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Abstract: This paper presents a novel scheme for diagnosis of faults affecting the sensors
measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects
related to the control torques provided by satellite reaction wheels. A nonlinear geometric design
is used to avoid that aerodynamic disturbance torques have unwanted influence on the residuals
exploited for fault detection and isolation. Radial basis function neural networks are used to
obtain fault estimation filters that do not need a priori information about the fault internal
models. Simulation results are based on a detailed nonlinear satellite model with embedded
disturbance description. The results document the efficacy of the proposed diagnosis scheme.
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1. INTRODUCTION

The increasing operational requirements for onboard au-
tonomy in satellite control systems require structural
methods that support the design of complete and reliable
Fault Detection and Diagnosis (FDD) systems providing
fundamental information about the system health status
jointly with accurate fault estimates. Significant research
in FDD has been done in the last decades (Isermann
(2011); Blanke et al. (2016)). Numerous model-based
methods have been proposed for fault diagnosis (Chen-
Patton (1999); Ding (2013)) and for the diagnosis in non-
linear systems (Bokor-Szabé (2009)). In particular, a solu-
tion to the Fault Detection and Isolation (FDI) problem for
nonlinear systems is presented in De Persis-Isidori (2001)
through the NonLinear Geometric Approach (NLGA).
This paper presents a novel diagnosis scheme to assess
the health condition and proper functioning of essential
sensors and actuators of a satellite Attitude Determination
and Control Systems (ADCSs). This work is a substantial
improvement of a previous work of the same authors (Baldi
et al. (2015)), which considered only faults affecting the
attitude control torques and flywheel spin rate sensors. In
contrast, this paper considers also possible faults affecting
the satellite attitude and angular velocity sensors.

The procedure for actuator and sensor fault modelling
presented in Mattone-De Luca (2006) is exploited to
define a nonlinear model affine in all the actuator and
sensor fault inputs and suitable for the NLGA application.

1 Corresponding author.

The performances of the proposed FDD system have been
evaluated when applied to a detailed nonlinear satel-
lite simulator. In particular, the exogenous disturbance
terms represented by the aerodynamic and gravitational
disturbance torques are considered. As the gravitational
disturbance model is almost perfectly known, the FDD
robustness is achieved by exploiting an explicit disturbance
decoupling based on the NLGA, applied only to the aero-
dynamic force term (Baldi et al. (2015)). In fact, this term
represents the main source of uncertainty in the satellite
dynamic model, mainly due to the lack of knowledge of the
accurate values of air density and satellite drag coefficient.
The scalar residual filters composing the FDI module of
the model-based FDD system are designed via the NLGA
to obtain diagnostic signals that are independent of the
knowledge of the aerodynamic disturbance parameters.
The fault isolation is achieved by means of a residual
cross-check and a proper decision logic, assuming a single
fault occurring at any time. The adaptive filters of the
Fault Estimation (FE) module are designed via Radial
Basis Function Neural Networks (RBF NN)s (Chen-Chen
(1995); Castaldi et al. (2014)) and activated once a fault
has been correctly detected and isolated.

The use of a RBF NN allows to design generalised fault
estimation filters that do not need a priori information
about the type of the occurred fault and that are capable
of accurately estimating a generic fault without needing
to define any specific fault internal model. Moreover, the
NLGA allows to obtain a precise FDI and accurate fault es-
timates, independent of the knowledge of the aerodynamic
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disturbance parameters, and thus without any isolation
and estimation errors due to parameter uncertainties.
Simulation results are given in case of both actuator and
sensor faults, validating the ability of the proposed scheme
to deal with faults of different types, provide a precise fault
detection, isolation and accurate fault estimates.

