
ar
X

iv
:1

40
1.

66
76

v2
  [

m
at

h.
A

G
] 

 2
9 

Se
p 

20
15

ON DEGENERATIONS OF PLANE CREMONA

TRANSFORMATIONS

JÉRÉMY BLANC AND ALBERTO CALABRI

Abstract. This article studies the possible degenerations of Cremona transforma-
tions of the plane of some degree into maps of smaller degree.

1. Introduction

Let us fix k to be the ground field, which will be algebraically closed of characteristic 0.
The Cremona group Bir(P2) is the group of birational transformations of the plane.
There is a natural Zariski topology on Bir(P2), introduced in [Ser10] (see §3.1) and

studied then in many recent texts: [Bla10], [Pop13], [BF13], [PR13], [BCM13], [Can13].
For each integer d, the subset Bir(P2)d of elements of Bir(P2) of degree d is locally
closed, and has a natural structure of algebraic variety, compatible with the Zariski
topology of Bir(P2). However, neither the group Bir(P2) nor the subset Bir(P2)≤d of
maps of degree at most d (for d ≥ 2) have a structure of an (ind)-algebraic variety
[BF13, Proposition 3.4], and the bad structure comes from the degeneration of maps of
degree d into maps of smaller degree.
The aim of this article consists exactly in trying to understand this degeneration, and

more precisely to describe the closure Bir(P2)d of Bir(P2)d in Bir(P2), which is a subset
of Bir(P2)≤d. In particular, the first question one can ask is to understand for which d

we have an equality Bir(P2)d = Bir(P2)≤d (already asked in [BF13, Remark 2.16]). The
complete answer is the following:

Theorem 1. Let d ≥ 1 be an integer. Then Bir(P2)d = Bir(P2)≤d if and only if d ≤ 8
or d ∈ {10, 12}.

This theorem shows that Bir(P2)8 is not contained in the closure of Bir(P2)9, but is
in the closure of Bir(P2)10, and the same holds replacing 8, 9, 10 with 10, 11, 12. One can
then ask for a birational map of degree d what is the minimum k needed such that it
belongs to the closure of Bir(P2)d+k. As we will show, there is an upper bound for k,
depending on d, but no universal bound:

Theorem 2. For each integer k ≥ 1 there exists an integer d and a birational map ϕ
of degree d such that ϕ does not belong to Bir(P2)d+i for each i with 1 ≤ i ≤ k.

Every birational map of degree d ≥ 1 is contained in Bir(P2)d+i for some i with

1 ≤ i ≤ max{1, d
3
}.

The two theorems are obtained by a detailed study of the possible degenerations
of birational maps and of the relation with their base-points. For example, we give a
criterion that determines whether a birational map ϕ of degree d with only proper base-
points, no three of them collinear, belongs to Bir(P2)d+1: it is the case if and only if ϕ has
multiplicity m1 and m2 at two points of P2 such that m1 +m2 = d− 1 (Corollary 5.2).
We also give three propositions that provide existence of degenerations associated to
the base-points of a birational map (Propositions 4.3, 4.9 and 4.13).
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and warmly thanks Massimiliano Mella for useful discussions.
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2 JÉRÉMY BLANC AND ALBERTO CALABRI

Let us finish this introduction by describing the situation for the subgroup Aut(A2) ⊂
Bir(P2) consisting of automorphisms of the affine plane. The question of degeneration
was already studied in this case, see for example [Fur97], [EF04], [Fur13]. Because of
Jung’s theorem, every element f ∈ Aut(A2) has a multidegree (d1, . . . , dk) which satisfies

deg(f) =
∏k

i=1 di, and its length is defined to be the integer k. By [Fur02], the length of
an automorphism is lower semicontinuous. In particular, elements of multidegree (2, 2)
are not in the closure of Aut(A2)5, even if they are in the closure of Bir(P2)5, and one
can construct many of such examples, using the rigidity of Aut(A2). The closure of the
subvarieties of some given multidegrees are however not well understood, and quite hard
to describe. See [Fur13] for some descriptions and conjectures in the cases of length ≤ 2
and [EF04] for a recent work in case of length 3.

2. Degree, multiplicities of base-points and homaloidal types

Definition 2.1. Let

ϕ : [x : y : z] 799K [f0(x, y, z) : f1(x, y, z) : f2(x, y, z)]

be a birational map of P2, where f0, f1, f2 are homogeneous polynomials of degree d
without common factor (of degree ≥ 1). We will say that the degree of ϕ is d and that
the homaloidal type of ϕ is

(d;m1, m2, . . . , mr)

if the linear system of ϕ, which is given by the set of curves of equation

2
∑

i=0

λifi(x, y, z) = 0,

for λ0, λ1, λ2 ∈ k, has base-points p1, . . . , pr of multiplicity m1, . . . , mr. (Here by base-
points we include all such, including infinitely near base-points).

Remark 2.2. If (d;m1, m2, . . . , mr) is the homaloidal type of a birational map of P2,
the integers mi and d satisfy the following equations

r
∑

i=1

mi = 3(d− 1),
r

∑

i=1

(mi)
2 = d2 − 1, (1)

that are the classical Noether equalities, and directly follow from the fact that the map
is birational (see for instance [A-C02, §2.5, page 51]).

We will use the following notation of [A-C02, Definition 5.2.1, page 130]:

Definition 2.3. Let d,m1, . . . , mr be integers. We will say that T = (d;m1, m2, . . . , mr)
is a homaloidal type of degree d if it satisfies the Noether equalities (1).
If there exists moreover a birational map ϕ ∈ Bir(P2) of homaloidal type T , then we

say that T is proper, and otherwise we say that T is improper.

Note that the type (3; 1, 1, 1, 1, 1, 1, 1,−1) is improper, as it contains a negative in-
teger. Similarly, (5; 3, 3, 1, 1, 1, 1, 1, 1) is another improper type, as the linear system
associated to such a type would be reducible (the line through the two points of multi-
plicity 3 would be a fixed component).
In order to decide whether a homaloidal type is proper or improper, there is what is

called the Hudson’s test (see [A-C02, Definition 5.2.15, page 134] and [BCM13, Defini-
tion 25 and the appendix]). We will explain why this algorithm works, using a modern
language, which is a simplified version of the action of Bir(P2) on a hyperbolic space of
infinite dimension given by the Picard-Manin space (the interest reader can have a look
at [Can11, Section 3] or [BC13, Section 5]).
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2.1. Hudson’s test. Let us consider the free Z-module V of infinite countable rank,
whose basis is {ei}i∈N. Each homaloidal type (d;m1, . . . , mr) corresponds to the element
de0 −

∑r

i=1miei ∈ V . We then consider the scalar product on V given by (e0)
2 = 1,

(ei)
2 = −1 for i ≥ 1 and ei · ej = 0 for i 6= j. This corresponds to the intersection of

divisors on the blow-ups of P2 associated to the base-points of the corresponding maps.
We denote by σ0 the automorphism of V given by the reflection by the root e0− e1−

e2 − e3:

σ0(e0) = 2e0 − e1 − e2 − e3, σ0(ei) = ei for i ≥ 4,
σ0(e1) = e0 − e2 − e3, σ0(e2) = e0 − e1 − e3, σ0(e3) = e0 − e1 − e2.

This corresponds exactly to the action of the standard quadratic map

σ : [x : y : z] 799K [yz : xz : xy]

on the blow-up of the three points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1].
We then define W as the group of automorphisms of V generated by σ0 and by

the permutations of the ei fixing e0. A simple calculation shows that W preserve the
intersection form and the canonical form given by de0 −

∑

miei → 3d−
∑

mi. Hence,
the group W preserves the set of homaloidal types. We then have the following:

Proposition 2.4. Let T = (d;m1, m2, . . . , mr) be a homaloidal type.

(i) The type T is proper if and only if it belongs to the orbit W (e0).
(ii) If T is proper, there is a dense open subset in U ⊂ (P2)r such that for each

(p1, . . . , pr) ∈ U , there exists a birational transformation ϕ having degree d and which

base-points are the pi with multiplicity mi.

Proof. Suppose first that T is proper, which corresponds to saying that there exists a
map ϕ ∈ Bir(P2) of type T . By Noether-Castelnuovo theorem, ϕ can be written as

ϕ = αkσαk−1 . . . α2σα1,

where σ is the standard quadratic involution and α1, . . . , αk ∈ Aut(P2) = PGL(3,k)
(See for example [Sha67, Chapter V, §5, Theorem 2, p. 100] or [A-C02, Chapter 8]).
For each i, we write ϕi = αiσαi−1 . . . α2σα1, and observe that ϕ1 is linear and ϕk = ϕ.

