
Statistical Relational Learning

for Workflow Mining

Elena Bellodi∗1, Fabrizio Riguzzi2 and Evelina Lamma1

1Dipartimento di Ingegneria – Università di Ferrara – Via Saragat,
1 – 44122 Ferrara, Italy.

2Dipartimento di Matematica e Informatica – Università di Ferrara
Via Saragat, 1 – 44122 Ferrara, Italy.

{elena.bellodi,fabrizio.riguzzi,evelina.lamma}@unife.it

June 1, 2015

Abstract

The management of business processes can support efficiency improve-
ments in organizations. One of the most interesting problems is the min-
ing and representation of process models in a declarative language. Vari-
ous recently proposed knowledge-based languages showed advantages over
graph-based procedural notations. Moreover, rapid changes of the envi-
ronment require organizations to check how compliant are new process
instances with the deployed models. We present a Statistical Relational
Learning approach to Workflow Mining that takes into account both flex-
ibility and uncertainty in real environments. It performs automatic dis-
covery of process models expressed in a probabilistic logic. It uses the
existing DPML algorithm for extracting first-order logic constraints from
process logs. The constraints are then translated into Markov Logic to
learn their weights. Inference on the resulting Markov Logic model al-
lows a probabilistic classification of test traces, by assigning them the
probability of being compliant to the model. We applied this approach
to three datasets and compared it with DPML alone, five Petri net- and
EPC-based process mining algorithms and Tilde. The technique is able to
better classify new execution traces, showing higher accuracy and areas
under the PR/ROC curves in most cases.

Keywords Workflow mining; Process Mining; Knowledge-based Process
Models; Inductive Logic Programming; Statistical Relational Learning; Business
Process Management.

∗Corresponding author, Tel./Fax +390532974827

1

1 Introduction

Organizations usually rely on a number of processes to achieve their mission.
These processes are typically complex and involve a large number of people.
An organization performance critically depends on the quality and accuracy of
its processes, which are therefore a fundamental asset. The area of Business
Processes Management (see e.g.[23]) is devoted to the study of process models.
The problem of automatically mining a structured description of a business
process model from real data in the context of workflow management was first
introduced in [1]. The input data consists of execution traces (or histories) of
the process. Their collection is performed by information systems, which log the
activities executed by the users. This problem has been called Process Mining
or Workflow Mining.

In the last decade, many different proposals have been developed for mining
process models from logs and for identifying deviations between logs and a given
predefined process model, the so-called “conformance checking” problem.

Traditional systems based on modeling languages as Petri nets [51, 50] or
Event-driven Process Chains (EPCs) [53] are sometimes too rigid because they
impose a strictly predefined execution flow to the business process. The man-
agement of dynamic processes in rapidly changing organizations generated the
need of different languages, more knowledge-based and declarative. Models in
these languages express only constraints on the process execution rather than
specifying the sequence (order) of tasks to be executed as paths in a net. Dec-
SerFlow [46], ConDec [40] and SCIFF [4, 3] are examples of such languages.

In particular, SCIFF (Society Constraint IF and only iF) adopts first-order
logic to represent the constraints. DPML (Declarative Process Model Learner)
[31] is a process mining technique for learning models expressed in a subset of
SCIFF. DPML discovers a set of declarative constraints from a set of traces
labeled as compliant or not. A compliant trace represents a correct course of
a process execution. Logic is an expressive knowledge representation formalism
which allows to cope with a variable number of entities as well as with the rela-
tionships that hold among them. However, logic manages only the complexity
of real world domains but not the uncertainty that often characterizes them.

The Probabilistic Inductive Logic Programming [17] and Statistical Rela-
tional Learning (SRL) [24] fields aim at overcoming this limitation of logic. A
multitude of different formalisms [27, 37, 12, 18, 43] combine probabilistic rea-
soning with logic, databases or Inductive Logic Programming (ILP) [38]. This
combination has been highly successful in a variety of fields where uncertain
relations hold among entities, from social networks analysis to entity resolution,
from collective classification to information extraction.

In this paper we propose a SRL approach to process mining and confor-
mance checking with two contributions: (1) a discovery procedure of process
models from event logs which integrates existing ILP and SRL techniques; (2)
probabilistic conformance analysis that, given a model and a new set of traces,
provides the probability that they are compliant to the model.

To realize the first goal, we start from the DPML algorithm [31] that induces

2

expressive logical business rules and then we turn them into probabilistic rules
using Markov Logic (ML) [43, 20]. Markov Logic is a SRL formalism which adds
a weight (real number) to each formula of a first-order knowledge base reflecting
“how strong” the constraint is. We propose to learn the weights of the induced
process rules by means of the Alchemy system, a suite of algorithms for Markov
Logic [29].

To realize the second contribution, we perform inference with Alchemy using
as inputs the weighted process model and a set of unclassified traces, to verify
their compliance in probabilistic terms. In this way it is possible to have a rank-
ing of traces on the basis of their probability, from the less probably compliant
to the more probably compliant ones.

We differ from traditional process mining research in the following aspects.
First, we perform mining from both compliant and non compliant traces, while
usually only compliant traces are used as input to the learning algorithm, see
e.g. [1, 47, 25]. Learning a model from both compliant and non compliant traces
is interesting if an organization has two or more sets of process executions and
wants to understand in what sense they differ: for example, a bank may divide
its transactions into fraudulent and normal ones and may desire to learn a model
that is able to discriminate the two. This is also particularly useful for the cases
under study in the paper. Moreover, in this way our approach is able to learn a
model which expresses not only what should be done, but also what is forbidden.

Second, important advantages come from adopting Logic Programming (LP).
A declarative representation of a process model shows in an intuitive and easily
readable way the constraints without sacrificing expressiveness. Thanks to the
LP representation, it is possible to consider structured atomic activities, taking
into account attributes of events to properly model complex objects of real world
domains, differently from Petri nets procedural language. As a consequence of
the LP representation, it is possible to exploit ILP techniques for learning mod-
els, given a background knowledge together with a set of positive and negative
examples. Examples represent compliant and non compliant execution traces
so both kinds of traces are needed in our logs.

Third, with Markov Logic we can take into account uncertainty related to
the fact that process models may be incomplete: all possible scenarios may not
be covered by the model; business processes are dynamic and the workflows may
change but the prescribed process models may not be updated accordingly.

The final aim of the paper is to demonstrate that, given a logical-probabilistic
process model and an unknown log, the probabilistic classifications made are
more accurate compared to non-probabilistic process models. Our approach is
compared with various process mining/classification algorithms based on pro-
cedural or logical languages, that output a sharp binary classification of traces
(compliant/non compliant). Our approach is illustrated by considering the Net-
Bill e-commerce protocol [5, 2], the health care process of cervical cancer screen-
ing proposed by the health authority of the Emilia Romagna Italian region and
the process of university students’ careers at the University of Ferrara.

The paper is organized as follows. In Section 2 we discuss the representation
of execution traces and process models using LP. Section 3 recalls the DPML

3

algorithm for mining logic models, while Section 4 illustrates how to make it
probabilistic under Markov Logic. Section 5 presents related work. Section 6
shows the experimental evaluation of the proposed approach on three datasets
and Section 7 concludes the paper.

2 Representing Process Traces with Logic

2.1 First-Order Logic

A first order alphabet Σ is a set of predicate symbols and function symbols (or
functors) together with their arity. A functor with arity 0 is called a constant.
A term is either a variable or a functor applied to a tuple of terms of length
equal to the arity of the functor. An atom A is a predicate symbol applied to
a tuple of terms of length equal to the arity of the predicate. A literal L is
either an atom A or its negation ¬A; in the latter case it is called a negative
literal. Here we use the LP convention of indicating predicates and constants
with alphanumeric strings starting with a lowercase character and variables with
alphanumeric strings starting with an uppercase character.

A clause C is a formula in the form

b1 ∧ . . . ∧ bn → h1 ∨ . . . ∨ hm (1)

where bi are logical literals and hi are logical atoms. We define Head(C) =
{h1, . . . , hm} and Body(C) = {b1, . . . , bn}. When n = 0 C is called a fact, when
m = 1 C is called a program clause. The conjunction of a set of literals is called
a query. A theory P is a set of clauses, a normal logic program B is a set of
program clauses, i.e., a set of of formulas of the form

b1, . . . , bn → h

where h is an atom and all the bis are literals. A normal logic program is range-
-restricted if all the variables appearing in the head of clauses also appear in
positive literals in the body.

A term, atom, literal, clause or query is ground if it does not contain vari-
ables. A substitution θ is an assignment of variables to terms: θ = {V1/t1, . . . ,
Vn/tn}. The application of a substitution to a term, atom, literal, query or
clause T , indicated with Tθ, is the replacement of the variables appearing in
T and in θ with the terms specified in θ. Tθ is called an instance of T . The
Herbrand universe HU (Σ) is the set of all the ground terms that can be built
with function symbols of Σ. The Herbrand base HB(Σ) is the set of all the
ground atoms that can be built with predicates of Σ and terms of HU (Σ). A
Herbrand interpretation over HB(Σ) (or just interpretation) is a set of ground
atoms, i.e. a subset of HB(Σ).

We now define the truth of a formula in an interpretation. Let I be an
interpretation and T a formula. T is true in I, written I |= T , if

• a ∈ I, if T is a ground atom a;

4

• a 6∈ I, if T is a ground negative literal ¬a;

• I |= a and I |= b, if T is a conjunction a ∧ b;

• I |= a or I |= b, if T is a disjunction a ∨ b;

• I |= φθ for all θ that assign a value to all the variables of X, if T = ∀X φ,
where X is the vector of all variables appearing in φ;

• I |= φθ for a θ that assigns a value to all the variables of X, if T = ∃X φ,
where X is the vector of all variables appearing in φ.

A clause C is true in an interpretation I iff, for all the substitutions θ grounding
C, (I |= Body(C)θ)→ (Head(C)θ ∩ I 6= ∅). Otherwise, it is false.

A theory P is true in an interpretation I iff all of its clauses are true in I
and we write I |= P . If P is true in I we say that I is a model of P . If at least
one clause of the theory is false in an interpretation I, the whole theory P is
false in I.

