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Abstract Vacuum magnetic birefringence was predicted
long time ago and is still lacking a direct experimental con-
firmation. Several experimental efforts are striving to reach
this goal, and the sequence of results promises a success in
the next few years. This measurement generally is accompa-
nied by the search for hypothetical light particles that couple
to two photons. The PVLAS experiment employs a sensitive
polarimeter based on a high finesse Fabry–Perot cavity. In
this paper we report on the latest experimental results of this
experiment. The data are analysed taking into account the
intrinsic birefringence of the dielectric mirrors of the cavity.
Besides a new limit on the vacuum magnetic birefringence,
the measurements also allow the model-independent exclu-
sion of new regions in the parameter space of axion-like and
milli-charged particles. In particular, these last limits hold
also for all types of neutrinos, resulting in a laboratory limit
on their charge.

1 Introduction

Vacuum magnetic birefringence is a very small macroscopic
quantum effect stemming from the 1936 Euler–Heisenberg–
Weisskopf effective Lagrangian density for slowly varying
electromagnetic fields [1–4] (see also References [5,6]) that,
to lowest order, reads:

LEHW = 1
2µ0

(
E2

c2 − B2
)

+ Ae

µ0

[(
E2

c2 − B2
)2

+ 7
(
E
c
· B

)2
]

. (1)
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Here

Ae =
2

45µ0

α2λ̄3
e

mec2 = 1.32 × 10−24 T−2, (2)

λ̄e = h̄/mec being the Compton wavelength of the electron,
α = e2/(4πε0h̄c) the fine structure constant, andme the elec-
tron mass. The first term in Eq. (1), quadratic in the fields, is
the classical Lagrangian corresponding to Maxwell’s equa-
tions in vacuum, for which the superposition principle holds
and no light-by-light interaction is expected. The other terms,
instead, imply that Electrodynamics is nonlinear even in vac-
uum, giving rise to a new class of observable effects.

The Quantum Electrodynamics (QED) representation of
the simplest phenomena we are interested in is given by the
Feynman diagrams shown in Fig. 1a, b, in which four photons
interact through a virtual e+e− pair. In the Fig. 1b diagram,
two photons interact with an external field; this is the pro-
cess that leads, in vacuum, to magnetic birefringence, namely
to different indices of refraction for light polarised parallel
and perpendicular to an external magnetic field Bext. Let us
consider the complex index of refraction

n̂ = n + iκ.

The relationship between the extinction coefficient κ and the
absorption coefficient µ is given by µ = 4πκ/λ, where λ is
the wavelength in vacuum. It can be shown [7–12] that the
magnetic birefringence derived from Eq. (1) is

∆n(EHW) = n(EHW)
∥ − n(EHW)

⊥ = 3AeB2
ext. (3)

This corresponds to

∆n(EHW) = 2.5 × 10−23 @ Bext = 2.5 T. (4)
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Fig. 1 Lowest order elementary processes leading to magnetic bire-
fringence and dichroism

The calculations also show that the magnetic dichroism is
instead negligible [11,12]: no appreciable imaginary part κ

of the index of refraction is predicted.
Magnetic birefringence accompanied by magnetic dichro-

ism could, though, be generated in vacuum through the cre-
ation of so far hypothetical light bosonic spin-zero axion-
like particles (ALPs) [13], in an analog of the Primakoff
effect [14]. The two processes generating dichroism and bire-
fringence are shown, respectively, in Fig. 1c, d. Two dif-
ferent Lagrangians describe the pseudoscalar and the scalar
cases:

La = gaφaE · B and Ls = gsφs(E2 − B2),

where ga and gs are the coupling constants of a pseudoscalar
field φa and of a scalar field φs , respectively, and the natural

Heaviside-Lorentz units are used, so that 1 T =
√

h̄3c3

e4µ0
=

195 eV2 and 1 m = e
h̄c = 5.06 × 106 eV−1. One finds [15]

|∆n(ALP)| = na∥ − 1=ns⊥ − 1= g2
a,s B

2
ext

2m2
a,s

(
1 − sin 2x

2x

)
,

|∆κ(ALP)|=κa
∥ =κs

⊥= 2
ωL

(
ga,s BextL

4

)2 (
sin x
x

)2

,

(5)

where ma,s are the masses of the particles, x = Lm2
a,s

4ω in
vacuum, ω is the photon energy, and L is the magnetic field
length. The last formula corrects Equation (19) of Ref. [16],
where the factor 1/ωL is missing.

