
Probabilistic Logical Inference On the Web

Marco Alberti1, Giuseppe Cota2, Fabrizio Riguzzi1, and Riccardo Zese2

1 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

{marco.alberti,giuseppe.cota,fabrizio.riguzzi,riccardo.zese}@unife.it

Abstract. cplint on SWISH is a web application for probabilistic logic
programming. It allows users to perform inference and learning using just
a web browser, with the computation performed on the server. In this
paper we report on recent advances in the system, namely the inclusion
of algorithms for computing conditional probabilities with exact, rejec-
tion sampling and Metropolis-Hasting methods. Moreover, the system
now allows hybrid programs, i.e., programs where some of the random
variables are continuous. To perform inference on such programs likeli-
hood weighting is used that makes it possible to also have evidence on
continuous variables. cplint on SWISH offers also the possibility of sam-
pling arguments of goals, a kind of inference rarely considered but useful
especially when the arguments are continuous variables. Finally, cplint
on SWISH offers the possibility of graphing the results, for example by
drawing the distribution of the sampled continuous arguments of goals.

Keywords: Probabilistic Logic Programming, Probabilistic Logical Inference,
Hybrid program

1 Introduction

Probabilistic Programming (PP) [11] has recently emerged as a useful tool for
building complex probabilistic models and for performing inference and learning
on them. Probabilistic Logic Programming (PLP) [3] is PP based on Logic Pro-
gramming that allows to model domains characterized by complex and uncertain
relationships among domain entities.

Many systems have been proposed for reasoning with PLP. Even if they are
freely available for download, using them usually requires a complex installation
process and a steep learning curve. In order to mitigate these problems, we
developed cplint on SWISH [14], a web application for reasoning on PLP with
just a web browser: the algorithms run on a server and the users can post queries
and see the results in their browser. The application is available at http://

cplint.lamping.unife.it.
cplint on SWISH uses the reasoning algorithms included in the cplint suite,

including exact and approximate inference and parameter and structure learning.

http://cplint.lamping.unife.it
http://cplint.lamping.unife.it


In this paper we report on new advances implemented in the system. In partic-
ular, we included algorithms for computing conditional probabilities with exact,
rejection sampling and Metropolis-Hasting methods. The system now also allows
hybrid programs, where some of the random variables are continuous. Likelihood
weighting is exploited in order to perform inference on hybrid programs and to
collect evidences on continuous variables. When using such variables, the avail-
ability of techniques for sampling arguments of goals is extremely useful though
it is infrequently considered. cplint on SWISH offers these features together
with the possibility of graphing the results, for example by drawing the distri-
bution of the sampled continuous arguments of goals.

cplint on SWISH is based on SWISH3, a web framework for Logic Program-
ming using features and packages of SWI-Prolog and its Pengines library.

cplint on SWISH is similar to ProbLog2 [4], which has also an online ver-
sion4. The main difference between cplint on SWISH and ProbLog2 is that the
former currently also offers structure learning, approximate conditional infer-
ence through sampling and handling of continuous variables. Moreover, cplint
on SWISH uses a Prolog-only software stack, whereas ProbLog2 relies on several
different technologies, including JavaScript, Python 3 and the DSHARP com-
piler. In particular, it writes intermediate files to disk in order to call external
programs such as DSHARP, while we work in main memory only.

After introducing the syntax and semantics of PLP in Section 2, we discuss
approaches for inference in Section 3. Section 4 presents the predicates the user
can call to perform inference in cplint on SWISH. Section 5 contains a number
of examples that illustrate the new features of cplint on SWISH and Section 6
concludes the paper.

All the examples in the paper named as <name>.pl can be accessed online
at http://cplint.lamping.unife.it/example/inference/<name>.pl.

2 Syntax and Semantics

The distribution semantics [16] is one of the most used approaches for repre-
senting probabilistic information in Logic Programming and it is at the basis
of many languages, such as Independent Choice Logic, PRISM, Logic Programs
with Annotated Disjunctions (LPADs) and ProbLog.

We consider first the discrete version of probabilistic logic programming lan-
guages. In this version, each atom is a Boolean random variable that can assume
values true or false. The facts and rules of the program specify the dependences
among the truth value of atoms and the main inference task is to compute the
probability that a ground query is true, often conditioned on the truth of another
ground goal, the evidence.