2.2 Process Traces

A trace t is a sequence of events. Each event is described by a number of
attributes. The only requirement is that one of the attributes describes the
event type. Other attributes may be the executor of the event or other specific
information. An example of a trace is 〈a, b, c〉 representing that a, b and c are
events executed in a sequence.

A process model H is a formula in a language for which an interpreter exists
that, when applied to a model H and a trace t, returns answer “yes” if the trace
is compliant with the description and “no” otherwise. In the first case we write
t |= H, in the second case t 6|= H. We will refer to compliant and non compliant
traces also as positive and negative traces. A bag of process traces L is called a
log. The aim of Process Mining is to infer a process model from a log.

A process trace can be represented as a logical interpretation: each event
is modeled with a ground atom whose predicate is the event type and whose
arguments store its attributes. Moreover, the atom contains an extra argument
indicating the position in the sequence or its execution time mapped to an inte-
ger. For example, the trace 〈a, b, c〉 can be represented with the interpretation
{a(1), b(2), c(3)} where 1, 2 and 3 represent the sequence position or the execu-
tion time. To represent a log in a file we enclose each interpretation in a block
beginning with begin(model(<id>)). and ending with end(model(<id>)).,
where <id> is a logical constant representing the trace’s unique identifier. All
facts in between the model delimiters describe events of the trace. Two extra
facts - pos/0 and neg/0 - are used within a trace to label it as positive or nega-
tive respectively. The closed world assumption holds, i.e. all the events except
for those appearing in the traces are false.

Besides the traces, we may have some general knowledge that is valid for all
traces. This information will be called background knowledge and we represent it
as a normal logic program B. Various semantics have been proposed for normal

5

logic programs, in this paper we consider Clark’s completion [11] that assigns
a program B a single interpretation M(B), its model. The rules of B allow
to complete the information present in a trace t, storing only once the rules
that are not specific to a single trace but are true for every trace. For example,
the background knowledge may contain clauses which define precedence and
succession relationships involving the position argument of the events. Rather
than simply t, we now consider M(B ∪ t) as the representation of a trace, i.e.
the model according to Clark’s completion of the program obtained by adding
to B the atoms of t as ground facts.

2.3 Process Models

The process language we consider is a subset of the declarative SCIFF language,
originally defined in [3, 4] for specifying and verifying interaction in open agent
societies.

A process model in our language is a set of Integrity Constraints (ICs). An
IC C is a logical formula of the form

Body → ∃ (ConjP1) ∨ . . . ∨ ∃ (ConjPn)
∨ ∀ ¬(ConjN1) ∨ . . . ∨ ∀ ¬(ConjNm)

(2)

where Body, ConjPi (i = 1, . . . , n) and ConjNj (j = 1, . . . ,m) are conjunctions
of literals built over event predicates or over predicates defined in the background
knowledge. In particular, Body is of the form b1 ∧ . . . ∧ bl where the bi are
literals; ConjPi is a formula of the form event(attr1, . . . , attrr) ∧ d1 ∧ . . . ∧ dk
where event/r is an event predicate and di are literals; ConjNj is also a formula
of the form event(attr1, . . . , attrr)∧d1∧ . . .∧dk. Literals dk are generally taken
from the background knowledge. Variables in the Body are implicitly universally
quantified with scope the entire formula; the quantifiers in the head apply to all
the variables not appearing in Body, so (2) is range-restricted.

We will use Body(C) to indicate Body and Head(C) to indicate the formula
∃(ConjP1)∨ . . .∨∃(ConjPn)∨∀¬(ConjN1)∨ . . .∨∀¬(ConjNm) and call them
respectively the body and the head of C.

Body(C), ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m will be sometimes
interpreted as sets of literals, the intended meaning will be clear from the con-
text. All the formulas ConjPj in Head(C) will be called P disjuncts and all
the formulas ConjNj in Head(C) will be called N disjuncts.

An example of IC is:

order(bob, alice, camera)→
(ship(alice, bob, camera), bill(alice, bob, 100)),
∨
∀V ¬bill(alice, bob, V)

(3)

The meaning of the IC (3) is the following: if bob ordered a camera to alice,
then alice must ship it and bill bob 100$, or alice must not bill bob any expense.

6

An IC C is true in an interpretation M(B ∪ t), written M(B ∪ t) |= C, if,
for every substitution θ for which Body(C) is true in M(B ∪ t), there exists a
disjunct in Head(C) that is true in M(B ∪ t). If M(B ∪ t) |= C we say that
the trace t is compliant with C; if M(B ∪ t) 6|= C we say that the trace t is not
compliant. A process model H is true in an interpretation M(B ∪ t) if every IC
of H is true in it and we write M(B ∪ t) |= H. We also say that the trace t is
compliant with H.

[16] showed that the truth of a range-restricted disjunctive clause of the
form (1) in an interpretation I with range-restricted background knowledge
B can be tested by asking the goal ? − Body(C),¬Head(C). against a Pro-
log database containing the atoms of I as facts together with the rules of the
normal program B. By ¬Head(C) we mean ¬h1, . . . ,¬hm. If the query fails
C is true in I, otherwise C is false in I. Similarly to clauses, the truth of
an IC C in an interpretation M(B ∪ t) can be tested by running the query
?−Body(C),¬ConjP1, . . . ,¬ConjPn, ConjN1, . . . , ConjNm.
against a Prolog database containing the clauses of B and the atoms of t as
facts. If B is range-restricted, every answer to an atomic query Q against B ∪ t
completely instantiates Q, i.e., it produces an element of M(B∪ t). If the query
finitely fails the IC is true in the interpretation. If the query succeeds, the IC
is false in the interpretation. Otherwise nothing can be said.

This language extends clausal logic by allowing more complex formulas as
disjuncts in the head of clauses. The ICs are more expressive than logical clauses,
as can be seen from the query used to test them: for ICs we have the negation
of conjunctions, while for clauses we have only the negation of atoms. This
added expressiveness is necessary for dealing with processes because it allows to
represent relationships between the execution times of two or more activities.

3 Learning Logical Integrity Constraints

Inductive Logic Programming (ILP) is a research field at the intersection of Ma-
chine Learning and Logic Programming. It is concerned with the development
of learning algorithms that adopt logic programming for representing the input
data and the induced models. The idea of exploiting ILP for declarative process
mining comes from the similarities between learning a SCIFF theory, composed
of a set of ICs, and learning a clausal theory as described in the learning from
interpretation setting of ILP [38].

In this section we introduce the technique for mining a process model as a set
of Integrity Constraints, as described in the previous section. To this purpose we
summarize the Declarative Process Model Learner (DPML) proposed in [31],
which takes as input a set of process execution traces, previously labeled as
compliant or not, and produces a set of ICs which correctly classifies them. In
particular, DPML solves the following problem:
Given

• a space of possible process models H

7

• a set I+ of positive traces

• a set I− of negative traces

• a normal logic program B (background knowledge)

Find: a process model H ∈ H such that

• for all t+ ∈ I+, M(B ∪ t+) |= H

• for all t− ∈ I−, M(B ∪ t−) 6|= H

H is a set of ICs C. If M(B ∪ t) |= C we say that C covers the trace t and if
M(B ∪ t) 6|= C we say that C rules out the trace t. The theory (process model)
composed of all the ICs must be such that all ICs are true when considering a
compliant trace and at least one IC is false when considering a non compliant
one.

The search space of ICs is defined by the language bias, that consists of a
set of IC templates specifying the body literals bi and the P/N head disjuncts
allowed in the construction of ICs. A refinement operator is used to explore the
search space according to the language bias and the notion of generality among
ICs [31].

DPML consists of two nested loops: a covering loop (main function) and
a generalization loop. In each iteration of the covering loop a new IC C is
added to the process model H. C rules out some negative interpretations from
the set I−, so the loop ends when I− is empty or when no IC is found by the
generalization loop.

The IC to be added in every iteration is returned by the generalization loop
that performs a beam search. The initial beam contains the most specific IC
false ← true (ruling out all the negative and positive traces). ICs in the beam
are gradually generalized by using the refinement operator. Each generated
refinement is evaluated with a heuristic function and is compared with the
heuristic value of the best IC found so far: if its value is higher, the best IC
is updated and this refinement is inserted in the beam. The heuristic function
is the precision of the IC, i.e., the number of negative traces ruled out by an
IC over the total number of traces (positive and negative) ruled out by it. The
initial most specific clause is assigned heuristic value 0. At the end of the
refinement cycle, when the beam is empty, the best IC found so far is returned
to the covering loop.

DPML looks for formulas that cover as many positive traces as possible and
rule out as many negative traces as possible, maximizing the accuracy ((true
positives+true negatives)/total traces) of the final theory. See [31] for the de-
tailed description of the language bias and the pseudo-code of the algorithm.

8

4 Learning Probabilistic Integrity Constraints

4.1 Markov Logic

A set of ICs can be seen as a “hard” first-order theory that constrains the set of
possible worlds: if a world violates even one formula, it is considered impossible.
In fact, the induced logical model classifies a trace t as compliant by testing each
IC on the trace and by returning compliant only if all ICs are true in M(B ∪ t);
if there is at least one IC that is false, non compliant is returned.

Markov Logic (ML) [43] is a language whose basic idea is to soften these
constraints, so that when a world violates one of them it is just less probable,
but not impossible. ML extends first-order logic by attaching weights to formu-
las. The weight associated with each formula reflects how strong the constraint
is: the higher the weight, the greater the difference in probability between a
world that satisfies the formula and one that does not, other things being equal.
This semantics derives from the fact that, in most domains, stating non-trivial
formulas that are always true is very difficult and these formulas capture only
a fraction of the relevant knowledge. ML adds the ability to soundly handle
uncertainty and tolerate contradictory knowledge. In the infinite-weight limit,
ML reduces to standard first-order logic.

Definition 1 (Markov logic network) A Markov logic network (MLN) L is
a set of pairs (Fi, wi), where Fi is a formula in first-order logic and wi is a real
number. Together with a finite set of constants C = {c1, c2, . . . , cm}, it defines
a Markov network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and
0 otherwise.

