of genes or genetic loci—in human or 
in animal models—whose disruption may cause orofacial 
clefts (OFCs), specifically CL, CP or CL/P, and tooth agen-
esis (TA), including AD, OD or HD (especially located out-
side the cleft area), with or without other phenotypes. The 
evidence that leads to the inclusion of articles was based on 

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
https://ovidsp.tx.ovid.com/sp-3.17.0a/ovidweb.cgi
https://ovidsp.tx.ovid.com/sp-3.17.0a/ovidweb.cgi
http://endnote.com
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phenotyping using clinical examination, X-rays, or histol-
ogy in case of animal experiments, and on genotyping such 
as polymerase chain reaction and genome-wide associa-
tion studies. The lack of molecular diagnosis, the absence 
of OFC or TA or the unclear phenotype description was 
reason enough to exclude an article. The authors M.P. and 
F.C. of this review first carried out the content-based selec-
tion of the articles individually while the disagreements 
about the study eligibility were solved by discussion and 
further careful check of the published data. In case both 
first authors found uncertainty in classifying an article, the 
authors of that article were contacted to ask for further clar-
ifications before deciding on its inclusion or exclusion.

The molecular pathways, cellular functions, tissue-spe-
cific expression and disease association of the candidate 
genes collected from the included articles were investigated 
using publicly accessible databases, such as EntrezGene 
(www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene), Uni-
Prot (www.uniprot.org/) and OMIM (http://www.omim.
org/), highlighting the aspects that further support the 
hypothesis of association between the genes and the co-
occurrence of OFCs and TA. In addition, the Gene Ontol-
ogy terms indicating the biological processes mediated 
by these candidate genes were used to cluster them using 
the GO tool names GOTermMapper (Lewis-Sigler Insti-
tute for Integrative Genomics, Princeton University, http://
go.princeton.edu/cgi-bin/GOTermMapper) based on the 
map2slim script, part of the GO Perl package (Boyle et al. 
2004; Harris et al. 2004). This tool maps the granular GO 
annotations for each gene to a set of broad, high-level GO 
parent terms (GO-slim terms), allowing to bin the genes 
into general categories, which can eventually be summa-
rized in even broader super-clusters.

Apart from genes, genomic loci were also collected: for 
each locus, the genomic coordinates were defined using 
UCSC Genome Browser (https://genome.ucsc.edu/index.
html) and the encompassed genes (RefSeq genes) were 
retrieved with Table Browser, setting GRCh38/hg38 as the 
human genome assembly.

Results

Inclusion and exclusion of articles in our study 
and dataflow chart

Our systematic search of the literature initially yielded 
347 unique articles, of which 263 had to be excluded 
due to incompliance with the inclusion criteria (as to lan-
guage, origin, availability or content) (Fig. 3; Supplemen-
tary Table 2). Based on phenotype details provided by the 
authors of five articles, three of them were included and 
two were excluded (Fig.  3). Hence, 84 articles of which 

fifteen reviews, three GeneReviews and one editorial, in 
addition to research articles and research letters, were 
finally included (Supplementary Table  3). Five selected 
articles describing studies that do not confirm the associa-
tion between specific genes and the combination of OFCs 
and TA were also included and were classified as negative 
evidence.

From these 84 references, we identified 26 genes and 9 
genomic loci presenting different types of evidences, rang-
ing from borderline to significant associations even con-
firmed in animal models in some cases. The 26 candidate 
genes are described according to the evidence available in 
the current literature.

Msx1 and pax9

MSX1 and its main protein–protein interactor PAX9 are 
both transcription factors, members of the homeoprotein 
families which are co-expressed during craniofacial devel-
opment and in different stages of tooth morphogenesis 
(Ogawa et  al. 2005, 2006; Nakatomi et  al. 2010). MSX1 
encodes a member of the muscle segment homeobox gene 
family, which acts as a transcriptional repressor during 
embryogenesis via the core transcription complex and other 
homeoproteins. MSX1 has been proven through mouse 
models and molecular and biochemical analyses on human 
tissues to play a main role in limb-pattern formation, tumor 
growth inhibition and craniofacial development, particu-
larly in odontogenesis (EntrezGene; Davidson 1995; Lal-
lemand et al. 2005; Park et al. 2005; Ogawa et al. 2006).

The MSX1 signaling loop also involves other essential 
homeobox genes, such as BMP genes, hence mediating the 
reciprocal epithelial–mesenchymal tissue interaction and 
regulating the development of both the craniofacial skele-
ton and the teeth (Zhang et al. 2002; De Coster et al. 2007). 
Although our systematic literature search did not identify 
any study proving evidence of association between BMP 
genes and the co-occurrence of the features discussed, 
it would be intriguing to further investigate this path-
way, since the BMP gene family includes proposed OFC-
causing genes (Ogawa et al. 2006; Lin et al. 2008; Suzuki 
et al. 2009; He et al. 2010; Suazo et al. 2010; Sahoo et al. 
2011; Williams et al. 2012; Zawiślak et al. 2014; Liu et al. 
2005) as well as genes involved in early tooth development, 
which disruption may result in tooth agenesis (Tompkins 
2006; De Coster et al. 2007).

MSX1 mutations are associated with the non-syndromic 
co-occurrence of CP and TA, especially HD, in humans 
(Table  1; Supplementary Table  4) (Carey and Viskochil 
2002; Lidral and Reising 2002; Slayton et al. 2003; Vieira 
2003; Wong and Hagg 2004; Modesto et al. 2006; Wilkie 
2009; Kouskoura et al. 2011; Liang et al. 2012; Leslie and 
Marazita 2013). Similarly, Msx1-deficient mice exhibit 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
http://www.uniprot.org/
http://www.omim.org/
http://www.omim.org/
http://go.princeton.edu/cgi-bin/GOTermMapper
http://go.princeton.edu/cgi-bin/GOTermMapper
https://genome.ucsc.edu/index.html
https://genome.ucsc.edu/index.html
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severe craniofacial abnormalities, including clefting of the 
secondary palate and lack of teeth (Table 3) (Satokata and 
Maas 1994; Kavitha et al. 2010; Nakatomi et al. 2010).

Nowadays, a variable combination of selective TA with 
OFC (STHAG1) (OMIM# 106600) has been characterized 
in three affected members of a Dutch family whose geno-
typing revealed a heterozygous MSX1 stop mutation inher-
ited across generations (Table  1; Supplementary Table  4) 

(van den Boogaard et al. 2000). Later, a similar combined 
phenotype has been described as co-segregating with a 
different MSX1 missense mutation in a Chinese family 
(Table 1; Supplementary Table 4) (Liang et al. 2012), sup-
porting the hypothesis of the dual role of this gene in the 
etiology of TA and OFCs.

Even though MSX1 mutations are known to cause non-
syndromic OFCs and TA, Nieminen et al. (2003) described 

Fig. 3   Search flowchart. The 
literature search was performed 
using PubMed, which provided 
166 articles, and EMBASE, 
which provided 281 articles, 
combining to a total of 447 
articles. After the removal of 
duplicates (100), the selection 
process was carried out in two 
steps. In the first selection, 
the references where screened 
based on the document specif-
ics: non-English articles (20), 
conference reports (10) and 
not available articles (10) were 
removed. The second selection 
of the remaining 307 articles 
was based on the contents, con-
sidering the molecular diagnosis 
and the combined phenotypes 
(TA and OFCs) present in 
patients and animal models, 
excluding 221 articles. For five 
articles the authors were con-
tacted, and three of them were 
subsequently included. The final 
number of selected articles was 
84, including research articles, 
case reports, research letters and 
reviews

PubMed search
166

EMBASE search
281

Total articles
447

Total unique articles
347

Duplicate removing

Excluded articles:   40
  Non-English language:  20
  Conference abstracts:  10   
  Not found:  10 

Selected articles:
307

Excluded articles:  221  
  Based on:
   • absence of molecular diagnosis
   • absence of OFCs and TA in patients
  • unclear phenotypes

Articles whose authors were 
contacted for further details:  5

Excluded articles: 2

Included articles:
84

(including: research articles and 
 letters, case reports, reviews)

Second selection:
     article contents

Result merging

Included articles: 3

First selection:
 document specifics
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the case of a patient with Wolf–Hirschhorn syndrome 
(WHS) (OMIM# 194190) due to a complete deletion of 
the MSX1 gene (Table  2; Supplementary Table  4), which 
is located in the deleted region in chromosome 4p, whose 
craniofacial features included CP as well as TA (Parad-
owska-Stolarz 2014).

