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Abstract In this paper two models of damaged materials are presented. The
first model is a model of glue including micro-cracks evolution and which has
two different regimes, one in traction and one in compression. The second
model is model of interface derived from the first one by an asymptotic anal-
ysis. Simple numerical examples are presented.
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1 Introduction

These last years, the study of imperfect interface between solids became a
subject of a very large interest for scientists and the industries, in particular
because of the development of composite materials [1–3,5,7,8,10,11,21–23,25,
26,28,29]. It is extremely important in particular to control the damage be-
tween the fiber and the matrix. Precise models of damaged interface are thus
necessity to design structures.
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Fig. 1 Composite body: initial structure and rescaled structure

In this paper, a model of imperfect interface including damage is proposed.
This model is based on the asymptotic analysis [4,9,12,13,29,31,32,34] of a
composite made by two elastic solids bonded together by a third thin one,
which has a non linear behavior. In order to obtain impenetrability condi-
tions, the glue is micro-cracked and has two different regimes, one in traction
and one in compression.

The paper is divided in three parts. In the first section, the problem of
composite body made by three deformable solids bonded together, two adher-
ents and an adhesive is presented. The adhesive is a non linear material. The
constitutive equation of this material takes into account damage and the non
symmetry between traction and compression. In the second part of the paper,
an asymptotic expansion method is introduced and applied at the problem in-
troduced in the first section. A model of imperfect interface is derived. In the
third section, the model is applied to a particular cracked material. A simple
example in one dimension is studied.
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2 The three-dimensional equations of the composite body

In the following a composite body made by three deformable solids (see fig-
ure 1), two adherents and an adhesive (also called a glue), and occupying
the domain Ωε is considered. The dependance of the domain Ωε on the pa-
rameter ε will be precized in the following. An orthonormal Cartesian ba-
sis (O, e1, e2, e3) is introduced and let (x1, x2, x3) be taken to denote the
three coordinates of a particle. The origin lies at the center of the adhesive
midplane and the x3−axis runs perpendicular to the open bounded set S,
S = {(x1, x2, x3) ∈ Ωε : x3 = 0} which will be called in the following the
interface. The adhesive, also called interphase is occupying the domain Bε,

defined by Bε = {(x1, x2, x3) ∈ Ωε : |x3| <
ε

2
}. Note that ε is the thickness

of the glue. The adherents are occupying respectively the domains Ωε
± defined

by Ωε
± = {(x1, x2, x3) ∈ Ω : ±x3 >

ε

2
}. The two-dimensional domains Sε

±

are taken to denote the interfaces between the adhesive and the adherents,

Sε
± = {(x1, x2, x3) ∈ Ω : x3 = ±ε

2
}. On a part Sg of the boundary ∂Ωε, an

external load g is applied, and on a part Su of ∂Ωε such that Sg ∩ Su = ∅,
the displacement is imposed to be equal to 0. Moreover, it is assumed that
Su ∩ Bε = ∅ and Sg ∩ Bε = ∅. A body force f is applied in Ωε

±. In the
following, uε is taken to denote the displacement field, σε the Cauchy stress
tensor and e(uε) the strain tensor. Under the small strain hypothesis we have

eij(u
ε) =

1

2
(uεi,j + uεj,i), where the comma is the partial derivative.

The two adherents are supposed to be elastic, thus

σε
ij = a±ijhkehk(u

ε) (1)

or

σε = ∂ψ±
,e(e(u

ε)), (2)

where the free energy ψ± =
1

2
a±e(uε) : e(uε), a± is the fourth order elas-

ticity tensor verifying the usual conditions of positivity and symmetry.

