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Abstract. Abductive Logic Programming (ALP) has been exploited to
formalize societies of agents, commitments and norms, taking advan-
tage from ALP operational support as a (static or dynamic) verification
tool. In [7], the most common deontic operators (obligation, prohibi-
tion, permission) are mapped into the abductive expectations of an ALP
framework for agent societies. Building upon such correspondence, in [5],
authors introduced Deon+, a language where obligation and prohibition
deontic operators are enriched with quantification over time, by means
of ALP and Constraint Logic Programming (CLP).
In recent work [30, 31], we have shown that the same ALP framework
can be suitable to represent Datalog± ontologies. Ontologies are a fun-
damental component of both the Semantic Web and knowledge-based
systems, even in the legal setting, since they provide a formal and ma-
chine manipulable model of a domain.
In this work, we show that ALP is a suitable framework for representing
both norms and ontologies. Normative reasoning and ontological query
answering are obtained by applying the same abductive proof procedure,
smoothly achieving their integration. In particular, we consider the ALP
framework named SCIFF and derived from the IFF abductive frame-
work, able to deal with existentially (and universally) quantified variables
in rule heads and CLP constraints.
The main advantage is that this integration is achieved within a single
language, grounded on abduction in computational logic.

1 Introduction

Norms represent desirable behaviors of members of a human or artificial society.
A normative system is a set of norms, together with mechanisms to reason

about, apply, and modify them. Norms can be encoded by exploiting the notions
of obligation, permission and prohibition, often modelled as modal operators, in
the tradition of Deontic Logic [49].

As for the structure of the formulas representing norms, a widely adopted
approach is to encode norms as logical rules in the form of implications, since:
(i) implications correspond intuitively to conditional norms, which state that
some deontic consequence (such as the obligation for an agent to perform an



action) follows from a state of affairs; (ii) rule-based systems also provide an
operational support for reasoning, and draw conclusions (regarding, e.g., ex-
pected behavior, or norm violations and related sanctions). In the legal domain,
the British Nationality Act was formalized using Logic Programming (LP) [47];
later, argument-based extended LP with defeasible priorities [43] and the use of
defeasible logic was proposed [33]. Satoh et al.’s PROLEG is a Prolog imple-
mentation of the Presupposed Ultimate Fact Theory of the Japanese Civil Code
[46]. The contract cancellation under the Japanese law was also formalized in
computational logics [22].

Normative systems have been also advocated as a tool to model and reason
upon a single agent, as in [13] where a normative system can be seen as a norma-
tive agent, equipped with mental attitudes, about which other agents can reason,
choosing either to fulfill their obligations, or to face the possible sanctions.

More often, normative systems regulate interaction in multi-agent systems
[12]. Among the organizational models, [25, 24] exploit Deontic Logic to specify
the society norms and rules. The whole research project ALFEBIITE [10] was
focused on the formalization of an open society of agents using Deontic Logic.

The EU IST Project SOCS proposed a Computational Logic approach to
multi-agent systems. The SOCS social model represents and verifies both social
interaction protocols among members regulated via abductive expectations [2],
and member specifications themselves [14] in Abductive Logic Programming
(ALP). Both approaches have been later applied to model and reason about
norms with deontic flavours [7, 44].

In the EU project IMPACT [11, 27], agent programs may be used to specify
what an agent is obliged to do, what an agent may do, and what an agent cannot
do on the basis of deontic operators of Permission, Obligation and Prohibition
(whose semantics does not rely on a Deontic Logic semantics).

In the meantime, legal ontologies have proved crucial for representing, pro-
cessing and retrieving legal information. A collective reflection on the theoretical
foundations of legal ontology engineering is [45]. The ESTRELLA project [28]
aimed at developing a standard based platform allowing public administrations
to deploy comprehensive legal knowledge management solutions. To this pur-
pose, the project developed a Legal Knowledge Interchange Format (LKIF),
building upon OWL, and modeled European tax related legislation and national
tax legislation of two European countries as case studies. Integration of rules
and ontologies has been faced in [9], which proposes a normative language that
combines expressivity of LP and Description Logic (DL) for hybrid knowledge
bases modeling human laws, with examples from the Portuguese Penal Code.
Another approach is the mapping of DL into computational logic; for example
the ALCN Description Logics was also mapped into Open Logic Programming
[48], an extension of ALP. Notable work has been done also in applying abductive
reasoning to DL [38, 26].

