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Abstract

Aims: N-[(4-trifluoromethyl) benzyl] 4-methoxybutyramide (GET73) may be considered a promising

therapeutic agent for the treatment of alcohol use disorders. The compound displayed anti-alcohol

and anxiolytic properties in rat. In the present study, an in vitro experimental model of chronic etha-

nol treatment was used to investigate the ability of the compound to counteract the ethanol-induced

neurotoxicity.

Methods: Primary cultures of rat hippocampal neurons were exposed to ethanol (75 mM; 4 days)

and the neuroprotective effects of GET73were assessed by evaluating cell viability, cell morphology,

glutamate levels and reactive oxygen species production.

Results: The exposure to ethanol induced a reduction of cell viability, an alteration of cytoskeleton, a

decrease in extracellular glutamate levels and an increase of reactive oxygen species production. The

addiction of GET73 (1 and 10 µM) 1 h before and during chronic ethanol exposure prevented all the

above ethanol-induced effects. Based on the proposed GET73 mechanism of action, the effects of

mGlu5 receptor negative allostericmodulator, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), on etha-

nol-induced reduction of cell viability were also assessed. The results indicated that the addiction of

MPEP (100 µM) 1 h before and during chronic ethanol exposure prevented the ethanol-induced cell

viability reduction.

Conclusion: The present findings provide the first evidence that GET73 shows a neuroprotective role

against ethanol-induced neurotoxicity in primary cultures of rat hippocampal neurons. Togetherwith

previous findings, these results suggest that GET73 possesses multifaceted properties thus lending

further support to the significance of developing GET73 as a therapeutic tool for use in the treatment

of alcohol use disorders.

INTRODUCTION

The brain is a major target for ethanol and the detrimental effects of
acute and chronic ethanol exposure on different functions of the cen-
tral nervous system (CNS) have been well documented (Zahr et al.,
2011; Hermens and Logopoulos, 2013; Kim et al., 2014). Chronic
ethanol consumption is associated with severe and persistent changes

in brain physiology and morphology, impairment of cognition along
with numerous clinical and neurological disorders (Bernardin et al.,
2014; Wilcox et al., 2014; Zorumski et al., 2014). The cognitive
impairment observed in individuals affected by alcohol use disorders
(AUDs) are thought to be related, at least partially, to hippocampal struc-
tural integrity disruption (Mechtcheriakov et al., 2007; Geil et al., 2014;
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Zorumski et al., 2014). There is considerable evidence that excessive
ethanol intake is correlated with hippocampal damage. For example,
early onset drinking has been shown to be associated with hippocampal
volumetric deficits, while volume loss of hippocampus was reported in
adolescent with AUDs and in older alcoholics (Nagel et al., 2005;
Ozsoy et al., 2013). These alterations may be also due to a loss of neu-
rons, shrinkage of neuronal cell bodies and/or reduction in the number
and extent of dendrites (Kruman et al., 2012). In line with this view, a
direct neurotoxic effect of ethanol on the brain has been suggested as
the primary cause of alcohol-related neuronal loss (Sun and Sun, 2001;
Kruman et al., 2012).