All the languages following the distribution semantics allow the specification
of alternatives either for facts and/or for clauses. We present here the syntax of
LPADs because it is the most general [17].

3 http://swish.swi-prolog.org
4 https://dtai.cs.kuleuven.be/problog/

http://swish.swi-prolog.org
https://dtai.cs.kuleuven.be/problog/


An LPAD is a finite set of annotated disjunctive clauses of the form hi1 :
Πi1; . . . ;hini

: Πini
:- bi1, . . . , bimi

. where bi1, . . . , bimi
are literals, hi1, . . . hini

are atoms and Πi1, . . . ,Πini are real numbers in the interval [0, 1]. This clause
can be interpreted as “if bi1, . . . , bimi is true, then hi1 is true with probability
Πi1 or . . . or hini

is true with probability Πini
.”

Given an LPAD P , the grounding ground(P ) is obtained by replacing vari-
ables with terms from the Herbrand universe in all possible ways. If P does not
contain function symbols and P is finite, ground(P ) is finite as well.

ground(P ) is still an LPAD from which we can obtain a normal logic program
by selecting a head atom for each ground clause. In this way we obtain a so-called
“world” to which we can assign a probability by multiplying the probabilities
of all the head atoms chosen. In this way we get a probability distribution over
worlds from which we can define a probability distribution over the truth values
of a ground atom: the probability of an atom q being true is the sum of the
probabilities of the worlds where q is true, that can be checked because the
worlds are normal programs that we assume have a two-valued well-founded
model.

This semantics can be given also a sampling interpretation: the probabil-
ity of a query q is the fraction of worlds, sampled from the distribution over
worlds, where q is true. To sample from the distribution over worlds, you sim-
ply randomly select a head atom for each clause according to the probabilistic
annotations. Note that you don’t even need to sample a complete world: if the
samples you have taken ensure the truth value of q is determined, you don’t need
to sample more clauses.

To compute the conditional probability P (q|e) of a query q given evidence e,
you can use the definition of conditional probability, P (q|e) = P (q, e)/P (e), and
compute first the probability of q, e (the sum of probabilities of worlds where
both q and e are true) and the probability of e and then divide the two.

If the program P contains function symbols, a more complex definition of the
semantics is necessary, because ground(P ) is infinite, a world would be obtained
by making an infinite number of choices and so its probability, the product of
infinite numbers all smaller than one, would be 0. In this case you have to work
with sets of worlds and use Kolmogorov’s definition of probability space [13].

Up to now we have considered only discrete random variables and discrete
probability distributions. How can we consider continuous random variables and
probability density functions, for example real variables following a Gaussian
distribution? cplint allows the specification of density functions over arguments
of atoms in the head of rules. For example, in

g(X,Y): gaussian(Y,0,1):- object(X).

X takes terms while Y takes real numbers as values. The clause states that, for
each X such that object(X) is true, the values of Y such that g(X,Y) is true
follow a Gaussian distribution with mean 0 and variance 1. You can think of an
atom such as g(a,Y) as an encoding of a continuous random variable associated
to term g(a). A semantics to such programs was given independently in [5] and
[6]. In [10] the semantics of these programs, called Hybrid Probabilistic Logic



Programs (HPLP), is defined by means of a stochastic generalization STp of the
Tp operator that applies to continuous variables the sampling interpretation of
the distribution semantics: STp is applied to interpretations that contain ground
atoms (as in standard logic programming) and terms of the form t = v where
t is a term indicating a continuous random variable and v is a real number. If
the body of a clause is true in an interpretation I, STp(I) will contain a sample
from the head.

In [6] a probability space for N continuous random variables is defined by
considering the Borel σ-algebra over RN and a Lebesgue measure on this set
as the probability measure. The probability space is lifted to cover the entire
program using the least model semantics of constraint logic programs.