2. ML,C contains one feature (real-valued function) for each possible ground-
ing of each formula Fi in L. The value of this feature is 1 for a possible
world if the ground formula is true in it, and 0 otherwise. The weight of
the feature associated to Fi is wi.

A possible world x is an assignment of truth values to every ground atom.
The probability distribution specified by the ground Markov network ML,C over
possible worlds x is given by

P (x) =
1

Z
exp

(
F∑
i=1

wini(x)

)
(4)

where F is the number of formulas in the MLN, ni(x) is the number of true

groundings of Fi in x, Z is a partition function given by
∑

x exp
(∑F

i=1 wini(x)
)

that ensures that P (x) sums to one.
Some assumptions are made in ML: different constants refer to different

objects (unique names assumption), the only objects in the domain are those

9

representable using the constant and function symbols (domain closure assump-
tion) and for each function appearing in L, the value of that function applied to
every possible tuple of arguments is known and is an element of C (known func-
tions assumption). They ensure that the number of possible worlds is finite and
that the Markov logic network will give a well-defined probability distribution.

The system Alchemy1 contains both inference and learning algorithms for
MLNs.

4.2 Probabilistic Conformance Checking

Once a logical process model has been learned from a log by DPML, the log
and the integrity constraints are transformed into ML formulas to be given as
input to Alchemy.

The process traces I+ ∪ I− are converted as follows. Recall that the traces
were represented as logical interpretations in an input file to DPML so that each
trace was uniquely identified by its model’s id (see subsection 2.2); in order to
generate an equivalent log in Markov Logic, the trace delimiters
begin(model(<id>)) and end(model(<id>)) are removed and the model’s
<id> is added as an extra constant argument to all the ground atoms repre-
senting the events, so that a sequence of events belonging to the same trace
is distinguished from any other sequence of events. Moreover, a ground atom
neg(<id>) is added if <id> identified a negative interpretation, in order to pre-
serve the labeling of the original log. For instance, a negative interpretation of
the type:

begin(model(m1)).

event1(arg1,...,argN).

event2(arg1,...,argM).

...

neg.

end(model(m1)).

is translated in ML syntax into:

event1(arg1,...,argN,m1).

event2(arg1,...,argM,m1).

neg(m1).

The training and test logs in this format will represent the input (.db) files
to Alchemy.

Each IC of the form (2) is translated as follows:

Body′ ∧ ¬(ConjP ′1) ∧ . . . ∧ ¬(ConjP ′n)
∧(ConjN ′1) ∧ . . . ∧ (ConjN ′m)→ neg(T)

(5)

where the prime symbols are obtained by adding to each atom an extra argument
that is the variable T . In absence of disjuncts in the head, the IC Body → false

1http://alchemy.cs.washington.edu

10

reduces to Body′ → neg(T). The head of all formulas always contains only the
atom neg(T), while all disjuncts in the head are moved to the body.

For instance, the translation of IC (3) into a ML formula is:

order(bob, alice, camera, T) ∧
¬(ship(alice, bob, camera, T) ∧ bill(alice, bob, 100, T)) ∧
bill(alice, bob, V, T)→ neg(T)

An MLN equivalent to the process model returned by DPML is built by declaring
all the domain predicates with the types of their parameters, followed by the
translation of the ICs into ML formulas according to the ML syntax2. This will
represent the input (.mln) file to the learning algorithm of the Alchemy system.

Then, weights are learned for the MLN using the preconditioned rescaled
conjugate gradient discriminative weight learning algorithm of [32] that is im-
plemented in the Alchemy system. Both compliant and non compliant traces
are considered in order to better tune the weights. Discriminative learning can
be exploited when one knows a priori which atoms will be evidence and which
ones will be queried (atoms for neg/1), and the goal is to correctly predict the
latter given the former. After learning, a weighted MLN is returned.

Finally, given a set of unclassified process traces, i.e. a log where the ground
atoms neg(<id>) have been removed, the weighted MLN can be used to infer
the probability of neg(<id>), that is the probability that the trace identified
by the constant <id> is negative. To do this, we use a probabilistic inference
algorithm of Alchemy that outputs the marginal probabilities of each ground-
ing of the query predicates given the evidence. The most widely used methods
for approximate inference in Markov networks are Markov Chain Monte Carlo
(MCMC) or Belief Propagation; for the experiments we used one of the varia-
tions of MCMC, called MC-SAT [41].

5 Related Work

The idea of applying process mining to workflow management was proposed in
[1]. The authors described an approach for inducing a process representation
in the form of a directed graph encoding the precedence relationships. Starting
from this, in the last two decades dozens of new process discovery techniques
have been proposed, typically aiming at the induction of a conventional process
model (e.g., a Petri net or EPC) that represent the allowed sequences of events
as fixed and sometimes complex paths.

The α-algorithm of [51] performs workflow mining to find a WorkFlow net
(WF-net), a class of Petri nets specifically tailored towards the control-flow
dimension of a workflow. It examines causal relationships between tasks: for
example, one specific task might always precede another specific task in every
execution trace. An extension of the mining capacity of the α-algorithm to
the detection of “prime invisible tasks” from an event log has been proposed

2http://alchemy.cs.washington.edu/user-manual/manual.html

11

with the α# algorithm [58], which tries to identify dependencies between tasks
reflecting those used for routing purposes that exist only in a process model but
are not recorded in its event log.

The Heuristics Miner [56] closely follows the α-algorithm to address its limi-
tations and makes it much more effective in practice. It generates a Heuristic Net
as a result of three steps: dependency graph mining of causal relations among
the activities; for each activity, construction of the input and output expres-
sions; mining of “long distance” dependencies among activities. An heuristic
function is used to score the dependency relations found, based on the ‘directly
follows’ relation. The Multi-phase algorithm [52] builds instance graphs for
each process instance. Each instance graph is then converted into an instance
Event-driven Process Chain (EPC) describing the causal relations. An EPC is
an acyclic graph containing only AND-split and AND-joins connectors. The
Genetic algorithm of [15] uses a genetic search method for identifying the most
appropriate model out of the search space of candidate process models. Starting
from a population of individuals, each one is assigned a fitness measure to indi-
cate its quality: in this case, an individual is a possible process model and the
fitness is a function that evaluates how well the individual is able to reproduce
the behavior in the log. The internal representation of an individual is a causal
matrix that can be mapped onto Petri nets and EPCs. Other works focusing
on Petri-net representations are [57], where non-free-choice constructs are used,
and [44], where Colored Petri Nets are used.

All these algorithms mine the control-flow of a log, i.e., the dependencies
among its tasks, and are supported by corresponding “discovery” plug-ins in
the ProM open-source framework [49]3. This framework takes input logs in
the XES or MXML format and includes plug-ins for process mining, analysis,
monitoring and conversion.

Besides these approaches of a procedural nature, various proposals based on
declarative languages have appeared. Condec [40] expresses constraints between
tasks by means of Linear Temporal Logic (LTL) and a corresponding graphical
representation; a set of constraint templates defines various types of dependen-
cies for simplifying the creation of constraints. A “sister language” of Condec
is DecSerFlow [46], particularly targeted to the specification of service flows.
These languages are instances of DECLARE [39], a constraint-based framework
which facilitates the definition of different declarative languages. In [35] the
authors proposed an approach for the discovery of DECLARE models, which
is made more efficient in [33]. DECLARE is characterized by templates and
is based on an LTL semantics. The discovery of DECLARE models allows to
specify which kinds of templates the user is interested in, in order to extract
the properties that are most relevant for her. One difference between this tech-
nique and our approach is that process discovery using DPML is based on the
assumption that both compliant and non-compliant traces of execution are pro-
vided, while DECLARE is applied over positive only instances; moreover, the
business rules of DECLARE’s discovery algorithm are expressed as LTL rules

3http://www.promtools.org.

12

(similarly to ConDec), while we use logical formulas (ICs). The main similarity
is that both DECLARE and DPML rely on declarative languages; instead of
explicitly specifying the flow of the interactions among process events, they de-
scribe a set of constraints which must be satisfied - the first through existence,
relation, negative relation and choice templates, the second through a language
bias indicating the atoms for building the ICs.
SCIFF [4, 3] is a declarative language based, instead, on computational logic,

which models processes with Social Integrity Constraints as forward rules of the
form Body → Head, where Body can contain literals and happened events,
and Head contains a disjunction of conjunctions of expectations of events and
literals. ConDec/DecSerFlow can be translated into SCIFF and a subset of
SCIFF can be translated into ConDec/DecSerFlow [10].

In [31] the authors proposed both a language subset of SCIFF for describing
process models and the algorithm DPML for mining the integrity constraints.
Examples (process traces) are true and false interpretations of a target theory,
and the target theory is a set of clauses seen as constraints; DPML tries to find
the best theory that discriminates the two types of interpretations. In the ex-
periments it is compared with the new extended approach DPML+Alchemy.
Other works deal with learning integrity constraints, in particular [19, 16, 26],
but they are less expressive than our formalism.

Starting from an event log and an existing model (encoded as a Petri net)
that is not in line with the log, the authors of [34] apply a non-monotonic ILP
technique for learning minimal revisions to the model so that the revised Petri
net fits the logs. While it uses positive and negative examples as DPML, it
starts the search from the most general set of rules using a top-down abductive
learning system.

In [7] a framework for inducing first-order logical decision trees (FOLDT)
is presented. It works in the learning from interpretation setting as DPML.
A FOLDT is a binary decision tree in which the nodes contain a conjunction
of literals while each leaf represents a class label. Clauses can be derived from
logical decision trees, since each test on the path from root to leaf is a literal or
conjunction of literals that is part of the clause. The learned tree can directly
be used for classification of unseen examples: if a query associated with a leaf
succeeds (on the interpretation plus the background knowledge), the leaf indi-
cates the class of the example. The Tilde system [6], included in the ACE Data
Mining system, implements this framweork. We used Tilde in our experiments.
It is an upgrade of the decision tree learner C4.5 [42] towards relational data
mining.