In Computational Logic, ALP was proved a powerful tool for knowledge rep-
resentation and reasoning [35], taking advantage from ALP operational support
as (static or dynamic) verification tool. ALP languages are usually equipped with



a declarative (model-theoretic) semantics, and an operational semantics given in
terms of a proof-procedure. Several abductive proof procedures have been de-
fined, with many applications (diagnosis, monitoring, verification, etc.). Fung
and Kowalski proposed the IFF abductive proof-procedure [29] to deal with for-
ward rules, and with non-ground abducibles. It has been later extended [4], and
the resulting proof procedure, named SCIFF, can deal with both existentially
and universally quantified variables in rule heads and Constraint Logic Pro-
gramming (CLP) constraints [34]. The resulting system was used for modeling
and implementing several knowledge representation frameworks, such as deontic
logic [7], where the deontic notions of obligation and permission are mapped into
special SCIFF abducible predicates, normative systems [5], interaction protocols
for multi-agent systems [8], Web services choreographies [1], etc.

In this work, we move a step forward, by showing that ALP, and SCIFF in
particular, is a suitable framework for representing and integrating both norms
and Datalog± ontologies. Normative reasoning and ontological query answering
are obtained by applying the SCIFF abductive proof procedure. The main ad-
vantage is that this integration is achieved within a single language, grounded
on abduction in Computational Logic.

We assume a basic familiarity with Logic Programming and Abductive Logic
Programming, good introductions are, respectively, [40] and [35].

The paper is organized as follows. We first introduce ALP and the SCIFF
framework in Section 2, also mentioning its underlying proof procedure. Then,
in Section 3, we introduce (a subset of) the deontic language Deon+ and show
its mapping into SCIFF. Section 4 introduces Datalog± to formalize ontologies,
and shows its correspondence to SCIFF integrity constraints. This paves the
way to the integration of norms and ontologies, discussed in Section 5, where
we show a simple example, with norms and an ontology, and discuss the kind
of inference supported by the SCIFF proof procedure. More relevant related
work is mentioned throughout the various sections. In Section 6 we conclude the
paper, and outline future work.

2 ALP and the SCIFF language

Abductive Logic Programming (ALP) is a family of programming languages
that integrate abductive reasoning into LP. An ALP program consists of a logic
program, also called knowledge base KB, that is a set of clauses h← b. As usual
in LP, a set of clauses in which the h share a same functor symbol define a
predicate. Differently from classical LP, in ALP there are also predicates that
have no definition, that belong to a set A and are called abducibles. Abducible
literals cannot occur in the h of a clause, but they can occur in the b. The aim in
ALP is finding a set of abducibles ∆A, built from symbols in A, that, together
with the KB, is an explanation for a given known effect (called goal G) and
satisfies a set of logic formulae, called Integrity Constraints (ICs):

KB ∪∆A |= G KB ∪∆A |= IC.



While in the early abductive proof-procedures [36] the set of abduced literals
is ground, in later proof-procedures [29, 23, 37] it can also contain existentially-
quantified atoms.
SCIFF [4] is a language in the ALP class, extension of the IFF proof-

procedure [29]. As in the IFF, integrity constraints are in the form body → head
where body is a conjunction of literals and head is a disjunction of conjunctions
of literals. While in the IFF the literals can be built only on defined or abducible
predicates, in SCIFF they can also be CLP constraints, occurring events (only in
the body), or positive and negative expectations, as explained in the following.

Definition 1. A SCIFF Program is a pair 〈KB, IC〉 where KB is a set of
clauses and IC is a set of logic implications called Integrity Constraints.

SCIFF considers a (possibly dynamically growing) set of facts (called his-
tory) HAP, that contains ground atoms H(Event[, T ime]). This set can grow
dynamically, during the computation, thus implementing a dynamic acquisition
of events. Some distinguished abducibles are called expectations. A positive ex-
pectation E(Event[, T ime]) means that a corresponding event H(Event[, T ime])
is expected to happen, while EN(Event[, T ime]) is a negative expectation, and
requires events H(Event[, T ime]) not to happen. To simplify the notation, we
will omit the Time argument from events and expectations when not needed.