Consider now the vacuum fluctuations of particles with
charge ±ϵe and mass mϵ as discussed in References [17,
18]. The photons traversing a uniform magnetic field may
interact with such fluctuations, resulting in a phase delay
and, for photon energy h̄ω > 2mϵc2, in a pair production.
We consider separately the cases of Dirac fermions (Df) and
of scalar (sc) bosons. The indices of refraction of photons
with polarisation respectively parallel and perpendicular to
the external magnetic field have two different mass regimes
defined by a dimensionless parameter χ :

χ ≡ 3
2

h̄ω

mϵc2

ϵeBext h̄
m2

ϵc2 . (6)

In the case of fermions, it can be shown that [17–19]

∆n(Df)

= AϵB2
ext

⎧
⎪⎨

⎪⎩

3 for χ ≪1

−9
7

45
2

π1/221/3 [
Γ

( 2
3

)]2

Γ
( 1

6

) χ−4/3 for χ ≫1

where

Aϵ = 2
45µ0

ϵ4α2λ̄3
ϵ

mϵc2

in analogy to Eq. (2). In the limit of large masses (χ ≪ 1)
the expression reduces to Eq. (3) with the substitution of ϵe
with e and mϵ with me. Note that for small masses (χ ≫ 1)
the birefringence depends on the parameter χ−4/3 resulting
in a net dependence of ∆n(Df) with B2/3

ext rather than B2
ext as

in Eq. (3). For dichroism one finds [17,18,20]

∆κ(Df)= 1
8π

ϵ3eαλBext

mϵc

⎧
⎪⎨

⎪⎩

√
3

32 e
−4/χ for χ ≪1
2π

3 Γ ( 1
6 )Γ ( 13

6 )
χ−1/3 for χ ≫1.

The results for the case of milli-charged scalar particles are
very similar to the case of Dirac fermion case [17,18]. Again
there are two mass regimes defined by the same parameter χ

of expression (6). In this case the magnetic birefringence is

∆n(sc)

= AϵB2
ext

⎧
⎪⎪⎨

⎪⎪⎩

−6
4

for χ ≪1

9
14

45
2

π1/221/3 [
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( 2
3

)]2

Γ
( 1

6

) χ−4/3 for χ ≫1.

The dichroism is given by

∆κ(sc)

= 1
8π

ϵ3eαλBext

mϵc

⎧
⎪⎨

⎪⎩

−
√

3
8 e

−4/χ for χ ≪1

− π

3 Γ ( 1
6 )Γ ( 13

6 )
χ−1/3 for χ ≫1.

As can be seen, there is a sign difference with respect to
the case of Dirac fermions, both for birefringence and for
dichroism.

The PVLAS (Polarisation of Vacuum with LASer) exper-
iment in Ferrara is the fourth generation of a measurement
scheme that dates back to the end of the ’70s [21]. Previ-
ous experimental efforts were based at CERN [22], at BNL
[23], and at Legnaro (Italy) [24,25]. The experiment aims
at the direct measurement of the small polarisation changes
undergone by a linearly polarised laser beam traversing a
dipole magnetic field in vacuum. To this end, a pair of polar-
ising prisms, two permanent magnets, an optical high-finesse
Fabry–Perot cavity, and heterodyne detection are employed.
A quarter-wave-plate placed after the Fabry–Perot switches
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the measurement from ellipticity to rotation (dichroism). The
signal is detected in the extinguished beam with polarisation
orthogonal to the input polarisation.

The Fabry–Perot cavity has the role of lengthening the
optical path inside the magnetic field. It is realised with two
dielectric mirrors with extremely high reflectivity. Unfortu-
nately, the mirrors have a small intrinsic linear birefringence
in reflection. A first consequence of this fact is that, if linearly
polarised laser light is at maximum resonance inside the cav-
ity, the orthogonal polarisation component is not. This means
that the amplitude of the observed signal is reduced; this fact
is evidenced during the calibration of the polarimeter with
magnetic birefringence in gas (Cotton-Mouton – or Voigt –
effect) [26]. Recent anomalously low Cotton-Mouton results
could perhaps be explained in this way [27]. As a second
consequence, ellipticities and rotations are mixed, due to the
birefringence of the mirrors. As we will see, both phenom-
ena can be managed, in some cases even with profit. More-
over, the intrinsic birefringence of the mirrors may play a
role in the excess noise currently observed in the PVLAS
experiment.