The homaloidal type of ϕi is obtained from the one of ϕi−1 by applying σ0 and a
permutation of coordinates. Hence, the homaloidal type of ϕ belongs to W (e0).
We now take an element f ∈ W that we can write as

f = akσ0ak−1 . . . a2σ0a1,

where σ0 is the automorphism of V defined before and a1, . . . , ak are permutations of
the ei fixing e0. We prove by induction on k that the type of f(e0) satifies assertion (ii),
which will achieve the proof.
If k = 1 or k = 2, the result is obvious, as the type is of degree 1 or of degree 2

with three simple base-points. We can then assume k > 2 and show the result using
induction hypothesis.
In order to simplify the proof, we will assume that ak is the identity, since permuta-

tions of points does not change the result of (ii). We then write f(e0) = (d,m1, . . . , mr)
and f ′ = ak−1σ0 . . . a2σ0a1, which implies that

f ′(e0) = (2d−m1 −m2 −m3, d−m2 −m3, d−m1 −m3, d−m1 −m2, m4, . . . , mr).

Using induction hypothesis, we obtain a dense open subset U ⊂ (P2)r such that for
each (p1, . . . , pr) ∈ U , there exists a birational transformation ϕ having degree 2d −
m1−m2 −m3 and which base-points are the pi with multiplicities given by f ′(e0). This
follows from the induction hypothesis and the fact that we can add general points if one
of the multiplicities d−m2 −m3, d−m1 −m3, d−m1 −m2 is zero.
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We denote by V ⊂ U the open subset where no three of the points pi are collinear.
For each (p1, . . . , pr) ∈ V we take the map ϕ associated to these points and define
ϕ̂ = ϕψ where ψ = τστ−1 and τ ∈ Aut(P2) sends the three base-points of σ onto
p1, p2, p3. Then ϕ̂ is a birational map of degree d with multiplicities m1, . . . , mr at
p1, p2, p3, ψ(p4), . . . , ψ(pr) respectively. We can the define V̂ ⊂ (P2)r as the open set

V̂ = {(q1, . . . , qr) | (q1, q2, q3, ψ(q4), . . . , ψ(qr)) ∈ V };

that concludes the proof. �

Remark 2.5. Following Proposition 2.4, we can associate to each element ϕ ∈ Bir(P2)
an element g ∈ W , unique up to permutations at source and target, such that g(e0)
corresponds to the type of ϕ. The matrix g corresponds to the characteristic matrix
studied in [A-C02, Chapter 5] and gives the curves contracted by g and its inverse. In
particular, g−1 ∈ W is the map associated to ϕ−1, so the homaloidal type of ϕ−1 is
obtained by computing g−1(e0).

Using Proposition 2.4, one obtain the classical algorithm (Hudson’s test) that decides
whether a homaloidal type is proper or improper. Let us recall how it works:

(1) Taking a homaloidal type (d;m1, . . . , mr) with d ≥ 2, and all integers mi non-
negative and order them so that m1 ≥ m2 ≥ m3 ≥ · · · ≥ mr.

(2) We then replace (d;m1, . . . , mr) with (d− ǫ,m1 − ǫ,m2 − ǫ,m3 − ǫ,m4, . . . , mr),
where ǫ = m1 +m2 +m3 − d, and then go back an apply the first step.

(3) We end when we reach (1; 0, . . . , 0), in which case the test is fullfilled, or when
at least one mi is negative, in which case the test is not fullfilled.

Then, we recall the following result.

Lemma 2.6. A homaloidal type is proper if and only if it satisfies Hudson’s test.

Proof. We observe first that if (d;m1, . . . , mr) is a homaloidal type with d ≥ 2, m1 ≥
m2 ≥ · · · ≥ mr ≥ 0, then m1 +m2+m3 ≥ d+1. This was already observed by Noether
and is a direct consequence of the Noether equalities (see for example [A-C02, Corollary
2.6.7, page 55]). Hence, the integer ǫ in the test above is always non-negative.
If d = 1, the only possibilities for the mi is to be zero. Hence, the algorithm above

always has a end: either we reach d = 1 with all mi being zero or at some point one mi

is negative.
Note that Hudson’s test consists of applying elements of W to de0 −

∑

miei. If the
test is fulfilled, then the type is in the image of W , and is thus a proper homaloidal
type by Proposition 2.4. If the test is not fullfilled, then we finish with a type which is
improper as it contains a negative integer. The type from which we started is then in
the same orbit as this one by W and is thus improper by Proposition 2.4. �

Remark 2.7. One may stop Hudson’s test as soon as one reaches in step (1) a homa-
loidal type which is already known to be either proper or improper, and accordingly the
test is either fulfilled or not fulfilled.

Remark 2.8. Applying Hudson’s test to the type of a birational map ϕ we also obtain
the matrix of ϕ, which is the element ofW corresponding to it (Remark 2.5). This shows
in particular that the homaloidal type of ϕ−1 only depends on the homaloidal type of ϕ
and not of the position of the base-points, and also provides a method to compute the
type of the inverse (already explained in [A-C02, Definition 5.4.24, page 156]).

Example 2.9. Applying the algorithm corresponding to Hudson’s test, one easily finds
all linear systems of small degree. We use the notation mr to write m, . . . ,m (r times).
For each degree d ≥ 2, the type (d; d− 1, 12d−2) is a de Jonquières homaloidal type.

For d ≥ 4, we also have another type, which is (d; d− 2, 2d−2, 13). In degree d ≤ 11, all
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(5; 26)

(6; 33, 2, 14) (6; 32, 24, 1)

(7; 4, 33, 15) (7; 4, 32, 23, 12) (7; 34, 23)

(8; 5, 33, 22, 13) (8; 5, 32, 25) (8; 43, 3, 16) (8; 43, 23, 13)

(8; 42, 32, 23, 1) (8; 4, 35, 12) (8; 37)

(9; 6, 34, 2, 14) (9; 6, 33, 24, 1) (9; 5, 43, 17) (9; 5, 42, 3, 23, 12)

(9; 5, 4, 34, 13) (9; 5, 4, 33, 23) (9; 44, 24) (9; 43, 33, 2, 1)

(10; 7, 35, 15) (10; 7, 34, 23, 12) (10; 6, 43, 23, 13) (10; 6, 42, 33, 14)

(10; 6, 42, 32, 23, 1) (10; 6, 37) (10; 53, 4, 18) (10; 53, 3, 23, 13)

(10; 53, 26) (10; 52, 42, 24, 1) (10; 52, 4, 33, 2, 12) (10; 52, 35, 2)

(10; 5, 43, 32, 22) (10; 46, 13) (10; 45, 32, 1)

(11; 8, 35, 22, 13) (11; 8, 34, 25) (11; 7, 43, 32, 15) (11; 7, 43, 3, 23, 12)

(11; 7, 42, 33, 23) (11; 7, 4, 36, 1) (11; 6, 53, 19) (11; 6, 52, 4, 24, 12)

(11; 6, 52, 33, 2, 13) (11; 6, 52, 32, 24) (11; 6, 5, 42, 32, 22, 1) (11; 6, 45, 14)

(11; 6, 43, 34) (11; 54, 25) (11; 53, 4, 33, 12) (11; 52, 44, 2, 12)

(11; 52, 43, 32, 2)

Table 1. Proper homaloidal types of degree d ≤ 11 which are not of
type (d; d− 1, 12d−2) or (d; d− 2, 2d−2, 13).

other proper homaloidal types are given in Table 1. It can also be checked that these
types are the same as in [Hud27, Table I, pages 437–438].

In Section 5 we will need other proper homaloidal types in each degree.

Example 2.10. For each integer m ≥ 3, the following homaloidal types

(3m; 3m− 6, 6m−3, 43, 32, 2, 1), (2)

(3m+ 1; 3m− 5, 6m−2, 4, 33, 14), (3)

(3m+ 2; 3m− 4, 6m−2, 42, 32, 22, 1), (4)

are proper [Hud27, Table II]. This can also be shown by applying the Hudson’s test for
m = 3 andm = 4 and then apply induction onm: running once step (2) of the algorithm,
the properness of the homaloidal types (2), (3), (4) for m proves the properness of these
types for m+ 2.

3. Varieties parametrising birational maps of small degree

3.1. The topology on Bir(P2). We recall the notion of families of birational maps,
introduced by M. Demazure in [Dem70] (see also [Ser10], [Bla10]).

Definition 3.1. Let A,X be irreducible algebraic varieties, and let f be a A-birational
map of the A-variety A × X , inducing an isomorphism U → V , where U, V are open
subsets of A×X , whose projections on A are surjective.
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The rational map f is given by (a, x) 99K (a, p2(f(a, x))), where p2 is the second
projection, and for each k-point a ∈ A, the birational map x 99K p2(f(a, x)) corresponds
to an element fa ∈ Bir(X). The map a 7→ fa represents a map from A (more precisely
from the A(k)-points of A) to Bir(X), and will be called a morphism from A to Bir(X).

These notions yield the natural Zariski topology on Bir(X), introduced implicitly by
M. Demazure [Dem70] and explicitly by J.-P. Serre [Ser10]:

Definition 3.2. A subset F ⊆ Bir(X) is closed in the Zariski topology if for any
algebraic variety A and any morphism A→ Bir(X) the preimage of F is closed.

Remark 3.3. Any birational map X 99K Y yields a homeomorphism between Bir(X)
and Bir(Y ), and for any ϕ ∈ Bir(X) the maps Bir(X) → Bir(X) given by ψ 7→ ψ ◦ ϕ,
ψ 7→ ϕ ◦ ψ and ψ 7→ ψ−1 are homeomorphisms.