Mutations of PAX9, the main protein–protein interactor 
of MSX1, have also been described as potentially causative 
for combined OFCs and TA. Specifically, PAX9 is a mem-
ber of the paired box family of transcription factors, which 
plays critical roles in embryogenesis, mainly skeletogene-
sis, tooth formation, palatogenesis and neural tube develop-
ment (EntrezGene; Balling et al. 1996; Peters et al. 1998a; 
Hamachi et al. 2003; Hu et al. 2014; Monsoro-Burq 2015). 
Genetic disturbances of MSX1 and PAX9 are associated 
with TA, located both inside and outside the cleft area (Seo 
et  al. 2013). In mouse, Pax9 and Msx1 are co-expressed 
during craniofacial development, and in double-mutant 
mice for these two genes, incompletely penetrant CL and 
absence of lower incisors have been reported (Table  3) 
(Nakatomi et al. 2010), suggesting that reduction of PAX9 
and MSX1 gene dosage in humans may increase the risk for 
combined OFC and TA. However, this hypothesis was not 
confirmed in the study of Tallon-Walton et al. (2010).

Focusing on PAX9 only, the first evidence of PAX9 asso-
ciation with TA and OFCs arose from a Pax9−/− knock-
out mouse model described by Peters et  al. (1998b), and 
was later confirmed in human by the study from Das et al. 
(2003) who reported a novel PAX9 missense mutation 
and an exonic insertion in families with autosomal domi-
nant TA where some of the members also showed CL/P 
(Table 3; Supplementary Table 4) (Kist et al. 2007; Kavitha 
et al. 2010).

Irf6

The IRF6 gene encodes a member of the interferon regula-
tory transcription factor family; more specifically, the only 
member that is not related to immunological and inflam-
matory functions, but with morphogenesis, especially oral 
ectoderm and periderm formation, lip formation and spatio-
temporal regulation of palatal shelf migration, adhesion and 
fusion (Richardson et  al. 2009; Kousa and Schutte 2015). 
IRF6 mutations are recognized as primary genetic causes 
of isolated and syndromic OFCs (Kondo et al. 2002; Zuc-
chero et al. 2004; Blanton et al. 2005; Ingraham et al. 2006; 
Park et al. 2007; Beaty et al. 2010; Ludwig et al. 2012).

The most common OFC syndrome is the van der Woude 
syndrome (VWS) (OMIM# 119300), which represents 
2 % of all syndromic CL/P. In 68 % of the cases, this syn-
drome is caused by IRF6 mutations or deletions (Sander 
et al. 1995; Schutte et al. 1999; Kondo et al. 2002; de Lima 
et al. 2009). The dominant traits with variable expressivity 

and low penetrance are OFCs, HD and lip pits usually 
present in combination (Schinzel and Klausler 1986; Wie-
nker et  al. 1987). A number of studies describing IRF6 
missense, frameshift or stop mutations causing VWS in 
patients showing the co-occurrence of CL/P and/or CP 
and TA have been found in our literature search, resulting 
in a list of more than 33 cases, some of them belonging to 
VWS families (Table  2, Supplementary Table  4) (Vieira 
2003; Wang et  al. 2003; Ghassibé et  al. 2004; Item et  al. 
2004; Wong and Hagg 2004; Ye et  al. 2005; Peyrard-Jan-
vid et  al. 2005; Minones-Suarez et  al. 2012; Klein et  al. 
2013; Peyrard-Janvid et  al. 2014). As further confirma-
tion, another case report presented two patients with VWS 
belonging to the same family with the typical features of 
this syndrome, including both CL/P and HD. However, in 
this specific case, the gene appears fully missing as encom-
passed by a large deletion inherited in the affected mem-
bers of this family (Wong et al. 1999) (Table 4; Supplemen-
tary Table 6). Since this deletion, del(1)(q32), encompasses 
198 genes in total, the contribution of other genes located 
within the deleted region cannot be excluded (Supplemen-
tary Table 6).

In contrast, a study by Ali et al. (2009) failed to report 
the association between IRF6 markers and this syndrome in 
a cohort of Indian VWS families, supporting the evidence 
that other genes may contribute to the etiology of this syn-
drome, such as GHRL3.

Apart from the VWS, different mutations in the same 
gene lead to another syndrome associated with OFCs, 
named popliteal pterygium syndrome (PPS) (OMIM# 
119500) (Kondo et  al. 2002), which shares some clinical 
features of VWS with the addition of webbed skin of the 
legs, genital malformations and oral synechiae. From our 
literature search, a PPS family was found based on the 
combination of OFC and TA in one affected member due 
to an inherited IRF6 mutation (Table  2; Supplementary 
Table 4) (Peyrard-Janvid et al. 2005, 2014).

Furthermore, the contribution of IRF6 variation to non-
syndromic OFCs has been sturdily proven. Originally, a 
GWAS study identified the IRF6 region as a susceptibil-
ity locus for non-syndromic OFCs (Beaty et  al. 2010), 
which has been later confirmed by several further studies in 
human and in mouse models. The role of IRF6 in non-syn-
dromic OFCs in combination with TA located outside the 
cleft area was thoroughly investigated by Letra et al. (2012) 
in a cohort of 134 Brazilian patients affected by both these 
conditions, thus identifying a borderline-associated IRF6 
marker (rs658860) in the sub-group of subjects showing 
CP and TA (Table  1; Supplementary Table  4). As further 
evidence, a statistically significant association was found 
between co-occurring OFCs and TA and an SNP in the 
AP-2α binding site of the IRF6 promoter in a large study 
based on 93 Latvian patients with isolated OFCs (Table 1) 
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(Krasone et  al. 2014). On the contrary, Pegelow et  al. 
(2008) did not find any significant association between dif-
ferent IRF6 SNPs and non-syndromic CL/P in 17 Swedish 
OFC families that included 13 members affected with OFC, 
further supporting the hypothesis of a minor contribution of 
other genes to the pathogenesis of these conditions.

Tp63

The IRF6 gene is one of the main targets of another tran-
scription factor, p63 (tumor protein 63). Disruption of a 
p63-binding site upstream to IRF6 due to a small insertion 
has been seen to cause VWS in a family where the IRF6 
gene was not mutated (Fakhouri et al. 2014), proving that 
the syndrome may be caused by an upstream disruption 
which does not directly affect the causative gene sequence.

TP63 encodes for a member of the p53 family of tran-
scription factors, named p63, for which unlike p53, a role 

in tumorigenesis has not been defined so far, while its role 
in proliferation, development and commitment to strati-
fied epithelial tissues has been extensively characterized 
in humans as well as in animal models (EntrezGene; Uni-
Prot; Yang et al. 1998). Tp63−/− knockout mice show typi-
cal developmental defects in epithelium-related structures 
including skin, hair, limbs, palate and mammary glands 
(Mills et  al. 1999; Yang et  al. 1999). In humans, the dis-
ruption of TP63 regulation leads to abnormalities of the 
skin, the limb and the orofacial structure, resulting from the 
impaired transcription of its targets which include not only 
IRF6 but also other cleft-associated genes, such as TFAP2α 
and RIPK4 (McDade et  al. 2012; Mitchell et  al. 2012). 
Mutations in the TP63 gene itself have been associated with 
multiple syndromes, called p63 syndromes: ectrodactyly-
ectodermal dysplasia-clefting (EEC) (OMIM# 129900), 
split-hand/foot malformation type 4 (SHFM4) (OMIM# 
605289), ankyloblepharon-ectodermal dysplasia-cleft 

Table 3   Genes contributing to OFCs and TA in mouse models

OFCs orofacial clefts, CL/P cleft lip with or without cleft palate, CL cleft lip, TA tooth agenesis, HD hypodontia, OD oligodontia

Gene Mouse strain Type of OFC Type of TA Comments References

MSX1 Msx1−/− CP OD Perinatal lethality in homozygous 
deficient mice

Satokata and Maas (1994)

Msx1−/− CP TA Also Msx1-Bmp4 transgene 
(Msx1−/−/Tg) mice were gener-
ated: the tooth agenesis was 
partially rescued and the palate 
appeared intact, although the 
rugae did not fuse at the midline

Zhang et al. (2002)

Pax9−/−; Msx1−/− CL TA The double-mutant mice show 
incompletely penetrant CL 
(38 % of cases) and lower inci-
sors missing. Other genotypes 
were tested

Nakatomi et al. (2010)

PAX9 Pax9flox/flox;PGK-Cre  
Pax9flox/flox;Wnt1-Cre

CP TA Inactivation of Pax9 using Wnt1-
Cre mice leads to CP (second-
ary palate) and TA and in other 
structures derived from neural 
crest cells