In this article we present a detailed account of the polari-
metric method employed by the PVLAS experiment, with
a novel interpretation of the experimental data. What we
describe here has consequences for all the experiments that
use Fabry–Perot cavities for polarimetry, and in particu-
lar for those trying to measure vacuum magnetic birefrin-
gence. Section 2 analyses the experimental scheme, tak-
ing into account the intrinsic birefringence of the mir-
rors. Section 3 describes the experimental set-up with the
calibration measurements. Then the measurement of the
mirrors’ equivalent wave-plates and of the two resonance
curves are presented. In Sect. 4 the ellipticity and rotation
measurements in vacuum are discussed, together with the
new limits on the existence of axion-like and milli-charged
particles.

2 The PVLAS experimental method

In Fig. 2, a scheme of the PVLAS polarimeter is shown.
Linearly polarised light (wavelength λ) is fed to a Fabry–
Perot optical cavity. The cavity beam traverses the bore of
a dipole magnet, with the magnetic field making an angle

X X

Y

Z = Z

X

θ0

Rotating 
birefringent 

medium

n

n

φ(t)

Y

Y

E
B

Fig. 3 Reference frame for the calculations. XY : laboratory coordi-
nates; X ′: direction of the electric field as defined by the polariser; n∥:
direction of the magnetic field, rotating around the beam path Z at a
frequency νB

φ(t), variable in time, with respect to the polarisation direc-
tion. A variable ellipticity η(t) is then added to the polar-
isation of the beam transmitted by the cavity. For rota-
tion measurements, a quarter-wave-plate (λ/4) is inserted
at the exit of the cavity with one of its axes aligned to
the input polarisation, transforming the rotation eventually
acquired by the beam inside the magnetic field region into
an ellipticity (and, at the same time, the ellipticity into a
rotation). Finally a polariser, crossed with respect to the
input prism, extinguishes the polarisation component of
the beam parallel to the input polarisation. The residual
intensity is then collected with a light detector and Fourier
analysed.

In order to calculate the effect, we use Jones’ matrices [28]
to describe the beam and the optical elements. The most gen-
eral optical element describing linear magnetic birefringence
and dichroism can be written, in its own axes and neglecting
an overall attenuation factor, as

X0 =
(
eξ 0
0 1

)
,

where ξ is a small complex number that we write as ξ =
i 2ψ − 2θ . Here 2ψ is the phase difference between the two
polarisation directions added by the optical element and 1 −
e−2θ is the fraction of the absorbed electric field. Without
loss of generality, the x direction (X ′ direction of Fig. 3)
is considered as the absorbing as well as the slow axis. The

Fig. 2 Scheme of the PVLAS
polarimeter. PDE extinction
photodiode, PDT transmission
photodiode

λ

ξ ν η0 ν
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value ψ is the maximum ellipticity1 that the light can acquire
due to X0, while θ is the maximum rotation. In the case of
the vacuum birefringence of Eq. (3), the ellipticity ψ for a
length L = 1.64 m of a magnetic field Bext = 2.5 T and light
wavelength λ = 1.064 µm is

ψQED = π
∆n(EHW)L

λ
= 1.2 10−16. (7)

Placing X0 at an angle φ with respect to the polarisation
direction, one finds

X(φ)= 1
2

(
1−cos 2φ+eξ (1+cos 2φ) −

(
1−eξ

)
sin 2φ

−
(
1−eξ

)
sin 2φ 1+cos 2φ+eξ (1−cos 2φ)

)
.

To show the salient features of our polarimetric method,
we begin with neglecting the effect of the Fabry–Perot cavity.
The electric field after the analyser is then represented by

E(φ)=E0

(
0 0
0 1

)
·
(

1 i η

i η 1

)
·
(
q 0
0 q∗

)
·X(φ) ·

(
1
0

)
.