Remark 3.4. In the sequel, the topology on Bir(P2) and its subsets will always be the
Zariski topology given in Definition 3.2.

3.2. The varieties Wd, Bird and Bir◦d. Let us recall the following notation, which is
taken from [BF13, Definition 2.3] and [BCM13, p. 1112].

Definition 3.5. Let d be a positive integer.

(1) We define Wd to be the set of equivalence classes of non-zero triples (h0, h1, h2)
of homogeneous polynomials hi ∈ k[x, y, z] of degree d, where (h0, h1, h2) is
equivalent to (λh0, λh1, λh2) for any λ ∈ k∗. The equivalence class of (h0, h1, h2)
will be denoted by [h0 : h1 : h2].

(2) We define Bird ⊆Wd to be the set of elements h = [h0 : h1 : h2] ∈ Wd such that
the rational map ψh : P

2
99K P2 given by

[x : y : z] 799K [h0(x, y, z) : h1(x, y, z) : h2(x, y, z)]

is birational. We denote by πd the map Bird → Bir(P2
k
) which sends h onto ψh.

(3) We define by Bir◦d ⊆ Bird the subset of elements [h0 : h1 : h2] ∈ Bird such that
the polynomials h0, h1, h2 have no common factor of degree ≥ 1.

Remark 3.6. Note that Bird is the notation of [BCM13] and was called Hd in [BF13].

Remark 3.7. The map πd is not injective for d ≥ 2 but restricts to a natural bijection
between Bir◦d and the set Bir(P2)d of maps of degree d.

Lemma 3.8. Let Wd,Bird be as in Definition 3.5. Then, the following holds:

(1) The set Wd is isomorphic to P
r, where r = 3

(

d+2
2

)

− 1 = 3d(d+ 3)/2 + 2.
(2) The set Bird is locally closed in Wd, and thus inherits from Wd the structure of an

algebraic variety.

(3) The map πd : Bird → Bir(P2) is a morphism, which is continuous and closed. Its

image is the set Bir(P2)≤d of birational transformations of degree ≤ d.
(4) For any ϕ ∈ Bir(Pn)≤d, the set (πd)

−1(ϕ) is closed in Wd (hence in Bird).
(5) The set Bir◦d is open in Bird.

Proof. Follows from [BF13, Lemma 2.4, Corollary 2.9 and Proposition 2.15]. �

Corollary 3.9. Let d ≥ 1. We have an equality

πd(Bir
◦
d) = Bir(P2)d,

where the closure of Bir◦d is taken in Bird and the closure of Bir(P2)d is taken in Bir(P2).

Proof. Follows from the fact that πd(Bir
◦
d) = Bir(P2)d and that πd : Bird → Bir(P2) is

closed and continuous. �
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Lemma 3.10. The map

Bir(P2) → Bir(P2)
ϕ 7→ ϕ−1

is a homeomorphism, which sends Bir(P2)d onto itself for each d.
In particular, an element ϕ ∈ Bir(P2) belongs to the closure of Bir(P2)d if and only if

ϕ−1 belongs to the closure of Bir(P2)d.

Proof. Follows from the definition of the topology of Bir(P2) (see Remark 3.3), and from
the fact that the degree of an element and its inverse are the same. �

Proposition 3.11. Let d ≥ 2.

(1) If I ⊂ Bir◦d is an irreducible component, there exists a proper homaloidal type Λ =
(d;m1, . . . , mr) such that a general element of I is a birational map ϕ of P2 of

type Λ, such that neither ϕ nor ϕ−1 have infinitely near base-points. Moreover, all

birational maps of type Λ are contained in I.
(2) The association in (1) yields a one-to-one correspondence between the irreducible

components of Bir◦d and the proper homaloidal types of degree d.

Proof. It follows from [BCM13, Theorem 1 and Lemma 36]. �

Notation 3.12. If Λ = (d;m1, . . . , mr) is a proper homaloidal type, we will follow
[BCM13, Definition 37] and denote by Bir◦Λ ⊂ Bir◦d the irreducible component of Bir◦d
whose general element is of type Λ.

Even if all birational maps of type Λ belong to Bir◦Λ, not all elements of Bir◦Λ have
homaloidal type Λ. Indeed, some map can belong to two or more different irreducible
components. In particular, Bir◦d is connected if d ≤ 6 [BCM13, Theorem 2].

Notation 3.13. If Λ = (d;m1, . . . , mr) is a proper homaloidal type, we will denote
by Λ∗ the homaloidal type such that the inverse of a map of type Λ has type Λ∗ (as
observed in Remark 2.8, the homaloidal type of the inverse of ϕ−1 only depends on the
homaloidal type of ϕ ∈ Bir(P2)).

Remark 3.14. The map ϕ 7→ ϕ−1 yields a homeomorphism of Bir◦d (see Lemma 3.10).
In particular, it sends an irreducible component Bir◦Λ onto Bir◦Λ∗ .

Remark 3.15. In degree d ≤ 5, every proper homaloidal type Λ satisfies Λ = Λ∗, but
this is not true in degree 6, where (6; 4, 24, 13)∗ = (6; 33, 2, 14) (see [Hud27, Table I,
pages 437–443] for the description in each degree d ≤ 16).
One can moreover observe that for each d ≥ 6 there are types which are self-dual and

types which are not:

(1) (d; d− 1, 12d−2)∗ = (d; d− 1, 12d−2) for d ≥ 2;
(2) (d; d− 2, 2d−2, 13)∗ = (d; ⌊d

2
⌋3, ⌈d−1

2
⌉, 1d−2) 6= (d; d− 2, 2d−2, 13) for d ≥ 6.

3.3. Jacobians and curves contracted. The curves contracted by birational maps
and the Jacobian of the maps will be useful to parametrise subvarieties of Bird and Bir◦d,
and to obtain results on possible degenerations.

Definition 3.16. If f = [f0 : f1 : f2] ∈ Bird, we denote by J(f) the polynomial,
defined up to multiple by a constant of k∗, which is the determinant of the matrix of
partial derivatives of f0, f1, f2 with respect to x, y, z. It is the Jacobian of f . This gives
a morphism J : Bird → P(k[x, y, z]3(d−1)).

We now introduce a new definition, that we will then use to study degenerations of
maps (together with Definition 3.20).
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Definition 3.17. Let f = [f0 : f1 : f2] ∈ Bird, let h ∈ k[x, y, z] be a homogeneous
polynomial and let q = [q0 : q1 : q2] ∈ P

2.
(i) We say that f contracts h onto q ∈ P2 if qifj − qjfi is a multiple of h for each

i, j ∈ {0, 1, 2}.
(ii) We say that q is a base-point of f of multiplicity k if a general linear combination

of f0, f1, f2 has multiplicity k at q.

Remark 3.18. If h is a factor of gcd(f0, f1, f2), then h is contracted onto any point
of P2. But otherwise, there is only one possible point where h can be contracted.
If f ∈ Bird and ϕ = πd(f) ∈ Bir(P2)≤d is the corresponding birational map, every

base-point of ϕ is a base-point of f . But if ϕ has degree < d, then f has infinitely many
base-points, which correspond to the points of the common factor of f0, f1, f2.

Let us recall the following classical result.

Lemma 3.19. Let f = [f0 : f1 : f2] ∈ Bir◦d be an element which corresponds to the

birational map πd(f) = ϕ ∈ Bir(P2)d and denote by (d;m1, . . . , mr) the homaloidal type

of ϕ−1. We also denote by g = [g0 : g1 : g2] ∈ Bir◦d the element corresponding to ϕ−1,

and assume that ϕ−1 has no infinitely near base-point.

(1) If h ∈ k[x, y, z] is a homogeneous polynomial which is contracted by f onto a point

q ∈ P2, then each point of the curve of P2 given by h = 0 which is not a base-point

of ϕ is sent by ϕ onto q. Moreover, h is a divisor of the Jacobian J(f).
(2) The Jacobian J(f) admits a decomposition into J(f) =

∏r

i=1 pi, where p1, . . . , pr
are homogeneous polynomials of degree m1, . . . , mr respectively, each of them con-

tracted by f onto points q1, . . . , qr ∈ P2 respectively, all being base-points of ϕ−1 of

multiplicity equal to m1, . . . , mr respectively.

Moreover, the following hold:

(a) The points qi are pairwise distinct.

(b) The points q1, . . . , qr are the base-points of ϕ−1.

(c) Each pi is an irreducible polynomial.

(d) The decomposition J(f) =
∏r

i=1 pi corresponds to the decomposition of J(f)
into irreducible polynomials.

Proof. Follows from [A-C02, Proposition 3.5.3 and Theorem 3.5.6]. �

Definition 3.20. Let Λ be a homaloidal type, such that Λ∗ = (d;m1, . . . , mr). We
denote by

BirΛ ⊂ Bird
the set of elements f = [f0 : f1 : f2] ∈ Bird such that there exist g = [g0 : g1 : g2] ∈ Bird
and homogeneous polynomials p1, . . . , pr of degree m1, . . . , mr respectively, each of them
contracted by f onto points q1, . . . , qr, being base-points of g of multiplicity at least

m1, . . . , mr, and such that J(f) =
r
∏

i=1

pi and πd(g) ◦ πd(f) is the identity.