Variables occurring in positive expectations are existentially quantified (ex-
pressing the idea that a single event is enough to support them), while those
occurring only in negative expectations are universally quantified, so that any
event matching with a negative expectation leads to inconsistency with the cur-
rent hypothesis. Nested existential quantifications are forbidden by the language
syntax. CLP [34] constraints can be imposed on variables. The computed answer
includes three elements: a substitution for the variables in the goal (as usual in
Prolog), the constraint store (as in CLP), and the set ∆A of abduced literals.

The declarative semantics of SCIFF includes the classic conditions of ALP:

KB ∪HAP ∪∆A |= G (1)

KB ∪HAP ∪∆A |= IC (2)

plus specific conditions to support the confirmation of expectations.
As the history can be dynamically growing, it makes sense to adopt either

an open or closed world assumption on the history, depending on the envisaged
application. SCIFF can support both types of reasoning. In a skeptical reasoning
attitude, all hypotheses that are not explicitly confirmed are rejected, assuming
that no more events can happen (closed world assumption on the history): all the
positive expectations that are not matched with an actual event are disconfirmed
(symmetrically, the pending negative expectations are confirmed). In a credulous
reasoning attitude, a set of hypotheses is acceptable even if some hypotheses
are not explicitly confirmed, as long as the set is consistent. Declaratively, in
skeptical reasoning positive expectations are confirmed if

KB ∪HAP ∪∆A |= E(X)→ H(X), (3)



which is not required in a credulous attitude. In this paper, we adopt a credulous
reasoning attitude. In both cases, negative expectations should not be discon-
firmed by actual events, and the same event cannot be expected both to happen
and not to happen:

KB ∪HAP ∪∆A |= EN(X) ∧H(X)→ false. (4)

KB ∪HAP ∪∆A |= E(X) ∧EN(X)→ false. (5)

Note that in (3), (4), (5), additional object-level integrity constraints are intro-
duced, to be accomplished by the declarative semantics.

Definition 2 (SCIFF answer). Given a SCIFF program 〈KB, IC〉 and a his-
tory HAP, a goal G is a SCIFF answer if there is a set ∆A such that (1), (2),
(4) and (5) are satisfied. In this case, we write

〈KB, IC〉 |=HAP G.

The operational counterpart to this declarative semantics is represented by
SCIFF proof procedure. SCIFF is a rewriting system that searches a proof
tree representing all abductive solutions and whose nodes represent states of the
computation. A set of transitions rewrite a node into one or more children nodes.
SCIFF inherits the transitions of the IFF proof-procedure [29], and extends it
in various directions. We recall the basics of SCIFF; a complete description
is in [4], with proofs of soundness, completeness, and termination. An efficient
implementation of SCIFF is described in [6].

Each node of the proof is a tuple T ≡ 〈R,CS, PSIC,∆A〉, where R is the
resolvent, CS is the CLP constraint store, PSIC is a set of implications (called
Partially Solved Integrity Constraints) derived from propagation of integrity con-
straints, and ∆A is the current set of abduced literals. The main transitions,
inherited from the IFF are:

Unfolding replaces a (non abducible) atom with its definitions;
Propagation if an abduced atom a(X) occurs in the condition of an IC (e.g.,

a(Y )→ p), the atom is removed from the condition (generatingX = Y → p);
Case Analysis given an implication containing an equality in the condition

(e.g., X = Y → p), generates two children in logical or (in the example,
either X = Y and p, or X 6= Y );

Equality rewriting rewrites equalities as in the Clark’s equality theory [20];
Logical simplifications other simplifications like (true→ A)⇔ A, etc.

The SCIFF proof procedure includes also the transitions of CLP [34] for con-
straint solving.

In this paper we consider the generative version of SCIFF, called g-SCIFF
[3, 41], in which also the H events are considered as abducibles. Although from
an ALP point of view the H events should be collected together with the other
abducibles, we prefer to maintain a notation coherent with that used for the
SCIFF proof-procedure, and distinguish the set of abduced events from the set



containing the remaining abducibles, ∆A. A history HAP is provided as input,
and further H atoms can be assumed like the other abducible predicates; they
are then collected in a set HAP′ ⊇ HAP.