The pharmacological treatment of AUDs, mainly aimed at redu-
cing craving and withdrawal symptoms (tremor, agitation and
delirium) often showed a moderate efficacy. At present, only few
pharmacological treatments have been approved for clinical use, in-
cluding the FDA approved drugs disulfiram, naltrexone, acamprosate
(O’Malley and O’Connor 2011; Wackernah et al., 2014), nalmefene
(Soyka, 2014) recently approved by the European Medicines Agency
(EMA), and gamma-hydroxybutyric acid (GHB) employed in some
European countries (Addolorato et al., 2009; Leone et al., 2010).
The research in this field is then focused on the development of
new and potentially effective pharmacological agents, through the
study of alternative molecular targets involved in AUDs. Among
these new substances, previous behavioral and neurochemical studies
suggested that N-[(4-trifluoromethyl)benzyl]4-methoxybutyramide
(GET73) could be considered a hopeful candidate. Indeed, GET73
has shown a multifaceted neuropharmacological profile, including
the ability to reduce both alcohol consumption and anxiety-related be-
haviors in rats (Loche et al., 2012; Ferraro et al., 2013). It has been
proposed that GET73 may partially acts by modulating hippocampal
glutamate and GABA transmission, possibly through an allosteric
modulation of metabotropic glutamate receptor 5 (mGlu5 receptor)
(Ferraro et al., 2011, 2013; Beggiato et al., 2013). In this context, it
is worth noting that negative allosteric modulators (NAMs) of
mGlu5 receptors exert neuroprotective actions (Bruno et al., 2000;
Sarnico et al., 2008; Yeganeh et al., 2013). Furthermore, the mGlu5
receptor NAM 2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP),
at doses attenuating ethanol withdrawal seizures, also in vitro exhib-
ited neuroprotective effects in organotypic hippocampal cultures. As
it has been postulated that the recurrent transient increase in extracel-
lular glutamate levels associated with alcohol withdrawal could even-
tually result in a glutamate-induced neurotoxic effect, it has been
proposed that a neuroprotective effect of MTEP might contribute
toward attenuating alcohol withdrawal symptoms (Kotlinska et al.,
2011). Thus, in view of the postulated mechanism of action of GET73
it becomes relevant to evaluate its possible neuroprotective role against
the ethanol-induced neurotoxicity, an aspect that could add interesting
therapeutic perspectives to the compound.

The cellular mechanisms underlying the chronic ethanol-induced
disruption of neuronal outgrowth are difficult to be investigated in
whole animal models, because of complexity of existing cellular net-
works constituted by different cell types, such as neurons and glial
cells. On the contrary, ethanol’s effects may be easily investigated in
in vitro cell culture systems, such as primary cultures of rat hippocam-
pal neurons, where the experiments can be carried out under strictly
controlled conditions. Indeed, the ethanol concentrations can be easily
controlled in this cell culture model and the direct actions of the com-
pound on a selected neuronal population could be assessed, without
the interference of oncoming signaling from other CNS regions
(Gruol and Parsons, 1996). In view of the above, in the present
study an in vitro experimental model of chronic ethanol treatment

was used to investigate the ability of GET73 to counteract the
ethanol-induced neurotoxicity. In particular, primary cultures of
rat hippocampal neurons were exposed to 75 mM ethanol for
4 days, and the neuroprotective effects of GET73 were assessed by
evaluating cell viability, cell morphology and glutamate levels. Finally,
as there is strong evidence showing that chronic ethanol consumption
induces oxidative neuronal damages (Haorah et al., 2008; Collins and
Neafsey, 2012; Moon et al., 2014), the effects of GET73 against
ethanol-induced reactive oxygen species (ROS) production were also
investigated.

METHODS

Primary cultures of rat hippocampal neurons

Primary cultures of hippocampal neurons were prepared from
1-day-old rats born from Sprague–Dawley dams (Harlan SRC,
Milan, Italy). Animals were sacrificed under anesthesia by decapita-
tion. Removed hippocampi were dissected free of meninges and disso-
ciated in 0.025% (w/v) trypsin. The tissue fragments were
mechanically dissociated by repeated gentle pipetting in culture me-
dium (Neurobasal medium with supplements of 0.1 mM glutamine,
10 μg/ml gentamicin, and 2% B27). Cells were counted and then pla-
ted on poly-L-lysine (5 μg/ml)-coated multiwells (24 wells; Nunc A/S,
Roskilde, Denmark) at a density of 400,000 cells per well and on
96-wells at a density of 50,000 cells per well. For immunocytochem-
istry and ROS determination, the cells were plated on glass coverslips
at a concentration of 200,000 cells per well. Cultures were grown at
37°C in a humidified atmosphere, 5% CO2/95% air. Cytosine arabi-
noside (10 μM; SigmaChemical Co.) was addedwithin 24 h of plating
to prevent glial cell proliferation. After 4 days of in vitro incubation
(DIV), cultures were used for ethanol treatment.

Experiments were carried out in strict accordance with the Euro-
pean Communities Council Directive (86/609/EEC) and the Guide-
lines released by the Italian Ministry of Health (D.L. 116/92) and
(D.L. 111/94-B). A formal approval to conduct the experiments de-
scribed was obtained by the local Ethics Committee (University of Fer-
rara, Italy). Efforts were made to minimize the number of animals used
and to reduce pain and discomfort. A total of 86 pups were used.