Kist et al. (2007)

Pax9−/−;Msx1−/− CL TA 39 % of the mutants exhibit 
unilateral or bilateral CL while 
100 % show the absence of 
teeth due to the lack of alveolar 
bones

Nakatomi et al. (2010)

PITX2 Pitx2−/− CP TA/OD In human, this gene is causative 
of Axenfeld–Rieger syndrome 
type 1 (OMIM## 180500)

Lu et al. (1999), Kouskoura et al. 
(2011)

PTCH1 K14-Shh OFCs HD In human, this gene is causative 
of Nevoid basal cell carcinoma 
syndrome (OMIM## 109400). 
Ptch1 encodes for the Shh path-
way: the mice used as NBCCS 
model express Shh in basal 
epithelium under keratin-14 
promoter

Cobourne et al. (2009)
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syndrome (AEC) (OMIM# 106260), acro-dermato-ungual-
lacrimal-tooth syndrome (ADULT) (OMIM# 103285), 
limb-mammary syndrome (LMS) (OMIM# 603543) and 
Rapp–Hodgkin syndrome (RHS) (OMIM# 129400). Of 
these, the EEC syndrome most frequently shows co-occur-
rence of OFCs and TA (Itin and Fistarol 2004; Kouskoura 
et  al. 2011; Tadini et  al. 2013). In our systematic search, 
TP63 mutations have been seen to likely contribute to the 
syndromic co-occurrence of TA and OFCs, in relation to 
different p63 syndromes.

In 2010, two studies described novel TP63 mutations in 
six patients with EEC exhibiting OFCs and HD (Table 2; 
Supplementary Table  4) (Clements et  al. 2010; Yin et  al. 
2010). One year later, an editorial by Sripathomsawat et al. 
(2011) reviewed two Thai patients with EEC and six previ-
ously published Dutch families focusing mainly on the oral 
and dental features, with particular attention on OFCs and 
TA.

Cabanillas et al. (2011) characterized one patient show-
ing a combination of B cell leukemia and ectodermal 

Table 4   Genomic loci associated with OFCs and TA in human

OFCs orofacial clefts, CL/P cleft lip with or without cleft palate, CL cleft lip, TA tooth agenesis, HD hypodontia, OD oligodontia

Gene Study No. of 
patients

Type of 
OFC

Type of TA TA location Comments References

1q21–q25 Case report/series 1 CLP OD Unclear The reported patient 
exhibits a del(1)
(q21–q25)

Schinzel and Schmid 
(1980)

1q32 Family-based study 2 CL/P HD Inside and outside The patients are 
affected by Van 
der Woude syn-
drome (OMIM# 
119300), with 
del(1)(q32)

Wong et al. (1999)

2q31.2–q33.2 Case report/series 1 CP OD Outside Analysis of CNVs 
by CGH showed 
in this patient a 
del(2)(q31.2–
q33.2). Proposed 
new syndrome

Rifai et al. (2010)

4p16.3 Case report/series 1 CP OD Unclear The patient is 
affected by Wolf–
Hirschhorn syn-
drome (OMIM# 
194190)

Maas et al. (2008)

8q24 Case–control/Fam-
ily-based study

31 OFCs TA Outside The locus con-
tains an SNP 
(rs987525) signifi-
cantly associated 
with OFCs and TA

Yildirim et al. (2012)

16q22 Case report/series 4 CP OD Inside and outside All the patients 
belong to the same 
family. Three 
of them present 
a fragile site in 
16q22

Bettex et al. (1998)

Case report/series 1 CP HD Outside The patient, affected 
by oropalatal 
Bettex–Graf 
dysplasia, showed 
a fragile site in 
16q22

Janiszewska-
Olszowska et al. 
(2013)

Case report/series 1 CP OD Outside The patient shows 
a fragile site in 
16q22 and features 
similar to those 
of Bettex–Graf 
dysplasia

McKenzie et al. 
(2002)
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dysplasia including CP and TA, theoretically caused by a 
pathogenic maternally inherited heterozygous germline 
mutation of the TP63 gene (Table  2; Supplementary 
Table  4). The review by Tadini et  al. (2013) focused on 
TP63-related diseases, describing CL/P and TA or anodon-
tia (AD) as a typical feature of RHS while CP with or with-
out bifid uvula and TA as a hallmark of LMS syndrome. 
The core clinical features of the LMS were defined upon 
the investigation of a large Dutch family, in which affected 
individuals were characterized by severe limb and gland 
anomalies, CP and TA (van Bokhoven et  al. 1999). The 
genetic defect was mapped to the subtelomeric region of 
chromosome 3q, which led to the identification of causa-
tive TP63 mutations in EEC syndrome, and subsequently 
related conditions including LMS.

Another syndrome-causing TP63 mutation was defined 
by McGrath et  al. (2001) who reported on an AEC fam-
ily with phenotypes including CLP and TA due to a TP63 
missense mutation, later confirmed in a case report by Cle-
ments et al. (2012) describing an AEC patient with a CLP 
and TA (Table 2; Supplementary Table 4). Intriguingly, Cle-
ments et al. (2010) proposed that RHS and AEC represent a 
variable spectrum of the same genetic disorder, investigat-
ing four cases of which two showed bilateral CLP and TA 
due to two missense mutations of TP63 gene (Table 2; Sup-
plementary Table 4). Interestingly, a case report described 
a patient with ADULT syndrome-like phenotype associ-
ated with CP and TA, who was found to be heterozygous 
for a de novo mutation in TP63 (Table  2; Supplementary 
Table 4) (Prontera et al. 2011). The peculiar aspect of this 
case is represented by the unusual combination of fea-
tures: ADULT differs from EEC and LMS mainly by the 
absence of CL/P, but in this case CP was also present, 
thus the authors suggested to combine the three pheno-
typic spectra into a unique syndrome called ELA (Pron-
tera et al. 2011). Patients with mixed phenotypic variations 
seen in EEC, AEC and RHS were previously described by 
Steele et  al. (2005), one of these showed CLP and TA in 
addition to other anomalies, resulting from another TP63 
SNP (Table 2; Supplementary Table 4) (Steele et al. 2005). 
The new and variable phenotypic features noted in these 
patients emphasize the wide spectrum of diseases caused 
by mutations in TP63.

The TGF pathway

The transforming growth factors (TGFs) represent a large 
family of proteins whose members regulate a remarkable 
range of biologic processes by acting on the transcrip-
tion of genes controlling cell proliferation, differentiation, 
death, adhesion, migration and positioning. This superfam-
ily is further divided into two classes, TGFα and TGFβ, 
which are not structurally nor genetically related but both 

modulating similar cell responses through different recep-
tor mechanisms (TGF preferentially with EGF receptor, 
EGFR, while TGFβ via TGFβ receptors, TGFβRs) (Brach-
mann et al. 1989; Wong et al. 1989; Wrana et al. 1994; Hel-
din et al. 2009; Macias et al. 2015).

One of the most well-characterized members of the 
TGFβ subfamily is TGFβ3, a secreted protein that plays an 
essential role in embryogenesis by modulating mesenchy-
mal cell proliferation, differentiation, migration and extra-
cellular matrix production, via transmembrane TGFβRs 
which then transduce the signal from the cell surface to the 
cytoplasm mainly via SMAD proteins (EntrezGene; Wrana 
et  al. 1994; Derynck and Zhang 2003; Massagué et  al. 
2005; Derynck et  al. 2014; Macias et  al. 2015). Diseases 
associated with TGFβ3 mutations include Loeys–Dietz 
syndrome-5 (LDS5) (a.k.a. Rienhoff syndrome) (OMIM# 
615582) and arrhythmogenic right ventricular dysplasia 
(OMIM# 107970).

In the literature, OFCs with TA outside the cleft region 
was found to be positively associated with TGFβ3 variants, 
compared with non-OFC controls (Slayton et  al. 2003). 
This evidence has been confirmed also in animal models, 
where mutant mice for TGFβ3 have been described as 
affected by HD and CP (Table 3) (Vieira 2003).