The following result shows that this definition is consistent with Notation 3.12.

Proposition 3.21. Let Λ be a proper homaloidal type of degree d ≥ 2. Then, the

following hold:

(1) The set BirΛ is closed in Bird.
(2) Bir◦Λ is the unique irreducible component of Bir◦d contained in BirΛ ∩Bir◦d.

Proof. (1) We write Λ∗ = (d;m1, . . . , mr) and prove that BirΛ is closed in Bird. To do
this, we denote by XΛ the subset of

Bird×Wd × P(k[x, y, z]m1
)× · · · × P(k[x, y, z]mr

)× (P2)r
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consisting of elements
(f, g, p1, . . . , pr, q1, . . . , qr)

such that

• The equality J(f) =
r
∏

i=1

pi holds in P(k[x, y, z]3d−3).

• The element [g0(f0, f1, f2) : g1(f0, f1, f2) : g2(f0, f1, f2)] ∈ Wd2 is equal to
[xh : yh : zh] for some element h ∈ k[x, y, z]d2−1; this corresponds to ask that
gi(f0, f1, f2)xj = gj(f0, f1, f2)xi for each i, j, where x0 = x, x1 = y, x2 = z.

• For each j, the polynomial pj is contracted by f onto qj .
• For each j, the point qj is a base-point of h of multiplicity ≥ mj .

Since all above conditions are closed, the set XΛ is closed in Bird×Wd×P(k[x, y, z]m1
)×

· · ·×P(k[x, y, z]mr
)×(P2)r. Moreover, the second condition is equivalent to ask that g ∈

Bird and that πd(f)◦πd(g) is the identity. Hence, the set BirΛ is the projection ofXΛ onto
Bird and is thus closed in Bird, because Wd×P(k[x, y, z]m1

)×· · ·×P(k[x, y, z]mr
)×(P2)r

is projective.
If f = [f0 : f1 : f2] ∈ Bir◦d is of homaloidal type Λ such that (πd(f))

−1 has no infinitely
near base-points, then f belongs to BirΛ and not to any other BirΛ′ (Lemma 3.19). This
shows, together with Proposition 3.11, that Bir◦Λ ⊂ BirΛ ∩Bir◦d and that BirΛ ∩Bir◦d
does not contain any other irreducible component. �

Remark 3.22. Each element of Bir◦d ⊂ Bird is contained in a BirΛ, for some homaloidal

type Λ of degree d. This will give some conditions on the elements of Bir◦d, and thus on

the set Bir(P2)d = πd(Bir
◦
d) (Corollary 3.9).

The set Bir◦Λ is contained in BirΛ, but we do not know if equality holds. We also do
not know if Bir◦Λ = BirΛ ∩Bir◦d.

Example 3.23. Let us consider

f = [(x+ y − z)y(3y − z) : (2y − z)x(3y − z) : (2y − z)xy] ∈ Bir◦3
g = [(y − 2z)yz : (xy − xz − yz)z : (xy − xz − yz)(y − 3z)] ∈ Bir◦3

which are such that π3(f)◦π3(g) is the identity and J(f) = 3xy(3y−z)(z−y)(2y−z)2.
The polynomials x, y, 3y−z, z−y and 2y−z are contracted respectively onto [1 : 0 : 0],
[0 : 1 : 0], [0 : 0 : 1], [2 : 2 : 1], [1 : 0 : 0].
There are multiple ways to choose the polynomials p1, . . . , p5 and the points q1, . . . , q5

and in each way there is a polynomial pi of degree 1 contracted onto qi = [1 : 0 : 0],
which is a base-point of g of multiplicity 2. The fact that the multiplicity is higher
than the degree of the polynomial is because this polynomial corresponds in fact to a
base-point of g infinitely near to [1 : 0 : 0], having multiplicity 1.

4. Existence of degenerations

4.1. Degeneration associated to two base-points. We first prove the following
simple degeneration lemma.

Lemma 4.1. Let p1 ∈ P
2 and let p2 be a point which is either in the first neighbourhood

of p1 or a distinct point of P2.

Then, there exists a morphism ν : A1 → Bir(P2) and a morphism p3 : A
1 → P2 such

that the following hold:

(1) For t 6= 0, ν(t) is a quadratic map with base-points p1, p2, p3(t);
(2) The map ν(0) is the identity and p3(0) is collinear with p1 and p2.

Remark 4.2. In this degeneration, the linear system of conics through p1, p2, p3(t)
degenerates to a system of conics through three collinear points, which is the union of
the line through the points and the system of lines of P2.
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Proof. We first assume that p1, p2 are proper points of P2 and can then assume that
p1 = [1 : 0 : 0] and p2 = [0 : 1 : 0]. Then, we consider the morphism κ : A1 → Bir(P2)
given by

κ(t) : [x : y : z] 799K [(ty − z)x : (tx− z)y : (tx− z)(ty − z)].

For t 6= 0, κ(t) is a quadratic birational involution with base-points p1, p2, [1 : 1 : t].
Moreover, κ(0) equal to the linear automorphism [x : y : z] 7→ [x : y : −z]. We can then
define ν as ν(t) = κ(t) ◦ κ(0).
The second case is when p2 is infinitely near to p1. We can then assume that p1 = [1 :

0 : 0] and that p2 corresponds to the tangent direction z = 0. In this case, we choose
κ : A1 → Bir(P2) given by

κ(t) : [x : y : z] 799K [−xz + ty2 : yz : z2].

For t 6= 0, κ(t) is a quadratic birational involution with base-points p1, p2 and some
point p3(t) infinitely near p2. Moreover, κ(0) equal to the linear automorphism [x : y :
z] 7→ [−x : y : z]. Again, choosing ν(t) = κ(t) ◦ κ(0) works. �

Proposition 4.3. Suppose that γ ∈ Bir(P2) is a birational map of degree d and has two

base-points p1, p2 of multiplicity m1, m2 with m1 +m2 = d− k, such that p1 is a proper

point of P2 and p2 is either a proper point of P2 or in the first neighbourhood of p1.
Then, there exists a morphism ρ : A1 → Bir(P2) such that ρ(0) = γ and ρ(t) has

degree d+ k for a general t 6= 0.

Proof. We use the morphism ν : A1 → Bir(P2) given by Lemma 4.1 and define ρ as
ρ(t) = γ◦ν(t)−1. By construction, this is a morphism which satisfies ρ(0) = γ. Moreover,
the degree of the map ρ(t) for a general t is equal to 2d−m1 −m2 = d+ k. �

Remark 4.4. If p1, . . . , pr are the base-points of γ of multiplicity m1, . . . , mr, the de-
generation provided by Proposition 4.3 gives a family of birational maps of degree d+k
with base-points of multiplicity m1+k,m2+k, k,m3, . . . , mr. The point of multiplicity k
created degenerates to a point collinear with the first two points, and the linear system
becomes the union of the linear system of γ with k times the line through p1 and p2.

In order to be able to apply Proposition 4.3, we need to compute the multiplicities
of birational maps and estimate the integer k which appears in the statement. This is
done in the following lemma.

Lemma 4.5. Let ϕ be a birational map of degree d. Then there exists two distinct points

(proper or infinitely near) of multiplicity m1, m2 ≥ 0, such that

m1 +m2 = d− 1 if d ∈ {1, 2, . . . , 6, 7, 9, 11}
d− 2 ≤ m1 +m2 ≤ d− 1 if d = 8
d− 3 ≤ m1 +m2 ≤ d− 1 if d = 10