2. SATELLITE AND ACTUATOR MODELS

The satellite is considered as a rigid body, whose attitude
is represented by using the quaternion notation. The
satellite mathematical model is given by the dynamic and
kinematic equations of (1) and (2) (Wie (2008)):

W= -I;'S(w)(Isw + Trwhrw) + I (TrwM + Mgg + Maero) (1)
L1
4=59 (2)

with the skew-symmetric matrices

0 s 0 w3 —w2 w1
- 0
S(w) = [ w3 0 —w 79(0‘)) = (,:;3 —w1 ué)l 5123 (3)
—wo w1 0

—w1 —wy —w3z 0

]T is the vector of the roll, pitch
]T

and where w = w1, wa, w3
and yaw body rates, q = [q1, 2,73, 4]  is the quaternion

vector and h,., = [Arw1, Rrwa, Arws, hm4]T is the vector
of the flywheel angular momenta. The principal inertia
body-fixed frame is considered, with I ., I,,, and I, on
the main diagonal of the satellite inertia matrix I.
The considered Attitude Control System (ACS) consists
of a fixed array of four reaction wheels in a tetrahedral
configuration defined by the matrix T,,,. The elements of
the input vector M = [M;, My, M3, M4]T correspond to
the attitude control torques of the reaction wheels.
Equation (1) explicitly includes the gravitational and aero-
dynamic disturbance torque models My, and Mg, about
the centre of mass and dependant on the satellite attitude.
These disturbances typically represent the most important
external disturbance torques affecting Low Earth Orbit
(LEO) satellites (Wie (2008)). The design of the FDI
system exploits an explicit decoupling only of the aero-
dynamic torque since the gravitational disturbance has a
model which is almost perfectly known, and thus it does not
need to be decoupled. The gravity gradient torque Mg, is
Mgg = %({Mmdir X Isf}nadir) (4)
where the parameters y and R represent the gravitational
constant and the orbit radius respectively, and 0,44 is
the unit vector towards nadir expressed in body-frame
coordinates. The aerodynamic torque M e, is

1 .
Maero = ipsp V2 C’D (UV X I'cp) (5)

where p is the atmospheric density, V' is the relative
velocity of the satellite, S, is the reference area affected
by the aerodynamic flux, and Cp is the drag coefficient.
Tep = [TauysTyeps TZCP}T is the vector joining the centre of
mass and the aerodynamic centre of pressure and oy is the
unit velocity vector expressed in body-frame coordinates.
It is worth noting that, mainly due to the presence of the
unknown terms p and Cp in (5), the input M., in (1)

represents the main source of uncertainty.
The dynamic equations of the reaction wheel models are

Wy = 'r'wil}.l'r'w = _J'r'wil(M +bwr +c Sgn(w'rw)) (6)

where J,.,, denotes the flywheel inertia, h,.,, = JrpWry
is the vector of the flywheel angular momenta, w., =
[Wrwy s Wriwgs Wraws s wrm]T is the vector of the flywheel
spin rates and b, ¢ are the viscous and Coulomb friction
coefficients, respectively (Carrara et al. (2012)).

The overall system model is given by (1), (2) and (6).
Thus, the overall state vector can be represented by
r = [wly w2, W3, 41, 92, 43, 94, Wrw;, Wrws, Wrws; w’!’w4]T
and all the state variables are assumed to be measurable.
Moreover, two different attitude sensors are assumed to
be available. The attitude measurements are represented
by two different quaternion vectors which are calculated
on the basis of the information provided by two physical
attitude sensors (e.g. star trackers). This hardware redun-
dancy is necessary for the complete fault isolability and
comes as outcome of the application of a detectability and
isolability study to the proposed fault scenarios.