If an atom encodes a continuous random variable (such as g(X,Y) above),
asking the probability that a ground instantiation, such as g(a,0.3), is true is
not meaningful, as the probability that a continuous random variables takes a
specific value is always 0. In this case you are more interested in computing the
distribution of Y of a goal g(a,Y), possibly after having observed some evidence.
If the evidence is on an atom defining another continuous random variable, the
definition of conditional probability cannot be applied, as the probability of the
evidence would be 0 and so the fraction would be undefined. This problem is
resolved in [10] by providing a definition using limits.

3 Inference

Computing all the worlds is impractical because their number is exponential in
the number of ground probabilistic clauses. Alternative approaches have been
considered that can be grouped in exact and approximate ones.

For exact inference from discrete program without function symbols a suc-
cessful approach finds explanations for the query q [2], where an explanation is
a set of clause choices that are sufficient for entailing the query. Once all expla-
nations for the query are found, they are encoded as a Boolean formula in DNF
(with a propositional variable per choice and a conjunction per explanation) and
the problem is reduced to that of computing the probability that a propositional
formula is true. This problem is difficult (#P complexity) but converting the
DNF into a language from which the computation of the probability is poly-
nomial (knowledge compilation [1]) yields algorithm able to handle problems of
significant size [2,15].

For approximate inference one of the most used approach consists in Monte
Carlo sampling, following the sampling interpretation of the semantics given
above. Monte Carlo backward reasoning has been implemented in [7,12] and
found to give good performance in terms of quality of the solutions and of running
time. Monte Carlo sampling is attractive for the simplicity of its implementation
and because you can improve the estimate as more time is available. Moreover,
Monte Carlo can be used also for programs with function symbols, in which goals
may have infinite explanations and exact inference may loop. In sampling, infinite



explanations have probability 0, so the computation of each sample eventually
terminates.

Monte Carlo inference provides also smart algorithms for computing con-
ditional probabilities: rejection sampling or Metropolis-Hastings Markov Chain
Monte Carlo (MCMC). In rejection sampling [18], you first query the evidence
and, if the query is successful, query the goal in the same sample, otherwise the
sample is discarded. In Metropolis-Hastings MCMC [9], a Markov chain is built
by taking an initial sample and by generating successor samples.

The initial sample is built by randomly sampling choices so that the evidence
is true. A successor sample is obtained by deleting a fixed number of sampled
probabilistic choices. Then the evidence is queried by taking a sample starting
with the undeleted choices. If the query succeeds, the goal is queried by taking
a sample. The sample is accepted with a probability of min{1, N0

N1
} where N0

is the number of choices sampled in the previous sample and N1 is the number
of choices sampled in the current sample. Then the number of successes of the
query is increased by 1 if the query succeeded in the last accepted sample. The
final probability is given by the number of successes over the total number of
samples.

When you have evidence on continuous random variables, you can still use
Monte Carlo sampling. You cannot use rejection sampling or Metropolis-Hastings,
as the probability of the evidence is 0, but you can use likelihood weighting [10]
to obtain samples of continuous arguments of a goal.

For each sample to be taken, likelihood weighting samples the query and then
assigns a weight to the sample on the basis of evidence. The weight is computed
by deriving the evidence backward in the same sample of the query starting with
a weight of one: each time a choice should be taken or a continuous variable
sampled, if the choice/variable has already been taken, the current weight is
multiplied by probability of the choice/by the density value of the continuous
value.

If likelihood weighting is used to find the posterior density of a continuous
random variable, you obtain a set of samples for the variables with each sample
associated with a weight that can be interpreted as a relative frequency. The set
of samples without the weight, instead, can be interpreted as the prior density
of the variable. These two set of samples can be used to plot the density before
and after observing the evidence.

You can sample arguments of queries also for discrete goals: in this case you
get a discrete distribution over the values of one or more arguments of a goal.
If the query predicate is determinate in each world, i.e., given values for input
arguments there is a single value for output arguments that make the query
true, for each sample you get a single value. Moreover, if clauses sharing an
atom in the head are mutually exclusive, i.e., in each world the body of at most
one clause is true, then the query defines a probability distribution over output
arguments. In this way we can simulate those languages such as PRISM and
Stochastic Logic Programs that define probability distributions over arguments
rather than probability distributions over truth values of ground atoms.



4 Inference with cplint

cplint on SWISH uses two modules for performing inference, pita for exact
inference by knowledge compilation and mcintyre for approximate inference by
sampling. In this section we discuss the algorithms and predicates provided by
these two modules.