Exposure to ethanol and pharmacological treatment

To analyze the possible neurotoxic effect of ethanol, a subset of hippo-
campal cell cultures were treated with 75 mM ethanol for 4 days (from
4 to 7 DIV; Kane et al., 2011; Gonthier et al., 2012). During the period
of ethanol exposure, cultured neurons were incubated at 37°C in closed
chamber equilibratedwith 5%CO2 and 75 mMethanol in water to sta-
blymaintain the concentration of ethanol in the culturemedium. In par-
allel, cell cultures not exposed to ethanol (control cultures) were
incubated at 37°C in a humidified atmosphere with 5% CO2/95%
air. GET73 was tested either in control or in ethanol-exposed cell cul-
tures. In the latter case, GET73 (0.1, 1 and 10 µM) was added 1 h prior
to ethanol exposure and maintained in contact with neurons during
ethanol exposure. The mGlu5 receptor negative allosteric modulator
(NAM) 2-methyl-6-(phenylethynyl)-pyridine (MPEP; Gasparini et al.,
2001), was also tested in a series of cell viability experiments (MTT
assay) in cultured cells. The compound (10 and 100 µM) was applied
either alone or 1 h prior to ethanol exposure. GET73 and MPEP con-
centration ranges were chosen on the basis of previous experiments
demonstrating a possible interaction between GET73 and mGlu5
receptor-mediated modulation of glutamate transmission in rat hippo-
campus slices (Ferraro et al., 2011).
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All the experimental measures were performed at the end of
ethanol exposure (8 DIV).

Immunocytochemistry

On the day of the experiment, cells were rinsed in 0.1 M phosphate-
buffered saline (PBS) and then fixed with 4% paraformaldehyde in Sor-
ensen’s buffer 0.1 M, pH 7.4, for 20 min. After rinsing in PBS (three
times for 5 min each), the cells were incubated overnight at 4°C in
0.3%Triton X-100/PBS solution (v/v) containing the primary antibody
rabbit anti-microtubule-associated protein 2 (MAP2) (1:1000 dilution,
Chemicon, Temecula, CA, USA). The cells were then washed three
times with PBS and incubated for 60 min at room temperature with
the secondary antibody rhodamine-conjugated anti-rabbit antibody
(1:100 dilution, Chemicon, Temecula, CA, USA). After three washes
in PBS, the cells were mounted in glycerol and PBS (3:1, v/v) containing
0.1% 1,4-phenylenediamine and examined using a Nikon Microphot
FXA microscope. For cell counts, five separate non-overlapping fields
were randomly chosen in each coverslip and the images were taken
using the ×20 objective.

Extracellular glutamate levels

On the day of the experiment, cells were rinsed twice by replacing the
culture medium with a Krebs Ringer-bicarbonate buffer (mM: NaCl
118.5, KCl 4.8, CaCl2 2.5, MgSO4 1.2, NaHCO3 25, NaH2PO4

1.2, glucose 11, pH 7.4; 37°C). Thereafter, 400 μl of this solution
were added to each plate and, after 30 min, 200 μl of the solution
were collected. After rinsing, the procedure was repeated twice to col-
lect a total of three consecutive 30 min fractions. Glutamate levels in
each sample were quantified by using a high-performance liquid chro-
matography/fluorimetric detection system, including a precolumn de-
rivatization o-phthaldialdehyde reagent and a Chromsep 5 (C18)
column. The mobile phase consisted of 0.1 M sodium acetate, 10%
methanol, and 2.5% tetrahydrofuran, pH 6.5. The limit of detection
for glutamate was 30 fmol per sample (Tomasini et al., 2012). In each
cell plate, basal extracellular glutamate levels were calculated by the
mean of the three collected fractions. The effects of the treatments
on glutamate levels were expressed as the percentage of glutamate
levels measured in control cell cultures.

MTT assay

The integrity of mitochondrial enzymes in viable neurons was deter-
mined with a colorimetric assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) levels. In live cells, mitochondrial
enzymes have the capacity to transform MTT 0.5 mg/ml for 3 h at
37°C. The medium was removed and the insoluble product was dis-
solved in 100 µl of DMSO (1 h of shaking at room temperature), and
colorimetrically (absorbance at 570 nm) quantified. Neuronal viability
corresponded to the value of the optical density read at 570 nm using
a microplate reader. The results were expressed as the percentage of
neuronal viability measured in control cell cultures (100%).