Our paper extends the works [31, 30, 9] by including a probabilistic com-
ponent in the process model learnt by DPML. This allows to better model
domains where the relationships among events are uncertain. This is done by
employing the Markov Logic representation [43] for the constraints. This rep-
resentation aims at combining probability and first-order logic. The Alchemy
system can perform three basic SRL tasks according to the Markov Logic: in-
ference, weight learning and structure learning. The first involves inferring the
probability or the most likely state of query atoms given a database of evidence

13

ground atoms. The latter two involve learning the parameters or the structure
of a model given a training database consisting of logical ground atoms. In the
experiments we mine models from scratch by exploiting two structure learning
algorithms of MLNs. The first [28] takes a top-down approach, heuristically
searching the space of models using a statistical measure of the fit of the models
to the training data. The second, called BUSL, applies a bottom-up method
and uses the training data to directly construct promising structural changes or
additions to the model [36]. Our approach is compared with both algorithms.

Other works have considered process mining in a probabilistic context, start-
ing from the observation that real life logs are noisy and incomplete.

In [45] the authors discuss the mining of process models in the form of
AND/OR workflow graphs that are able to represent probabilistic information:
each event is considered as a binary random variable that indicates whether the
event happened or not and techniques from the field of Bayesian networks are
used to build a probability distribution over events. The paper presents a learn-
ing algorithm that induces a model by identifying the probabilistic relationships
among the events from data. It provides a probabilistic extension to traditional
graph-based models, while we extend declarative modeling languages by relying
on a first-order probabilistic language.

Against the assumption of working with ‘complete’ logs, [54] extends Petri
nets with a weight function that allows to compute the probability of a transition
to fire given a marking, and of a sequence of transitions (process trace) to fire.
A probability distribution Π over all the possible transition matrices for traces
and a probabilistic lower bound for a log to be complete are defined for three
subclasses of Petri nets. This bound implies that the model discovered from the
process log is an exact representation of the process that has generated that log.

In [55] the authors proposed to view a process as a distribution over traces
and to view mining algorithms in terms of their ability to learn such distribu-
tions; the framework, applied to the α-algorithm, allows to compute the proba-
bility of identifying the correct process from a given log of data. The approaches
[21, 54, 55] all deal with procedural model languages such as Petri nets, while we
focus on logic-based declarative languages, and are more concerned with com-
puting a probability associated with the log than a probability of the compliance
of traces.

6 Experiments

The experiments have been performed over two real datasets and one artificial
dataset. The real datasets regard a health care process and the careers of
students at the University of Ferrara, while the artificial dataset regards an
e-commerce protocol (NetBill). Statistics about the domains are reported in
Table 1. In particular, the number of traces with missing values provides an
indication of the log incompleteness and noise. While NetBill is complete, for
the other two the number of process traces containing at least one event with
at least one null argument is reported.

14

Table 1: Characteristics of the datasets for the experiments: number of positive
traces, number of negative traces, number of predicates, of constants, of folds,
number of traces with missing values.

Dataset Pos Tr Neg Tr Pred Const Folds Tr with missing values
NetBill 2000 2000 9 6 5 0
Screening 55 102 7 88 5 91
Students 304 472 13 899 5 430

Each logical predicate used to represent the activities in the logs has a num-
ber N of parameters which reflects the corresponding attributes of the activities
stored in the databases and is indicated with “/N” following the predicate name.

6.1 Logs

6.1.1 Cervical Cancer Screening

This log collects data about cervical cancer, a disease in which malignant cells
form in the tissues of the cervix of the uterus. Screening protocols are used to
early detect and treat cervical cancer. A screening protocol is usually composed
of five phases: planning, invitation, first level test with pap-test, second level
test with colposcopy and possibly biopsy.

The dataset records 157 traces from the database of an Italian cervical can-
cer screening center [8], each corresponding to a different female patient. The
traces have been analyzed by a domain expert and labeled as compliant or non
compliant with respect to the protocol adopted by the center. In other words,
positive traces represent patients who correctly followed the protocol and neg-
ative traces those who deviate from it. We want to determine whether the
protocol is respected by new unseen traces.

Every trace is transformed into an interpretation by using the activities
composing the screening process as predicates. The complete list of logical
predicates is the following:

• invitation/2, which stores the screening center inviting the patient and
the exam code;

• refusal/1, which stores the screening center and represents the case in
which the patient decides to reject the exam;

• exam execution/3, which stores the pap-test center where the exam is
executed, the exam code and type (pap-test, colposcopy or biopsy, the
latter two potentially executed if pap-test gives a positive result);

• sample shipping/3, which stores the medical laboratory where the sample
is sent, the exam code and type;

• result posting/4, which stores the screening center, the analysis result
(positive, negative, doubtful, inadequate), the exam code and type;

15

• neg notification/3 , storing the same arguments as exam execution and
indicating that a negative result is notified to the patient;

• pos notification/3 , corresponding to the previous one for the case of a
positive result.

An example of an interpretation for a patient, representing a positive process
trace, is the following:

begin(model(p1)).

invitation(center1,<exam_code>).

exam_execution(laboratory1,<exam_code>,paptest).

sample_shipping(laboratory2,<exam_code>,paptest).

result_posting(center1,negative,<exam_code>,paptest).

neg_notification(center1,<exam_code>,paptest).

pos.

end(model(p1)).

The example describes the invitation of a patient p1 to a pap-test, the collection
of a cellular sample, the shipment of the sample to the laboratory, the commu-
nication of the result to the screening center and, finally, its notification to the
patient.

Instead, an example of an interpretation for a patient, representing a negative
process trace, is:

begin(model(p2)).

invitation(center1,null).

neg.

end(model(p2)).

The example indicates that patient p2 did not answer the invitation to execute
the test, so she has broken the protocol.

This dataset contains missing information in 91 non compliant traces for the
exam code argument of the invitation/2 event.

6.1.2 NetBill

NetBill is a security and transaction protocol optimized for the selling and deliv-
ery of low-priced information goods, such as software or journal articles, across
the Internet [13]. The protocol involves three parties - the customer, the mer-
chant, the NetBill server - and is composed of two phases: negotiation and
transaction. In the negotiation phase, the customer requests a price for a good
from the merchant, the merchant proposes a price for it and the customer can
accept the offer, refuse it or make another request to the merchant, thus initi-
ating a new negotiation. The transaction phase starts if the customer accepts
the offer: the merchant delivers the good to the customer encrypted with key
K; the customer creates an electronic purchase order (EPO) that is counter-
signed by the merchant, who adds also the value of K and sends the EPO to the

16

NetBill server; the NetBill server checks the EPO and if the customer’s account
contains enough funds it transfers the amount to the merchant’s account and
sends a signed receipt that includes the value K to the merchant; the merchant
records the receipt and forwards it to the customer (who can then decrypt her
encrypted good).

The dataset collects 2000 positive traces and 2000 negative traces randomly
generated as follows. The length of the negotiation phase is selected randomly
between 2 and 5 and two possible values for the price quote are allowed. Next,
either an accept or a refuse message is added to the trace and the transaction
phase is entered with probability 4/5, otherwise the trace is closed. In the trans-
action phase, the messages deliver, epo, epo and key, receipt and receipt client
are added to the trace. With probability 1/4 a message from the whole trace is
then removed. As for the screening dataset, we want to establish whether the
protocol is respected on the basis of the phases executed.

Every trace is transformed into an interpretation by using the activities of
the two phases as logical predicates:

• for the negotiation phase, request/4 and present/4, storing the sender
(customer and merchant resp.), the receiver (merchant and customer resp.),
the good, the price quote;

• for the transaction phase, accept/4, refuse/4, deliver/4, epo/4,
epo and key/4, receipt/4, receipt client/4 storing the same 4 arguments
as the negotiation. In particular, the customer is the sender for the ac-
cept, refuse and EPO messages towards the merchant; the merchant is the
sender for the deliver and receipt client actions towards the customer; the
NetBill server intervenes in the epo and key and receipt messages, where
it is the receiver and the sender respectively towards the merchant.

An example of an interpretation for a transaction n1, representing a positive
process trace, is the following:

begin(model(n1)).

request(c,m,software,10).

present(m,c,software,10).

accept(c,m,software,10).

deliver(m,c,software,10).

epo(c,m,software,10).

epo_and_key(m,s,software,10).

receipt(s,m,software,10).

receipt_client(m,c,software,10).

pos.

end(model(n1)).

The example describes a request from the customer c to the merchant m for
the good software at price 10, and the merchant’s answer with the same price
(present message). This exchange constitutes the negotiation phase. The sub-
sequent transaction phase follows the description given above, where the NetBill
server is indicated as s.

17

An example of an interpretation for a transaction n2, representing a negative
process trace, is:

begin(model(n2)).

request(c,m,software,10).

present(m,c,software,10).

accept(c,m,software,10).

neg.

end(model(n2)).

This trace is closed after the accept message: the transaction phase is missing
so the protocol is not respected.

6.1.3 Students’ careers

This dataset collects data about the careers of students enrolled at the Faculty
of Engineering of the University of Ferrara from 2004 to 2009. Each career
records the main events such as all the chronological enrollments, the exams
taken and the career conclusion (degree or not). The dataset records 776 traces
each corresponding to a different student career. The careers of students who
graduated are positive traces (compliant) while those who did not finish their
studies are negative traces. We want to determine whether a student graduates
on the basis of her complete career.

Every trace is transformed into an interpretation by using the activities of
the university career as predicates. The complete list of logical predicates is the
following:

• student info/6 , which stores some personal and high school information
about a student, such as type, final mark and year of high school diploma
(h.s.d.), town and country of residence, the student’s identification num-
ber;

• registration/2, which stores the first enrollment (from high school) with
attributes academic year and course year (always 1);

• enrollmentN/3, with N = 1 . . . 9, which stores the enrollments for the
years following the first of registration (for N = 2 . . . 9) or the first en-
rollment (for N = 1) if the student had previously registered to another
faculty/university, with parameters academic year, course year (1,2,3),
student’s status (regular or not);

• exam/4, with parameters: exam code, mark (18-30), honours (yes/no)
and mark category (low, medium, high);

18

• career end/1, which stores the career conclusion as degree (positive traces)
or drop-out, not-renewed enrollment, transfer to another faculty, transfer
to another University (negative traces).