The unconditional probability of an atom can be asked using pita with the
predicate

prob(:Query:atom,-Probability:float).

The conditional probability of an atom query given another atom evidence can
be asked with the predicate

prob(:Query:atom,:Evidence:atom,-Probability:float).

With mcintyre, you can estimate the probability of a goal by taking a given
number of sample using the predicate

mc_sample(:Query:atom,+Samples:int,-Probability:float)

You can ask conditional queries with rejection sampling or with Metropolis-
Hastings MCMC too.

mc_rejection_sample(:Query:atom,:Evidence:atom,+Samples:int,

-Successes:int,-Failures:int,-Probability:float).

In Metropolis-Hastings MCMC, mcintyre follows the algorithm proposed in [9]
(the non adaptive version). The initial sample is built with a backtracking meta-
interpreter that starts with the goal and randomizes the order in which clauses
are selected during the search so that the initial sample is unbiased. Then the
goal is queried using regular mcintyre.

A successor sample is obtained by deleting a number of sampled probabilistic
choices given by parameter Lag. Then the evidence is queried using regular
mcintyre starting with the undeleted choices. If the query succeeds, the goal
is queried using regular mcintyre. The sample is accepted with the probability
indicated in Section 3. In [9] the lag is always 1 but the proof in [9] that the
above acceptance probability yields a valid Metropolis-Hastings algorithm holds
also when forgetting more than one sampled choice, so the lag is user defined in
cplint.

You can take a given number of sample with Metropolis-Hastings MCMC
using

mc_mh_sample(:Query:atom,:Evidence:atom,+Samples:int,+Lag:int,

-Successes:int,-Failures:int,-Probability:float).

Moreover, you can sample arguments of queries with rejection sampling and
Metropolis-Hastings MCMC using



mc_rejection_sample_arg(:Query:atom,:Evidence:atom,+Samples:int,

?Arg:var,-Values:list).

mc_mh_sample_arg(:Query:atom,:Evidence:atom,+Samples:int,

+Lag:int,?Arg:var,-Values:list).

Finally, you can compute expectations with

mc_expectation(:Query:atom,+N:int,?Arg:var,-Exp:float).

that computes the expected value of Arg in Query by sampling. It takes N samples
of Query and sums up the value of Arg for each sample. The overall sum is divided
by N to give Exp.

To compute conditional expectations, use

mc_mh_expectation(:Query:atom,:Evidence:atom,+N:int,

+Lag:int,?Arg:var,-Exp:float).

For visualizing the results of sampling arguments you can use

mc_sample_arg_bar(:Query:atom,+Samples:int,?Arg:var,-Chart:dict).

mc_rejection_sample_arg_bar(:Query:atom,:Evidence:atom,

+Samples:int,?Arg:var,-Chart:dict).

mc_mh_sample_arg_bar(:Query:atom,:Evidence:atom,+Samples:int,

+Lag:int,?Arg:var,-Chart:dict).

that return in Chart a bar chart with a bar for each possible sampled value
whose size is the number of samples returning that value.

When you have continuous random variables, you may be interested in sam-
pling arguments of goals representing continuous random variables. In this way
you can build a probability density of the sampled argument. When you do
not have evidence or you have evidence on atoms not depending on continuous
random variables, you can use the above predicates for sampling arguments.

When you have evidence on ground atoms that have continuous values as
arguments, you need to use likelihood weighting [10] to obtain samples of con-
tinuous arguments of a goal.

For each sample to be taken, likelihood weighting uses a meta-interpreter to
find a sample where the goal is true, randomizing the choice of clauses when
more than one resolves with the goal in order to obtain an unbiased sample.
This meta-interpreter is similar to the one used to generate the first sample in
Metropolis-Hastings.

Then a different meta-interpreter is used to evaluate the weight of the sam-
ple. This meta-interpreter starts with the evidence as the query and a weight
of 1. Each time the meta-interpreter encounters a probabilistic choice over a
continuous variable, it first checks whether a value has already been sampled. If
so, it computes the probability density of the sampled value and multiplies the
weight by it. If the value has not been sampled, it takes a sample and records
it, leaving the weight unchanged. In this way, each sample in the result has a
weight that is 1 for the prior distribution and that may be different from the
posterior distribution, reflecting the influence of evidence.