ROS formation

Intracellular ROS can be evaluated by assessment of fluorescence emis-
sion of dihydrorhodamine 123 (DHR) that is converted by ROS to
rhodamine 123, a fluorescent compound that is considered as a sensi-
tive indicator of ROS production (Brito et al., 2008). Following ex-
perimental treatments, cells plated on glass coverslips were loaded
with 3 µM DHR in DMSO (0.5% final concentration) for 30 min at
37°C. At the end of the incubation period, cells were fixed with 4%

paraformaldehyde in PBS, washed with PBS and mounted in glycerol
and PBS (3:1, v/v). Cellular fluorescence was measured using a Nikon
Microphot FXA microscope in at least five random microscopic fields
per sample with an image analyzer software. The results were
expressed as percentage of ROS production measured in control cell
cultures (Silva et al., 2006).

Materials

The culture dishes were purchased from Nunc A/S (Roskilde, Denmark).
Neurobasal medium and B27 were obtained from Gibco (Grand Island,
NY, USA). Poly-L-lysine, trypsin, cytosine arabinoside, gentamicin sulfate,
glutamine, L-glutamic acid andMTTwere obtained fromSigmaChemical
Co., St Louis, Missouri. Dihydrorhodamine 123 (DHR) was acquired
from Life Technologies (ThermoFisher Scientific Waltham, MA, USA).
Anti-MAP2 antibody and rhodamine-conjugated anti-rabbit antibody
were purchased from Chemicon. 2-methyl-6-(phenylethynyl)-pyridine
(MPEP) was purchased from Tocris-Cookson (Bristol, UK) while
4-Trifluoromethylbenzyl)-4-methoxybutanamide (GET73) was a gener-
ous gift from CT laboratories (Sanremo, Italy). The compounds were dis-
solved in DMSO (stock solutions = 1 mg/ml) and then added to the
culture medium (maximum final DMSO concentration in experiments
was 0.001% v/v); by itself, DMSO did not induce any changes in gluta-
mate efflux, mitochondrial enzymes activity, ROS production andMAP2
immunoreactivity.

Statistical analysis

Results were expressed as means ± standard error of mean. The statis-
tical analysis was carried out by Student’s t-test for grouped data or
analysis of variance (ANOVA) followed by the Newman–Keuls test
for multiple comparisons. The level of P < 0.05 was defined as statis-
tical significance.

RESULTS

MTT assay

Effect of chronic ethanol exposure on cell viability
MTT absorbance values, measured in control hippocampal cell cul-
tures were 0.231 ± 0.012 (n = 40). The exposure to ethanol (75 mM;
4 days) induced an impairment of mitochondrial function in hippo-
campal cell cultures, as indicated by the significant decrease (P < 0.01)
of absorbance values (Fig. 1) in respect to the control cell culture
values.

Effect of GET73 and MPEP on chronic ethanol-induced reduction
of cell viability
The addiction of GET73 (1 and 10 µM) 1 h before and during chronic
ethanol exposure prevented the ethanol-induced MTT reduction,
being the cell viability not significantly different in respect to the con-
trol group (Fig. 1). On the contrary, the lower (0.1 µM) concentration
of GET73 was ineffective (Fig. 1). By itself, GET73 (0.1–10 µM) did
not affect cellular viability in hippocampal cell cultures not exposed to
ethanol (0.1 µM: 98 ± 8% of control value, n = 20; 1 µM: 97 ± 7% of
control value, n = 20; 10 µM: 106 ± 5% of control value, n = 20).

Based on the results previously obtained and the proposed GET73
mechanism of action (Ferraro et al., 2011, 2013; Beggiato et al., 2013),
the effects of mGlu5 receptor NAM, MPEP, on ethanol-induced reduc-
tion of cell viability were also assessed. As shown in Fig. 2, the addiction
of MPEP (100 µM) during chronic ethanol exposure prevented the
ethanol-inducedMTT reduction, being the cell viability not significant-
ly different in respect to the control group. On the contrary, the lower
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(10 µM) concentration of MPEP was ineffective. By itself, MPEP (10
and 100 µM) did not affect cellular viability in hippocampal cell cul-
tures not exposed to ethanol (10 µM: 99 ± 8% of control value, n = 18;
100 µM: 104 ± 9% of control value, n = 18).