The adhesive is a generalized Kachanov-type material. In the Kachanov
theory [24,35], the constitutive equations are obtained after the homogeniza-
tion of a micro-cracks material, with k families of cracks. The elastic coeffi-
cients depend on the lenghts lk of these cracks. In the following, only a family
of cracks is considered and l is taken the denote the lenght of these cracks.
This parameter can be considered as a damage parameter. It is observed also,
that in this theory the stiffness of the material bε(l) takes the form bε ≈ εb(l)
[8].
As an example, for a crack orthogonal to e3, the Young modulus in the third
direction E3 is equal to
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E3 =
E0

1 + 2ρCE0
, (3)

where

C =
Π

2

1√
E0

(
1

µ0
− 2

ν0
E0

+
2

E0

)1/2

(4)

and E0 (resp. µ0, resp. ν0) is the Young modulus (resp. the shear modulus,
resp. the Poisson ratio) of the undamaged material and ρ is the density of

cracks i.e. ρ =
l3

V
in 3 dimensions and ρ =

l2

S
in 2 dimensions, where V (resp.

S) is the volume (resp. the surface) of the representative elementary domain.
Note that V and S are proportional to the thickness of the interphase ε.
In order to avoid the penetration along the cracks, it is supposed that the
elasticity coefficients do not depend on the lenght of the cracks in compression,
only in traction. In conclusion, in the interphase, two regimes are considered,

σε
ij =

 εbijhk(l)ehk(u
ε) if es(uε) ≥ 0

es(uε)Bijhkδhk + εbijhk(l)e
d
hk(u

ε) if es(uε) ≤ 0
(5)

where b and B are two fourth order elasticity tensors verifying the usual

conditions of positivity and symmetry, es =
1

3
tr(e(uε)) (resp. ed = e(uε) −

1

3
tr(e(uε)Id) is the spheric (resp. deviatoric) part of e and δ is the Kroenecker

symbol.
Now, the possible evolution of the lenght l is introduced. Following the general
theory proposed in [6], a pseudo-potential of dissipation ϕ is considered. For the
sake of simplicity, this potential which is rate dependent is chosen as quadratic
i.e.

ϕ(l̇) =
1

2
ηε l̇2 + I{l̇≥0}(l̇), (6)

where IA is the indicator function of the set A, IA(x) = 0 if x ∈ A,
IA(x) = +∞, otherwise and ηε a viscosity parameter. This indicator function
imposes to l̇ to be positive i.e. the crack length increases. The free energy
associated to the constitutive equation of the interphase (eqs. 5) is given by

ψi(e(uε), l)) = ψi−s(e(uε))− ωεl + I[l0,+∞[(l) (7)

where ωε is a (negative) parameter similar to the Dupr’s energy [6,7], l0 is
a given initial crack lenght and

ψi−s(e(uε)) =


1

2
εb(l)e(uε) : e(uε) if es(uε) ≥ 0

1

2
(es(uε))2Bijhkδijδhk +

1

2
εb(l)ed(uε) : ed(uε) if es(uε) ≤ 0

(8)
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Note that ηε and ωε are volumic densities and thus these two coefficients are
inversely proportional to ε. In next sections, we will denote ηε = η/ε and
ωε = ω/ε.

Thus, the evolution equation is written

ηε l̇ =


(
ωε − 1

2
εb,l(l)e(u

ε) : e(uε)

)
+

if es(uε) ≥ 0(
ωε − 1

2
εb,l(l)e

d(uε) : ed(uε)

)
+

if es(uε) ≤ 0
(9)

where ()+ is the positive part of a function. In the following l is supposed to be
independant of x3 i.e. the interphase and the representative volume thicknesses
are equal. A more general hypothesis is presented in appendix.

The equations governing the equilibrium problem of the composite struc-
ture are written as follows:

σε
ij,j + fi = 0 in Ωε

±
σε
ijnj = gi on Sg

σε
ij,j = 0 in Bε

[[σε
i3]] = 0 on Sε

±
[[uεi ]] = 0 on Sε

±
uεi = 0 on Su

σε
ij = a±ijhkehk(u

ε) in Ωε
±

σε
ij = εbijhk(l)ehk(u

ε) if es(uε) ≥ 0 in Bε

σε
ij = es(uε)Bijhkδhk + εbijhk(l)e

d
hk(u

ε) if es(uε) ≤ 0 in Bε

ηε l̇ =

(
ωε − 1

2
εb,l(l)e(u

ε) : e(uε)

)
+

if es(uε) ≥ 0 in Bε

ηε l̇ =

(
ωε − 1

2
εb,l(l)e

d(uε) : ed(uε)

)
+

if es(uε) ≥ 0 in Bε

(10)

where [[f ]] denotes the jump of f along Sε
± i.e. f((ε/2)±) − f((ε/2)∓). We

recall that f(a+) = limx−→a,x>a f(x) and f(a
−) = limx−→a,x<a f(x).