TGFβ3 represents one of the main ligands of two serine/
threonine protein kinase receptors, TGFβR1 and TGFβR2, 
which have also been investigated in relation to syndro-
mic OFCs (Loeys et al. 2005). Moreover, these genes have 
been associated with Marfan syndrome (OMIM# 154700), 
Loeys–Dietz syndrome (LDS) (OMIM# 609192; OMIM# 
610168), features of which include CP (Loeys et al. 2005), 
and Kallmann syndrome (KAL, a.k.a. hypogonadotropic 
hypogonadism with anosmia) (OMIM# 147950). Interest-
ingly, a study based on 14 patients with KAL whose phe-
notypic spectrum includes CP and tooth anomalies, found 
causative non-exonic mutations in TGFβR1 and TGFβR2 
(Table 2; Supplementary Table 4). Although it is not speci-
fied whether TA is included in the analyzed dental abnor-
malities, this evidence remains interesting since patients 
with KAL share phenotypes with patients suffering from 
LDS type 2, suggesting a possible minor role for the 
TGFβR-mediated pathway in KAL (Bottani et al. 2006).

Unlike TGFβ3, TGFα encodes a ligand for EGFR that 
works synergistically with the TGFβ pathway to regulate 
cell proliferation, differentiation and embryonic develop-
ment (Brachmann et al. 1989; Wong et al. 1989). A variety 
of positive and negative results have been reported con-
cerning the association between OFC and TGFα, which is 
highly expressed in the medial edge epithelium of the pala-
tal shelves at the time of palatal fusion (EntrezGene; Letra 
et al. 2012). Variants in TGFα have also been described as 
a possible risk factor for OFCs in case of maternal expo-
sure to cigarette smoke, alcohol consumption or improper 
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retinoic acid intake (Ardinger et al. 1989; Chenevix-Trench 
et al. 1992; Feng et al. 1994; Shaw et al. 1996a, b; Pezzetti 
et al. 1998; Jugessur et al. 2003; Zeiger et al. 2005; Letra 
et al. 2012). In addition, previous evidences have suggested 
that a possible interaction between IRF6 and TGFα may 
contribute to TA (Vieira et al. 2007).

In our literature search, a case–control study based on 
the genotyping of 406 Brazilian Caucasian patients with 
non-syndromic OFC (106 affected by TA) found a signifi-
cant association between IRF6 as well as TGFα markers 
and the combination of OFCs and TA (Table 1; Supplemen-
tary Table 4) (Letra et al. 2012), representing a further clue 
of a possible role of TGFα in the dual pathogenesis of these 
orofacial defects.

Satb2

Originally identified as KIAA1034, SATB2 encodes a 
transcription regulator and chromatin remodeling factor, 
belonging to the homeobox proteins (SATB Homeobox 2). 
Its expression starts in the embryo and is later conserved 
in adult tissues, such as the spinal cord, the kidneys, and 
the central nervous system (UniProtKB; Zhao et al. 2014). 
This homeobox protein acts in concert with the BMP 
signaling pathway to modulate skeletogenesis by trig-
gering several critical transcription factors like RUNX2, 
the master and the earliest osteogenic transcription fac-
tor (Zhao et al. 2014). A number of studies confirmed that 
SATB2 is strongly expressed in the developing craniofacial 
regions during mammalian embryogenesis, where it regu-
lates osteoblast differentiation and craniofacial pattern-
ing determination (Britanova et  al. 2006; Dobreva et  al. 
2006; Zhao et  al. 2014). Consequently, mutations of this 
gene lead to increased apoptosis in the craniofacial mesen-
chyme and to impaired expression patterns of three genes, 
PAX9, ALX4 and MSX1, implicated in the regulation of 
craniofacial development in humans and mice, resulting 
in facial clefts (Dobreva et al. 2006; Zhao et al. 2014). In 
a large number of studies, the contribution of SATB2 vari-
ants to OFCs in human has been confirmed, especially CP, 
both in non-syndromic OFC (OMIM# 119530) as well as 
in syndromes such as Glass syndrome (OMIM# 612313), 
and Pierre Robin sequence with or without ankyloglos-
sia and cleft-associated intellectual disability (OMIM# 
261800) (FitzPatrick et  al. 2003; Beaty et  al. 2006; Bri-
tanova et al. 2006; Leoyklang et al. 2007; Rosenfeld et al. 
2009; Urquhart et  al. 2009; Rainger et  al. 2014). In addi-
tion, recent evidence suggests a possible link between 
SATB2 and dental anomalies including TA (Rosenfeld et al. 
2009; Kaiser et al. 2015). Regarding the co-occurrence of 
these pathogenic conditions, a case report describes a male 
patient with multiple associated phenotypes, including CP 
and TA, who carries a small intragenic duplication in the 

SATB2 gene affecting three coding exons (Table 2; Supple-
mentary Table 4) (Lieden et al. 2014). In addition, the het-
erozygous loss-of-function mutations of SATB2 have been 
seen to result in micrognathia and CP both in mice and 
humans. In a recent study, two patients both affected by 
CP and TA were described with translocations, the break-
points in which were mapped to SATB2 and PLCL1, t(2;11)
(q33.1;p13) and t(1;2)(p34;q33), further supporting the 
hypothesis of a causative role of SATB2 in a common etio-
logic mechanism shared between OFCs and TA (Table  1; 
Supplementary Table 4) (Rainger et al. 2014).

Tbx22

A highly conserved gene family involved in the embryonic 
patterning from Drosophila to vertebrates is the T-box fam-
ily, whose members are derived from events of gene dupli-
cation and cluster dispersion (Packham and Brook 2003).
The key role played by TBX proteins during many aspects 
of embryonic development has been demonstrated by the 
generation of targeted T-box gene deletions in zebrafish 
and mouse (Bollag et al. 1994; Agulnik et al. 1996; Pack-
ham and Brook 2003). These models confirm that TBX fac-
tors are responsible for the decision of paraxial mesoderm 
to follow a mesodermal or neuronal pathway (Chapman 
and Papaioannou 1998). Due to its essential role in human 
palatogenesis, mutations in one of the TGF members, 
TBX22, have been reported in patients with OFCs and TA 
as well as in OFC-associated syndromes, such as inherited 
X-linked cleft palate with ankyloglossia (OMIM# 303400) 
and in Abruzzo–Erickson syndrome (OMIM# 302905) 
(Braybrook et  al. 2001, 2002; Herr et  al. 2003; Marçano 
et  al. 2004; Suphapeetiporn et  al. 2007; Kim et  al. 2009; 
Pauws et al. 2009, 2013; Acevedo et al. 2010; Kantaputra 
et al. 2011; Kaewkhampa et al. 2012; Gurramkonda et al. 
2015). The speculation about its contribution to OFCs and 
TA originated from two sources. First, one individual was 
found to present both OFC and TA likely due to a TBX22 
missense mutation in a study based on a large cohort of 
patients with ankyloglossia and patients with sporadic iso-
lated OFC (Table  2; Supplementary Table  4) (Kantaputra 
et al. 2011). Second, a case report describing a male patient 
with complete unilateral CLP and TA identified a hemizy-
gous missense mutation in TBX22 (Table 1; Supplementary 
Table 4) (Kaewkhampa et al. 2012).

Chd7 and fgfr1/fgf8

On chromosome 8, two specific loci, 8p11.23 and 8q12.2, 
have been associated with the etiology of Kallmann syn-
drome (a.k.a. hypogonadotropic hypogonadism type 2 with 
anosmia) (OMIM# 147950) whose minor phenotypic mani-
festations include OFC and TA (Layman 2013). These two 
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loci encompass two genes, proposed as causative genes of 
KAL: FGFR1 and CHD7, respectively (Beate et al. 2012; 
Layman 2013).

Located in 8q12.2, CHD7 gene encodes a DNA-binding 
protein that acts as a positive transcriptional regulator by 
binding to enhancer elements in the nucleoplasm, and its 
disruption leading to Kallmann syndrome or CHARGE 
syndrome (OMIM# 214800).

The other locus, 8p11.23, contains other genes, includ-
ing FGFR1 (a.k.a. KAL2) and FGF8, both considered as 
main players in Kallmann syndrome. Mutations in FGFR1 
are also described as causative for other syndromes, some 
of them including OFCs and dental anomalies (Kim et al. 
2005; Riley et  al. 2007; Stoler et  al. 2009; Simonis et  al. 
2013), like a gain-of-function FGFR1 mutation associ-
ated with Kallmann syndrome and loss-of-function muta-
tions in craniosynostosis presenting OFCs (Dodé et  al. 
2003). FGFR1 is a member of the fibroblast growth fac-
tor receptor (FGFR) family, a group of tyrosine kinase 
receptors belonging to the FGF pathway, which regulates 
a wide range of cell responses, such as angiogenesis, cell 
migration, and embryonic development, including skeletal 
formation (EntrezGene; Muenke and Schell 1995). This 
FGF signaling pathway contains also the ligands of these 
receptors, such as FGF8. Interestingly, FGFR1 as well as 
FGFR2 are well-characterized OFC-associated genes, but 
have been only recently investigated for possible involve-
ment in TA (Huang et al. 2015; Hosokawa et al. 2009).