MAP2 immunoreactivity

Effect of chronic ethanol exposure on the MAP2 immunoreactivity
The distribution of MAP2 in the control and ethanol-exposed hippo-
campal neurons was analyzed by an immunofluorescence technique.
Control hippocampal cell cultures presented a high number of healthy
neurons, which developed a complex neuronal network characterized
by highly arborized dendritic trees andMAP2 immunoreactivity homo-
geneously distributed in the cell bodies and dendrites (Fig. 3A). The ex-
posure to ethanol (75 mM; 4 days) induced an alteration of the staining
pattern of the cytoskeletal protein, whichmainly revealed a reduction of
dendrite length (Fig. 3B). Furthermore, the number of MAP2 positive
cells was significantly lower in cell cultures exposed to ethanol than
in control cell cultures (Fig. 4).

Effect of GET73 on chronic ethanol-induced reduction
of MAP2 immunoreactivity
The addition of GET73 (10 µM) 1 h before and during chronic etha-
nol exposure prevented the ethanol-induced reduction of MAP2 posi-
tive cell number (Fig. 4). By itself, GET73 (10 µM) did not affect
MAP2 positive cell number in hippocampal cell cultures not exposed
to ethanol (98 ± 4% of control value, n = 10).

Extracellular glutamate levels

Effect of chronic ethanol exposure on the extracellular
glutamate levels
Extracellular glutamate levels in control hippocampal cell cultures
were 70.0 ± 5.1 nM. As shown in Fig. 5, the chronic exposure to etha-
nol (75 mM; 4 days) induced a significant reduction of extracellular
glutamate levels.

Effect of GET73 on chronic ethanol-induced reduction of
extracellular glutamate levels
The addiction of GET73 (1 and 10 µM) 1 h before and during chronic
exposure ethanol prevented the ethanol-induced reduction of extracel-
lular glutamate levels (Fig. 5). On the contrary, the lower (0.1 µM)
concentration of GET73 was ineffective. By itself, GET73 (0.1–
10 µM) did not affect the extracellular glutamate levels in hippocam-
pal cell cultures not exposed to ethanol (0.1 µM: 94 ± 4% of control
value, n = 9; 1 µM: 97 ± 4% of control value, n = 9; 10 µM: 93 ± 3%
of control values, n = 9).

ROS production

Effect of chronic ethanol exposure on the ROS production
The exposure of hippocampal cell cultures to ethanol (75 mM; 4 days)
induced an increase of ROS production, as revealed by the enhanced
intensity in the fluorescence emission of rhodamine 123 (Fig. 6).

Effect of GET73 on chronic ethanol-induced increase of ROS
production
The addiction of GET73 (1 and 10 µM) 1 h before and during chronic
ethanol exposure prevented the ethanol-induced increase of ROS pro-
duction (Fig. 6). On the contrary, the lower (0.1 µM) concentration of
GET73 was ineffective. By itself, GET73 (0.1–10 µM) did not affect
the ROS production in hippocampal cell cultures not exposed to etha-
nol (0.1 µM: 95 ± 10% of control value, n = 8; 1 µM: 82 ± 8% of con-
trol value, n = 8; 10 µM: 88 ± 8% of control value, n = 8).

DISCUSSION

GET73 may be considered a new promising therapeutic agent for the
treatment of AUDs. In fact, the compound displays a multifaceted
behavioral profile including the capacity to reduce alcohol consump-
tion, to suppress the ‘alcohol deprivation effect’, and to reduce
anxiety-related behavior in the selective bred, Sardinian alcohol-

Fig. 2. Cell viability in hippocampal cell cultures exposed to ethanol (EtOH;

75 mM, 4 days) alone or in combination with MPEP. The negative allosteric

modulator at the mGlu5 receptors was added 1 h prior to EtOH exposure and

maintained in contact with neurons during ethanol exposure. Control cultures

were not exposed to EtOH. Each value represents the mean ± SEM (n = 40).