In this formula, from left to right, one finds the Jones matrices
of the analyser A, of the ellipticity modulator H (θ,ψ ≪
η ≪ 1), and of the quarter-wave-plate Q. In this last matrix,
q = 1 for ellipticity measurements, when the wave-plate
is out of the optical path and Q therefore coincides with
the identity matrix I, whereas q = (1 + i)/

√
2 for rotation

measurements. For ellipticity measurements (quarter-wave-
plate not inserted), the intensity collected at the photodiode
PDE is

I ell
⊥ (φ) = I0 (η2 + 2ηψ sin 2φ)+ higher order terms. (8)

For rotation measurements, with the quarter-wave-plate
inserted,

I rot
⊥ (φ) = I0(η2 + 2ηθ sin 2φ)+ higher order terms. (9)

The light having the same polarisation as the input is collected
at the photodiode PDT and has intensity

I∥ ≈ I0 = ε0c
E2

0

2
.

The heterodyne method is employed to measure ψ and θ :
the angle φ is varied linearly in time as φ(t) = 2πνBt +φB ,
and η as η(t) = η0 cos(2πνmt + φm), with νB ≪ νm . The
sought for value of each of the quantities ψ and θ can be
extracted from the measurement of I∥ and from the amplitude
and phase of three components in a Fourier transform of the
extinguished intensity: the component I2νm at 2νm and the
components I± at νm ± 2νB . By using a lock-in amplifier to
demodulate the residual intensity at the frequency νm , instead
of I+ and I− there is a single component at 2νB , and the
resulting ellipticity and rotation signals are

1 The ellipticity is the ratio of the minor to the major axis of the ellipse
described by the electric field vector of the light.

ψ, θ = I2νB

2
√

2 I0 I2νm

= I2νB

I2νm

η0

4
. (10)

The ellipticity and rotation signals come with a well defined
phase 2φB . With reference to Fig. 3, one can see that the
value of φB is −θ0, with θ0 the angle between a reference
direction X and the polarisation direction. With this position,
the axes ofX0 coincide with the laboratory axes (XY ) and the
ellipticity is a maximum at the time t0 = (θ0+π/4)/(2πνB).
We will return to this topic in the calibration section.

In the absence of signals due to magnetic birefringence or
dichroism, the noise level at the signal frequency translates
into an upper limit for the measured quantity.

2.1 The Fabry–Perot cavity as an optical path multiplier

To take into account the multiple reflections of the Fabry–
Perot cavity, we consider the physical parameters of the
mirrors, namely the reflectivity, transmissivity, and losses,
R, T , and P (assumed equal for both mirrors), such that
R+T + P = 1. If d is the distance between the two mirrors,
let δ = 4πd/λ be the phase acquired by the light in a round
trip. Then one can write, for the electric field after the cavity,

Eout(δ,φ) =
(

Eout,∥
Eout,⊥

)

= E0

∞∑

n=0

[Reiδ X2(φ)]n · T eiδ/2 X(φ) ·
(

1
0

)

= E0 [I − Reiδ X2(φ)]−1 · T eiδ/2 X(φ) ·
(

1
0

)
,

(11)

and for the electric field after the analyser

E(δ,φ) = A ·H ·Q · Eout(δ,φ). (12)

In the case of ellipticity measurements, since at resonance
δ = 0 (mod 2π ), and given that R ≈ 1, the intensity collected
by photodiode PDE, at the lowest order, is

I ell
⊥ (φ) ≃ I0

[
η2 + 4ηψ

1 − R
sin 2φ

]
. (13)

Analogously, in the case of rotation measurements, one has

I rot
⊥ (φ) ≃ I0

[
η2 + 4ηθ

1 − R
sin 2φ

]
, (14)

while

I∥ ≈ I0 = ε0c
E2

0

2
T 2

(T + P)2 . (15)

By comparing these formulas with the corresponding ones
calculated above without the Fabry–Perot cavity [Eqs. (8) and
(9)], one sees that the expressions are very similar, with the
latter ones having the signals ψ and θ of Eq. (10) amplified
by a factor
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N = 2
1 − R

≈ 2F
π

,

where F is the finesse of the cavity, that can be up to ∼106

[29]. This can be interpreted as a lengthening of the opti-
cal path by a factor N , as the very form of Eq. (11) sug-
gests. Besides heterodyne detection, high amplification is
another key feature of the polarimetric technique adopted by
the PVLAS experiment. In this way, the ellipticity of Eq. (7)
becomes of order 10−10.