The predicate



mc_lw_sample_arg(:Query:atom,:Evidence:atom,+N:int,?Arg:var,

-ValList)

returns in ValList a list of couples V-W where V is a value of Arg for which
Query succeeds and W is the weight computed by likelihood weighting according
to Evidence (a conjunction of atoms is allowed here).

You can use the samples to draw the probability density function of the
argument. The predicate

histogram(+List:list,+NBins:int,-Chart:dict).

draws a histogram of the samples in List dividing the domain in NBins bins.
List must be a list of couples of the form [V]-W where V is a sampled value and
W is its weight. This is the format of the list of samples returned by argument
sampling predicates except mc_lw_sample_arg/5 that returns a list of couples
V-W. In this case you can use

densities(+PriorList:list,+PostList:list,+NBins:int,-Chart:dict)

that draws a line chart of the density of two sets of samples, usually prior and post
observations. The samples from the prior are in PriorList as couples [V]-W,
while the samples from the posterior are in PostList as couples V-W where V is
a value and W its weight. The lines are drawn dividing the domain in NBins bins.

5 Examples

5.1 Generative Model

Program arithm.pl encodes a model for generating random functions:

eval(X,Y) :- random_fn(X,0,F), Y is F.

op(+):0.5;op(-):0.5.

random_fn(X,L,F) :- comb(L), random_fn(X,l(L),F1),

random_fn(X,r(L),F2), op(Op), F=..[Op,F1,F2].

random_fn(X,L,F) :- \+ comb(L), base_random_fn(X,L,F).

comb(_):0.3.

base_random_fn(X,L,X) :- identity(L).

base_random_fn(_X,L,C) :- \+ identity(L), random_const(L,C).

identity(_):0.5.

random_const(_,C):discrete(C,[0:0.1,1:0.1,2:0.1,3:0.1,4:0.1,

5:0.1,6:0.1,7:0.1,8:0.1,9:0.1]).

A random function is either an operator (’+’ or ’-’) applied to two random
functions or a base random function. A base random function is either an identity
or a constant drawn uniformly from the integers 0, . . . , 9.

You may be interested in the distribution of the output values of the random
function with input 2 given that the function outputs 3 for input 1. You can get
this distribution with

http://cplint.lamping.unife.it/example/inference/arithm.pl


?- mc_mh_sample_arg_bar(eval(2,Y),eval(1,3),1000,1,Y,V).

that samples 1000 values for Y in eval(2,Y) and returns them in V. A bar
graph of the frequencies of the sampled value is shown in Figure 1a. Since each
world of the program is determinate, in each world there is a single value of Y in
eval(2,Y) and the list of sampled values contain a single element.

5.2 Stochastic Logic Programs

Stochastic logic programs (SLPs) [8] are a probabilistic formalism where each
clause is annotated with a probability. The probabilities of all clauses with the
same head predicate sum to one and define a mutually exclusive choice on how to
continue a proof. Furthermore, repeated choices are independent, i.e., no stochas-
tic memorization is done. SLPs are used most commonly for defining a distribu-
tion over the values of arguments of a query. SLPs are a direct generalization of
probabilistic context-free grammars and are particularly suitable for representing
them. For example, the grammar

0.2:S->aS 0.2:S->bS 0.3:S->a 0.3:S->b

can be represented with the SLP

0.2::s([a|R]):- s(R). 0.2::s([b|R]):- s(R).

0.3::s([a]). 0.3::s([b]).

This SLP can be encoded in cplint as (slp pcfg.pl):

s_as(N):0.2;s_bs(N):0.2;s_a(N):0.3;s_b(N):0.3.

s([a|R],N0):- s_as(N0), N1 is N0+1, s(R,N1).

s([b|R],N0):- s_bs(N0), N1 is N0+1, s(R,N1).

s([a],N0):- s_a(N0). s([b],N0):- s_b(N0).

s(L):-s(L,0).

where we have added an argument to s/1 for passing a counter to ensure that
different calls to s/2 are associated to independent random variables.