**P < 0.01 significantly different from control group; °°P < 0.01 significantly

different from MPEP (100 µM) + EtOH group, according to ANOVA followed

by the Newman–Keuls test for multiple comparisons.

Fig. 1. Cell viability in hippocampal cell culturesQ5 exposed to ethanol (EtOH;

75 mM, 4 days) alone or in combination with GET73. The compound was

added 1 h prior to EtOH exposure and maintained in contact with neurons

during ethanol exposure. Control cultures were not exposed to EtOH. Each

value represents the mean ± SEM (n = 40). *P < 0.05; **P < 0.01 significantly

different from control group; °P < 0.05; °°P < 0.01 significantly different from

GET73 (1 µM) + EtOH and GET73 (10 µM) + EtOH groups, according to

ANOVA followed by the Newman–Keuls test for multiple comparisons.
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preferring (sP) rats (Loche et al., 2012; Ferraro et al., 2013). It has
been demonstrated that GET73 is able to affect glutamate and
GABA neurotransmission in the rat hippocampus, possibly through
an allosteric modulation of mGlu5 receptor (Ferraro et al., 2011,
2013; Beggiato et al., 2013). The hippocampus may be considered
an important CNS target area for the compound as this region is in-
volved in ethanol reward, anxiety behavior and cognition. Based on
promising preclinical data, the compound is currently under clinical
investigation in alcoholics (Phase 1b/2a 73CT-2-03 Study; http://
clinicaltrials.gov/ct2/show/NCT01842503).

The neurotoxic effects of alcohol on the hippocampus have been
demonstrated in different preclinical models, including in vitro orga-
notypic hippocampal cultures (Harris et al., 2003; Moon et al., 2014)

or in vivo binge ethanol exposure model (Obernier et al., 2002;
Hamelik et al., 2005). In the present study the possible neuroprotective
properties of GET73 in hippocampal cultures exposed to ethanol have
been explored in order to further characterize the ‘anti-alcohol profile’
of the compound. Chronic exposure (from 4 to 7 DIV) of primary cul-
tures of rat hippocampal neurons to 75 mM ethanol induced a series
of alterations in cell viability, neuronal morphology, glutamate levels
and ROS production. In line with the documented direct toxic effects
of ethanol on the brain (Kruman et al., 2012), these findings indicate
that a long term in vitro exposure to ethanol compromises the survival
of cultured hippocampal neurons. These results are also in agreement
with literature data obtained in in vivo animal models of alcohol de-
pendence (4-day binge model), where neuronal loss was observed in
the cortico-limbic pathway, with cellular degeneration particularly
evident in the entorhinal cortex and the dentate gyrus of hippocampus
(Obernier et al., 2002; Kelso et al., 2011). Moreover, another study in

Fig. 3. Representative photomicrographs of MAP2 immunocytochemistry inQ5 hippocampal cell cultures not exposed (A) and exposed to ethanol (75 mM, 4 days; B).

Surviving neurons were stained with anti-MAP2 antibody and observed under fluorescence microscope (magnification ×20).

Fig. 4. MAP2 positive cell number in primary hippocampal cell cultures

exposed to ethanol (EtOH; 75 mM, 4 days) alone or in combination with

GET73. Neurons were stained with anti-MAP2 antibody and observed under

fluorescent microscope. GET73 was added 1 h prior to EtOH exposure and

maintained in contact with neurons during ethanol exposure. Control

cultures were not exposed to EtOH. Data are expressed as percentage of

control values. Each value represents the mean ± SEM, n = 8. *P < 0.05

significantly different from the other groups, according to ANOVA followed

by the Newman–Keuls test for multiple comparisons.

Fig. 5. Extracellular glutamate levels in hippocampal cell cultures exposed to

ethanol (EtOH; 75 mM, 4 days) alone or in combination with GET73. The

compound was added 1 h prior to EtOH exposure and maintained in contact

with neurons during ethanol exposure. Control cultures were not exposed to

EtOH. Data are expressed as absolute values (nM). Each value represents the

mean ± SEM, n = 16. **P < 0.01 significantly different from control group;

°°P < 0.01 significantly different from GET73 (1 µM) + EtOH and GET73

(10 µM) + EtOH groups, according to ANOVA followed by the Newman–Keuls

test for multiple comparisons.
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alcoholics showed significant reductions in neuron number in all re-
gions of the hippocampus, including the dentate gyrus (Bengochea
and Gonzalo, 1990).