An example of an interpretation for a student’s career, representing a positive
process trace, is the following:

begin(model(s1)).

student_info(scientific h.s.d.,low,2003,rovigo,italy,117230399).

registration(2005, 1).

exam(015092, 30, no, high).

...<other exams>...

enrollment2(2006, 2, regular).

exam(006435, 25, no, medium).

...<other exams>...

enrollment3(2007, 3, regular).

exam(015606, 30, yes, high).

...<other exams>...

career_end(degree).

pos.

end(model(s1)).

The example describes an Italian student with identification number
‘117230399’ who got a scientific high school diploma in 2003 with a low final
mark; he enrolled at the faculty of Engineering in 2005 for the first time and
then for other two years as a regular student until the degree. Enrollments
alternate with all the exams.

Instead, an example of an interpretation for a student representing a negative
process trace, is:

begin(model(s2)).

student_info(technical h.s.d.,low,2006,bologna,italy,117229399).

registration(2005, 1).

exam(015092, 25, no, medium).

enrollment2(2006, 2, regular).

exam(000470, 18, no, low).

career_end(transfer).

neg.

end(model(s2)).

The example indicates that the student only completed the first year, enrolled in
the second one passing only two exams overall and finally transferred to another
faculty/university.

This dataset contains missing information in 439 exam events for the mark
and mark category arguments, distributed among 426 traces, and in 10
student info events for the high school category argument.

19

6.2 Methodology

The proposed approach for the probabilistic classification of process traces is
referred as DPML+Alchemy. It has been compared with (1) DPML, (2)
α-algorithm, α#-algorithm, Multi-phase Macro plug-in, Genetic algorithm and
Heuristics miner available in the ProM suite [49] (3) Tilde, included in the
ACE Data Mining System [6], (4) two structure learning algorithms of Markov
Logic Networks, the one embedded in the Alchemy package4 and BUSL5.

6.2.1 Process Mining Settings

Five experiments have been performed on all the logs with each of the algo-
rithms.

For the screening process, five-fold cross validation was used, i.e., the dataset
was divided into 5 sets and in each experiment 4 were used for training (pro-
cess model mining) and the remaining for testing (conformance checking). In
particular, each fold contains either 11 positive and 21 negative traces or 11
positive and 20 negative traces. For NetBill, the training and testing sets were
generated with the procedure sketched in subsection 6.1.2 with different seeds
for the random function for each experiment; all sets contain 2000 positive and
2000 negative traces. For the students’ careers, five-fold cross validation was
used, with each fold containing 60 or 61 positive and 94 or 95 negative traces.

DPML DPML derives several settings from ICL [19]. The maximum number
of literals in the head and in the body of a rule was set to 8; the minimal accuracy
(number of positive traces correctly classified plus the number of negative traces
correctly classified divided by the total number of traces) for each individual
rule was set to 0.75; the minimum coverage (the minimum number of negative
examples that a clause must rule out) was kept to the default value 1; the
maximum number of rules to be kept in the beam (beam size) was set to 10;
the number of clause refinement iterations was set to 50.

ProM mining plug-ins The ProM mining plug-ins were applied with their
default settings. In the training phase, since these algorithms take as input a
single set of traces, we provided them with the compliant traces only. The input
log is in MXML format6.

Tilde We used the most recent version of Tilde (3.0) included in the ACE
System 1.2.20.

Among the general settings which apply to all systems available in ACE, we
set:

4http://alchemy.cs.washington.edu/
5http://www.cs.utexas.edu/~ml/mlns/
6http://www.processmining.org/WorkflowLog.xsd

20

• classes([pos,neg]) to define the classes to be used for the classification
task (which is binary in our case);

• load(models), which tells ACE that data are in models format (the same
format used for the input traces to DPML, cf. subsections 6.1.1, 6.1.2,
6.1.3);

Among the settings specific for Tilde we set:

• sampling strategy(none), to use the whole training dataset when de-
ciding which test should be put in a node of the tree;

• minimal cases(2) for screening/NetBill and minimal cases(10) for stu-
dents, the minimal number of examples that a leaf of the tree should cover;

• output options([c45,prolog,roc01,likelihood]), to visualize, in ad-
dition to the default tree in a C4.5-like output format and the correspond-
ing Prolog program, the area under the ROC curve (AUCROC) and the
log-likelihood (LL) over the test set.

Alchemy and BUSL As regards weight learning on the ICs theories induced
by DPML, the learnwts executable available in Alchemy was used. Learning
may be generative or discriminative, according to whether the aim is to accu-
rately predict all or a specific predicate respectively. We applied discriminative
learning [32] with the following options: -i <input .mln file> -o <output

.mln file with weights> -t <training .db file> -ne Neg, with the -ne

option specifying the non-evidence predicate neg.

As regards structure learning of MLNs from the datasets, we applied:

1. the learnstruct executable available in Alchemy with the same specified
parameters as learnwts, plus the -startFromEmptyMLN option to start
structure learning from an empty MLN;

2. BUSL (busl executable) both with the same parameters as learnstruct
and with additional parameters. In all cases, it was not able to termi-
nate on all datasets in 72h, since it didn’t go beyond the construction of
conjunctions of literals that serve for creating clauses.

6.2.2 Conformance Testing

ProM mining plug-ins Compliance of the testing traces with respect to the
learned models (Petri nets or EPCs) has been evaluated by using the Confor-
mance checker ProM plug-in for the algorithms only available in ProM5.2 (α#,
Multi-phase Macro) and the Replay a log on petri net for conformance analysis
[48] for the other plug-ins available in ProM6.3, by providing them with the pos-
itive and the negative test traces in two consecutive stages. In this manner, by
considering the fitting and non-fitting traces to the process model, it is possible
to derive the four entries of the confusion matrix and, therefore, the average
accuracy as (true positives+true negatives)/total traces.

21

Tilde We performed the training and testing phases jointly, by exploiting
the leave_one_out_from_list(tilde,<list>) command in each of the five
experiments. This command allows to provide Tilde with the training and
testing process traces together, since the latter are identified by the additional
predicate testid(c), whose constant c has to be specified in the <list> argument
of the command. From the specified output settings (cf. subsection 6.2.1)
we obtained directly the average accuracy and log-likelihood on the test log,
and the AUCROC. From the ROC points available in output we computed the
corresponding PR points and the AUCPR.

DPML, DPML+Alchemy, MLNs structure learning Probabilistic in-
ference from the weighted models learned by DPML+Alchemy and
learnstruct was performed with the infer executable by specifying the MC-
SAT algorithm (option -ms), the weighted MLN as input model (option -i),
the test set (.db file with the option -e) and Neg as query atom (option -q).
We used MC-SAT because it greatly outperforms Gibbs sampling and simulated
tempering when deterministic dependencies (formulas) are present [41]. This is
particularly useful for performing inference from a “hard” theory such as that
learned by DPML alone. In fact, to evaluate DPML through the same infer-
ence procedure as DPML+Alchemy, we translated the learned ICs theories
into MLNs whose formulas are terminated by a period [29], to mean that they
are “hard” constraints, or equivalently, have infinite weight. An infinite-weight
MLN corresponds to a first-order theory. In this manner we could handle a
purely logical theory with Alchemy’s tools.

With MC-SAT we compute the marginal probabilities of being compliant for
each test trace representing a patient for the screening log, a transaction for the
NetBill log or a student at the University of Ferrara for the students’ careers
log. From the probability estimates we computed the average accuracy and the
average Area Under the Precision Recall curve and ROC curve (AUCPR and
AUCROC respectively) using the methods reported in [14, 22]. Accuracy is
computed as the average of the greatest accuracies over the folds. As in [22],
which generates a stack of ROC points from the probabilistic estimates for the
traces, we create a list of accuracy values every time TP and FP are updated
and at the end we pick the greatest value from this list.

Tables 2, 3 and 4 show the accuracies, AUCPR and AUCROC, log-likelihood
(LL) over the test set averaged over the folds for all algorithms and datasets.
Table 5 shows the average execution times for all algorithms except the ProM
plug-ins, since the time is always less than 1 minute. Tables 6, 7 and 8 show
the p-value of a paired two-tailed t-test at the 5% significance level of the
difference in: (1) AUCPR and AUCROC between DPML+Alchemy and
DPML/Tilde/learnstruct, (2) average accuracy between DPML+Alchemy
and all the other algorithms (significant differences in favor of DPML+Alchemy

in bold).

22

6.2.3 Results on Cervical Cancer Screening

ProM mining plug-ins All the algorithms are able to accurately capture
the screening protocol, as confirmed by high values of accuracy in Table 2. As
an example, we show the net learned by one of the algorithms with the highest
accuracy, the Heuristics miner, in Fig. 1.

DPML For inducing the process model we specified a language bias which
allowed all the predicates listed in subsection 6.1.1 as body literals and as head
disjuncts:

• one atom for every value of the exam type parameter for the
exam execution, sample shipping, neg notification, pos notification
predicates;

• one atom for every combination of values of result and exam type for the
result posting predicate;

• unground atoms for the invitation and refusal predicates (we are inter-
ested only in the events themselves).

The five ICs theories learned contain 3 or 4 rules. An example from the first
fold is:

true → ∃A,B exam execution(A,B,paptest) ∨ ∃C refusal(C).

result posting(A,positive,B,paptest) →
∃C,D exam execution(C,D,colposcopy).

result posting(A,doubtful,B,colposcopy) →
∃C,D exam execution(C,D,biopsy).

The first IC states that there must be a pap-test execution or a refusal; the sec-
ond one that if there is a positive pap test then there must be also a colposcopy;
the third one that if there is a doubtful colposcopy then there must be also a
biopsy.