By using the argument sampling features of cplint we can simulate the
behavior of SLPs. For example the query

?- mc_sample_arg_bar(s(S),100,S,L).

samples 100 sentences from the language and draws the bar chart of Figure 1b.

5.3 Gaussian Mixture Model

Example gaussian mixture.pl defines a mixture of two Gaussians:

heads:0.6;tails:0.4.

g(X): gaussian(X,0, 1).

h(X): gaussian(X,5, 2).

mix(X) :- heads, g(X).

mix(X) :- tails, h(X).

http://cplint.lamping.unife.it/example/inference/slp_pcfg.pl
http://cplint.lamping.unife.it/example/inference/gaussian_mixture.pl


The argument X of mix(X) follows a model mixing two Gaussian, one with mean
0 and variance 1 with probability 0.6 and one with mean 5 and variance 2 with
probability 0.4. The query

?- mc_sample_arg(mix(X),10000,X,L0), histogram(L0,40,Chart).

draws the density of the random variable X of mix(X), shown in Figure 1c.

5.4 Bayesian Estimation

Let us consider a problem proposed on the Anglican [19] web site5. We are trying
to estimate the true value of a Gaussian distributed random variable, given some
observed data. The variance is known (its value is 2) and we suppose that the
mean has itself a Gaussian distribution with mean 1 and variance 5. We take
different measurement (e.g. at different times), indexed with an integer.

This problem can be modeled with (gauss mean est.pl)

value(I,X) :- mean(M),value(I,M,X).

mean(M): gaussian(M,1.0, 5.0).

value(_,M,X): gaussian(X,M, 2.0).

Given that we observe 9 and 8 at indexes 1 and 2, how does the distribution of
the random variable (value at index 0) changes with respect to the case of no
observations? This example shows that the parameters of the distribution atoms
can be taken from the probabilistic atom. The query

?- mc_sample_arg(value(0,Y),100000,Y,L0),

mc_lw_sample_arg(value(0,X),(value(1,9),value(2,8)),1000,X,L),

densities(L0,L,NBins,Chart).

takes 100000 samples of argument X of value(0,X) before and after observing
value(1,9),value(2,8) and draws the prior and posterior densities of the sam-
ples using a line chart. Figure 1d shows the resulting graph where the posterior
is clearly peaked at around 9.

5.5 Kalman Filter

Example kalman filter.pl (adapted from [9])

kf(N,O, T) :- init(S), kf_part(0, N, S,O,T).

kf_part(I, N, S,[V|RO], T) :- I < N, NextI is I+1, trans(S,I,NextS),

emit(NextS,I,V), kf_part(NextI, N, NextS,RO, T).

kf_part(N, N, S, [],S).

trans(S,I,NextS) :- {NextS =:= E + S}, trans_err(I,E).

emit(NextS,I,V) :- {V =:= NextS+X}, obs_err(I,X).

init(S):gaussian(S,0,1).

trans_err(_,E):gaussian(E,0,2).

obs_err(_,E):gaussian(E,0,1).

5 http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=

gaussian-posteriors

http://cplint.lamping.unife.it/example/inference/gauss_mean_est.pl
http://cplint.lamping.unife.it/example/inference/kalman_filter.pl
http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=gaussian-posteriors
http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=gaussian-posteriors


encodes a Kalman filter, i.e., a Hidden Markov model with a real value as state
and a real value as output. The next state is given by the current state plus
Gaussian noise (with mean 0 and variance 2 in this example) and the output is
given by the current state plus Gaussian noise (with mean 0 and variance 1 in
this example). A Kalman filter can be considered as modeling a random walk of
a single continuous state variable with noisy observations.

Continuous random variables are involved in arithmetic expressions (in the
predicates trans/3 and emit/3). It is often convenient, as in this case, to use
CLP(R) constraints because in this way the same clauses can be used both to
sample and to evaluate the weight the sample on the basis of evidence, otherwise
different clauses have to be written.

Given that at time 0 the value 2.5 was observed, what is the distribution of
the state at time 1 (filtering problem)? Likelihood weighting is used to condition
the distribution on evidence on a continuous random variable (evidence with
probability 0). CLP(R) constraints allow both sampling and weighting samples
with the same program: when sampling, the constraint {V=:=NextS+X} is used
to compute V from X and NextS. When weighting, V is known and the constraint
is used to compute X from V and NextS, which is then given the density value at
X as weight.