Definition 3 (g-SCIFF answer). Given a SCIFF program 〈KB, IC〉 and a
history HAP, we say that a goal G is a g-SCIFF answer if there exist a set ∆A

and a set HAP′ ⊇ HAP such that

KB ∪HAP′ ∪∆A |= G (6)

KB ∪HAP′ ∪∆A |= IC (7)

KB ∪HAP′ ∪∆A |= EN(X) ∧H(X)→ false. (8)

KB ∪HAP′ ∪∆A |= E(X) ∧EN(X)→ false. (9)

In this case, we write

〈KB, IC〉 |=g
HAP HAP′ G or simply 〈KB, IC〉 |=g

HAP G.

3 Norms in SCIFF

In [5], SCIFF was exploited to support legal regulations expressed in a deon-
tic language, named Deon+. In Deon+, (positive) actions are represented by
terms and, as usual in logic programming, terms can contain variables, con-
stants, terms. Building upon this action language, obligations are represented as
SCIFF atoms E(A, T ), where A is any action description, and T is a CLP vari-
able, existentially quantified. For instance, the sentence “It is mandatory that
John answers me”, corresponds to:

∃T E(answer(john,me), T )

as any reply in any time complies to the obligation, and the obligation will
no longer hold after John sends his answer. Note that H(answer(john,me), T )
is different from E(answer(john,me), T ): the first expresses that indeed John
answers me (or, in g-SCIFF, that we assume he answers), while the second
expresses that he should answer, independently from the fact that he actually
answers or not.

Prohibitions are represented as atoms EN(A, T ), where again A is any action
description, and T is a CLP variable, universally quantified (unless it occurs also
in a H or E atom, in such a case it is existentially quantified). For instance, the
sentence “It is forbidden that John smokes”, corresponds to:

∀T EN(smoke(john), T )

because in any time John is not allowed to smoke, and the fact he did not smoke
one minute ago does not allow him to smoke now and later on. In general, this is
different from notH(smoke(john), T ) (or, equivalently, H(smoke(john), T ) →
false) because the first expresses that he should not smoke, while the second



expresses that he does not smoke. In this work, however, we adopt rule (4) that
maps violations to failures, which makes the two equivalent in practice; in other
works one can consider recovery actions to violations.

A notable advantage of adopting ALP is that the action language is not
limited to the propositional case, as in the examples above, but it can contain
variables in its turn, quantified (existentially or universally) as the T variable.

The adoption of CLP variables for representing time adds expressiveness to
deontic operators and easily recovers deadlines by constraints over time vari-
ables. Constraints imposed on universally quantified variables are considered as
quantifier restrictions [16]; a sentence like “It is forbidden that John leaves the
meeting before 10” is therefore represented in Deon+ as:

∀T : T < 10 EN(leave(john,meeting), T ),

and it is interpreted (coherently with the semantics of quantifier restrictions) as

∀T, T < 10→ EN(leave(john,meeting), T ).

Integrity constraints can be also exploited to represent conditional obligatori-
ness and the deontic logic of deadlines, as shown in [7]. For instance, integrity
constraints of the kind H(B)→ E(A) are suitable to represent the obligatoriness
of A given B, or Deontic logic with deadlines [15].

4 Datalog± Ontologies in SCIFF

W3C has supported the development of a family of knowledge representation
formalisms of increasing complexity for defining ontologies, called Web Ontology
Language (OWL). DLs were chosen as the logic-based counterpart for the OWL
family of languages.

In the Computational Logic realm, more recently, [19, 18] proposed Datalog±,
an extension of Datalog with existential rules for representing lightweight ontolo-
gies, encompassing the DL-Lite family, and achieving decidability and tractabil-
ity [17] under appropriate syntactic conditions.