2d
3
< m1 +m2 < d if d ≥ 12

Proof. If ϕ is of de Jonquières type, we can choose m1 = d− 1 and m2 = 0. If ϕ has an
homaloidal type (d; d− 2, 2d−2, 13), we can choose m1 = d− 2 and m2 = 1.
If d ∈ {1, 2, . . . , 6, 7, 9, 11}, we find two base-points of multiplicity m1, m2 with m1 +

m2 = d− 1 (see Example 2.9). For d = 8, 10, the result also follows from Example 2.9.
We can thus assume d ≥ 12, and find, with Noether inequalities, two points of

multiplicity m1, m2 with m1 + m2 > 2d
3
. If m1 + m2 < d, we are done, so we can

assume that m1 + m2 = d (m1 + m2 > d is not possible by the Bézout theorem),
i.e. m2 = d − m1. Either m1 > d/2, or m1 = m2 = d/2. Moreover, Noether in-
equalities implies also that m3 > (d − m1)/2 = m2/2 [A-C02, Lemma 8.2.6]. Hence,
m1 +m3 > (d+m1)/2 ≥ 3d/4 > 2d/3, that is the assertion, unless m3 = m2 = d−m1

too.
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Let γ be the number of points, different from p1, with multiplicity d − m1. Either
m1 > d/2, or m1 = m2 = · · · = mγ+1 = d/2.
In the latter case, applying a quadratic map centered at p1, p2, p3, one finds a Cremona

map of degree d/2 that must have a base-point q4 of multiplicity m4 with d/2 > m4 >
(d/2)/3 = d/6. This means that also ϕ has a point p4 of multiplicity m4. It follows that
d > m1 +m4 > 2d/3 and the proof is concluded in this case.
In the former case, we claim that, if ϕ is not de Jonquières (in which case the assertion

of the lemma is trivial, as we already observed), then ϕ has at least one further base-
point pγ+2 (cf. [Hud27, p. 75]). Suppose indeed that the number r of base-points is γ+1.
Multiplying the first Noether equality in (1) by m2 and subtracting the second Noether
equality in (1), we find

r
∑

i=1

mi(m2 −mi) = 3m2(d− 1)− (d2 − 1) = (d− 1)(2d− 3m1 − 1)

that is
m1(d− 2m1) = (d− 1)(2d− 3m1 − 1)

which is impossible because m1 < d − 1. So our claim is proved and there is at least
another base-point pγ+2 that we can use together with p1. Note also that the assertion is
trivial ifm1+1 > 2d/3, i.e.m1 > (2d−3)/3. Hence, we may assume thatm1 ≤ (2d−3)/3
and therefore m2 = d − m1 ≥ (d + 3)/3. Recalling that m2 = m3 = d −m1 < d/2, it
follows that d > m2 +m3 > 2d/3, as wanted. �

Corollary 4.6. We have Bir(P2)d ⊂ Bir(P2)d+1 for each

d ∈ {1, 2, . . . , 6, 7, 9, 11}

and Bir(P2)8 ⊂ Bir(P2)10.

Proof. Let γ ∈ Bir(P2) be of degree d ∈ {1, 2, . . . , 6, 7, 9, 11}. By Lemma 4.5 there exist
two points p1 and p2 of respective multiplicity m1 and m2 with m1 + m2 = d − 1. If
p1, p2 are proper points in P

2, then γ ∈ Bir(P2)d+1 by Proposition 4.3.
The set of elements γ ∈ Bir(P2)d such that p1, p2 are proper being dense in each

irreducible component of Bir(P2)d (Proposition 3.11), we obtain Bir(P2)d ⊂ Bir(P2)d+1.
Similarly, if γ has degree d = 8, by Lemma 4.5 there exist p1, p2 with 6 = d − 2 ≤

m1 + m2 ≤ d − 1 = 7, hence we conclude as above that γ is in either Bir(P2)10 or

Bir(P2)9, the latter being included in Bir(P2)10 by the first part of the proof. �

Corollary 4.7. Let γ ∈ Bir(P2) be a birational map of degree d. There exists an integer

k such that 1 ≤ k ≤ max{1, d
3
} and γ ∈ Bir(P2)d+k.

Proof. The proof is similar as the one of Corollary 4.6. �

4.2. Degeneration associated to five general base-points. Let us give another
degeneration process, similar to Lemma 4.1 and Proposition 4.3 but with more points.
It will be useful to show that Bir(P2)10 ⊂ Bir(P2)12.

Lemma 4.8. Let p1, . . . , p5 be five distinct points of P2, such that no 3 of them are

collinear.

Then, there exists an open subset U ⊂ A1 containing 0 and two morphisms ν : U →
Bir(P2) and p6 : U → P

2, such that the following hold:

(1) For t 6= 0, the map ν(t) has degree 5 and six base-points of multiplicity 2, being
p1, . . . , p5, p6(t), which are such that no 3 are collinear and which do not belong to

the same conic.

(2) The map ν(0) is the identity and p6(0) belongs to to the conic passing through

p1, . . . , p5.
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Proof. Since no three of the points p1, . . . , p5 are collinear, we can assume that p1 = [1 :
0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1]. We then denote by σ the standard quadratic
transformation

σ : [x : y : z] 799K [yz : xz : xy].

Note that σ is a local isomorphism at p4, p5 and that p1, p2, p3, σ(p4), σ(p5) are five
points of P2 such that no 3 are collinear.
Applying Lemma 4.1, we obtain morphisms ν ′ : A1 → Bir(P2) and p′6 : A

1 → P2 such
that ν ′(0) is the identity and ν ′(t) is a quadratic map with base-points σ(p4), σ(p5), p

′
6(t).

Moreover, p′6(t) is collinear with σ(p4) and σ(p5) if and only if t = 0. We can moreover
choose that p6(0) does not belong to the triangle xyz = 0, conjugate ν ′ with an auto-
morphism of P2 if needed.
We denote by U ′ ⊂ A1 the dense open subset such that p′6(t) is not collinear with

two of the points p1, p2, p3, σ(p4),σ(p5) and does not belong to the conic through these
points. In particular, ν ′(t) is a local isomorphism at p1, p2, p3 for each t ∈ U ′. We have
then a morphism map ψ : U ′ → PGL(3,k) (or equivalently an element of PGL(3,k(t)))
such that ψ(t) sends ν ′(t)(pi) onto pi for i = 1, 2, 3. Since ν ′(0) is the identity, we have
0 ∈ U ′ and can choose ψ(0) to be the identity.
We then define a morphism ν : U ′ → Bir(P2) in the following way:

ν(t) = σψ(t)ν ′(t)σ.

For t = 0, ν(t) is the identity, since ψ(0) and ν ′(0) are the identity. It remains to observe
that for a general t ∈ U ′ the linear system of ν(t) has the desired form.
For t 6= 0, the linear system of σψ(t) consists of conics through ν ′(t)(p1), ν

′(t)(p2),
ν ′(t)(p3). The linear system of σψ(t)ν ′(t) consists then of quartics having multiplicity
two at σ(p4), σ(p5), p

′
6(t) and multiplicity one at p1, p2, p3. The linear system of ν has

then multiplicity 5 and multiplicity 2 at p1, p2, p3, p4, p5, σ(p
′
6(t)). We define U ⊂ U ′ to

be the union of 0 with the points of U ′ such that p6(t) = σ(p′6(t)) is a proper point of P2

and obtain the result. The degeneration of ν(t) comes because p6(0) belongs to the conic
through p1, . . . , p5, which is the image by σ of the line through σ(p4) and σ(p5). �

Proposition 4.9. Suppose that γ ∈ Bir(P2) is a birational map of degree d and has

five proper base-points p1, . . . , p5 of multiplicity m1, . . . , m5, such that no 3 of them are

collinear and such that
∑5

i=1mi = 2d− k.
Then, there exists a morphism ρ : U → Bir(P2), where U ⊂ A1 is an open subset

containing 0, such that ρ(0) = γ and ρ(t) has degree d+ 2k for a general t 6= 0.

Proof. We use the morphism ν : U → Bir(P2) given by Lemma 4.8 and define ρ as
ρ(t) = γ◦ν(t)−1. By construction, this is a morphism which satisfies ρ(0) = γ. Moreover,
the degree of the map ρ(t) for a general t is equal to 5d−2m1−2m2−2m3−2m4−2m5 =
d+ 2k. �

Remark 4.10. If p1, . . . , pr are the base-points of γ of multiplicity m1, . . . , mr, the
degeneration provided by Proposition 4.9 gives a family of birational maps of degree
d+2k with base-points of multiplicitym1+k,m2+k,m3+k,m4+k,m5+k, k,m6, . . . , mr.
The point of multiplicity k created degenerates to a point which belongs to the conic
through the first five points, and the linear system becomes the union of the linear
system of γ with k times the conic.

Corollary 4.11. We have Bir(P2)10 ⊂ Bir(P2)12.

Proof. Each irreducible component of Bir(P2)10 corresponds to a Bir◦Λ where Λ =
(d;m1, . . . , mk) is a proper homaloidal type (Proposition 3.11 and Notation 3.12). If
there are two multiplicities mi, mj such that mi + mj = 9 or mi + mj = 8, then

Proposition 4.3 shows that a general element of Bir◦Λ belongs to Bir(P2)11 ∪ Bir(P2)12 =
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Bir(P2)12, where the last equality follows from the fact that Bir(P2)11 ⊂ Bir(P2)12 by
Corollary 4.6. Looking at Example 2.9, one sees that this holds for each proper homa-
loidal type of degree 10, except for Λ = (10; 53, 26). We then apply Proposition 4.9
to the first 5 multiplicities, and obtain that a general element of Bir◦Λ is contained in

Bir(P2)12. �

4.3. Degeneration associated to five base-points, three of them being collinear.

We finish this section with another degeneration process, which works with maps having
three collinear points. It will be useful to show that some maps of type (8; 43, 23, 13)

belong to Bir(P2)9 (Corollary 4.14), although this is not true for a general element of
type (8; 43, 23, 13) (Corollary 5.2), and the same for maps of type (10; 53, 26).

Lemma 4.12. Let p1, . . . , p5 be five distinct points of P
2, such that p1, p2, p3 are collinear

but no other triple of points belongs to the same line.