3. FAULT DETECTION AND ISOLATION
3.1 Actuator and Sensor Fault Modelling

Possible faults affecting the actuated attitude control
torques, flywheel spin rate, satellite attitude and angular
velocity measurements are considered and it is assumed
that at most one fault affects the system at any time.
Since (1) and (6) are affine in the control inputs, the i-th
physical actuator fault can be modelled by the following
fault input where M, ; is the commanded control input:

Funry = fag = My — M (t=1,...,4) (7)

The occurrence of sensor faults can be taken into account
by defining the faults as the differences between the real
values Wy, , Wi, ¢m and measured values Wy, > Wyl Qy,m:

Fo... = Wraw, ; — Wrw; (Gj=1,..,4)
Fo, =wyi—w (1=1,..,3) (8)
gm = Qy,m — dm (m=1,..,4)

However, this modelling would lead to the appearance of
fault terms in the output equations, or more in general to
models nonlinear in the sensor fault inputs.

A different modelling procedure for sensor faults was
proposed by Mattone-De Luca (2006) to obtain a dynamic
model suitable for the FDI design with a structure affine
in all the fault inputs as considered by the NLGA.
Essentially, it consists in introducing a suitable set of
v > 1 mathematical fault inputs fr (& = 1,..,v) in
place of each physical sensor fault F', including also a
fault input associated to the time derivative of the fault
F. Whenever a physical sensor fault F' # 0 occurs, all
the associated mathematical fault inputs f; will become
generically nonzero, although with completely different
time behaviors and, in general, without a direct physical
interpretation. Hence, it will be sufficient to recognise
the occurrence of any (one or more) of the associated
mathematical fault inputs. For a comprehensive detailed
application of this modelling procedure, refer to Mattone-
De Luca (2006).
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Applying this procedure to (1), (2) and (6), a generic j-th
physical flywheel spin rate sensor fault F,, , (j =1,...,4)
can be associated to v; = 5 mathematical fault 1nputs
Joru, (k = 1,...,v;). A generic l-th physical satellite
angular velocity sensor fault F,, (I = 1,...,3) can be
associated to v; = 7 mathematical fault inputs f,, ,
(k = 1,...,1). Physical attitude sensor faults generally
affect all the quaternion components simultaneously, thus
each sensor fault is thereafter modelled as a single additive
fault vector Fy = [F,, Fyy, Fys, Fy,]" where each fault
vector component F, (m = 1,. 4) can be associated
to vy, = 7 mathematical fault inputs Jamn (B=1,.,vm).
Therefore, if (1), (2) and (6) are rewritten by considering
the sensor outputs Wrw, ; = Wrw; — mej s Wy =w — Fy,,
Qym = Gm — Fy,, (t.e. y = o + F,) as the new state
variables for the system dynamics, the general structure of
a nonlinear system for the NLGA, which is affine in both
the disturbance (i.e. the uncertain aerodynamic force term
d = Fuero), actuator and sensor fault inputs, is recovered:

4
9= n(y) + p(y) daero + Zgi y) Me i+

+ZfM ) fi +Zz&u,w

7j=1 k=1

4 Vin
+Zzewl,k(y)fw,,k N i @) fa

=1 k=1 m=1 k=1

Y) forw, . (9)

3.2 Nonlinear Geometric Approach

The NLGA was formally developed by De Persis-Isidori
(2001), and it relies on a coordinate change in the state and
output spaces providing an observable subsystem which, if
it exists, is affected by the fault (or faults) to be detected,
but unaffected by any disturbances and the other faults to
be decoupled. In the new (local) coordinates, the system
can be decomposed into three subsystems Z;, Zo and Z3,
where T is the measured part of the state affected only
by the fault term f to be detected, whilst Ty and Zj3
represent the measured and not measured part of the state
affected by all the faults and disturbances, respectively.
For a comprehensive detailed application of the NLGA,
refer to De Persis-Isidori (2001) and Baldi et al. (2015).
Denoting Z with 45 and considering it as an independent
input, the Z;-subsystem can be defined as follows:

Ty = ny(T1,P2) + 91(T1, §2) ue + 01 (T, Ga, T3) f (10)
U= h(z
with ¢1(Z1,%2,%3) # 0. Starting from (10), a generic

residual generator in filter form is modelled as follows:

{ & =n1(y1,2) + 91 (1, §2) ue + L(G1 — €)

=t —§ (11)

where L > 0 is the gain of the asymptotically stable
residual filter and ¢ is the generated diagnostic signal.