3 The asymptotic expansion method

Since the thickness of the interphase is very small, it is natural to seek the
solution of problem (10) using asymptotic expansions with respect to the pa-
rameter ε [14–18,20,33]. In particular, the following asymptotic series with
integer powers are assumed:{

uε = u0 + ε u1 + o(ε)
σε = σ0 + ε σ1 + o(ε).

(11)

The domain is then rescaled (see figure 1) using a classical procedure:
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– In the adhesive, the following change of variable is introduced

(x1, x2, x3) ∈ Bε → (z1, z2, z3) ∈ B, with (z1, z2, z3) = (x1, x2,
x3
ε
)

and it is set ûε(z1, z2, z3) = uε(x1, x2, x3) and σ̂
ε(z1, z2, z3) = σε(x1, x2, x3),

where B = {(x1, x2, x3) ∈ Ω : |x3| <
1

2
}.

– In the adherent, the following change of variable is introduced

(x1, x2, x3) ∈ Ωε
± → (z1, z2, z3) ∈ Ω±, with (z1, z2, z3) = (x1, x2, x3±1/2∓ε/2)

and it is set ūε(z1, z2, z3) = uε(x1, x2, x3) and σ̄
ε(z1, z2, z3) = σε(x1, x2, x3),

where Ω± = {(x1, x2, x3) ∈ Ω : ±x3 >
1

2
}. The external forces is as-

sumed to be independent of ε. As a consequence, it is set f̄(z1, z2, z3) =
f(x1, x2, x3) and ḡ(z1, z2, z3) = g(x1, x2, x3).

The governing equations of the rescaled problem are as follows:



σ̄ε
ij,j + f̄i = 0 in Ω±
σ̄ε
ijnj = ḡi on S̄g

σ̂ε
ij,j = 0 in B
σ̄ε
i3 = σ̂ε

i3 on S±
ūεi = ûεi on S±
ūεi = 0 on S̄u

σ̄ε
ij = ā±ijhkēhk(ū

ε) in Ω±

σ̂ε
ij = εb̂ijhk(l)êhk(û

ε) if ês(ûε) ≥ 0 in B

σ̂ε
ij = ês(ûε)B̂ijhkδhk + εb̂ijhk(l)ê

d
hk(û

ε) if ês(ûε) ≤ 0 in B

η̂ε
˙̂
l =

(
ω̂ε − 1

2
εb̂,l(l)ê(û

ε) : ê(ûε)

)
+

if ês(ûε) ≥ 0 in B

η̂ε
˙̂
l =

(
ω̂ε − 1

2
εb̂,l(l)ê

d(ûε) : êd(ûε)

)
+

if ês(ûε) ≤ 0 in B

(12)

where S± = {(x1, x2, x3) ∈ Ω : x3 = ±1

2
} and .̄, .̂ denote the rescaled

operators in the adherents and in the adhesive, respectively.
In view of 11 the displacement and stress fields are written as asymptotic
expansions 

σ̂ε = σ̂0 + ε σ̂1 + o(ε)
ûε = û0 + ε û1 + o(ε)
σ̄ε = σ̄0 + ε σ̄1 + o(ε)
ūε = ū0 + ε ū1 + o(ε),

(13)

in the rescaled adhesive and adherents, respectively.
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3.1 Expansions of the equilibrium equations in the adherents

Substituting 13 into the first, second, sixth and seventh equations of 12, it is
obtained at the first order of expansion (power 0)