The immunofluorescence experiments targeting MAP2, a protein
associated to the cytoskeleton predominantly expressed in neurons,
showed that chronic ethanol exposure significantly reduced the num-
ber of cultured hippocampal neurons, compared to control cultures.
Furthermore, under these experimental conditions, survived neurons
showed a reduced development of dendritic arborization and a reduc-
tion of the length of single dendrites. In line with our results, previous
in vitro studies reported neuronal morphological alterations after alco-
hol exposure. Indeed, an inhibitory effect of ethanol on the assembly
and organization of the cytoskeleton components was described in
hippocampal neurons as a result of prenatal exposure to ethanol
(Yanni and Lindsley, 2000; Romero et al., 2010). InQ2 addition, chronic
ethanol exposure has also been observed to produce changes in den-
dritic spine morphology and/or density in cultured hippocampal neu-
rons (Carpenter-Hyland and Chandler, 2007) and in organotypic
hippocampal slice cultures (Noraberg and Zimmer, 1998). Finally,
long-term alcohol self-administration decreased MAP2 mRNA levels
in several rat brain regions (Putzke et al., 1998). Interestingly, the cell
loss and the alterations of hippocampal neuron morphological devel-
opment by chronic ethanol exposure are associated to a decrease in
extracellular glutamate levels. This effect could be a direct conse-
quence of the reduced cell viability and the altered cell morphology in-
duced by ethanol exposure. Another possibility is that through its
inhibitory action on Ca2+ channels, ethanol inhibits the release of
glutamate from the survived neurons. This mechanism has been previ-
ously implicated in the reduction of dopamine release from rat striatal
synaptosomes (Woodward et al., 1990), glutamate release in hippo-
campal neurons of neonate rats (Mameli et al., 2005) and in the fre-
quency of mEPSCs and mIPSCs in multipolar neurons by ethanol
(Moriguchi et al., 2007). This finding could have functional relevance

as glutamate is involved in synaptogenesis, determining the ‘fate’ of
single neuron and neuronal connections (Mattson, 2008). Therefore,
a reduction of synaptic availability of this excitatory neurotransmitter
induced by chronic ethanol might induce altered patterns of synaptic
connectivity. Thus, it could be speculated that chronic ethanol expos-
ure may cause, through the reduction of hippocampal glutamatergic
neurotransmission, alterations in synaptic remodeling processes that
could affect later on the behavior observed in the whole animal. Final-
ly, the evidence that chronic ethanol exposure significantly increases
intracellular ROS production in hippocampal cell cultures suggest
that, under the present experimental conditions, oxidative stress
could be the potential mechanism underlying the ethanol-induced
neurotoxicity. This hypothesis is in line with previous data
demonstrating that chronic treatment with ethanol produces brain
oxidative stress (Carpenter-Hyland 2007; Collins and Neafsey,
2012; Zorumski, 2014), characterized by an increased production of
ROS and a decreased efficiency of the cellular antioxidant mechanisms
(Cederbaum, 2009).

Themain finding of the present study is that GET73 treatment fully
prevented ethanol-induced neurotoxicity in primary cultures of rat
hippocampal neurons. In fact, the compound completely counteracted
the reduction in cell viability and in the number of hippocampal neur-
onal population along with the hippocampal neuron morphological
alterations observed after chronic ethanol exposure.