We now introduce another issue of the Fabry–Perot cavity
that will be fully discussed in the next paragraph. Let us sup-
pose that the condition δ = 0 (mod 2π ) is not fully matched,
namely that the Fabry–Perot cavity is not exactly locked to
the top of the resonance curve. The two Eqs. (13) and (14)
become, respectively,

I ell
⊥ (φ) ≃ I0

[
η2 + η

2Nψ − N 2θ sin δ

1 + N 2 sin2(δ/2)
sin 2φ

]
(16)

for the case of ellipticity measurements, and

I rot
⊥ (φ) ≃ I0

[
η2 + η

2Nθ + N 2ψ sin δ

1 + N 2 sin2(δ/2)
sin 2φ

]
(17)

for rotation measurements. Equation (15) becomes instead

I∥ ≈ I0 = ε0c
E2

0

2
T 2N 2/4

1 + N 2 sin2(δ/2)
.

One can see that, in a cavity locked at δ ̸= 0, there is a
cross talk between the birefringence and dichroism signals
as defined by Eq. (10): a rotation is measured even in the case
ψ ̸= 0 and θ = 0. Conversely, in the case ψ = 0 and θ ̸= 0,
a signal mimicking a birefringence is observed.

2.2 Mirror birefringence

Let us now tackle the problem of dealing with birefringent
mirrors [30]. If α1,2 are the small phase differences acquired
by light in just one reflection by the mirrors, one must intro-
duce in the above calculations the wave-plates

M1,2 =
(
ei α1,2/2 0

0 e−i α1,2/2

)
,

where both α’s can be thought of as positive quantities, with-
out loss of generality. Assuming, for simplicity (see Sect. 3.2
for the more general case) that the slow axes of the mirror
wave-plates are both aligned to the input polarisation, the
polarisation auto-states of the Fabry–Perot cavity are given
by
([

1 − R ei[δ+(α1+α2)/2]]−1

0

)

and

(
0[

1 − R ei[δ−(α1+α2)/2]]−1

)

.

The above equations show that the resonance curves of the
two polarisation modes are no longer centred at δ = 0, and
are separated by the quantity

α = α1 + α2.

In other words, the resonance frequencies of two polarisa-
tions are slightly different.

In the PVLAS experiment, the emission frequency of the
laser is locked to the resonance frequency of the cavity by
means of a feedback electronic circuit based on the Pound
and Drever locking scheme, in which the error signal is car-
ried by the light reflected from the cavity through the input
polariser. As a consequence, while the light having the input
polarisation is at the top of the resonance curve (δ = −α/2),
the orthogonal component is not. As the frequency width of
the cavity is a few tens of hertz, for a frequency difference of
this order of magnitude the orthogonal component may be fil-
tered significantly. Hence, as a first issue, when analysing the
extinguished beam one has to necessarily take into account
the fact that its intensity is reduced by the factor

k(α) = 1

1 + N 2 sin2(α/2)
≤ 1 (18)

with respect to the other polarisation. By varying the input
polarisation direction and the relative angular position of the
two mirrors, it is possible to minimise the effect of the wave-
plates of the mirrors by aligning the slow axis of one mirror
against the fast axis of the other. This ensures that the two
curves are as near as possible, in which case α is equal to the
difference ∆α = α2 − α1.

As a second issue, analogously to Eqs. (16) and (17), a
symmetrical mixing appears between rotations and elliptici-
ties. In fact, the electric field at the exit of the cavity is

Eout(φ, δ)= E0 [I − Reiδ X ·M1 · X ·M2]−1

·T eiδ/2X ·
(

1
0

)
.

From Eq. (12), the intensity at the detector for small α’s, and
R ≈ 1, is

I ell
⊥ (φ) = I∥

[

η2 + η
2Nψ − N 2θ

(
δ − α

2

)

1 + N 2 sin2 (
δ
2 − α

4

) sin 2φ

]

, (19)

for the measurements of ellipticity, and

I rot
⊥ (φ) = I∥

[

η2 + η
2Nθ + N 2ψ

(
δ − α

2

)

1 + N 2 sin2 (
δ
2 − α

4

) sin 2φ

]

(20)

for rotation measurements. Here

I∥ = ε0c
E2

0

2
T 2N 2/4

1 + N 2 sin2 (
δ
2 + α

2

) .