σ̄0
ij,j + f̄i = 0 in Ω±
σ̄0
ijnj = ḡi on S̄g

ū0i = 0 on S̄u

σ̄0
ij = ā±ijhkēhk(ū

0) in Ω±

(14)

3.2 Expansions of the equilibrium equations in the adhesive

Substituting 13 into the third equation of 12 it is deduced that the following
conditions hold in B (power −1):

σ̂0
i3,3 = 0, (15)

i.e. σ̂0
i3 does not depend on z3, that it can be expressed as[

σ̂0
i3

]
= 0, (16)

where [f ] = f(x1, x2,
1

2
) − f(x1, x2,−

1

2
). In the adhesive the strain field be-

comes:

ê(ûε) = ε−1ê−1 + ê0 + εê1 + o(ε) (17)

where
ê−1
33 = û03,3

ê−1
α3 =

1

2
û0α,3, α = 1, 2

(18)

It is obvious to remark that

ês(û) =
1

3
(ε−1û03,3 + û01,1 + û02,2 + û13,3 + o(1)) (19)

and that at the first order of expansion the sign of the spheric part of the
strain tensor is the sign of û03,3. The eighth equation in 12 is considered i.e.
û03,3 ≥ 0. At the first order in the expansions (power 0), it is obtained

σ̂0
i3 = b̂i3j3(l)û

0
j,3 (20)

It is observed that σ̂0
i3 (and thus û0i,3) does not depend on z3, thus

σ̂0
i3 = b̂i3j3(l)

[
û0j
]

(21)

which is the classical equation of soft interface. Denoting b̂i3j3(l) = K33
ij (l), it

is obtained

σ̂0e3 = K33(l)
[
û0
]
if
[
û03
]
≥ 0 on S± (22)
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Now the nineth equation in 12 is considered. The expansion gives at the
first order (power −1)

0 = B̂ii33û
0
3,3 if û03,3 ≤ 0 (23)

or due the property of positivity of the tensor B

û03,3 = 0 if û03,3 ≤ 0 (24)

Function û03,3 being constant in the third direction, it can be deduced that[
û03
]
= 0 if

[
û03
]
≤ 0 (25)

Note that at the second order in the expansions (power 0), it is obtained

σ̂0
i3 = b̂i3j3(l)û

0
j,3 (26)

In conclusion, it is obtained on S±

σ̂0e3 = K33(l)
[
û0
]
if
[
û03
]
≥ 0

σ̂0e3 = K33(l)
[
û0
]
,
[
û03
]
= 0 if

[
û03
]
≤ 0

(27)

Now the two last equations in 12 are considered. If we consider that the
lenght l increases, the first term in the expansion gives (power -1)

η̂
˙̂
l = ω̂ − 1

2
(b̂,l(l))i3j3û

0
j,3 : û0i,3 = ω̂ − 1

2
(K33

,l (l))ij û
0
j,3.û

0
i,3

Now, this equation can be integrated along the third direction in two steps,
considering that σ̂0

i3 = K33
ij (l)û

0
j,3 or û

0
,3 = (K33(l))−1σ̂0e3. Thus, it is obtained

η̂
˙̂
l = ω̂ − 1

2
K33

,l (l)
[
û0
]
.
[
û0
]

This equation can be decomposed, as classical, into normal and tangential
parts

η̂
˙̂
l = ω̂ − 1

2
K33

N,l(l)
[
û0N
]2 − 1

2
K33

T,l(l)
[
û0T
]
.
[
û0T
]

3.3 Matching between the adhesive and the adherents

Substituting 15 into the fourth and fifth equations of 12, it is deduced that
the following conditions hold on S± :

σ̂0
i3(z1, z2,±

1

2
) = σ̄0

i3(z1, z2,±
1

2
) = σ0

i3(x1, x2,±
ε

2
) ≈ σ0

i3(x1, x2, 0)

û0i (z1, z2,±
1

2
) = ū0i (z1, z2,±

1

2
) = u0i (x1, x2,±

ε

2
) ≈ u0i (x1, x2, 0

±)
(28)