Under the present experimental conditions, the pretreatment with
GET73 was also able to prevent the ethanol-induced reduction of glu-
tamate levels. This study provides the first evidence that GET73, in
addition to reduce alcohol consumption and to suppress the ‘alcohol
deprivation effect’ (Loche et al., 2012), might also protect the brain
from the neurotoxic effects induced by chronic ethanol exposure.
This aspect assumes particular relevance in view of the experimental
evidences indicating that glutamatergic efferents projecting from the
hippocampus and terminating in the prefrontal cortex are implicated
in the proper processing of executive functions, working memory and
contextual information (Godsil et al., 2013). A reduction of the neur-
onal function and the loss of the structural integrity of the hippocam-
pus may therefore contribute to the impairment in the cognitive
functions as observed following excessive alcohol consumption both
in animal models and in alcoholics (Stephens and Duka, 2008;
O’Daly et al., 2012; Stavro et al., 2013). Thus, it could be speculated
that GET73, by preventing ethanol-induced hippocampal neuronal
loss, might also prevent the detrimental effects exerted by chronic
ethanol consumption on cognition. However, it is worth noting that
in the present study we exposed alcohol to the cultures during synaptic
development (Papa et al., 1995) and not in mature neurons. Thus, a
more extensive analysis by using in vivo animal models of alcoholism
will be therefore necessary to verify whether these findings could be
relevant to alcohol abuse and neurodegeneration in vivo in adolescent
or adult brain.

In the present study we also demonstrated that the treatment with
GET73 was able to prevent the intracellular ROS production induced
by chronic ethanol exposure. This finding suggests that the neuropro-
tective effects of the compound could be possibly referred to its anti-
oxidant properties. However, another possibility could be proposed.
As previously reported, recent findings from both in vitro and in vivo
studies suggest that GET73 undertakes a complex interaction with
mGlu5 receptors. Indeed, this compound may act as a positive
(PAM) or negative allosteric modulator at the mGlu5 receptors
(NAM), depending on its concentration (Ferraro et al., 2011, 2013).
Although to date no studies have yet explored GET73 binding at the
orthosteric and/or allosteric sites on mGlu5 receptor, this mechanism

Fig. 6. Intracellular ROS production in hippocampal cell cultures exposed to

ethanol (EtOH; 75 mM, 4 days) alone or in combination with GET73. The

compound was added 1 h prior to EtOH exposure and maintained in contact

with neurons during ethanol exposure. Control cultures were not exposed to

EtOH. Data are expressed as percentage of control values. Each value

represents the mean ± SEM, n = 16. *P < 0.05, **P < 0.01 significantly different

from control group; °P < 0.05; °°P < 0.01 significantly different from GET73

(1 µM) + EtOH and GET73 (10 µM) + EtOH groups, according to ANOVA

followed by the Newman–Keuls test for multiple comparisons.
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has been proposed to explain the GET73-induced modulation of glu-
tamate and GABA transmission in the hippocampus (Ferraro et al.,
2011; Beggiato et al., 2013). As the mGlu5 receptor antagonists exhib-
ited neuroprotective effects in rat hippocampus (Szydlowska et al.,
2007; Yeganeh et al., 2013), it seems possible that the interaction
with mGlu5 receptor might also be involved in the neuroprotective ef-
fects of the compound. This hypothesis is supported by the demonstra-
tion that, under the present experimental conditions, the mGlu5
receptor NAM MPEP fully prevented the ethanol-induced reduction
of cell viability, thus mimicking the effect of GET73. Interestingly,
MPEP displayed neuroprotective effects also against β-amyloid-induced
toxicity in mouse primary hippocampal neuronal cultures (Overk et al.,
2014) and reduced both the production of reactive oxygen species
(ROS) and cell toxicity in isolated hepatocytes (Storto et al., 2003).
However, some authors suggested that the neuroprotective effects of
MPEP could also be mediated through its possible NMDA receptor an-
tagonist action (O’Leary et al., 2000). Thus, further experiments will be
necessary to draw definitive conclusions on the possible involvement of
mGlu5 receptors in the neuroprotective action of GET73.

In conclusion, the present findings provide the first evidence that
GET73 possesses neuroprotective properties against ethanol-induced
neurotoxicity in hippocampal cell cultures. Notably, previous studies
indicate that GET73 displays a double profile of ‘anti-alcohol’ and
anxiolytic drug which could be relevant in the treatment of AUDs,
characterized by a high incidence of anxiety disorders capable of sus-
taining drug abuse and dependence, and increasing the risk of relapse
in abstinent patients. In addition, the neuroprotective effects exerted
by GET73 might represent another important therapeutic potential,
given the high rate of alcohol-induced brain damage and the under-
lying cognitive impairments in alcoholics. Taken together, these multi-
faceted properties of the compound lend further support to the
significance of developing GET73 as a therapeutic tool for use in the
treatment of AUDs.
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