Tilde The logical decision trees induced by Tilde in the five experiments
show low complexity, ranging from 1 to 4 nodes; the equivalent Prolog programs
range from 2 to 5 clauses, similarly to the DPML theories. An example of Prolog
program equivalent to the tree learned from the first fold is:

class([pos]) :- exam execution(A,B,C),

neg notification(D,E,biopsy),

pos notification(F,G),!.

class([neg]) :- exam execution(A,B,C),

neg notification(D,E,biopsy),!.

class([pos]) :- exam execution(A,B,C),!.

class([neg]).

The predicates used differ from those of DPML, such as neg notification and
pos notification.

23

Figure 1: Heuristic net learned by the Heuristics miner on the first fold of the
cervical cancer screening log.

24

Figure 2: Petri net learned by the α# miner on the first fold of the NetBill log.

DPML+Alchemy By applying weight learning with Alchemy on the DPML
model we get (T is the variable identifying a trace):

0.00157 ¬exam execution(A,B,papTest,T) ∧ ¬refusal(C,T)
→ neg(T)

0.00127 result posting(A,positive,B,papTest,T) ∧
¬exam execution(C,D,colposcopy,T) → neg(T)

0.00005 result posting(A,doubtful,B,colposcopy,T) ∧
¬exam execution(C,D,biopsy,T) → neg(T)

MLNs structure learning We were able to learn MLNs with the
learnstruct executable containing 2 or 3 formulas, while BUSL was not able
to terminate. An example of MLN learned from the first fold is:

3.7824 exam execution(A,B,C,T) ∧
neg notification(D,B,paptest,T) → ¬neg(T)

6.2.4 Results on NetBill

ProM mining plug-ins Several algorithms are not able to correctly model
the negotiation phase in the sequence of the request and present events: present
is the merchant’s proposal of a price for the good previously requested by the
customer. There may occur various combinations of these two events: multiple
requests of goods followed by only one or by more proposals, or multiple requests
alternated with the corresponding proposals. In particular, the α-algorithm does
not link the two activities, the Heuristics miner does not capture the possible
alternation of the activities, the Genetic algorithm the possible repetition of
the requests, the Multi-phase macro considers them as possible parallel starting
activities. Only the α#-algorithm correctly models the process, as confirmed
by its much higher accuracy than the others (cf. Table 3). As an example, we
show the Petri net learned by this algorithm in Fig. 2.

DPML For inducing the process model by means of DPML, we specified
a language bias which allowed all the predicates of the domain both as body
literals and as head disjuncts, for every value of the price quote parameter.

25

The five ICs theories learned contain 10 to 13 rules. An extract from the
first fold is:

request(A,B,C,D) → ∃E,F,G,H present(E,F,G,H).

present(A,B,C,20) → ∃D,E,F,G ¬accept(D,E,F,G).
accept(A,B,C,D) → ∃E,F,G,H deliver(E,F,G,H).

epo_and_key(A,B,C,D) → ∃E,F,G,H accept(E,F,G,H).

The first IC states that if there is a request (from the customer) then there must
be an offer (from the merchant); the second one that if there is an offer at price
20, the offer is not accepted; the third one that if the customer has accepted
the offer then the good will be delivered; the fourth one that if there is an EPO
with key message, the offer must have been accepted.

Tilde The logical decision trees induced by Tilde in the five experiments
all have 10 nodes and the equivalent Prolog programs 11 clauses, similarly to
DPML. The initial equivalent Prolog program from the first fold is:

class([pos]) :- present(A,B,C,D),request(E,F,G,H),receipt(I,J,K,L),

accept(M,N,O,P),receipt_client(Q,R,S,T),deliver(U,V,W,X),epo(Y,Z,A1,B1),

epo_and_key(C1,D1,E1,F1), !.

class([neg]) :- present(A,B,C,D),request(E,F,G,H),receipt(I,J,K,L),

accept(M,N,O,P),receipt_client(Q,R,S,T),deliver(U,V,W,X),

epo(Y,Z,A1,B1),!.

class([neg]) :- present(A,B,C,D),request(E,F,G,H),receipt(I,J,K,L),

accept(M,N,O,P),receipt_client(Q,R,S,T),deliver(U,V,W,X), !.

....

As can be seen, the number of body literals in the clauses is much greater than
that of DPML clauses in this dataset.

DPML+Alchemy By applying weight learning with Alchemy on the DPML
model we get for the first 4 rules (T is the variable identifying a trace):

0.168 request(A,B,C,D,T) ∧ ¬present(E,F,G,H,T) → neg(T)

0 present(A,B,C,20,T) ∧ accept(D,E,F,G,T) → neg(T)

-1.316 accept(A,B,C,D,T) ∧ ¬deliver(E,F,G,H,T) → neg(T)

2.683 epo_and_key(A,B,C,D,T) ∧ ¬accept(E,F,G,H,T) → neg(T)

MLNs structure learning We were able to learn MLNs, with the
learnstruct executable, containing 1-2 formulas, which however in three folds
out of five are not significant since only the single fact neg is present. BUSL
did not terminate.
The most significant MLN learned by learnstruct is:

7.02366 ¬accept(A,B,C,D,T) ∧ deliver(B,A,C,D,T) → neg(T)

26

6.2.5 Results on Students’ Careers

ProM mining plug-ins None of the algorithms is able to correctly capture
the alternation among the registration, enrollmentN and exam events: mul-
tiple exams are taken after the registration and each enrollment. The models
learned either allow the repetition of the exam event but at the end of the chain
of enrollments before the career end (α# and Heuristics miners) or are not able
to represent correctly the order of enrollments (Genetic miner) or the exam
event is in parallel with the chain of the remaining events (Multi-phase Macro).

DPML For inducing the process model we specified a language bias which
allowed the following two templates:

• one atom for every value of the honors parameter for the exam predicate
as body literal; unground atoms for the registration and enrollment1
predicates as head disjunct;

• one atom for every value of the academic year parameter for the
registration predicate as body literal; one atom for every value of aca-
demic year, course year, student’s status and for every value of the couple
course year+student’s status for the enrollmentN predicate as body lit-
eral; one atom for every value of town and country of residence for the
student info predicate as head disjunct.

The five ICs theories learned contain 21-23 rules. An example from the first
fold is:

true → ∃A ¬enrollment8(A,3,non-regular).
student info(A,B,vicenza,D,E,I) → false.

true → ∃A ¬registration(2005,A) ∨ ∃B,C ¬enrollment4(B,C,non-regular).

The first IC states that students at the eighth enrollment for the third year
as non-regular students didn’t graduate; the second one that students living
in the province of Vicenza didn’t graduate; the third one that careers with a
registration in 2005 and a fourth enrollment as a non-regular student were not
successful.

Tilde The logical decision trees induced by Tilde over the five folds are con-
stituted by 2 or 3 nodes and an equivalent Prolog program is for example:

class([neg]) :- registration(2007,A),!.

class([neg]) :- enrollment6(2009,A,B),!.

class([pos]) :- enrollment3(A,3,B),!.

class([neg]).

As can be seen, DPML is able to learn more and more complex rules.

27

Table 2: Results of the experiments in terms of Area Under the PR and ROC
Curves, accuracy and log-likelihood (LL) over the test set, averaged over the
folds, for the Cervical Cancer Screening dataset. Enclosed by dashed lines the
ProM plug-ins. ‘-’ for BUSL means the algorithm did not terminate, for the
other systems means the measure is not available. In bold the highest value in
each column.

System AUCROC AUCPR Accuracy LL

α-algorithm - - 0.961 -
α#-algorithm - - 0.949 -
Multi-phase macro - - 0.949 -
Genetic algorithm - - 0.961 -
Heuristics miner - - 0.961 -
DPML 0.237 0.338 0.65 -227.311
Tilde 0.778 0.869 0.910 -7.919
DPML+Alchemy 0.949 0.824 0.949 -27.842
learnstruct 0.922 0.817 0.936 -61.252
BUSL - - -

DPML+Alchemy By applying weight learning with Alchemy on the previ-
ous DPML model we obtained:

3.4202 enrollment8(A,3,non-regular,T) → neg(T)

2.0626 student_info(A,B,vicenza,D,E,I,T) → neg(T)

1.7450 registration(2005,A,T) ∧ enrollment4(B,C,non-regular,T) →neg(T)

MLNs structure learning Neither learnstruct nor BUSL were able to
terminate due to a memory error during the execution.

6.2.6 Comments

The results in Tables 2, 3 and 4 show that DPML+Alchemy obtains the
highest AUCROC on the screening log and the highest AUCROC/
AUCPR/accuracy on the Netbill and Students logs. For the screening log, the
difference in AUCPR between DPML+Alchemy and Tilde, the algorithm
getting the highest value, is not statistically significant, as well as the accuracy
differences between DPML+Alchemy and the ProM plug-ins. For the other
logs, all the differences are statistically significant in favor of DPML+Alchemy
except two or three. On the whole, the differences between DPML+Alchemy
and the other systems are statistically significant in its favor in 24 out of 39
cases at the 5% significance level.

The ILP learning algorithm DPML is able to learn more significant clauses
with respect to the Markov Logic structure learning algorithm learnstruct,

28

Table 3: Results of the experiments in terms of Area Under the PR and ROC
Curves, accuracy and log-likelihood (LL) over the test set, averaged over the
folds, for the NetBill dataset. Enclosed by dashed lines the ProM plug-ins. ‘-’
for BUSL means the algorithm did not terminate, for the other systems means
the measure is not available. In bold the highest value in each column.

System AUCROC AUCPR Accuracy LL

α−algorithm - - 0.668 -
α#-algorithm - - 0.909 -
Multi-phase macro - - 0.605 -
Genetic algorithm - - 0.5 -
Heuristics miner - - 0.5 -
DPML 0.5 0.5 0.5 -39613.950
Tilde 0.873 0.836 0.846 -2010.395
DPML+Alchemy 0.929 0.866 0.913 -10214.018
learnstruct 0.634 0.599 0.636 -5662.788
BUSL - - -

Table 4: Results of the experiments in terms of Area Under the PR and ROC
Curves, accuracy and log-likelihood (LL) over the test set, averaged over the
folds, for the Students’ Careers dataset. Enclosed by dashed lines the ProM
plug-ins. ‘-’ means the algorithm did not terminate, for the other systems
means the measure is not available. In bold the highest value in each column.