3.8 FDI of Actuator and Flywheel Sensor Faults
The NLGA FDI system is designed on the basis of the

input affine nonlinear model structure (9) as described
n (De Persis-Isidori (2001); Baldi et al. (2015)). Since

the flywheel spin rate measurements are assumed to be
available, it is straightforward to design four simple scalar
NLGA residual filters independent of the aerodynamic dis-
turbance and satellite attitude and exploiting information
provided only by the reaction wheel sensors, directly on the
basis of (6). Each of these NLGA residual filters results to
be sensitive only to the couple of faults far,, fwwj,1 =F,,

(i = j), i.e. the actuator and flywheel spin rate sensor
faults related to the same i-th reaction wheel, respectively,
and the fault input f,, = = Fww , i.e. the time derivative

of the physical sensor fault. These four filters allow the
isolation of the reaction wheel subsystem affected by a
possible actuator or flywheel spin rate sensor fault, but
not the exact and complete fault isolation. An additional
NLGA residual filter is designed to allow the classification
of a detected fault. On the basis of (1) and (6), the fifth fil-
ter is decoupled from the aerodynamic disturbance, i.e. not
subject to detection errors due to aerodynamic parameter
uncertainties. It exploits all the sensor measurements and
it is insensitive to any possible actuator fault and sensitive
to all the physical flywheel spin rate sensor faults through
the associated mathematical fault inputs. The scalar state
variables £ of the five designed NLGA residual filters are

51 - erwrwl /b 52 rwwrwg/b

€3 = erwrwg /b 54 = Twwrw4/b (12)

55 = Taep (Ixxwl + TlhTw) + TYep (Iyyw2 + T2hrw)+
+Tch (]zzw3 + T3hrw)

where Ty, Ty and T3 are the rows of the matrix T,.,.

8.4 FDI of Attitude and Angular Velocity Sensor Faults

Two sets of nine scalar NLGA residual filters organised as
generalised schemes and decoupled from the aerodynamic
disturbance are designed on the basis of (2). Each set ex-
ploits the same residual filter models and the same shared
angular velocity measurements, but the measurements of
a different attitude sensor. Thanks to the NLGA, each of
these residual filters results to be sensitive only to a couple
of physical angular velocity sensor faults F,, and to only
one physical attitude sensor fault Fq, (n = 1,2) through
the associated mathematical fault inputs. The scalar state
variables £ of the nine designed NLGA residual filters are

fﬁ,n =1- qu,n 2q3 n

§rn =1-20}  — 23,
2

gS,n =1- 2ql,n 2QQ,n

13
59,77, = 2(‘11,n‘]2,n + q3,nq4,n) 512,n = 2(‘11,n‘12,n - ‘B,nq4,n) ( )
£10,n = 2(q1,n93,n + 42,n94,n) €130 = 2(91,n93,n — 42,n94,n)
&11,n = 2(q1,n94,n + 42,n93,n) €140 = 2(92,193,1 — q1,1G4,1)

T
where dn = [¢1,n,02,n,03n,Qan]) (0 = 1,2) are the
quaternion vectors of the two available attitude sensors.

3.5 Residual Cross-check Scheme for FDI

Assuming a single fault at any time, possible faults affect-
ing the actuated torques or the flywheel spin rate mea-
surements can be detected and isolated by cross-checking
the five residuals €1, ..., €5 of the NLGA filters exploiting
the variables (12) described in Section 3.3, as follows:

(1) Firstly, the first four residuals, which are sensitive
only to possible actuator and sensor faults affecting a
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specific reaction wheel, are analyzed. Thus, the faulty
actuator subsystem can be detected and isolated.

(2) Then, the fifth residual, which is sensitive only to
sensor faults and insensitive to actuator faults, is
checked to precisely recognise the occurred fault type.