Then, there exists an open subset U ⊂ A1 containing 0 and two morphisms ν : U →
Bir(P2) and p6 : U → P2, such that the following hold:

(1) For t 6= 0, the map ν(t) has degree 4 and six base-points, namely p1, p2, p3 with

multiplicity 1 and p4, p5, p6(t) with multiplicity 2, and p6(t) is not collinear with any

other base-point.

(2) The map ν(0) is the identity and p6(0) belongs to to the line through p4 and p5.

Proof. The points p1, p2, p4, p5 being in general position, we can assume, up to change
of cooordinates, that

p1 = [0 : 0 : 1], p2 = [1 : 1 : 1], p4 = [0 : 1 : 0], p5 = [1 : 0 : 0].

This implies that p3 = [1 : 1 : a] for some a ∈ k∗.
We consider the morphisms κ, ρ, τ : A1 → Bir(P2) defined by

κ(t) : [x : y : z] 799K [(ty − z)x : (tx− z)y : (tx− z)(ty − z)]
ρ(t) : [x : y : z] 799K [x(yt+ z) : yz : −z(yt + z)]
τ(t) : [x : y : z] 7→ [(a + t)y + z : (a− 1)y : ax− (a+ t)y]

(the map κ is the same as in Lemma 4.1). Observe that τ(t) ∈ Aut(P2) for each t,
that ρ(0), κ(0) ∈ Aut(P2) and that for a general t, κ(t), ρ(t) are quadratic birational
involutions of P2. Moreover, the base-points of ρ(t) are p4, p5 and the point infinitely to
p5 that corresponds to the line yt+ z = 0, that we will denote p6(t). The base-points of
κ(t) are p4, p5, [1 : 1 : t].
We then define ν : A1

99K Bir(P2) as ν(t) = ρ(0)τ(0)−1κ(0)κ(t)τ(t)ρ(t). The linear
system of ν(t) is given by comparing the linear system of κ(t)τ(t) with the one of
ρ(t)−1 = ρ(t). The linear system of κ(t)τ(t) consists of conics through

τ(t)−1({p4, p5, [1 : 1 : t]}) = {[a + t : a : −a(a + t)], p1, [t+ 1 : 1 : −t− 1]}.

For t /∈ {0,−1, a}, the three points are different from the three base-points of ρ(t), so
ν(t) has degree 4, multiplicity 2 at the three base-points of ρ(t) and multiplicity 1 at

ρ(t)(τ(t)−1)({p4, p5, [1 : 1 : t]}) = {p2, p1, p3}.

Choosing U = A1 \ {−1, a}, we obtain the result. �

Proposition 4.13. Suppose that γ ∈ Bir(P2) is a birational map of degree d and has five

proper base-points p1, . . . , p5 of multiplicity m1, . . . , m5, such that p1, p2, p3 are collinear

but no other triple of points belongs to the same line and such that m1 + m2 + m3 +
2m4 + 2m5 = 3d− k.
Then, there exists a morphism ρ : U → Bir(P2), where U ⊂ A1 is an open subset

containing 0, such that ρ(0) = γ and ρ(t) has degree d+ k for a general t 6= 0.
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Proof. We use the morphism ν : U → Bir(P2) given by Lemma 4.12 and define ρ as
ρ(t) = γ◦ν(t)−1. By construction, this is a morphism which satisfies ρ(0) = γ. Moreover,
the degree of the map ρ(t) for a general t is equal to 4d−m1−m2−m3− 2m4− 2m5 =
d+ k. �

Corollary 4.14. If ϕ ∈ Bir(P2) is a map of type (d;m1, . . . , mr) with five proper

base-points p1, p2, p3, p4, p5 of multiplicity m1, . . . , m5 respectively, such that p1, p2, p3 are
collinear but no other triple of points belongs to the same line. If m1 +m2 +m3 = d− 1
and m4 +m5 = d then ϕ ∈ Bir(P2)d+1.

In particular, there exist some elements in Bir(P2)9 of type (8; 43, 23, 13) and elements

in Bir(P2)11 of type (10; 53, 26).

Proof. The second part directly follows from Proposition 4.13. The second part follows
by taking (m1, . . . , m5) to be respectively (1, 2, 4, 4, 4) and (2, 2, 5, 5, 5). �

5. Restrictions on the degeneration in one degree less

Proposition 5.1. Let ϕ ∈ Bir(P2)d be a birational map of degree d ≥ 2 with only proper

base-points (but ϕ−1 can have infinitely near base-points), and assume that ϕ belongs to

the closure of Bir(P2)d+1.

Then, there exist a set Ω consisting of one, two, three or four base-points of ϕ, which
are collinear and such that the sum of their multiplicities is equal to d− 1.

Proof. Suppose that ϕ belongs to the closure of Bir(P2)d+1, which is equivalent to the
fact that ϕ−1 belongs to the closure of Bir(P2)d+1.

By Corollary 3.9, there exist elements f̂ , ĝ ∈ Bir◦d+1 which are sent by πd+1 onto ϕ−1

and ϕ respectively. Denoting by f = [f0 : f1 : f2] ∈ Bir◦d and g = [g0 : g1 : g2] ∈ Bir◦d
the elements corresponding to ϕ−1 and ϕ respectively, there exists thus homogeneous
polynomials α, β ∈ k[x0, x1, x2] of degree 1, such that f̂ = [αf0 : αf1 : αf2] and

ĝ = [βg0 : βg1 : βg2] belong to Bir◦d+1. By Proposition 3.21, there is a homaloidal type

Λ such that f̂ ∈ BirΛ.
Changing maybe β and writing Λ∗ = (d+1;n1, . . . , nr), this yields the existence (see

Definition 3.20) of homogeneous polynomials p̂1, . . . , p̂r of degree n1, . . . , nr respectively,

each of them contracted by f̂ onto points q1, . . . , qr ∈ P2, being base-points of ĝ of

multiplicity at least n1, . . . , nr, and such that J(f̂) =
r
∏

i=1

p̂i.

For each i, the fact that p̂i is contracted by f̂ = [αf0 : αf1 : αf2], and that f = [f0 :
f1 : f2] is without common component imply that one of the following holds:

(1) p̂i = α and qi is any point of P2;
(2) p̂i = αpi, where pi is a polynomial contracted by f onto qi;
(3) p̂i = pi, where pi is a polynomial contracted by f onto qi.

Because ϕ has only proper base-points, if a polynomial p of degree k is contracted by f
onto a point q, then q is a base-point of ϕ, and thus of g, of multiplicity k.
The polynomials pi defined in (2), (3) above are thus irreductible factors of the Ja-

cobian J(f). Note that
r
∏

i=1

p̂i = J(f̂) = J(f)α3, so each polynomial contracted by f

appears exactly once in this decomposition, except if this polynomial is α itself.
(a) We assume first that α is not a divisor of J(f), which is the easiest case. We write

pi = 1 in the case where p̂i = α, and obtain then
∏r

i=1 pi = J(f). For each i, we denote
by mi the degree of pi, and obtain mi ∈ {ni, ni − 1}, and obtain, via Noether equalities

r
∑

i=1

ni = 3d+ 6 = 3 +

r
∑

i=1

mi,
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r
∑

i=1

(ni)
2 = (d+ 1)2 − 1 = (2d+ 1) + d2 − 1 = (2d+ 1) +

r
∑

i=1

(mi)
2.

There are then exactly three values of i such that ni = mi + 1. Reordering such that
the three indices are 1, 2, 3, we obtain

2d+ 1 =

r
∑

i=1

(ni)
2 −

r
∑

i=1

(mi)
2 = (2m1 + 1) + (2m2 + 1) + (2m3 + 1)

which yields m1 +m2 +m3 = d− 1.
If i ∈ {1, 2, 3} is such that mi > 0, then p̂i = αpi and pi is contracted by f onto qi

(case (2) above). Moreover, qi is a base-point of multiplicity mi of g and of multiplicy
mi + 1 of ĝ. This implies that qi belongs to the line given by β = 0. Choosing

Ω = {qi | i ∈ {1, 2, 3} and mi > 0},

we obtain the result.
(b) Assume now that α is a divisor of J(f). Each other irreducible factor of J(f) is

then equal to exactly one pi, and α appears four times in J(f)α3 = J(f̂) =
∏r

i=1 p̂i.
If p̂i is equal to α or to α2 for some i, we will choose that pi = 1. In all other cases,

the polynomial pi is defined as before. This implies that J(f) = α
∏r

i=1 pi. As before,
we denote by mi the degree of pi and the Noether equalities yield 1+

∑r

i=1mi = 3d− 3
and 1 +

∑r

i=1(mi)
2 = d2 − 1.

We consider now the following possibilities, which describe which one of the p̂i are
multiple of α.
(i) Suppose that α2 is equal to two different p̂i, that we can choose to be p̂1 and p̂2.

We have then n1 = n2 = 2, m1 = m2 = 0 and mi = ni for i ≥ 3. Then 2d + 1 =
∑

(ni)
2 − (

∑

(mi)
2 + 1) = 3, which is not possible since d ≥ 2.