Note the similarity of the above equations with Eqs. (16)
and (17). It can be shown that any small static ellipticity or
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Fig. 4 Transmitted intensity I0, amplitudes of the ellipticity and of
the rotation signals of Eq. (10) in the case of a pure birefringence,
as functions of the Fabry–Perot cavity phase δ, for α = 10−5 rad and
N = 4×105. The Airy curves are normalised to unity; the rotation signal
bears the same normalisation coefficient as the ellipticity. Transmitted
intensity is centred at δ = −α/2, the other two curves at δ = α/2. The
amplitude of the ellipticity signal at δ = −α/2 is a factor k(α) = 0.2
smaller than the maximum [see Eq. (18)]

rotation acquired before or after the cavity does not interfere
with the signal at 2νB and can thus be neglected. In Fig. 4, we
plot the last three equations as functions of δ for the case θ =
0 (pure birefringence), for N = 4 × 105 and α = 10−5 rad.

If the laser is locked to the maximum value of I∥ at δ =
−α/2, one has, for an ellipticity measurement,

I ell
⊥ (φ) = I∥[η2 + ηk(α) (2Nψ + N 2θα) sin 2φ], (21)

while for a rotation measurement

I rot
⊥ (φ) = I∥[η2 + ηk(α) (2Nθ − N 2ψα) sin 2φ], (22)

where I∥ is given by Eq. (15). With respect to Eqs. (13)
and (14), the expected signals of ellipticity and rotation are
attenuated by a factor k(α) [Eq. (18)]. Moreover, a cross talk
between the two measurement channels appears: even with
θ = 0, a rotation −kN 2αψ is observed. The ratio of the
“spurious” rotation and of the “true” ellipticity is

Rθ,ψ = −N
2

α, (23)

hence allowing a direct determination of the sum of the bire-
fringences of the two mirrors. Analogously, even with ψ = 0,
an ellipticity kN 2αθ appears.

In the absence of both signals, an upper limit coming from
the measurement of one of the two quantities, ellipticity or
rotation, translates in an upper limit also on the other one.

2.3 Intrinsic noise of the polarimeter

We now calculate the limit sensitivity of the apparatus. Start-
ing from Eq. (10), if the noise at νm − 2νB is uncorrelated to
the noise at νm+2νB , one must take into account a factor

√
2

due to the folding of the spectrum around νm . If Inoise(2νB)

is the rms noise spectral density of the light intensity at the

frequency of the signal, the expected peak sensitivity of the
polarimeter is

S2νB = Inoise(2νB)

I∥η0
.

Several intrinsic effects contribute to S2νB , all of which can
be expressed as a noise in the light intensity impinging on the
detector. We consider first the intrinsic rms shot noise due to
the direct current idc in the detector

ishot =
√

2e idc ∆ν.

According to Eqs. (8) or (9), the direct current inside the
photodiode is given by q I∥η2

0/2, where q is the efficiency of
the detection process. However, any pair of crossed polaris-
ing prisms has a nonzero minimum extinction coefficient for
intensity. For the best polarisers, the extinction coefficient
can be as low as σ 2 ≈ 10−8. This effect introduces an addi-
tional term in the detected intensity which is written as I∥σ 2.
This leads to

Ishot =

√√√√2e I∥
q

(

σ 2 + η2
0

2

)

and

Sshot =

√√√√ 2e
q I∥

(
σ 2 + η2

0/2

η2
0

)

.

Other effects contributing to the noise are the Johnson noise
of the transimpedance G of the photodiode

IJ =
√

4kBT
q2G

, giving SJ =
√

4kBT
G

1
q I∥η0

,

the photodiode dark noise

Idark = idark

q
, with Sdark = idark

q I∥η0
,

and the relative intensity noise (RIN) of the light emerging
from the cavity

IRIN(ν) = I∥ NRIN(ν),

giving

SRIN(2νB) = NRIN(νm)

√
(σ 2 + η2

0/2)2 + (η2
0/2)2

η0,
,

where in the last equation we consider that the contributions
of all the peaks in the Fourier spectrum add incoherently to
the intensity noise at νm , and that νB ≪ νm .