On the other hand, possible faults affecting the satellite
angular velocity or attitude measurements can be detected
and isolated by cross-checking the two sets of nine residuals
€6,y - €14,n, (= 1,2) of the NLGA filters exploiting the
variables (13) described in Section 3.4, as follows:

(1) Firstly, the two sets are compared. Since each set
exploits the measurements of a different attitude
sensor and of the same angular velocity sensors,
the two sets show different residual behaviours in
case of attitude sensor faults and the same residual
behaviours in case of angular velocity sensor faults.

(2) A faulty attitude sensor is isolated by checking which
is the only set with signals exceeding the selected
thresholds. A faulty angular velocity sensor is isolated
by checking the three residuals of each set not sensi-
tive to each possible angular velocity sensor faults.

Finally, due to the presence of measurement noise, residual
thresholds have to be properly selected to achieve the best
false alarm rate and missed fault rate performances.

4. FAULT DIAGNOSIS
4.1 Radial Basis Function Neural Network

As stated in (Chen-Chen (1995); Castaldi et al. (2014)),
for a sufficiently large number N of hidden-layers neurons
and if the system state x takes on values in a compact set
X C R, a weight matrix W can be determined such that
a generic continuous function f(z) can be approximated
by RBFs, with a guaranteed finite model error e*:

N
f(x) = Wela) +e(@) = Y wion(e) +e(@)  (14)
k=1

where W is an optimal weight matrix, ¢ is k-th radial
basis function and e(x) is the model approximation error
satisfying |e(x)| < e*. In this paper, the RBFs are assumed
to be modelled as Gaussian functions as follows:
N . 2

ou(#) = exp(—[2 — ul* /o) (15)
where pi and o are the center and the width of the k-th
radial basis function, respectively.

4.2 Estimation of Actuator and Sensor Faults

Considering the occurrence of possible actuator torque
faults, the model (11) of each of the first four NLGA
residual filters described in Section 3.3 is modified, in order
to design just as many independent RBF NN adaptive
filters to accurately estimate an occurred fault, as follows:

€= n1(91,92) + 91(F1, Y2) Ue+
+1 (g1, 92) [+ Lo — §)
e=1i1—¢§

(16)

where the actuator torque fault function f = Fuy (i =
1,...,3) is estimated by a RBF NN:

f=Fu, = Wo(€) (17)

with the following adaptive law for the weight matrix W
W =nDep" () (18)

where 17 > 0 is the learning ratio and D is a proper
constant matrix such that (16) is asymptotically stable.

Considering the occurrence of possible flywheel spin rate
sensor faults, the model (11) of each of the first four
NLGA residual filters described in Section 3.3 is modified
in the same way as (16), in order to design just as
many independent RBF NN adaptive filters to accurately
estimate the combined mathematical sensor fault function

f = —bFuy [y = Fuy, (= L d):
f=We(©)

with the same adaptive law (18) for the weight matrix

(19)

w. Subsequently, the obtained combined fault estimate
f = —wawj [T — Fwwj is filtered by means of the first
order transfer function —1/(s + b/Jy) to estimate the
actual physical sensor fault Fwwj.

Considering the occurrence of possible satellite angular
velocity sensor faults, four different scalar residual filters
can be designed directly from the equations of (2). Then,
the model (11) of each of these new four residual filters
can be modified in the same way as (16) and each derived
independent RBF NN adaptive filter estimates a different
associated mathematical fault inputs fo, , (k=4,...,7):

f: fwz,k = W‘P(g) (20)

with the same adaptive law (18) for the weight matrix WW.
Then, the estimate of the actual physical sensor fault can
be derived by exploiting the expressions of the associated
mathematical fault inputs f,, , .