In short, Datalog± extends Datalog by allowing existential quantifiers, the
equality predicate and the constant false in rule heads. Any Datalog± theory
may, in fact, include three types of implication rules: Tuple-Generating Depen-
dencies (TGDs), Negative Constraints (NCs) and Equality Generating Depen-
dencies (EGDs), as shown in the following. In standard Datalog, we can represent
a rule stating that the father X of any person Y is also a person:

∀X ∀Y fatherOf(X,Y ) ∧ person(Y ) → person(X)

In Datalog±, we get higher expressiveness, and by a TGD rule we can state that
any person X has a father Y who is also a person:

∀X person(X) → ∃Y fatherOf(Y,X) ∧ person(Y )



or that for any person X, and any couple of his/her fathers Y and Z, then Y
and Z must be the same, by the following EGD:

∀X ∀Y ∀Z fatherOf(Y,X) ∧ fatherOf(Z,X) → Y = Z

Finally, we can also state, by the following NC, that for any X, his/her father
and mother cannot be the same Y :

∀X ∀Y fatherOf(Y,X) ∧ motherOf(Y,X) → false

Declaratively, given a finite set of relation names R, a Datalog± theory T (a set
of TGDs, NCs and EGDs) on R, and a database D (a set of ground atoms) for
R, the set of models of D given T , denoted mods(D,T ), is the set of all (possibly
infinite) databases B such that D ⊆ B and every F ∈ T is satisfied in B.

In Datalog± the set of answers to a Conjunctive Query (CQ) q on D given
T , denoted ans(q,D, T ), is the set of all tuples t such that t ∈ q(B) for all
B ∈ mods(D,T ). With abuse of notation, we will write q(t) to mean answer t
for q on D given T .

Operationally, Datalog± query answering for CQs and Boolean Conjunctive
Queries (BCQs) is achieved via the chase, a bottom-up algorithm for deriving
atoms entailed by a given database D and a Datalog± theory. Informally, the
chase works on the database D and extends it through the so-called TGD and
EGD chase rules. When the body of a TGD is true in the database D, the TGD
chase rule adds to D new atomic formulas corresponding to TGD’s heads with
new (null) variables for the existential ones, that are not already in D. The EGD
chase rule, when the body of an EGD is true in the database D, tries to unify
the two terms implied in the equality in the EGD’s head. A hard violation is
raised if the unification fails. A more formal description can be found in [18, 17].

In [30, 31] we showed that, by suitably extending the SCIFF proof-procedure,
we are able to represent in SCIFF a Datalog± program, and to use it for on-
tological reasoning. SCIFF abductive declarative semantics provides the model-
theoretic counterpart to Datalog± semantics. Operationally, query answering is
achieved bottom-up via the chase in Datalog±, while in the ALP framework it is
supported by the SCIFF proof procedure, which uses both a top-down, backward
reasoning from the goal, and a forward reasoning for integrity constraints.

In Datalog±, tuples can be added to the database through the TGD chase
rule, and unifications can be done via the EGD chase rule. As explained earlier,
we mimic the chase through the propagation of SCIFF integrity constraints. The
SCIFF syntax for integrity constraints is extended to allow for H literals in the
head of integrity constraints. H atoms are now considered as abducible atoms,
so that, through the propagation of integrity constraints, they are assumed as
true if they occur in the head of a (transformed) TGD. Coherently with both
the Datalog± and SCIFF syntax, variables that occur only in the head of an IC
and that occur in a H literal are implicitly existentially quantified.

The finite set of relation names of a Datalog± relational schema R is mapped
into the set of terms occurring in the H predicates of the corresponding SCIFF
program. A Datalog± database D for R corresponds to the (possibly infinite)



SCIFF history HAP, since there is a one-to-one correspondence between each
tuple in D and each (ground) fact in HAP. This mapping may seem unintuitive
from an ALP viewpoint, since intensional predicate definitions are mapped into
integrity constraints; on the other hand, as will be clear shortly, it lets one reuse
the same implications used in a Datalog± theory.

In fact, a Datalog± theory T is mapped into a SCIFF program with an empty
KB, and IC = τ(T ), where ICs have (conjunctions of) H atoms and CLP
constraints (equalities in particular), or false in their heads, and are obtained
by the τ mapping from the original TGDs, EGDs, and NCs.