Figure 5 shows all the intrinsic contributions as functions
of η0 in typical operating conditions, with q ≈ 0.7 A/W, I∥ =
8 mW, σ 2 = 2 × 10−7, G = 106 3, idark = 25 fArms/

√
Hz,

and NRIN(νm) ≈ 3 × 10−7/
√

Hz. The figure shows that the
expected noise has a minimum for a modulation amplitude
η0 ≈ 10−2, which is the value normally used.
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Fig. 5 Intrinsic peak noise components of the polarimeter as a function
of the ellipticity modulation amplitude η0

3 Experimental setup

The upper and lower panels of Fig. 6 show a schematic top
view and a photograph of the apparatus. The experiment
is hosted inside a class 10,000 clean room. All the optics
lay upon a single 4.5 t, 4.8 × 1.5 × 0.5 m3 granite honey-
comb table. The optical table is seismically isolated from the
ground by means of actively operated pneumatic supports.
All the mechanical components of the apparatus are made of
nonmagnetic materials.

The light source is a 2 W Non Planar Ring Oscillator
Nd:YAG laser (λ = 1064 nm), having tuneable emission
frequency. The tuning capabilities of the laser are used to
lock the emission frequency of the laser to the resonance
frequency of the cavity. Laser light is mode matched to
the Fabry–Perot cavity with a single lens and is linearly
polarised immediately before the first mirror. The cavity
length is d = 3.303 m, corresponding to a free spectral
range νFSR = 45.4 MHz. The dielectric mirrors, 6 mm thick,
25.4 mm diameter, have fused silica substrates with a radius
of curvature of −2 m, and are mounted on (θxθyθz) mirror
mounts. The Gaussian cavity mode is TEM00, with a beam
radius on the mirrors wm = 1.2 mm. The decay time of the
cavity has been measured to be τ = (2.45 ± 0.05) ms, cor-
responding to a finesse of F = πcτ/d ≈ 700,000, hence
to a path amplification factor N = 445,000, and to a reflec-
tion coefficient R = 0.9999955. The frequency width of the
resonance is 65 Hz, corresponding to a phase interval of less
than 10−5 rad.

The laser frequency is matched to the resonance frequency
of the cavity by means of a modified Pound–Drever–Hall
feedback system [31]. The electronic feedback circuit has
the unique feature of allowing the adjustment of the reference
point of the loop, equivalent to varying δ in Eqs. (19) and (20).
This allows the scanning of the Airy curve of the intensity
transmitted by the cavity around its maximum. The amplitude

Fig. 6 Upper panel Optical and mechanical scheme of the apparatus.
WPs wave-plates, HWP half-wave-plate, PDR reflection photodiode,
P polariser, Ms mirrors, QWP quarter-wave-plate, PEM photoelastic

modulator, A analyser, PDT transmission photodiode, PDE extinction
photodiode.Lower panelA wide-angle picture of the PVLAS apparatus.
The two blue cylinders are the permanent magnets
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of this interval is in principle limited to the linear range of the
error function, but is in practice slightly less. The feedback
circuit parameters are controlled by a microprocessor that,
in the case the feedback unlocks, re-locks automatically. In
a measurement run lasting several days this normally results
in a dead time of less then 5 %.

After the cavity, the light crosses the photoelastic ellip-
ticity modulator PEM, that adds a small ellipticity variable
at frequency νm . In the case of rotation measurements, the
quarter-wave-plate QWP is inserted. Finally, the light leaves
the polarimeter through the analyser A, that separates the two
polarisations. The two beams are collected by the two 1 mm2

InGaAs photodiodes PDT and PDE. The photocurrents are
amplified by two low noise transimpedance amplifiers. The
extinguished signal is demodulated by two lock-in ampli-
fiers, at frequency νm and at the second harmonic 2νm . All
the relevant signals are properly filtered, digitised, and stored
for data analysis.

The magnetic field region is provided by two 94 cm long,
28 cm diameter dipole magnets in Halbach configuration,
placed between the mirrors and having a central bore of
20 mm. Each magnet weighs 450 kg. The magnets are sus-
tained by an aluminium structure mechanically decoupled
from the rest of the optical table. Overall, the magnets pro-
vide a

∫
B2 dℓ = (10.25 ± 0.06) T2m. As for the effective

length L of each magnet and the value of the magnetic field
Bext, in the following we will use the FWHM of the function
B2(z), L = 0.82 m and hence Bext = 2.50 T. The centres of
the two magnetic regions are separated by ≈ 150 cm. The
field profiles have been shown elsewhere [32]. Stray field on
the axis at a position 20 cm outside the magnets is less than
1 G. The magnets can rotate around their axes at a frequency
up to 10 Hz, so that the magnetic field vectors of the two mag-
nets rotate in planes normal to the path of the light stored in
the cavity. Two magnetometers, measuring the small stray
field of the two magnets, monitor the magnetic field direc-
tions.