Finally, considering the occurrence of possible satellite
attitude sensor faults, four independent RBF NN adaptive
filters and the measurements of the isolated faulty attitude
sensor are used to estimate different combinations f,,
(m = 1,...,4) of mathematical fault inputs associated to
the components F, (m =1, ...,4) of the physical fault:

f=Ffm=We(©) (21)

with the same adaptive law (18) for the weight matrix 1
and with f,,, (m =1,...,4) defined as follows:

fi=( 4_w2an+w3FQ2)/2_FQ1
fo= (wqu3 + woly, — w3FQ1)/2 — Fq% (22)
(w1 Fy, + w2 by, +wshy,)/2 - Fy,
(

7w1F¢Z1 - WQqu - w3F43)/2 - Fq4

Then, the estimate of the additive fault vector affecting

the measured quaternion vector is obtained by exploiting a

state observer, where the state consists of the components

F,,, (m=1,...,4) of the attitude fault vector:
2 1 .- A .
Fq= §QFq —ft+L(Fq, —Fq) (23)

with the matrix Q(w) of (3), the observer gain L > 0 such

R . . AT
that it is asymptotically stable, f = { f1, fa2, f3, f4} and

the measured additive fault vector Fq, given by the dif-
ference between the two available attitude measurements.
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5. SIMULATION RESULTS

The satellite body is modelled as a rectangular par-
allelepiped with dimensions 0.6 x 2 x 7.5m (depth x
width x height), aerodynamic torque displacement vec-
tor rep = [0.10, 0.15, —0.35] m, drag coefficient Cp =
2.2, inertia values I, = 330kg - m? I, = 280kg -

m?, I,, = 60kg - m2. A flywheel moment of inertia
Jrw = 0.05kg - m? and initial flywheel spin rate values
wo = [—300, — 300, — 300, — 300]7 rpm for the four re-

action wheels are assumed. A circular orbit at an alti-
tude of 350km, with a null inclination and a low Earth
equatorial orbit radius R = 6728.140 km, an atmosphere
density p = pmaz = 6 - 107 kg/m3, an orbital velocity
V = 8187.63m/s, and the Earth’s gravitational constant
p = 39.86004418 - 10" m?/s? is considered.

Assuming a single fault at any time, four additive fault
scenarios commencing at tsq.1¢ = 10s are considered:

(1) actuator fault: Fy, = —ap wpw, With aps passing
from zero at ¢ = 10s to = 0.0005 Nms at t = 20s;

(2) flywheel sensor fault: F,,,, = —ag,,, Wrw, +bw,,, With
ay,,, = 0.05, b, = 0.2094rad/s = 40 rpm;

(3) angular velocity sensor fault: F,, = —a,ws with
a, = 0.05;

(4) attitude sensor fault: Fy, additive on the first quater-
nion measurement, corresponding to a constant bias
of —8.7266 - 10~ rad on the roll angle measurements.

Sensor noises are modelled by Gaussian processes with zero
mean and standard deviations equal to 3 arcsec, 3 arcsec/s
and 1 rpm for the attitude expressed in Euler angles, satel-
lite angular velocity and flywheel spin rates, respectively.
In case of the actuator fault Fy,, Fig. 1 shows the five
diagnostic signals €1, ..., €5 provided by the NLGA residual
filters based on the variables (12) described in Section 3.3.
In particular, the residual e; is sensitive to the couple
of faults Fur,, F.,,., whilst the diagnostic signal €5 is
sensitive only to ﬂywileel sensor faults and decoupled from
the aerodynamic disturbance. The selected thresholds are
depicted for each residual by means of red lines.

As described in Sections 3.3 and 3.5, each of the first four
residuals is sensitive only to actuator and sensor faults
possibly occurring on a specific reaction wheel subsystem,
thus it is possible to detect and isolate the faulty sub-
system just by means of these four residuals. After the
isolation of the faulty reaction wheel subsystem, a check
on the fifth residual allows to precisely isolate also the type
of the occurred fault since this residual is sensitive only to
sensor faults and insensitive to actuator faults. It does not
exceed the selected thresholds in case of actuator faults.
On the other hand, in case of the flywheel spin rate sensor
fault F,,,,, , Fig. 2 shows that the residual €; is sensitive
to the occurred fault as in the previous case, but now the
diagnostic signal €5 exceeds the selected threshold after
the sensor fault occurrence. Hence, the occurred flywheel
sensor fault can be correctly isolated thanks to the differ-
ent behaviour of the fifth residual.