System AUCROC AUCPR Accuracy LL

α−algorithm - - 0.607 -
α#-algorithm - - 0.607 -
Multi-phase macro - - 0.607 -
Genetic algorithm - - 0.677 -
Heuristics miner - - 0.607 -
DPML 0.5 0.392 0.608 -1537.021
Tilde 0.701 0.594 0.718 -inf
DPML+Alchemy 0.791 0.639 0.732 -215.100
learnstruct - - -
BUSL - - -

29

Table 5: Execution time in minutes of the experiments; each value is the average
over the folds. The single steps for each system (mining+inference on the model)
are shown, together with the average total time.

System Screening NetBill Students
DPML 2.30 539.66 4.38
Inference 0.03 1.57 0.53
Total 2.33 541.23 4.91
DPML 2.30 539.66 4.38
Weight learning 2.69 2.13 0.02
Inference 0.06 1.63 0.0048
Total DPML+Alch 5.05 543.42 4.405
Tilde 2e-4 0.012 0.0039
learnstruct 2.290 1.77 -
Inference 0.001 0.60 -
Total 2.291 2.37 -
BUSL - - -

Table 6: Results of t-test relative to AUCPR, AUCROC and accuracy for the
Cervical Cancer Screening dataset. p is the p-value of a paired two-tailed t-test
between DPML+Alchemy and the other systems (significant differences in fa-
vor of DPML+Alchemy at the 5% level in bold). D+A is DPML+Alchemy,
lstruct is learnstruct.

System Couple AUCROC AUCPR Accuracy
D+A-DPML 0.001 0.002 5.26e-5
D+A-lstruct 0.296 0.799 0.46
D+A-Tilde 0.977 0.433 0.033
D+A-α-alg. - - 0.59
D+A-α#-alg. - - 0.99
D+A-Multi Phase - - 0.99
D+A-Genetic - - 0.59
D+A-Heuristics - - 0.59

30

Table 7: Results of t-test relative to AUCPR, AUCROC and accuracy for
the NetBill dataset. p is the p-value of a paired two-tailed t-test between
DPML+Alchemy and the other systems (significant differences in favor of
DPML+Alchemy at the 5% level in bold). D+A is DPML+Alchemy,
lstruct is learnstruct.

System Couple AUCROC AUCPR Accuracy
D+A-DPML 4.60e-6 5.72e-5 0.036
D+A-lstruct 0.014 0.006 0.017
D+A-Tilde 0.011 0.179 0.004
D+A-α-alg. - - 3.35e-5
D+A-α#-alg. - - 0.8
D+A-Multi Phase - - 1.28e-4
D+A-Genetic - - 3.61e-6
D+A-Heuristics - - 3.61e-6

Table 8: Results of t-test relative to AUCPR, AUCROC and accuracy for the
Students’ Careers dataset. p is the p-value of a paired two-tailed t-test between
DPML+Alchemy and the other systems (significant differences in favor of
DPML+Alchemy at the 5% level in bold). D+A is DPML+Alchemy.

System Couple AUCROC AUCPR Accuracy
D+A-DPML 5.91e-6 9.10e-5 3.19e-4
D+A-Tilde 0.044 0.184 0.576
D+A-α-alg. - - 3.20e-4
D+A-α#-alg. - - 3.20e-4
D+A-Multi Phase - - 3.20e-4
D+A-Genetic - - 0.349
D+A-Heuristics - - 3.20e-4

31

especially for NetBill where the latter performs poorly. This results in DPML+-
Alchemy performing better in almost all cases. The other ML-based algorithm,
BUSL, is never able to complete structure learning.

Among the ILP-based learning algorithms, Tilde performs better than the
logical approach DPML, but worse than the probabilistic one DPML+Alchemy
on the NetBill and students logs, with a statistically significant difference in 3
cases out of 6; on the screening log Tilde performs better in AUCPR but the
difference is not statistically significant.

The ProM plug-ins show equal or greater accuracy on the screening pro-
cess, but quite low on the NetBill and Students processes (cf. Sections 6.2.4
and 6.2.5), where they do not completely capture the repetition of couples of
alternated activities, while DPML is able to find constraints on these kinds of
events.

Table 5 shows that DPML+Alchemy requires longer times due to its dif-
ferent phases, in particular on the NetBill process where the mining of the model
by DPML takes several hours. This log has a much greater size than the Cer-
vical Cancer Screening log both in the number of traces and in the number of
events per trace, especially for the negative traces: in the screening log most
negative traces are such because patients did not answer the invitation to pap
test, which therefore is the only recorded event, while in the NetBill log neg-
ative traces may have more events than the positive ones, due to the random
generation of events used to build this dataset. DPML and DPML+Alchemy
have comparable times on the Students and Screening logs in spite of the larger
number of traces and constants of the former, since the language bias templates
only specify partial instantiation of the atoms for the ICs (according to which
arguments we are interested in, cf. Section 6.2.5).

We demonstrated that a probabilistic approach at conformance checking
achieves better results than a sharp approach realized by purely logical or proce-
dural process mining techniques. In this paper we have considered classification
problems with two classes (binary decision problems). A discrete classifier - the
ProM plug-ins, DPML and Tilde - outputs only a class decision, i.e., a Yes or
No on each instance, representing the predicted positive or negative class. A
probabilistic classifier - the approaches using inference in Markov Logic - in-
stead yields a probability, a numeric value that represents the degree to which
an instance is a member of the positive class. DPML+Alchemy, in particular,
outputs the probability that each test set example is negative so that one can
sort the examples in ascending order from the least negative ones (which are
more likely to belong to the positive class - to be compliant to the model) to
the most negative ones (which are more likely to belong to the negative class -
to be non compliant). These probabilities give an indication of how likely it is
that the class label neg applies.

In addition, DPML+Alchemy better performance w.r.t. SRL structure
learning algorithms (learnstruct and BUSL) indicates that the combination of
ILP and SRL techniques is a key point of the proposed approach.

32

7 Conclusions

We proposed a methodology, based on Statistical Relational Learning, for an-
alyzing a log containing process traces labeled as compliant or non-compliant.
From them we learn a set of declarative logical constraints with the DPML al-
gorithm of [31] and subsequently we represent them in Markov Logic, a proba-
bilistic logical language, in order to perform probabilistic conformance checking
of new traces. In this way we get a ranking from the less compliant to the
most compliant traces with respect to the induced model. We evaluated the
performance of this technique (DPML+Alchemy) over three processes: an e-
commerce protocol, a cervical cancer screening protocol and a log of university
students’ careers, and compared it with DPML alone, five procedural process
mining algorithms of the ProM framework and Tilde, in terms of accuracy, areas
under the PR and ROC curves and execution time. The probabilistic classifica-
tions made by DPML+Alchemy resulted more accurate than those performed
by the other non probabilistic systems.

References

[1] R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models
from workflow logs. In Proceedings of the 6th International Conference
on Extending Database Technology (EDBT 1998), pages 469–483, Valen-
cia, Spain, 23-27 March 1998. Springer, Berlin Heidelberg.

[2] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Tor-
roni. On the automatic verification of interaction protocols using g-SCIFF.
Technical Report DEIS-LIA-04-004, LIA Series no. 72, DEIS-University of
Bologna, Bologna, Italy, 2005.

[3] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni.
Verifiable agent interaction in abductive logic programming: The SCIFF
framework. ACM Transactions on Computational Logic, 9(4):1–43, 2008.

[4] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. An abduc-
tive interpretation for open societies. In Proceedings of the 8th Congress
of the Italian Association for Artificial Intelligence (AI*IA 2003), pages
287–299, Pisa, Italy, 23-26 September 2003. Springer-Verlag, Berlin.

[5] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specifica-
tion and verification of agent interaction using social integrity constraints.
Electronic Notes in Theoretical Computer Science, 85(2):94 – 116, 2004.

[6] H. Blockeel, L. Dehaspe, J. Ramon, J. Struyf, A. van Assche, C. Vens,
and D. Fierens. The ACE Datamining System, User’s Manual. https:

//dtai.cs.kuleuven.be/ACE/doc/ACEuser-1.2.16.pdf.

[7] H. Blockeel and L. De Raedt. Top-down induction of first-order logical
decision trees. Artificial Intelligence, 101(1-2):285–297, 1998.

33

[8] Cervical cancer screening web site. http://www.cancer.gov/

cancertopics/pdq/screening/cervical/healthprofessional.

[9] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari.
Exploiting inductive logic programming techniques for declarative process
mining. LNCS Transactions on Petri Nets and Other Models of Concur-
rency (ToPNoC), 5460:278–295, 2009.

[10] F. Chesani, P. Mello, M. Montali, and S. Storari. Towards a DecSer-
Flow declarative semantics based on computational logic. Technical Report
DEIS-LIA-07-002, LIA Series no. 79, DEIS-University of Bologna, Bologna,
Italy, 2007.

[11] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,
Logic and Databases. Plenum Press, New York, USA, 1978.

[12] V. S. Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint
logic programming for probabilistic knowledge. In Proceedings of the 19th
Conference on Uncertainty in Artificial Intelligence (UAI 2003), pages 517–
524, Acapulco, Mexico, 7-10 August 2003. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[13] B. Cox, J.C. Tygar, and M. Sirbu. NetBill security and transaction pro-
tocol. In Proceedings of the First USENIX Workshop on Electronic Com-
merce (WOEC 1995), pages 77–88, New York, NY, USA, 11-12 July 1995.
USENIX Association, Berkeley, CA, USA.

[14] J. Davis and M. Goadrich. The relationship between Precision-Recall and
ROC curves. In Machine Learning, Proceedings of the 23rd International
Conference (ICML 2006), pages 233–240, Pittsburgh, Pennsylvania, USA,
25-29 June 2006. ACM, New York, NY, USA.

[15] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst.
Genetic process mining: an experimental evaluation. Data Mining and
Knowledge Discovery, 14:245–304, 2007.

[16] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26(2-
3):99–146, 1997.