Rare sequence variants (defined as genetic variants 
with a minor allele frequency lower than 1  % in control 
populations) in FGFR1 (10  %) and CHD7 (6  %) are the 
most common autosomal causes of Kallmann syndrome, 
whereas another causative gene, KAL1, has been estimated 
to have a prevalence of 5–10 % in affected males (X-linked 
recessive) (Layman 2013). Costa-Barbosa et al. (2013) per-
formed a detailed phenotypic comparison in a large group 
of 151 KAL subjects harboring known rare sequence vari-
ants, in eight genes belonging to six molecular pathways, 
which included CHD7 and FGFR1/FGF8. The co-occur-
rence of TA and OFC was observed in only two patients 
with rare sequence variants affecting CHD7 (Table 2; Sup-
plementary Table 4), and although interesting as a clue sug-
gesting the existence of a connection between the gene and 
the phenotypes of interest, the low number of cases was 
not sufficient to emerge as a statistically significant pheno-
type predictor. In contrast, among patients with CL/P, 54 in 
total, a significant association resulted in the sub-group of 
patients with CL/P showing TA (39 %) and mutations in the 
FGF8/FGFR1 (Table 2; Supplementary Table 4). Albuisson 
et al. (2005) studied a cohort of 98 patients with Kallmann 
syndrome, seven of whom contained mutations in FGFR1 
related to OFCs and TA: of these, no one has been reported 
with the combined phenotypes; however, two patients with 

different FGFR1 mutations (p.D129A and p.V273  M) 
showed CP while another patient (c.1093_1094delAG) 
showed TA. Although no patients showed the combina-
tion of the phenotypes in this cohort, the study still raises 
interesting hypothesis since the same gene is affected and 
apparently related to both TA and OFCs even if in differ-
ent subjects. Altogether, in our search we identified seven 
FGFR1 mutations that have been proposed as causative in 
seven patients with Kallmann syndrome, exhibiting CL/P 
and TA among other main phenotypes (Supplementary 
Table 4) (Zenaty et al. 2006; Xu et al. 2007, 2015; Bailleul-
Forestier et  al. 2010; Tommiska et  al. 2014), representing 
relevant insights into a possible common FGFR1-related 
mechanism that may contribute to the dual etiology of 
OFCs and TA.

The WNT signaling pathway

The wingless-type MMTV integration site family (Wnt 
family) consists of structurally related genes encoding 
secreted signaling proteins implicated in several develop-
mental processes, such as cell fate regulation and pattern-
ing during embryogenesis (EntrezGene; Dale 1998; Yin and 
Bian 2015). Together with the TGFβ signaling pathway, 
the canonical Wnt/β-catenin pathway provides most genes 
related to the network active during the initiation phase of 
palatogenesis and odontogenesis (Smalley and Dale 1999; 
Bae et  al. 2015; Yin and Bian 2015). At the same time, 
Wnt signaling has been confirmed as implicated in onco-
genesis at a later stage of life by a large number of studies 
since the late 1990s (e.g., Dale 1998; Morin 1999; Smalley 
and Dale 1999). In the last decade, mutations affecting the 
WNT10A member of this family have emerged as frequent 
causes of syndromic as well as non-syndromic TA (van 
den Boogaard et al. 2012; Arte et al. 2013; He et al. 2013; 
Abdalla et al. 2014; Alves-Ferreira et al. 2014; Kantaputra 
et al. 2014; Mues et al. 2014; Song et al. 2014; Vink et al. 
2014). In addition, a WNT10A polymorphism is described 
to be associated with a significantly increased risk for OFC 
in a Chinese cohort (Feng et al. 2014; Beaty et al. 2006). 
However, unlike WNT3 and WNT5, no studies currently 
published have investigated WNT10A gene in relation to 
these combined orofacial phenotypes.

Mutations in WNT3 are well-known causes of syndro-
mic tetra-amelia with CLP (OMIM# 273395), but the dis-
ruption of this gene has recently also been described as 
involved in non-syndromic OFC with TA (Table 2; Supple-
mentary Table 4) (Yao et al. 2011; Mostowska et al. 2012). 
Interestingly, Menezes et  al. (2010) identified a signifi-
cant association between a marker located close to WNT3 
gene in the group of patients affected by bilateral CL/P 
and agenesis of the lateral incisors. Specifically, this point 
mutation (rs142167, personal communication) is located in 
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the intronic sequence of NSF, a gene flanking WNT3 and 
encoding a transporter involved in the vesicle-mediated 
trafficking within the Golgi cisternae (UniProt). However, 
since the effect of this mutation via NSF or through the 
close WNT3 gene is still not clear, further investigations are 
needed. In the same gene family, WNT5A has been reported 
by Person et al. (2010) as the causative gene of autosomal 
Robinow syndrome (ADRS) (OMIM# 180700) and in a 
recent update Roifman et al. (2015) described TA as a typi-
cal feature and CLP as a less common phenotype. Further-
more, mutations in other canonical WNT signaling-related 
genes have been shown to cause either TA with or without 
OFCs or other associated disorders, such as AXIN2, play-
ing an important role in the regulation of β-catenin stabil-
ity in the cytoplasm, and LRP6 functioning as a transmem-
brane co-receptor of Frizzled proteins (EntrezGene; Sarkar 
and Sharpe 1999; Bodine and Komm 2006). For LRP6, its 
role in lip formation and odontogenesis has been studied in 
mice and in patients (Song et al. 2009; Massink et al. 2015; 
Ockeloen et  al. 2016) while the role of AXIN2 is not yet 
fully defined although its involvement in embryogenesis 
and oncogenesis is clear. Intriguingly, a pathogenic AXIN2 
mutation has been described as causative for both TA and 
cancer development in a Finnish family where the TA phe-
notype segregated with colorectal cancer predisposition 
(Lammi et al. 2004). In a case–control study including 500 
patients with non-syndromic OFC and 500 unrelated con-
trols, an AXIN2 polymorphism (Table  1, Supplementary 
Table  4) showed association (rs7591, p =  0.01) with the 
co-occurrence of unilateral right CL/P with TA, stimulating 
the interest in this gene that may be involved in both patho-
genic processes (Letra et al. 2009).

Cdh1

CDH1 (cadherin 1) belongs to the cadherin superfamily of 
transmembrane adhesion proteins, which play important 
roles in craniofacial morphogenesis (Taneyhill 2008), spe-
cifically during the formation of facial cartilages and bones 
as well as during dental development (Verstraeten et  al. 
2010), either by controlling cell–cell adhesion or interact-
ing with Wnt intracellular signaling (Di Benedetto et  al. 
2015; Schambony et al. 2004; Bienz 2005; Brembeck et al. 
2006). To date, mutations affecting this gene have been 
described in families presenting a combination of gastric 
cancer and CL/P (Letra et  al. 2009; Frebourg et  al. 2006; 
Vogelaar et  al. 2013). In a wide case–control study, 500 
Brazilian patients with OFC and 500 unrelated controls 
were analyzed to investigate the role of CDH1 and AXIN2 
markers in OFC etiology. Interestingly, the sub-group of 
patients with OFC showing also TA, considered as cleft 
sub-phenotype in this study, revealed an association of one 
CDH1 marker (rs11642413, p =  0.008) and one AXIN2 

marker (rs7591, p  =  0.01) with unilateral right CL/P 
(Table 1; Supplementary Table 4) (Letra et al. 2009).

Other candidate genes rarely associated 
with co‑occurrence of orofacial clefting and tooth 
agenesis

Kmt2d and kdm6a

KMT2D (a.k.a. MLL2), which encodes an SET-domain-
containing protein of lysine-specific histone methyltrans-
ferases responsible for trimethylation of histone H3 at 
lysine 4 (H3K4me3), and KDM6A, a histone H3 lysine 
27 (H3K27)-specific demethylase, have been recognized 
as the main causative genes of Kabuki syndrome (a.k.a. 
Niikawa–Kuroki syndrome) (OMIM# 147920, OMIM# 
300867, respectively). These two enzymes modulate the 
gene expression by epigenetic modifications, playing a 
critical role in craniofacial, heart and brain development 
(Van Laarhoven et al. 2015). KMT2D-related Kabuki syn-
drome (type 1) (OMIM# 147920) is inherited in an autoso-
mal dominant manner and KMT2D mutations are present 
in 34–76  % of patients with KS, while KDM6A-related 
KS (type 2) (OMIM# 300867) is less frequent and inher-
ited in an X-linked manner (Adam et  al. 1993; Van Laar-
hoven et al. 2015). This syndrome has peculiar craniofacial 
phenotypes, including as minor CL/P features, hypodontia 
and lower lip pits in some cases, which can lead to a mis-
diagnosis of VWS (Matsumoto and Niikawa 2003; David-
Paloyo et al. 2014).