The τ mapping is recursively defined as follows, where A is an atom, and F1,
F2, . . . , are Datalog± formulae:

τ(Body → Head) = τ(Body)→ τ(Head)
τ(A) = H(A)

τ(F1 ∧ F2) = τ(F1) ∧ τ(F2)
τ(false) = false

τ(Yi = Yj) = Yi = Yj
τ(∃X A) = H(A)

where the last equation comes from the fact that the quantification for variables
that occur only in H literals in the head of an IC is always existential, and it is
implicit in the SCIFF syntax.

A Datalog TGD F = body → head is mapped into the SCIFF integrity
constraint IC = τ(F ), where the body is mapped into conjunctions of SCIFF
atoms, and head into conjunctions of SCIFF abducible H atoms. Existential
quantifications of variables occurring in the head of the TGD are maintained in
the head of the SCIFF IC, but they are left implicit in the SCIFF syntax, while
the rest of the variables are universally quantified with scope the entire IC.

Finally, Datalog± NCs are mapped into SCIFF ICs with head false, and
EGDs into SCIFF ICs, each one with an equality CLP constraint in its head.

Other possible mappings could be considered; interesting research directions
could be to map the database D to the KB, and/or atoms to normal abducible
predicates, instead of H events.

Given a Datalog± theory T , let us denote the mapping of T into the corre-
sponding set IC of SCIFF integrity constraints, as IC = τ(T ).

Recall that, given a Datalog± theory T on R, and a database D for R,
the set of models of D given T , denoted mods(D,T ), is the set of all (possibly
infinite) databases B such that D ⊆ B and every F ∈ T is satisfied in B. For
any such database B, in [30, 31], we have proved that there exists an abductive
explanation HAP′ = τ(B) such that:

HAP′ |= IC

where HAP′ ⊇ HAP = τ(D), and IC = τ(T ), in which Datalog± nulls are
mapped to existentially quantified variables.

Therefore, informally speaking, the set of models of D given T , mods(D,T ),
corresponds to the set of all the abductive explanations HAP′ satisfying the set
of SCIFF integrity constraints IC = τ(T ).



In [30, 31], we have stated and proved theorems for (model-theoretic) com-
pleteness of query answering. Informally, we recall here the completeness result
for CQ-answering: for each answer q(t) of a CQ q(X) = ∃YΦ(X,Y) on D given
T , in the corresponding SCIFF program 〈∅,A, τ(T )〉 there exists an answer sub-
stitution θ and an abductive explanation HAP′ for goal G = τ(Φ(X, )) (where
the underscore stands for an unnamed variable) such that:

〈∅, IC〉 |=g
HAP Gθ

where HAP = τ(D), IC = τ(T ), and Gθ = τ(Φ(t, )),
The SCIFF proof procedure was proved sound and complete w.r.t. SCIFF

declarative semantics in [4], thus for each abductive explanation δ for a given goal
G in a SCIFF program, there exists a SCIFF-based computation producing a
set of abducibles (positive expectations to our purposes) δ′ ⊆ δ, and a computed
answer substitution for goal G possibly more general than θ.

Example 1 (Real estate information extraction system in ALP). In [32], the au-
thors present a simple ontology for a real estate information extraction system3:

F1 = ann(X, label), ann(X, price), visible(X)→ priceElem(X)
If X is annotated as a label, as a price and is visible, then it is a price element.

F2 = ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X)
If X is annotated as a label, as a price range, and is visible, then it is a price
element.

F3 = priceElem(E), group(E,X)→ forSale(X)
If E is a price element and is grouped with X, then X is for sale.

F4 = forSale(X)→ ∃P price(X,P )
If X is for sale, then there exists a price for X.

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)
If X has postal code C, and C’s location is L, then X’s location is L.

F6 = hasCode(X,C)→ ∃L codeLoc(C,L), loc(X,L)
If X has postal code C, then there exists L s.t. C has location L and so does X.

F7 = loc(X,L1), loc(X,L2)→ L1 = L2
If X has the locations L1 and L2, then L1 and L2 are the same.

F8 = loc(X,L)→ advertised(X)
If X has a location L then X is advertised.