In conclusion, it s obtained
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σ0
ij,j + fi = 0 in Ω±
σ0
ijnj = gi on Sg

u0i = 0 on Su

σ0
ij = a±ijhkehk(u

0) in Ω±
σ0
i3 = K33

ij (l)
[
u0j
]
+

on S

ηl̇ =

(
ω − 1

2
K33

,l (l)
[
u0
]
+
.
[
u0
]
+

)
+

on S

(29)

where
[
u0
]
+
=
[
u0
]
if
[
u03
]
≥ 0,

[
u0
]
+
=
([
u01
]
,
[
u02
]
, 0
)T

if
[
u03
]
≤ 0.

It is obtained a model of imperfect soft interface with unilateral contact
and damage evolution. Note that the variable l (lenght variable) is similar to
the density of adhesion (no dimension variable) introduced by M. Frmond in
[5]. This intensity of adhesion can be interpreted mechanically as the ratio
l/l0.

4 An example in 2D: Kachanov material

4.1 Constitutive equations

In two dimensions (in the plan (O, e1, e2)), the problem can be rewritten as

σ0
ij,j + fi = 0 in Ω±
σ0
ijnj = gi on Sg

u0i = 0 on Su

σ0
ij = a±ijhkehk(u

0) in Ω±
σ0
i2 = K22

ij (l)
[
u0j
]
+

on S

ηl̇ =

(
ω − 1

2
K22

,l (l)
[
u0
]
+
.
[
u0
]
+

)
+

on S

(30)

For the Kachanov model of homogenized cracked material [24,35], the stiff-
ness matrix is written under engineer notations as

Kε =


E0

ν0Lε

2l2C
0

ν0Lε

2l2C

Lε

2l2C
0

0 0
Lε

l2C

 (31)

where L is the lenght of the interphase, C is given in (4). It is supposed that
the crack is along x1 axis. Matrix K33 (in fact K22 in this configuration),
which is diagonal, reads

K22 =

 L

2l2C
0

0
L

l2C

 (32)



10 Bonetti, Bonfanti, Lebon, Rizzoni

and its derivative reads

K22
,l =

 −L
l3C

0

0
−2L

l3C

 (33)

The last equation in (30) (evolution of l) is written

ηl̇ =

(
ω +

L

2l3C

[
u01
]2

+
L

l3C

[
u02
]2
+

)
+

4.2 A focus on the crack lenght evolution

As a first approach of the evolution of l, we can consider the case η = 0 (the
viscosity is equal to zero) and in order to simplify

[
u01
]
= 0. As we can see

on figure 2, in compression
[
u02
]
= 0 (unilateral contact). In traction, until

L

l3C

[
u02
]2
+

≤ −ω i.e.
[
u02
]
≤
√
−ωl

3C

L
= δ2 the stiffness is constant and the

relation between σ22 and
[
u02
]
is linear, with the slope equal to

L

2l2C
. We take

σmax
22 to denote

1

2

√
−ωL
Cl

, the maximum value of σ22. When the threshold is

reached, we have

l =

(
−
L
[
u02
]2

ωC

)1/3

and then

σ22 =
1

2

(
Lω2

C [u02]

)1/3

This relation is represented on figure 2. On figure 2, the relation between
σ22 and

[
u0
]
is represented approximatively (using implicit Euler integration

schema) for various values of the viscosity.

4.3 A simple academic example

In this section, the example of a simple bar of length L0 is considered (see
figure 3). The bar is bonded on its left part and loaded on its right part. The
volumic force is neglected. The force on the right part is given by

F (t) =


F0t t ≤ t1
F0t1 t1 ≤ t ≤ t2

F0t2
t2 − t3

t− F0t2
t3(t2 − t3)

t2 ≤ t ≤ t3

(34)
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Fig. 2 Evolution of normal stress vs jump of displacement for various valors of viscosity
(normalized values, L = 1, C = 100, ω = −50)

Fig. 3 A simple example

where F0 and ti, i = 1, 2, 3 are given. It is obvious to show that the
displacement field u takes the form

u(x) =
F (t)