Patients with a KMT2D mutation are more likely to 
have the distinctive Kabuki facial phenotype, which may 
reflect the fact that a portion of those without a KMT2D 
mutation may have been misdiagnosed. However, in the 
literature, molecular analyses confirmed the presence of a 
KMT2D mutation in only one patient with KS exhibiting 
the co-occurrence of CP and HD (Table 2; Supplementary 
Table 4) (David-Paloyo et al. 2014).

Ofd1

The X-linked gene OFD1 has been recognized as a caus-
ative gene of the oral–facial–digital syndrome type 1 
(OFD1) (OMIM# 311200) (Klein et  al. 2013). This gene 
encodes a centrosomal protein implicated in embryonic 
development by regulating the canonical Wnt signaling 
pathways and the sonic hedgehog (Shh) signal during the 
early embryonic specification of the left–right axis in mam-
mals (EntrezGene; Macca and Franco 2009). In OFD1 
syndrome, CP is present in more than 50 % of the affected 
patients, and also another minor OFC subtype, the cleft 
alveolus, is commonly reported in patients with OFD. In 
addition, the lower lateral incisors are missing in 50 % of 
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the individuals, which is also associated with fibrous bands 
in the region (Klein et  al. 2013). In their NCBI GeneR-
eview, Toriello and Franco (1993) indicate that in OFD1 
mainly median clefts or (pseudo)clefts of the upper lip are 
present. In a case series found in our search, two OFD1 sib-
lings sharing the same mutation were described; only one 
of them had TA and a cleft alveolar ridge (Table 2; Supple-
mentary Table 4) (Shimojima et al. 2013).

Bcor

The BCL6 corepressor gene, BCOR, encodes a pro-
tein that inhibits gene expression by sequence-specific 
DNA-binding proteins such as BCL6 and MLLT3 when 
recruited to their promoter regions (UniProt). In addition, 
this gene is known to interact with AP-2α, a known OFC 
gene (Milunsky et  al. 2008; Rahimov et  al. 2008), and 
WNT10A, a known TA gene. Syndromes associated with 
variants in BCOR include oculofaciocardiodental syn-
drome (OFCD) (a.k.a. syndromic microphthalmia type 2, 
OMIM# 300166), which is known to be associated with 
both OFC and TA. In a review by Kantaputra (2014), the 
OFCD syndrome has been described to be associated with 
several dental and orofacial anomalies including HD and 
craniofacial features including CP. As confirmation, Feber-
wee et  al. (2014) indeed found two patients affected with 
OFCD carrying BCOR point mutations, one affected by CP 
and mild HD while the other by CP and OD, although a 
concrete evidence that these two phenotypes are ‘typical’ 
features of OFCD syndrome is lacking (Table  2; Supple-
mentary Table 4).

Twist1

Within the basic helix–loop–helix (bHLH) transcription 
factor family, which plays an essential role in cell lineage 
determination and differentiation, TWIST1 (twist family 
BHLH transcription factor 1) was found by Busche et  al. 
(2011) as the only gene affected by a microdeletion of 
7p21 in three patients (Table  2; Supplementary Table  4). 
Although a wide range of phenotypes was present in these 
subjects, such as features resembling typical traits of 
blepharophimosis–ptosis–epicanthus inversus syndrome 
(BPES) (OMIM# 110100) and Saethre–Chotzen syndrome 
(OMIM# 101400), CP and TA were present in one of these 
patients.

Pitx2

A transcriptional regulator, member of the PITX home-
obox family, is encoded by PITX2 (paired-like homeodo-
main 2) and is involved in the morphogenesis of the eyes, 
the teeth and abdominal organs (EntrezGene). Mutations in 

this gene are associated with Axenfeld–Rieger syndrome 
type 1 (RIEG1) (OMIM# 180500), iridogoniodysgenesis 
syndrome type 2 (IRID2) (OMIM# 137600), and sporadic 
cases of Peters anomaly (OMIM# 604229).

Main characteristics of Axenfeld-Rieger syndrome type 
1 (RIEG1) include severe TA that is associated with mid-
facial hypoplasia and CP (Kavitha et  al. 2010). Although 
evidences in humans currently lack, Pitx2 knockout mice 
typically exhibit TA, CP and abnormal development of the 
maxilla and mandible (Table  3) (Kouskoura et  al. 2011), 
supporting the hypothesis of a conserved relation between 
this gene and orofacial defects in human.

Ptch1

In our literature search, patched 1 (PTCH1) gene encod-
ing a member of the patched family which functions as 
a receptor for Indian hedgehog (IHH), desert hedgehog 
(DHH) and mainly for sonic hedgehog (SHH) was also 
identified. Shh represents a key inductive signal for a vari-
ety of patterning events that take place in the early embryo, 
and consequently PTCH1 is also involved in embryonic 
development. Interestingly, mutations in SHH cause holo-
prosencephaly (OMIM# 142945), whose wide phenotypic 
spectrum also includes CL/P and the presence of a single 
median upper central incisor, which may be considered as 
a mild form of TA (Roessler et al. 1996; Orioli et al. 2002).

A study based on a transgenic mouse model express-
ing Shh, ligand of Ptch1, in basal epithelium under the 
control of a specific Keratin-14 promoter showed that an 
increased activity of Shh in this tissue prevents apopto-
sis, palatal shelf fusion and tooth development at the bud 
stage (Table 3) (Cobourne et al. 2009). PTCH1 is one of the 
causative genes for nevoid basal cell carcinoma syndrome 
(a.k.a. basal cell nevus syndrome, OMIM# 109400), which 
includes OFC and TA as secondary features of its core 
characteristics, including also jaw cysts, basal cell tumors 
and skeletal abnormalities (Cobourne et  al. 2009; Lam 
et al. 2013).

Pvrl1

Mutations in PVRL1, encoding an adhesion protein con-
tributing to the adherent and tight junction formation in 
epithelial and endothelial cells, are known to cause CL/P-
ectodermal dysplasia syndrome (CLPED, a.k.a. Zlotogora 
syndrome) (OMIM# 225060) as well as non-syndromic 
CL/P (EntrezGene; Suzuki et al. 2000; Sözen et al. 2001; 
Turhani et al. 2005; Avila et al. 2006; Scapoli et al. 2006; 
Sözen et al. 2009). So far, combined CL/P and HD has only 
been diagnosed in one CLPED patient who exhibited a 
homozygous nonsense mutation in the PVRL1 gene (Sup-
plementary Table 4) (Yoshida et al. 2015).



Hum Genet	

1 3

Kiss1r

KISS1R gene encodes for a galanin-like G protein-coupled 
receptor that plays a role in endocrine function regulation 
and puberty onset by binding its ligand, metastin, and trig-
gering a signaling via phospholipase C and G(q) proteins 
(EntrezGene; UniProtKB). This gene is known as the caus-
ative gene of hypogonadotropic hypogonadism type 8 with 
or without anosmia (OMIM# 614837) (Acierno et al. 2003; 
de Roux et  al. 2003; Brioude et  al. 2013). Interestingly, 
mutations of KISS1R have recently been linked to Kall-
mann syndrome: specifically, Xu et al. (2015) reported on 
a Kallmann patient exhibiting CL and TA (Table 2; Supple-
mentary Table 4). Although a single evidence is not enough 
to draw any conclusion, the relation of the KISS1R muta-
tion with Kallmann syndrome including the co-occurrence 
of OFC and TA is worth to be further investigated.

GO term analysis and gene clustering

To find the hypothesized common etiological genetic fac-
tors explaining the co-occurrence of TA and OFC, we fur-
ther analyzed the data as follows using a Gene Ontology 
(GO) term mapping tool. The GO terms related to the bio-
logical processes mediated by the 26 candidate genes were 
mapped to 51 broad categories, which were subsequently 
combined to generate six super-clusters (Supplementary 
Table  5): (a) anatomical development, (b) cell division, 
growth and motility, (c) cell metabolism and catabolism, 
(d) cell transport, (e) cell structure organizations and (f) 
organ/system-specific processes.