The TGDs F1-F8 from the Datalog± ontology above are one-to-one mapped
into the following SCIFF ICs:4

IC1 : H(ann(X, label)),H(ann(X, price)),H(visible(X))→ H(priceElem(X))
IC2 : H(ann(X, label)),H(ann(X, priceRange)),H(visible(X))→ H(priceElem(X))
IC3 : H(priceElem(E)),H(group(E,X))→ H(forSale(X))
IC4 : H(forSale(X))→ (∃P ) H(price(X,P ))
IC5 : H(hasCode(X,C)),H(codeLoc(C,L))→ H(loc(X,L))
IC6 : H(hasCode(X,C))→ (∃L) H(codeLoc(C,L)),H(loc(X,L))

3 The universal quantifiers are usually left implicit.
4 We show for the sake of clarity the quantification of existentially quantified variables,

although in the SCIFF syntax the quantification is implicit.



IC7 : H(loc(X,L1)),H(loc(X,L2))→ L1 = L2
IC8 : H(loc(X,L))→ H(advertised(X))

The database in [32] is mapped into the following history HAP:

{H(codeLoc(ox1, central)),H(codeLoc(ox1, south)),
H(codeLoc(ox2, summertown)),H(hasCode(prop1, ox2)),H(ann(e1, price)),
H(ann(e1, label)),H(visible(e1)),H(group(e1, prop1))}

The SCIFF proof procedure applies ICs in a forward manner, and it infers
the following set of abducibles from the program above:

HAP′ = {H(priceElem(e1)),H(forSale(prop1)),∃P H(price(prop1, P )),

H(loc(prop1, summertown)),H(advertised(prop1))}

Each of the (ground) atomic queries (BCQs) outlined in [32] is also entailed
in the SCIFF program above. In particular, for the previous set HAP′:

HAP′ |= H(priceElem(e1)),H(forSale(prop1)),H(advertised(prop1))

Also, the CQ ∃L H(loc(prop1, L)) is entailed as well (with unification L =
summertown, as in [32]) since:

HAP′ |= H(loc(prop1, summertown))

4.1 Related work

A very related approach for mapping DL theories into ALP is contained in [48].
The authors consider ALCN Description Logics theories, i.e., ontologies where
the terminological part consists of concept definitions of kind:

C ≡ F

where C is a concept symbol and F is a (non recursive) concept description.
Given that R is a role, C a concept symbol and F , G concepts descriptions,
valid concept descriptions are the terms:

C | ∀R.F | ∃R.F | F ∩G | F ∪G | ¬F |≤ nR |≥ nR

Any concept symbol C occurring in a concept definition of kind C ≡ F is named
a defined concept, otherwise it is named primitive.

Their mapping transforms concept definitions of such a kind into Open Logic
Programming clauses [21], an extension of ALP, and they prove that this opera-
tion is equivalence preserving. They map concept definitions to program clauses,
first translating the definitions into general clauses, where the head is an atom
and the body any First Order Logic expression. Then, general clauses are trans-
formed into a set of Horn clauses, by the Lloyd-Topor transformation [39].

Unluckily, in their mapping, they lose half of the definition. A concept defi-
nition of kind C ≡ F is, in fact, transformed into a general clause of kind:

C(X)← T ′(F,X)



where T ′ is a mapping transformation inductively defined over the syntax of F
(see above).

For instance, given the ontological definition stating that a father is any male
person having at least one child:

Father ≡Male ∩ Person ∩ ∃child.Person

their mapping produces only the clause:

father(X)← male(X), person(X), child(X,Y ), person(Y )

thus losing the second part of the definition, which corresponds to:

father(X)→ male(X), person(X),∃Y (child(X,Y ), person(Y )).

In this sense, even if [48] captures the intuition that DL theories, with the
Open World Assumption approach, have much in common with Abductive or
Open Logic Programming, the mapping and representation they provide do not
support the notion of concept definition which is peculiar of terminological sys-
tems, and which lets one reason both ways when considering a definition C ≡ F .

The major issue for mapping DL theories into Logic Programming languages
is exactly the need to represent implications having in their heads existentially
quantified variables (as the example above outlines). Datalog± is, instead, a
logic programming language enriched with implications having also existentially
quantified variables in their heads. This feature is fundamental to fully represent
even the simplest ALC Description Logic.