Faults affecting the satellite angular velocity and attitude
sensors can be detected and isolated by exploiting the two
sets of nine diagnostic signals €g p, ..., €14, (0 = 1,2) pro-
vided by the NLGA residual filters based on the variables
(13) described in Section 3.4. Fig. 3 shows the diagnostic
signals provided by the first (left, n = 1) and second (right,

of T T ]
81 0\[- "y it }
2| i i i I ]
40': T T T T
€, 20 q
27| .
o[ T T T ]
e 0 ¥ : — "~
3‘2’- i 1 I I i I‘
. gi T T T T T :
4 O eee v i
L g I I I I 1
10;[ T T T T T =
25 0‘.... o Mgt A AP A Pl W
-0 T T T T I =
0 10 20 30 40 50 60
Time (sec)

Fig. 1. Actuator fault: four residuals sensitive to faults on
a specific reaction wheel and fifth residual sensitive
only to flywheel spin rate sensor faults.

L
10 20 30 40 50 60
Time (sec)

Fig. 2. Flywheel sensor fault: four residuals sensitive to
faults on a specific reaction wheel and fifth residual
sensitive only to flywheel spin rate sensor faults.

n = 2) set of residual filters, which exploits the measure-
ments of the same angular velocity sensors and first and
second attitude sensor, respectively. In case of the angular
velocity sensor fault F,., both the sets are characterised by
the same behaviours. Hence, the occurrence of an angular
velocity sensor fault can be detected. In order to isolate
the specific faulty sensor, the cross-check of the diagnostic
signals of one of the two sets can be performed on the
basis of the decision logic described in Section 3.5. In this
case, the last three residuals €g ,,, €10,n, €14, Of each set are
decoupled from possible faults of the third angular velocity
sensor and do not exceed their thresholds, in contrast with
the other six residuals, which generally are sensitive to the
mathematical fault inputs associated to the occurred fault.
On the other hand, in case of the attitude sensor fault
Fq,, Figs. 4 shows that the two sets are characterised
by different behaviours. Hence, the occurrence of a fault
affecting the first attitude sensor, which is feeding the set
whose residual signals exceed the selected thresholds, can
be isolated as described in Section 3.5.

Finally, Fig. 5 shows the fault estimates obtained once the
considered faults have been isolated and the proper RBF
NN adaptive estimation filters activated. It can be seen
that the adaptive filters provide accurate estimates of the
occurred faults, even in case of generic fault functions.

6. CONCLUSION

This paper presented a novel scheme for diagnosis of actua-
tor and sensor faults that affect the attitude determination
and control system of a low Earth orbit satellite. Despite
uncertainties in aerodynamic parameters, fault diagnosis
with disturbance decoupling was achieved using a nonlin-
ear geometric approach. The use of radial basis function
neural networks was further shown to allow for design
of generalised fault estimation filters, able to estimate a
generic fault without needing any a priori information
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Fig. 3. Angular velocity sensor fault: two sets of nine
residuals exploiting the measurements of the first
(left, n = 1) and second (right, n = 2) attitude sensor,

respectively.
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Fig. 4. Attitude sensor fault: two sets of nine residuals ex-
ploiting the measurements of the first (left, n = 1) and
second (right, n = 2) attitude sensor, respectively.

about the fault internal model. Simulation results doc-
umented the efficacy of the proposed diagnosis scheme
to achieve precise fault detection and isolation and pro-
vide accurate fault estimates. Further developments will
concern the implementation of the proposed scheme in
a fault-tolerant control system and a robustness analysis
with respect to system parameter uncertainties.
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