The above query can be expressed with

?- mc_sample_arg(kf(1,_O1,Y),10000,Y,L0),

mc_lw_sample_arg(kf(1,_O2,T),kf(1,[2.5],_T),10000,T,L),

densities(L0,L,40,Chart).

that returns the graph of Figure 1e, from which it is evident that the posterior
distribution is peaked around 2.5.

6 Conclusions

PLP has now become flexible enough to encode and solve problems usually
tackled only with other Probabilistic Programming paradigms, such as functional
or imperative PP. cplint on SWISH allows the user to exploit these new features
of PLP without the need of a complex installation process. In this way we hope
to reach out to a wider audience and increase the user base of PLP.



(a) Distribution of sampled values the
arithm.pl example.

(b) Samples of sentences of the language
defined in slp pcfg.pl.

(c) Density of X of mix(X) in
gaussian mixture.pl.

(d) Prior and posterior densities in
gauss mean est.pl.

(e) Prior and posterior densities in
kalman.pl.

Fig. 1: Graphs of examples



References

1. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

2. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: IJCAI 2007. vol. 7, pp. 2462–2467. AAAI Press,
Palo Alto, California USA (2007)

3. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach.
Learn. 100(1), 5–47 (2015)

4. Fierens, D., den Broeck, G.V., Renkens, J., Shterionov, D.S., Gutmann, B., Thon,
I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic pro-
grams using weighted boolean formulas. Theory and Practice of Logic Program-
ming 15(3), 358–401 (2015)

5. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., Raedt, L.D.: The magic of
logical inference in probabilistic programming. Theor. Pract. Log. Prog. 11(4-5),
663–680 (2011)

6. Islam, M.A., Ramakrishnan, C., Ramakrishnan, I.: Inference in probabilistic logic
programs with continuous random variables. Theor. Pract. Log. Prog. 12, 505–523
(7 2012)

7. Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the implemen-
tation of the probabilistic logic programming language ProbLog. Theor. Pract.
Log. Prog. 11(2-3), 235–262 (2011)

8. Muggleton, S.: Learning stochastic logic programs. Electron. Trans. Artif. Intell.
4(B), 141–153 (2000)

9. Nampally, A., Ramakrishnan, C.: Adaptive MCMC-based inference in probabilistic
logic programs. arXiv preprint arXiv:1403.6036 (2014), http://arxiv.org/pdf/

1403.6036.pdf

10. Nitti, D., De Laet, T., De Raedt, L.: Probabilistic logic programming for hybrid
relational domains. Mach. Learn. 103(3), 407–449 (2016)

11. Pfeffer, A.: Practical Probabilistic Programming. Manning Publications (2016)
12. Riguzzi, F.: MCINTYRE: A Monte Carlo system for probabilistic logic program-

ming. Fund. Inform. 124(4), 521–541 (2013)
13. Riguzzi, F.: The distribution semantics for normal programs with function symbols.

International Journal of Approximate Reasoning 77, 1 – 19 (2016)
14. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic pro-

gramming on the web. Software Pract. and Exper. (2015)
15. Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for

reasoning under uncertainty. Theor. Pract. Log. Prog. 11(4–5), 433–449 (2011)
16. Sato, T.: A statistical learning method for logic programs with distribution se-

mantics. In: Sterling, L. (ed.) ICLP-95. pp. 715–729. MIT Press, Cambridge, Mas-
sachusetts (1995)

17. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: 20th International Conference on Logic Programming. LNCS, vol.
3131, pp. 195–209. Springer, Berlin Heidelberg, Germany (2004)

18. Von Neumann, J.: Various techniques used in connection with random digits. Nat.
Bureau Stand. Appl. Math. Ser. 12, 36–38 (1951)

19. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic
programming inference. In: Proceedings of the 17th International conference on
Artificial Intelligence and Statistics. pp. 1024–1032 (2014)

http://arxiv.org/pdf/1403.6036.pdf
http://arxiv.org/pdf/1403.6036.pdf

	Probabilistic Logical Inference On the Web