(ii) Suppose that p̂1 = α2 and that α divides two other p̂i, that we can assume to
be p̂2 and p̂3. We have then n1 = 2, m1 = 0, n2 = m2 + 1, n3 = m2 + 1 and ni = mi

for i ≥ 3. Then 2d + 1 =
∑

(ni)
2 − (

∑

(mi)
2 + 1) = 1 + (2m1 + 1) + (2m2 + 1), which

yields m1 +m2 = d− 1. We can conclude as before: if mi > 0 with i ∈ {2, 3}, then pi is
contracted onto qi, which is a base-point of ϕ of multiplicity mi.
(iii) The last case is when α2 does not divide any of the p̂i. There are thus exactly

four values of i such that α divides p̂i. We can choose that these are 1, 2, 3, 4, and
obtain p̂i = αpi for i = 1, 2, 3, 4, and p̂i = pi for i > 4. So ni = mi + 1 for i ≤ 4
and ni = mi for i > 4. In particular, we obtain 2d + 1 =

∑

(ni)
2 − (

∑

(mi)
2 + 1) =

(2m1+1)+(2m2+1)+(2m2+1)+(2m3+1)−1, which yieldsm1+m2+m3+m4 = d−1. �

Corollary 5.2. Let ϕ ∈ Bir(P2)d be a birational map of degree d ≥ 2 with only

proper base-points (but ϕ−1 can have infinitely near base-points), such that no three

are collinear.

Then, the following conditions are equivalent:

(1) The map ϕ belongs to the closure of Bir(P2)d+1.

(2) There exist a set Ω consisting of one or two base-points of ϕ such that the sum of

their multiplicities is equal to d− 1.

Proof. The implication (1) ⇒ (2) is given by Proposition 5.1. The implication (2) ⇒ (1)
is given by Proposition 4.3. �

Proposition 5.3. Let Λ = (d;m1, m2, . . . , mr) be a proper homaloidal type.

The irreducible component πd(Bir
◦
Λ) of Bir(P

2)d lies in the closure of Bir(P2)d+1 if and

only if there exists mi and mj such that mi +mj = d− 1 or mi = d− 1.

Proof. The necessity of the condition on the multiplicities is given by Corollary 5.2.
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Conversely, suppose that there exists mi and mj such that mi + mj = d − 1 or
mi = d−1. By Corollary 5.2, a general element of πd(Bir

◦
Λ) is in the closure of Bir(P2)d+1.

This gives the result. �

Remark 5.4. The product of three general quadratic transformations is a general map
of type (8; 43, 23, 13) that does not belong to Bir(P2)9. However, there are some maps

ϕ ∈ Bir(P2) of type (8; 43, 23, 13) that belong to Bir(P2)9 (Corollary 4.14). The same
phenomenon occurs for (10; 53, 26).

Proposition 5.3 implies the following:

Corollary 5.5. One has that Bir(P2)d ⊂ Bir(P2)d+1 if and only if d ∈ {1, 2, . . . , 6, 7, 9, 11}.

Proof. The “if” part follows from Corollary 4.6. When d = 8, there are exactly two
proper homaloidal types, namely (8; 43, 23, 13) and (8; 37), cf. Table 1, whose correspond-

ing irreducible components of Bir(P2)8 are not contained in Bir(P2)9 by Proposition 5.3.
Similarly, when d = 10, there are exactly 7 proper homaloidal types, cf. Table 1, whose
corresponding irreducible components of Bir(P2)10 are not contained in Bir(P2)11.

It remains to see that Bir(P2)d 6⊂ Bir(P2)d+1 for each d ≥ 12. To do this, we use
the proper homaloidal types (3m; 3m − 6, 6m−3, 43, 32, 2, 1) for m ≥ 4, (3m + 1; 3m −
5, 6m−2, 4, 33, 14) for m ≥ 4 and (3m + 2; 3m − 4, 6m−2, 42, 32, 22, 1) for m ≥ 4 (see
Example 2.10). For each of these types of degree d ∈ {3m, 3m+1, 3m+2}, there are no
two multiplicities mi and mj with mi +mj = d− 1, hence Proposition 5.3 says that the

corresponding irreducible components of Bir(P2)d are not contained in Bir(P2)d+1. �

We can now give the proof of Theorem 1:

Proof of Theorem 1. It follows from Corollary 5.5 that Bir(P2)d = Bir(P2)≤d for d ≤ 8,

that Bir(P2)d 6= Bir(P2)≤d for d ∈ {9, 11} and d ≥ 13, and that Bir(P2)d−1 ⊂ Bir(P2)d
for d ∈ {10, 12}.

The inclusions Bir(P2)8 ⊂ Bir(P2)10 and Bir(P2)10 ⊂ Bir(P2)12, given by Corollar-

ies 4.6 and 4.11, conclude the proof that Bir(P2)≤d = Bir(P2)d for each d ∈ {10, 12}. �

5.1. Examples. The following example shows that it is possible that [f0h : f1h : f2h] ∈

Bir◦d+m corresponds to a birational map [f0 : f1 : f2] ∈ Bir◦d that contracts the curve
given by h = 0.

Example 5.6. Let κ̃ : A1 → Bir(P2) be given by

κ̃(t) : [x : y : z] 799K [t(x2 − y2)− xz : −yz : (t(x+ y)− z)(t(x− y)− z)].

For each t 6= 0, κ̃(t) is a quadratic birational involution, whose three base-points are

[1 : −1 : 0], [1 : 1 : 0], [1 : 0 : t],

and κ̃(0) is the automorphism

[x : y : z] 7→ [−xz : −yz : z2] = [−x : −y : z].

We now consider κ : A1 → Bir(P2) be the morphism that is given by κ(t) = κ̃(t) ◦ σ,
where σ : [x : y : z] 799K [yz : xz : xy] is the standard quadratic involution of P2:

κ(t) : [x : y : z] 799K [(tz2(y2 − x2)− xy2z) : −x2yz : (tz(x + y)− xy)(tz(y − x)− xy)].

For t 6= 0, the linear system of the birational map κ(t) consists of quartics having
multiplicity 2 at [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], and having one tangent direction
infinitely near to [0 : 1 : 0] and the two tangent directions infinitely near to [0 : 0 : 1].
For t = 0, we obtain explicitely an element

[−xy2z : −x2yz : x2y2] ∈ Bir◦4 \ Bir
◦
4



ON DEGENERATIONS OF PLANE CREMONA TRANSFORMATIONS 17

which corresponds to the birational map of degree 2 given by

κ(0) : [x : y : z] 799K [−yz : −xz : xy].

The polynomial which multiplies this element of Bir◦2 to get an element of Bir4 is xy,
and is here contracted by κ(0).

The following example shows that one can obtain a general map of degree 2 (no
infinitely near base-points) as a limit of special maps of degree 3 (having infinitely near
base-points).

Example 5.7. Let σ1 ∈ Bir(P2) be the quadratic birational involution given by

[x : y : z] 799K [(x− y)(x− z) : y(z − x), z(y − x)]

whose three base-points are

[0 : 0 : 1], [0 : 1 : 0], [1 : 1 : 1].

Let σ2 : A
1 → Bir(P2) be the morphism given by

σ2(t) : [x : y : z] 799K [y(tx+ z(1− t2)) : z(x− zt) : y(x− zt)]

For each t, the map σ2(t) is a birational quadratic involution whose three base-points
are

[1 : 0 : 0], [0 : 1 : 0], [t : 0 : 1],

and σ2(0) is the standard quadratic transformation.
In particular, the morphism σ2σ1 : A

1 → Bir(P2) gives a degeneration of a family of
cubic birational maps σ2σ1(t) for t 6= 0 to a quadratic map σ2σ1(0) having only proper
base-points. Moreover, for t 6= 0 the fact that [t : 0 : 1], [1 : 0 : 0] and [0 : 0 : 1] are
collinear implies that σ1σ2(t) has one base-point infinitely near. In coordinates, we find

σ2(t)σ1 : [x : y : z] 799K [(x−z)y(tx+z(t2−t−1)) : (x−y)(x+z(t−1))z : (x−z)y(x+z(t−1))]

for t = 0 we find an element

[−(x− z)yz : (x− y)(x− z)z : (x− z)2y] ∈ Bir◦3 \ Bir
◦
3

which corresponds to the birational map

[x : y : z] 799K [−yz : (x− y)z : (x− z)y]

having base-points at [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1].

6. Halphen maps

6.1. Preliminaries on a family of Halphen homaloidal types. Let us recall the
notation of §2.1: we consider the free Z-module V of infinite countable rank, whose basis
is {ei}i∈N and denote by W the group of automorphisms of V generated by σ0 and by
the permutations of the ei fixing e0 (see §2.1 for the definition of σ0, which corresponds
to the action of the standard quadratic transformation).
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Lemma 6.1. (1) The automorphism B of V that fixes ei for i ≥ 10 and acts on
⊕9

i=0 Zei
via the matrix































17 0 6 6 6 6 6 6 6 6
0 1 0 0 0 0 0 0 0 0

−6 0 −3 −2 −2 −2 −2 −2 −2 −2
−6 0 −2 −3 −2 −2 −2 −2 −2 −2
−6 0 −2 −2 −3 −2 −2 −2 −2 −2
−6 0 −2 −2 −2 −3 −2 −2 −2 −2
−6 0 −2 −2 −2 −2 −3 −2 −2 −2
−6 0 −2 −2 −2 −2 −2 −3 −2 −2
−6 0 −2 −2 −2 −2 −2 −2 −3 −2
−6 0 −2 −2 −2 −2 −2 −2 −2 −3































respectively to the basis (e0, . . . , e9) belongs to the group W .