Moreover, Datalog± conflates logic programming clauses, forward rules and
integrity constraints, thus proving an integration of ontological reasoning with
rule-based programing, in a single language.

As well, SCIFF is a language naturally providing the same syntax extension,
and smoothly integrating into ALP both ontological representation and rule-
based programming.

5 Integrating norms and ontologies in SCIFF

After mapping a Datalog± ontology into SCIFF, we are now ready to show how
normative reasoning is smoothly integrated with ontological reasoning within the
SCIFF abductive framework. We will show this via a simple example, starting
from the real estate ontology, and enriching it with normative rules for some
interacting agents in a real estate scenario.

As discussed in Section 3, the set of regulations holding in the given society
of agents can be expressed again through integrity constraints.

In the previous example, suppose that a real estate agent (rea) is in charge of
selling a property, and it uses the data from the real estate information extracted
from the ontological knowledge. If another agent has seen an announcement that
a property (e.g., a flat) is for sale, it can request to buy it. In such a case, for



some fixed time ∆T , the real estate agent is obliged to reserve the flat for that
client. For ∆T time units, the real estate agent cannot sell the flat to other
agents and, if the buyer issues a payment, the flat must be declared sold (within
some deadline D). The expected behavior of the real estate agent can be defined
by the following rules:

H(tell(X, rea, buy(E), T ),H(forSale(E))
→ EN(sell(rea, Y,E), Ts), Y 6= X,Ts < T +∆T

H(tell(X, rea, buy(E), T ),H(forSale(E)),H(price(E,P )),
H(pay(X, rea, P ), Tp), Tp < T +∆T → E(sell(rea,X,E), Ts), Ts < Tp +D.

If some agent e asks to buy property prop1 at price e1 at time 1, i.e.,
H(tell(e, rea, buy(prop1), 1), the proof procedure is able to infer the following
information about the expected behavior of the rea agent:

∀Ts s.t. Ts < 1 +∆T, ∀Y 6= e EN(sell(rea, Y, prop1), Ts)

i.e., agent rea is not allowed to sell property prop1 to any other agent until
∆T time units have passed. Let us suppose that ∆T = 5 and D = 3; if agent
e actually executes the payment, e.g. H(pay(e, rea, e1), 3), agent rea is now
expected to sell prop1, and the following expectation is raised:

∃Ts s.t. Ts < 6 E(sell(rea, e, prop1), Ts).

In this way, not only the SCIFF proof procedure is able to infer the knowledge
from the ontological database, but also to provide the expected behavior of the
agents (in our example, the rea agent) including obligations and prohibitions.

6 Conclusions and Future Work

We have shown that Abductive Logic Programming (ALP) is a powerful tool for
knowledge representation and reasoning about norms and ontologies. We have
focused in detail about the SCIFF ALP framework, used in the past to model
and verify agent societies, interaction protocols for multi-agent systems [8], Web
services choreographies [1], but also powerful enough to represent deontic op-
erators [7] and normative systems [5]. Its underlying SCIFF proof procedure
[4], derived from the IFF one, considers, in rule heads, atoms that can contain
existentially and universally quantified variables, as well as CLP constraints.
Recently [30, 31], SCIFF has been also proved useful for representing ontologies
expressed in Datalog±.

In this work, we have exploited the SCIFF framework for representing and
integrating both norms and Datalog± ontologies. Normative, rule-based rea-
soning and ontological query answering are obtained by applying the SCIFF
abductive proof procedure. Both norms and a Datalog± theory can be encoded
as SCIFF integrity constraints. The main advantage is that this integration is



achieved within a single language, grounded on ALP. Nonetheless, different ALP
approaches might be possible.

A number of issues are subject of future work. First of all, we have not fo-
cused here on complexity results. Identifying syntactic conditions that guarantee
tractable ontologies in SCIFF, in the style of what has been done for Datalog±,
is crucial for achieving nice computational performance.

A second issue for future work concerns experimentation with real cases, in
the normative and legal domain, and on real-size ontologies.

Finally, different mappings of Datalog± to ALP might exist, possibly enjoying
different properties: another research direction is oriented toward identifying the
mapping that suits best for legal reasoning.
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