Anatomical development, the first cluster, includes a total 
of 23 genes related with embryogenesis, morphogenesis, 
anatomical structure formation and growth (in alphabetical 
order): AXIN2, BCOR, CDH1, CHD7, FGF8, FGFR1, IRF6, 
KDM6A, KMT2D, MSX1, OFD1, PAX9, PITX2, PTCH1, 
PVRL1, SATB2, TGFβ3, TGFβR1, TGFβR2, TP63, TWIST1, 
WNT3, and WNT5A. Cell division, growth and motility, the 
second cluster, largely overlaps with the first cluster, encom-
passing 23 genes involved in different processes that range 
from cell division and proliferation, over differentiation, 
to cell motility and adhesion. Excluding PAX9 and BCOR, 
the other 21 genes of the first cluster are present also in 
the second, which in addition includes TGFα and KISS1R. 
Similarly, 23 genes are included in the third cluster, for cell 
metabolism and catabolism: AXIN2, BCOR, CDH1, CHD7, 
FGF8, FGFR1, IRF6, KDM6A, KISS1R, KMT2D, MSX1, 
PAX9, PITX2, PTCH1, SATB2, TBX22, TGFα, TGFβ3, 
TGFβR1, TGFβR2, TP63, TWIST1, and WNT5A. Other bio-
logical processes highly represented in our set of candidate 
genes are the cell transport and signal transduction, compris-
ing 21 genes which correspond to the second cluster exclud-
ing SATB2 and OFD1. In addition, 17 candidate genes are 

also implicated in the cellular structure organization, spe-
cifically membrane formation and cytoskeleton assembly: 
AXIN2, BCOR, CDH1, CHD7, KMT2D, KDM6A, OFD1, 
PTCH1, PVRL1, SATB2, TGFα, TGFβ3, TGFβR1, TP63, 
TWIST1, and WNT5A. The last cluster includes 17 genes 
contributing to organ/system-specific processes, such as the 
immune system, the neurological system and the circula-
tory system processes: CDH1, CHD7, FGF8, FGFR1, IRF6, 
KMT2D, MSX1, PITX2, PVRL1, SATB2, TGFβ3, TGFβR1, 
TGFβR2, TP63, TWIST1, WNT3, and WNT5A.

Genomic loci likely associated to co‑occurrence 
of orofacial clefting and tooth agenesis

In our literature search, some genomic loci, either deleted 
or containing mutations, were reported in patients with 
the co-occurrence of TA and OFCs. Schinzel and Schmid 
(1980) reported a patient with a deletion of 1q21–q25 
[del(1)(q21–q25)] exhibiting OFC and TA (Table 4). This 
large deletion encompassed 702 genes, including protein-
coding, non-coding genes, miRNAs and long non-coding 
RNAs (Supplementary Table 6).

A new ectodermal dysplasia-like syndrome, named 
del(2q32) syndrome, has been proposed in a case report 
of a patient with a 26 Mb interstitial deletion involving the 
region 2q31.2–q33.2, who showed multiple phenotypes 
including CP and TA, as well as severe intellectual disabil-
ity and ectodermal anomalies (Rifai et al. 2010) (Table 4, 
Supplementary Table 6). Another 3.7 Mb deletion affecting 
the locus 4p16.3 was described by Maas et al. (2008) in a 
patient with Wolf–Hirschhorn syndrome (OMIM# 194190) 
exhibiting CP and TA along with intellectual disability, 
microcephaly at birth and other abnormalities (Table  4; 
Supplementary Table 6). Three studies reported on patients 
with oropalatal Bettex–Graf dysplasia, combining CP and 
HD or OD with a fragile site located in the region 16q22 
(Table  4; Supplementary Table  6) (Bettex et  al. 1998; 
Janiszewska-Olszowska et al. 2013; McKenzie et al. 2002).

Another locus associated with a known cleft syndrome, 
DiGeorge syndrome (OMIM# 188400), is located on chro-
mosome 22 containing the main causative gene, TBX1. In 
four young patients with DiGeorge syndrome, the deletion 
of the locus 22q11 was diagnosed along with a CP and TA 
(Table 4; Supplementary Table 6) (Heliövaara et al. 2011).

A family-based study published in 2012 (Yildirim et al. 
2012) confirmed the significant association between an 
intragenic SNP (rs987525) affecting a long non-coding 
RNA gene, LINC00976, located in the 8q24.21 region 
(Table  4; Supplementary Tables  4 and 6), and the co-
occurrence of OFCs and TA. This evidence is particu-
larly interesting since rs987525 has been demonstrated 
to be a susceptibility marker for non-syndromic CL/P in 
human as well as in animal models although the molecular 
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mechanisms explaining the involvement of LINC00976 in 
OFC development remain unknown (Birnbaum et al. 2009; 
Mangold et  al. 2011; Uslu et  al. 2014). On the contrary, 
no studies have been published so far to validate a possi-
ble association between the 8q24 locus and TA, thus our 
hypothesis of a possible association represents a first input 
to stimulate molecular and functional studies in vitro and 
in vivo to shed light on potentially novel pathogenic mech-
anisms for TA and OFCs.

Discussion

The aim of this systematic review is to thoroughly and sys-
tematically investigate the available literature to collect a 
panel of genes and loci likely contributing to the co-occur-
rence of TA and OFC in humans, possibly confirmed in 
animal models, and to speculate on the possible key path-
ways involved in physiological tooth development and in 
facial primordia migration, proliferation and fusion.

Although the co-occurrence of dental anomalies, spe-
cifically TA, and OFCs is frequently seen clinically, a com-
prehensive molecular and genetic exploration of the possi-
ble key genes for the common pathogenesis has not been 
performed so far. This is mainly explained by the fact that 
the mildest forms of TA are often neglected or overlooked 
compared to the more severe OFCs.

Overall, from this systematic literature search we iden-
tified 84 articles fulfilling our inclusion criteria. Based on 
them, 26 genes and 9 genomic loci emerged as related to 
the oral defects of interest (Tables 1, 2, 3; Supplementary 
Tables 4 and 6). Among the 26 genes, the majority belongs 
to known OFC- or TA-related pathways (Tables  1, 2, 3; 
Supplementary Table 4). Some of these genes encode tran-
scription factors differentially involved in the regulation of 
embryonic developmental events, working synergistically 
in some cases: MSX1 and PAX9, CHD7, TWIST1, TP63 
and IRF6, and the homeodomain proteins SATB2, TBX22 
and PITX2. Other candidates encode for effectors of sign-
aling pathways that lead to the modulation of cell differen-
tiation, migration or adhesion. This is the case for CDH1 
and PVRL1, the SHH receptor PTCH1, for TGFα, TGFβ3 
and its receptors TGFβR1/2, for FGF8 and FGFR1, and for 
AXIN2, WNT3 and its regulator OFD1. In addition, we 
found two enzymes, KMT2D and KDM6, that specifically 
modify chromatin structure, thus regulating transcription 
by epigenetic modifications. Moreover, the DNA-binding 
repressor protein, BCOR, was also identified, acting by 
inhibiting gene expression when recruited to specific pro-
moter regions.

To speculate on the possible clustering of these 26 genes 
(Tables 1, 2, 4; Supplementary Table 4), the GO terms indi-
cating the biological processes which involve these genes 

have been collected and subsequently mapped to broader 
GO-slim categories. Based on these generic GO-slim cat-
egories, we proposed a gene super-clustering, includ-
ing six partially overlapping super-clusters: (a) anatomi-
cal development, (b) cell division, growth and motility, 
(c) cell metabolism and catabolism, (d) cell transport and 
signal transduction, (e) cell structure organizations and (f) 
organ/system-specific processes (Supplementary Table  5). 
As we expected, 23 of the 26 candidate genes described 
in this review are implicated in embryogenesis, morpho-
genesis, anatomical patterning and maturation, as well as 
neural crest formation, further supporting the hypothesis 
about their involvement in tooth, lip and palate formation. 
In addition, 23 of the 26 candidate genes contribute to gen-
eral cellular metabolism and catabolism as well as general 
cell processes, such as differentiation, proliferation and 
migration, while 21 are related to cell transport and signal 
transduction. Out of 26 candidate genes, 17 are involved in 
cell structure organization, like membrane and cytoskeleton 
formation. While, another group of 17 candidate genes has 
been associated with organ and system-specific processes, 
such as those which take place specifically in the nervous 
system and in the circulatory system. To discriminate which 
of the presented candidate genes have molecular functions 
that indeed underlie the failure of facial primordia migra-
tion and fusion, and the disruption of tooth development, 
and those whose functions could not explain their dual role 
in the pathogenesis of these conditions, further molecular 
analyses based on genotyping and population screening in 
concert with animal model studies and bioinformatics tools 
are necessary.