(2) Denoting by ν ∈ W the transposition that exchanges e1 and e2, the matrix of

(νB)2a ∈ W relative to (e0, . . . , e9) is equal to




















36a2 12a2 − 6a 12a2 + 6a 12a2 12a2 . . . 12a2

−12a2 − 6a −4a2 −4a2 − 4a −4a2 − 2a −4a2 − 2a . . . −4a2 − 2a
−12a2 + 6a −4a2 + 4a −4a2 −4a2 + 2a −4a2 + 2a . . . −4a2 + 2a

−12a2 −4a2 + 2a −4a2 − 2a −4a2 −4a2 . . . −4a2

−12a2 −4a2 + 2a −4a2 − 2a −4a2 −4a2 . . . −4a2

...
...

...
...

...
...

−12a2 −4a2 + 2a −4a2 − 2a −4a2 −4a2 . . . −4a2





















+I

for each integer a ∈ Z, where I ∈ GL(10,Z) is the identity matrix.

Proof. Assertion (1) can be proven by hand, following the Hudson’s test on the coeffi-
cients and applying then σ0 and permutations. It can also be seen by observing that it
is the action of a Bertini involution on the blow-up of 8 general base-points.
Assertion (2) is a straight-forward computation for a = ±1 and can be proved by

induction on |a| for the other integers. �

Remark 6.2. If we take nine points p1, . . . , p9 ∈ P2 given by the intersection of two
general cubics, the blow-up X → P2 of these points gives a Halphen surface, whose
anti-canonical morphism yields an elliptic fibration.
Moreover, the Bertini involutions (see [BB00, §(1.3)]) associated to 8 of the 9 points

lift to automorphisms of X having actions on Pic(X) which are given by the first matrix
of Lemma 6.1, up to permutation. The second matrix, for a = 1 is then equal to the
matrix of an automorphism τ ∈ X . This implies that the matrix for a ∈ Z is the one
given by τa.
See [Giz80] for more details on the possible automorphisms of the Halphen surfaces.

Corollary 6.3. For each a ≥ 1,

Λa = (36a2 + 1; 12a2 + 6a, 12a2, 12a2, 12a2, 12a2, 12a2, 12a2, 12a2, 12a2 − 6a) (5)

is a proper homaloidal type that satisfies (Λa)
∗ = Λa.

Proof. According to Proposition 2.4, Λa is proper if and only if it belongs to the orbit
W (e0) of e0 under the action of e0.
It follows from Lemma 6.1 that νB ∈ W , and that

(νB)2a(e0) = (36a2 + 1)e0 − (12a2 + 6a)e1 − (12a2 − 6a)e2 −

9
∑

i=3

12a2ei,
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which corresponds to the homaloidal type Λa. Hence Λa is a proper homaloidal type for
each a ≥ 1.
Moreover, the homoloidal type (Λa)

∗ is obtained by (νB)−2a(e0) (Remark 2.5). Using
again Lemma 6.1, we obtain the equality

(νB)−2a(e0) = (36a2 + 1)e0 − (12a2 − 6a)e1 − (12a2 + 6a)e2 −
9

∑

i=3

12a2ei,

which implies that (Λa)
∗ = Λa. �

The sequence of proper homaloidal types of Example 2.10 suffices to show that for d
large, there are elements in Bir(P2)d\Bir(P2)d+1. However, all such families belong in fact

to Bir(P2)d+2. The following family of examples will be sufficient to prove Theorem 2.

Proposition 6.4. For each a ≥ 1, there exists a birational map τa of degree d = 36a2+1,
which is of type

(36a2 + 1; 12a2 + 6a, 12a2, 12a2, 12a2, 12a2, 12a2, 12a2, 12a2, 12a2 − 6a),

and which contracts exactly 9 irreducible curves, 7 of degree 12a2, one of degree 12a2+6a
and one of degree 12a2 − 6a.
Moreover τa ∈ Bir(P2)d does not belong to Bir(P2)d+k if 1 ≤ k ≤ a.

Proof. By Corollary 6.3, the type given above is a proper homaloidal type which is self-
dual. Hence, by Proposition 2.4 there is a birational map τa having this type and having
only proper base-points. We can moreover assume that (τa)

−1 also has only proper base-
points. This implies that τa contracts exactly 9 irreducible curves, 7 of degree 12a2, one
of degree 12a2 + 6a and one of degree 12a2 − 6a (Lemma 3.19).
We write d = 36a2 + 1 and f = [f0 : f1 : f2] ∈ Bir◦d the element sent on τa by πd and

suppose that f̂ = [αf0 : αf1 : αf2] ∈ Bird+k belongs to the closure of Bir◦d+k, for some

homogeneous polynomial α of degree k. Hence, f̂ belongs to BirΛ for some homaloidal
type (d + k;m1, . . . , mr) (Proposition 3.21). There exist then polynomials p1, . . . , pr of

degree m1, . . . , mr respectively, each of them contracted by f̂ onto points q1, . . . , qr,
being base-points of ĝ = [g0 : g1 : g2] of multiplicity at least m1, . . . , mr and satisfying

that J(f̂) =
r
∏

i=1

pi. Moreover, πd+k(ĝ)
−1 = πd+k(f̂).

Denote by l1, . . . , l9 the irreducible polynomials contracted by [f0 : f1 : f2], of degree
n1, . . . , n9 respectively, with

n1 = 12a2 + 6a, n2 = · · · = n8 = 12a2, n9 = 12a2 − 6a.

We have then
r
∏

i=1

pi = J(f̂) = α3J([f0 : f1 : f2]) = α3

9
∏

i=1

li.

The polynomial α having degree k ≤ a < 12a2−6a, it is not a multiple of li for any i.
This implies that liljP is not contracted by f̂ for any 1 ≤ i, j ≤ 9 and any homogeneous
polynomial P 6= 0. We can then reorder the pi such that:

(1) for i = 1, . . . , 9, li divides pi and pi divides liα;
(2) for i ≥ 10, pi divides α.

Writing mi = ni + ǫi for i = 1, . . . , 9 and mi = ǫi for i ≥ 10 we have then 0 ≤ ǫi ≤ k for
each i.
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Applying Noether inequalities we obtain

3k = (3(d+ k)− 3)− (3d− 3)
=

∑

mi −
∑

ni

=
∑

ǫi

(d+ k)2 − 1 =
∑

(mi)
2

=
∑

i≤9

(ni + ǫi)
2 +

∑

i≥10

(ǫi)
2

= d2 − 1 +
∑

i≤9

(2niǫi) +
∑

(ǫi)
2

= d2 − 1 + 24a2
∑

i≤9

ǫi + 12a(ǫ1 − ǫ9) +
∑

(ǫi)
2

The difference of both sides of the equation yields then

0 = k2 + 2dk − 24a2
∑

i≤9

ǫi − 12a(ǫ1 − ǫ9)−
∑

(ǫi)
2

= k2 + 2dk − 24a2(3k −
∑

i≥10

ǫi)− 12a(ǫ1 − ǫ9)−
∑

(ǫi)
2

= k2 + 2k(d− 36a2) +
∑

i≥10

ǫi(24a
2 − ǫi)− 12a(ǫ1 − ǫ9)−

∑

i≤9

(ǫi)
2

≥ k2 + 2k +
∑

i≥10

ǫi(24a
2 − ǫi)− 12ak − 9k2

= 2k(1− 6a− 4k) +
∑

i≥10

ǫi(24a
2 − ǫi)

≥ 2k − 20a2 +
∑

i≥10

ǫi(24a
2 − ǫi).

If ǫj > 0 for some j > 9, we find
∑

i≥10

ǫi(24a
2 − ǫi) ≥ 24a2 − k > 20a2 − 2k,

so the above inequality implies that ǫj = 0 for all j ≥ 10, which means that r = 9.
Note that f = [f0 : f1 : f2] contracts l1, . . . , l9 onto q1, . . . , q9, which are then the

base-points of πd(f)
−1 = (τa)

−1. This implies that f̂ contracts p1, . . . , p9 onto q1, . . . , q9.
Moreover, the points q1, . . . , q9 are base-points of ĝ = [g0 : g1 : g2] of multiplicity

at least m1, . . . , m9. As we can choose the 9 points in general position and since (d +
k;m1, . . . , m9) is a proper homaloidal type, the linear system of curves of degree d+ k
having multiplicity at least mi at qi has dimension 2 and corresponds to a birational
map of degree d + k. This implies that the linear system

∑

λigi is irreducible, which
leads to a contradiction. �

We can now finish the text with the proof of Theorem 2:

Proof of Theorem 2. The first part follows from Proposition 6.4, the second part follows
from Corollary 4.7. �
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