E
x+ u0,

where E is the Young’s modulus of the bar and u0 is given by the interface

law σ = F (t) =
C

l2
u0. The lenght l is given by the equation

bl̇ =

(
w +

C

l3
u20

)
+

.
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Fig. 4 Evolution of the crack lenght along time (C = 1, ω = 1, b = 1, F0 = 15, l0 =
0.1, T3 = 1, T1 = T3/3, T2 = 2T3/3)

We take l0 to denote the initial lenght of the crack. If t ≤
√
ωC

l0
, then l = l0. If

t ≥
√
ωC

l0
, then the crack lenght can be computed by a simple implicit Euler

schema, i.e.

lk+1 =
lk − ω

∆t

b

1− ∆t(F (t))2

bC

where ∆t is taken to denote the time step, lk = l(tk) and tk = k∆t.

We can observe on figure 4 the increase of the crack lenght along time and
on figure 5 the decrease of the stiffness of the glue in relation with the increase
of the crack lenght for academic values of the coefficients. The model proposed
here seems qualitatively coherent. During the first part of the loading (linear
increase) and if t < 0.21, the crack lenght remains constant (l = l0). When
t > 0.21 the crack lenght increases. We can observe the change of curvature
corresponding to the variation of the loading. On figure 5, we can see that the
stiffness is divided by more than 25 during the process.
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Fig. 5 Evolution of the stiffness vs crack lenght C = 1, ω = 1, b = 1, F0 = 15, l0 =
0.1, T3 = 1, T1 = T3/3, T2 = 2T3/3)

5 Conclusion

In the first part of this paper, a model of damaged material was proposed.
This model is based on homogenization techniques and thermodynamics prin-
ciples. The damage was governed by the evolution of the crack lenght at the
micro-scale. In a second part of the paper, a model of imperfect interface has
been derived from the asymptotic study of a three phase composite with per-
fectly bonding conditions between two adherents and an adhesive having the
behavior studied in the first part of the paper. The expansion at the first level
yields a model of imperfect interface taking into account damage. This last
model was studied on a simple example in one dimension. It was shown that
this model is qualitatively efficient.
In the future, the model of imperfect interface proposed in this paper will be
mathematically analyzed [] and numerically implemented to test its reliabil-
ity and efficiency. Other kind of cracked materials [27] and damage evolutions
models will also be studied. Stochastic processes can be also introduced to
take into account the variability of crack lengthes.

Acknowledgements This research was partially supported by ”Partenariats Hubert Curien
(PHC)”, Galile Program 2015, Project number 32288WH.
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Appendix

In this appendix, it is supposed that the crack lenght l depends on x3. A
stratified interphase with n layers is considered. We take lk, k = 1, ..., n to
denote the crack lenght in each layer. Introducing the rescaling and let

h0 = −1

2
< h1 < ... < hn−1 < hn =

1

2
(35)

Note that hk − hk−1 is the thickness of the k− th layer. The eighth and ninth
equations in 12 are considered. At the first order in the expansions (power 0),
it is obtained

σ̂0
i3 = b̂i3j3(lk)û

0
j,3, k = 1, ..., n (36)

By integration, it is obtained

(hk − hk−1) σ̂
0
i3 = b̂i3j3(lk)

[
û0j
]k
k−1

, k = 1, ..., n (37)

where [f ]
k
k−1 = f(z1, z2, hk)− f(z1, z2, hk−1). Thus,[

û0j
]k
k−1

= (hk − hk−1) K̂
33(lk)σ̂

0
i3, k = 1, ..., n (38)

and [
û0j
]
=

n∑
k=1

(hk − hk−1)
(
K̂33

)−1

(lk)σ̂
0
i3, k = 1, ..., n (39)

We take
(
K̂33

n

)−1

(l) to denote
∑n

k=1 (hk − hk−1)
(
K̂33

)−1

(lk), and thus

σ0
i3 = K̂33

n (l)
[
û0j
]
. (40)