[17] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors. Proba-
bilistic Inductive Logic Programming - Theory and Applications. Springer,
Berlin Heidelberg, 2008.

[18] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog
and its application in link discovery. In Proceedings of 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), pages 2462–2467,
Hyderabad, India, 6-12 January 2007. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

34

[19] L. De Raedt and W. van Laer. Inductive constraint logic. In Proceedings
of the 6th Conference on Algorithmic Learning Theory (ALT 1995), pages
80–94, Fukuoka, Japan, 18-20 October 1995. Springer, Berlin Heidelberg.

[20] P. Domingos, S. Kok, D. Lowd, H. Poon, M. Richardson, and P. Singla.
Markov logic. In Luc De Raedt, Paolo Frasconi, Kristian Kersting, and
Stephen Muggleton, editors, Probabilistic Inductive Logic Programming.
Springer, Berlin Heidelberg, 2008.

[21] R. Z. Farkhady and S. H. Aali. A probabilistic approach for process mining
in incomplete and noisy logs. In Proceedings of the International MultiCon-
ference on Engineers and Computer Scientists (IMECS 2011), volume 1,
pages 415–421, Hong Kong, China, 16-18 March 2011. Newswood Limited,
Hong Kong.

[22] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters
- Special issue: ROC analysis in pattern recognition, 27(8):861–874, 2006.

[23] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An overview of work-
flow management: From process modeling to workflow automation infras-
tructure. Distributed and Parallel Databases, 3(2):119–153, 1995.

[24] L. Getoor and B. Taskar, editors. Introduction to Statistical Relational
Learning. MIT Press, Cambridge, MA, USA, 2007.

[25] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive
process models by clustering log traces. IEEE Transactions on Knowledge
and Data Engineering, 18(8):1010–1027, 2006.

[26] A. Jorge and P. Brazdil. Integrity Constraints in ILP using a Monte Carlo
approach. In Proceedings of the 6th International Workshop on Induc-
tive Logic Programming, pages 229–244, Stockholm, Sweden, 26-28 August
1996. Springer, Berlin Heidelberg.

[27] K. Kersting and L. De Raedt. Towards combining inductive logic program-
ming with bayesian networks. In Proceedings of the 11th International Con-
ference on Inductive Logic Programming (ILP 2001), pages 118–131, Wind-
sor Great Park, United Kingdom, 31st July - 3rd August 2001. Springer,
Berling Heidelberg.

[28] S. Kok and P. Domingos. Learning the structure of markov logic networks.
In Proceedings of the International Conference on Machine Learning and
Applications (ICMLA 2005), pages 441–448, Los Angeles, California, 15-17
December 2005. ACM, New York, NY, USA.

[29] S. Kok, P. Singla, M. Richardson, P. Domingos, M. Sumner, H. Poon,
D. Lowd, J. Wang, and A. Nath. The Alchemy System for Statisti-
cal Relational AI: User Manual. http://alchemy.cs.washington.edu/

user-manual/manual.html.

35

[30] E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. Inducing
declarative logic-based models from labeled traces. In Proceedings of the 5th
International Conference on Business Process Management (BPM 2007),
pages 344–359, Brisbane, Australia, 24-28 September 2007. Springer, Berlin
Heidelberg.

[31] E. Lamma, P. Mello, F. Riguzzi, and S. Storari. Applying inductive logic
programming to process mining. In Proceedings of the 17th International
Conference on Inductive Logic Programming (ILP 2007), pages 132–146,
Corvallis, OR, USA, 19-21 June 2008. Springer, Berlin Heidelberg.

[32] D. Lowd and P. Domingos. Efficient weight learning for Markov Logic Net-
works. In Proceedings of the 11th European Conference on Principles and
Practice of Knowledge Discovery in Databases, pages 200–211. Springer-
Verlag, 2007.

[33] F. M. Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der Aalst.
Efficient discovery of understandable declarative process models from event
logs. In Proceedings of the 24th International Conference on Advanced
Information Systems Engineering (CAiSE 2012), pages 270–285, Gdańsk,
Poland, 25-29 June 2012. Springer, Berlin Heidelberg.

[34] F. M. Maggi, D. Corapi, A. Russo, E. Lupu, and G. Visaggio. Revising pro-
cess models through inductive learning. In Business Process Management
Workshops - BPM 2010 International Workshops and Education Track, Re-
vised Selected Papers, pages 182–193, Hoboken, NJ, USA, 13-15 September
2010. Springer, Berlin Heidelberg.

[35] F. M. Maggi, A. J. Mooij, and Wil M. P. van der Aalst. User-guided discov-
ery of declarative process models. In Proceedings of the IEEE Symposium
on Computational Intelligence and Data Mining (CIDM 2011), pages 192–
199, Paris, France, 11-15 April 2011. IEEE.

[36] L. Mihalkova and R. J. Mooney. Bottom-up learning of Markov Logic
Network structure. In Machine Learning, Proceedings of the 24th Interna-
tional Conference (ICML 2007), pages 625–632, Corvallis, Oregon, USA,
20-24 June 2007. ACM, New York, NY, USA.

[37] S. Muggleton. Learning structure and parameters of stochastic logic pro-
grams. In Proceedings of the 12th International Conference on Inductive
Logic Programming (ILP 2002), pages 198–206, Sydney, Australia, 9-11
July 2002. Springer, Berlin Heidelberg.

[38] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19(20):629–679, 1994.

[39] M. Pesic, H. Schonenberg, and Wil M. P. van der Aalst. DECLARE:
Full support for loosely-structured processes. In Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing Conference

36

(EDOC 2007), pages 287–300, Annapolis, Maryland, USA, 15-19 October
2007. IEEE Computer Society Press.

[40] M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible
business processes management. In Proceedings of the 2006 International
Conference on Business Process Management Workshops (BPM 2006),
pages 169–180, Vienna, Austria, 4-7 September 2006. Springer, Berlin Hei-
delberg.

[41] H. Poon and P. Domingos. Sound and efficient inference with probabilis-
tic and deterministic dependencies. In Proceedings of the 21st National
Conference on Artificial intelligence (AAAI 2006), pages 458–463, Boston,
MA, USA, 16-20 July 2006. AAAI Press.

[42] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[43] M. Richardson and P. Domingos. Markov logic networks. Machine Learn-
ing, 62(1-2):107–136, 2006.

[44] A. Rozinat, R. S. Mans, M. Song, and Wil M. P. van der Aalst. Discovering
colored Petri nets from event logs. International Journal on Software Tools
for Technology Transfer (STTT), 10(1):57–74, 2008.

[45] R. Silva, J. Zhang, and J. G. Shanahan. Probabilistic workflow mining. In
Proceedings of the 11th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 2005), pages 275–284, Chicago,
Illinois, USA, 21-24 August 2005. ACM, New York, NY, USA.

[46] W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a truly declara-
tive service flow language. In Proceedings of the 3rd International Workshop
on Web Services and Formal Methods (WS-FM 2006), pages 1–23, Vienna,
Austria, 8-9 September 2006. Springer, Berlin Heidelberg.

[47] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters. Workflow mining: A survey of
issues and approaches. Data Knowledge Engineering, 47(2):237–267, 2003.

[48] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen.
Replaying history on process models for conformance checking and perfor-
mance analysis. WIREs Data Mining and Knowledge Discovery, 2(2):182–
192, 2012.

[49] Wil M. P. van der Aalst, Boudewijn F. van Dongen, Christian W. Günther,
R. S. Mans, Ana Karla Alves de Medeiros, Anne Rozinat, Vladimir Rubin,
Minseok Song, H. M. W. (Eric) Verbeek, and A. J. M. M. Weijters. Prom
4.0: Comprehensive support for Real process analysis. In Petri Nets and
Other Models of Concurrency, International Conference on Applications
and Theory of Petri Nets and Other Models of Concurrency, ICATPN 2007,
volume 4546 of LNCS, pages 484–494. Springer, 2007.

37

[50] Wil M. P. van der Aalst and Kees M. van Hee. Workflow Management:
Models, Methods, and Systems. MIT Press, Cambridge, MA, USA, 2002.

[51] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow
mining: Discovering process models from event logs. IEEE Transactions
on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[52] B. F. van Dongen. Multi-Phase process mining: Building instance graphs.
In Proceedings of the 23rd International Conference on Conceptual Mod-
eling (ER 2004), pages 362–376, Shanghai, China, 8-12 November 2004.
Springer, Berlin Heidelberg.

[53] B. F. Van Dongen and H. M. W. Verbeek. Verification of EPCs: Using
reduction rules and Petri nets. In Proceedings of the 17th Conference on
Advanced Information Systems Engineering (CAiSE 2005), pages 372–386,
Porto, Portugal, 13-17 June 2005. Springer, Berlin Heidelberg.

[54] K. M. van Hee, Z. Liu, and N. Sidorova. Is my event log complete? a proba-
bilistic approach to process mining. In Proceedings of the 5th International
Conference on Research Challenges in Information Science (RCIS 2011),
pages 1–7, Guadeloupe - French West Indies, France, 19-21 May 2011.
IEEE.

[55] P. Weber, B. Bordbar, and P. Tino. A principled approach to the analysis
of process mining algorithms. In Proceedings of the 12th International Con-
ference on Intelligent Data Engineering and Automated Learning (IDEAL
2011), pages 474–481, Norwich, UK, 7-9 September 2011. Springer, Berlin
Heidelberg.

[56] A. J. M. M. Weijters, W.M.P. van der Aalst, and A. K. Alves de Medeiros.
Process Mining with the HeuristicsMiner algorithm. Technical Report WP
166, BETA Working Paper Series, Eindhoven University of Technology,
Eindhoven, Netherlands, 2006.

[57] L. Wen, Wil M. P. van der Aalst, J. Wang, and J. Sun. Mining process
models with non-free-choice constructs. Data Mining and Knowledge Dis-
covery, 15(2):145–180, 2007.

[58] L. Wen, J. Wang, Wil M. P. van der Aalst, B. Huang, and J. Sun. Mining
process models with prime invisible tasks. Data Knowledge Engineering,
69(10):999–1021, 2010.

38