The fact that OFCs and TA are congenital birth defects 
starting to develop in the orofacial region of the 6–12-week 
human embryo largely explains why the GO term-based 
super-clustering (first super-cluster) is focusing on genes 
known to drive embryogenesis and oral morphogenesis. 
The clustering based on the GO terms in relation to bio-
logical processes have been used to identify common genes 
and pathways involved in TA and OFCs, and to predict 
possible new interactions between candidates in the same 
biological processes. However, since the clustering is a bio-
informatics prediction, it will be of interest to validate the 
resulting clusters and to underpin the related hypotheses 
with functional studies.

Some of the presented genes, like TP63 and IRF6, are 
well-known and widely studied genes, especially in relation 
to OFCs, and in our GO term analysis they are present in 
all the clusters, suggesting that those genes are governing 
broad molecular networks. The TP63 gene plays a critical 
role in epithelial differentiation and in our gene set it repre-
sents the gene most likely contributing to the pathogenesis 
of both TA and OFCs as it takes part in the development 
and maintenance of stratified epithelial tissues, mediating 
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the interactions between the mesenchyme and the epithe-
lium. Mutations in TP63 also underlie several dysmorphol-
ogy syndromes including clefts or cleft features.

The IRF6 gene is a target of TP63 that activates IRF6 
transcription through the IRF6 enhancer element (Dixon 
et  al. 2011). IRF6 is related to the formation of connec-
tive tissue (for example in the palate), the palatal rugae and 
underlying the dental epithelium (Blackburn et  al. 2012; 
Chu et  al. 2016). IRF6 can be considered as the second 
gene most likely playing a role in the combined OFC–TA 
phenotype since it is the causative gene of van der Woude 
syndrome, whose typical features are OFCs, TA and lip 
pits.

Similarly, MSX1 and PAX9 have also been associated 
with the co-occurrence of OFCs and TA, as implicated in 
the development of cephalic structures and dental devel-
opment both in humans and animal models. Interestingly, 
some of the candidate genes belong to five major gene 
families, WNTs, FGFs, BMPs, TGFs and PAXs, protein 
families that are essential in different phases of neural 
crest development, the structure from which originate the 
facial primordia, the palatal shelves, the alveolar ridge and 
the teeth. During the initial neural crest cell specification 
phase, the concerted activity of the WNT, FGF and BMP 
pathways induces the expression of neural plate border (or 
neural crest) genes, which turn on the expression of a dis-
tinct set of transcription factors including MSX1 and PAXs, 
and neural crest cells genes such as TWIST1 and Myc, rep-
resenting the neural crest specification module factors that 
determine the neural or non-neural fate of the neural crest 
cells (Simões-Costa and Bronner 2015).

In addition, a new level of gene expression regulation 
has been recently added to the cis-transcriptional regula-
tion programs, i.e., the epigenetic regulation based on chro-
matin remodeling. For the neural crest specification, the 
removal of repressive methylation marks is necessary as 
well as the addition of acetylation marks to relax the chro-
matin structure making it more accessible to DNA-binding 
transcription factors. Interestingly, two of the presented 
candidate genes, KMT2D and KDM6A (a methyltransferase 
and a demethylase, respectively), regulate the chroma-
tin methylation status and they are both causes of Kabuki 
syndrome, whose wide spectrum of features includes also 
OFCs and TA.

As the neural crest is one of the most conserved struc-
tures in vertebrates, the overlap of genes active during neu-
ral crest formation, odontogenesis, palatogenesis and facial 
primordia development may reflect the importance of the 
teeth and the palate, also in terms of human evolution and 
survival.

Although it would have been interesting to check for 
maternal genetic effects in these combined OFC–TA phe-
notypes, it was striking that in most articles relevant for our 

literature search the genotype of the mother was not pro-
vided. As our study almost exclusively focuses on inherited 
genetic effects, based on the genotypes of the described 
cases, we could not draw any conclusion on a possible 
implication of maternal genetic effects, which in other 
studies are acknowledged to affect the susceptibility of 
the embryo, and increasing the risk to develop a cleft. We, 
therefore, estimate that from the current stage of knowl-
edge in the literature concerning the co-occurrence of OFC 
and TA, we are not able to provide any clues on the mater-
nal genetic effects on the incidence or prevalence of these 
phenotypes.

As our review is a survey of scientific literature to iden-
tify genes involved in cases with co-occurrence of OFCs 
and TA, epidemiological analyses are beyond the specific 
aim of our study. We are aware indeed that some of the 
identified genes could be involved in OFC cases with TA 
by chance but, based on the sole data that is available in the 
literature, it seems impossible to track them down at this 
stage. However, the results of this study provide an intrigu-
ing list of candidate genes which could eventually be tested 
in prospective studies to sort out those that were not spe-
cifically associated with OFC–TA co-occurrence.

Nevertheless, with our review we aim to boost the 
research in this direction: we would like to draw the atten-
tion of clinicians and researchers working in TA and OFC 
field, on the investigation of the co-occurrence of these two 
defects, rather than focusing on the one or the other sin-
gle oral defect. If the new combinatorial perspective will be 
adopted and developed in the following years, it would be 
easier in the future to get a concrete overview of the risk of 
TA–OFC co-occurrence in the population.

It would also be interesting to get a sense of how much 
of risk for each defect is attributable to recognized genetic 
loci, but our review is neither a meta-analysis nor an epide-
miologic study. Presently, the number of patients reported 
in the literature is far too low for most of the genes, so that 
a sturdy statistical analysis is not possible. Therefore, we 
decided to report the number of patients found for each 
locus/gene (Tables 1, 2, 4) to give the reader a sense of how 
rarely the TA–OFC co-occurrence develops in case of gene/
locus mutations. This way we avoided to perform a statisti-
cal analysis that would never have been unbiased and reli-
able in the present situation.

It is too early for translating the review findings into 
therapeutic strategies for congenital birth defects like 
orofacial clefts with (or without) tooth agenesis, as these 
birth defects are different from other genetic diseases like 
retinitis pigmentosa (Bassuk et al. 2016) and Duchenne’s 
muscular dystrophy (Wojtal et  al. 2016) for which post-
natal treatments with genetic editing in patient-derived 
stem cells are currently under development. However, the 
identified OFC–TA genes could eventually be included in 
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postnatal diagnostic gene panels. Advantages of postnatal 
genetic testing not only includes more precise (sub)phe-
notyping of the patient, but also targeted physical exami-
nation of the patients’ parents as well as members of his/
her broader family. The latter can also be approached for 
genotyping and for deep phenotyping, including OFC and 
TA (sub)phenotypes. In fact, in children born with appar-
ently isolated OFC, an NGS-based screening of a panel 
of genes including both syndromic and TA-OFC genes 
could be useful for the diagnosis of cleft syndromes and 
tooth agenesis, and lead to earlier onset of therapies. 
However, the diagnosis of a case with OFC (with or with-
out TA) but without other severe malformations does not 
influence future pregnancy planning as these conditions 
are treatable. In next pregnancies, testing OFC–TA genes 
could eventually be carried out on amniocytes to antici-
pate diagnosis. For these cases, however, termination of 
pregnancy should never be an option offered by clinical 
geneticists.

In addition, the exact role of these genes, loci and path-
ways in orofacial development should first be further eluci-
dated with functional in vitro and in vivo studies to increase 
our understanding of the molecular mechanisms that lead 
to orofacial clefts in case of disruption. Tooth development, 
palatal shelf migration and lip formation, although depend-
ing on different tissues, timing and dynamics, are based on 
similar processes including cell migration and fusion. It is 
not fully clear if the same genes drive these processes in 
different tissues, but the co-occurrence of TA and OFCs 
due to the disruption of specific genes may support this 
hypothesis.

Intriguingly, not only the disrupted gene but even 
the location of the mutations within the gene can lead to 
diverse phenotypes. A recently published review (Liang 
et  al. 2016) shows how the location of mutations in the 
MSX1 homeodomain always causes TA with or without 
other phenotypes while mutations outside the homeodo-
main are mostly associated with non-syndromic OFCs. Fol-
lowing this hypothesis, it would be interesting for further 
functional studies to expand the molecular investigation 
to different protein domains in relation to different spectra 
of phenotypes, thus improving the diagnostic potential of 
these gene panels and the knowledge of molecular patho-
genic mechanisms affecting the orofacial region.
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