The synchronous motors driving the two magnets are con-
trolled by two phase-locked signal generators. The same sig-
nal generators trigger the data acquisition. The two magnets
can rotate at the same frequency with the two magnetic fields
making an arbitrary angle, but normally each magnet rotates
at its own frequency. In this way the results of one magnet are
a countercheck for the results of the other. The two frequen-
cies νB1 and νB2 are chosen so to have a common subhar-
monic whose frequency is used to start data acquisition: at the
beginning of each acquisition run, the two magnets have the
fields in the same direction. The sampling rate is normally 16
samples/turn for the faster magnet. The rotation frequency of
the other magnet is then chosen in such a way that its num-
ber of samples/turn contains only factors 2 and 5. A practical
example: νB1 = 8 Hz, sampling rate 8 × 16 = 128 Hz,
νB2 = 6.4 Hz, acquisition start trigger 1.6 Hz; samples/turn

for the second magnet is 20. We have verified that the phase
relations between all the generators and the magnets rotation
never change during data acquisition.

Two analyses are performed in parallel on the intensity
collected by diode PDE. In both cases, this signal is first
demodulated for νm and then ψ (or θ ) is calculated through
Eq. (10) by using the values of the intensity I∥ ≈ I0 measured
by diode PDT and of the modulation amplitudeη0 determined
from I2νm . An online analysis is performed by means of an
FFT spectrum analyser. Normally, an integration time of 32 s
is chosen and vector averaging is performed between subse-
quent spectra. The start trigger ensures that the phases of all
the partial spectra are referred to the same angular position
of the magnets. This analysis produces visual results in real
time, but is not fully exploiting one of the main advantages of
the experimental method, namely the frequency selection. In
the offline analysis, since all the phases are under control, data
acquired in separate time blocks, but with the same exper-
imental conditions, are joined in a single long time series
called run. As the time base lengthens, the frequency resolu-
tion of the Fourier transform becomes better and better. When
doing this, one has to ensure that the νB component of the
Fourier transform of the signal from the magnetometer occu-
pies a single frequency bin. This was verified to be true even
for the longest runs, having bin size ∆ν ≈ 1 µs. Time inter-
vals containing anomalous features are expunged from the
data. The results of runs differing in the rotation frequency of
the magnets or for any other relevant experimental parameter
are averaged by using a weighted vector average procedure.

The polarimeter, from the entrance polariser to the anal-
yser, is housed inside a high-vacuum enclosure consisting of
five chambers aligned along the light beam path and con-
nected by metallic bellows and by two glass tubes with
12 mm inner diameter traversing the bores of the two mag-
nets. The entrance chamber hosts the polariser P, whereas
the exit chamber contains the quarter-wave-plate QWP, the
photoelastic modulator PEM, and the analyser A. Each mir-
ror is placed inside a separate chamber, preceded and fol-
lowed by 10 mm diameter iris diaphragms carved from
strongly absorbing glass. The light enters and exits the vac-
uum through two AR-coated optical glass windows. A system
of baffles is placed inside the glass tubes. The central vac-
uum chamber serves as a pumping station and also contains
a central 5 mm diameter diaphragm.

The vacuum system is pumped by turbo-molecular and
non-evaporable getter (NEG) pumps, and has a base pres-
sure of less than 10−7 mbar; the residual atmosphere, moni-
tored by two Residual Gas Analysers, is mainly composed of
water vapour, hydrogen and a small amount of methane pro-
duced by the NEG pumps. This guarantees that no magnetic
birefringence signal from Cotton–Mouton effect on residual
gases in the vacuum chamber can interfere with the vacuum
measurements [33]. To reduce mechanical vibrations, during
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measurements in vacuum, only the turbo pump of the central
chamber is kept on to pump methane produced by the NEG
pumps and the noble gases. The system can be filled with
high purity gases through a leak valve; in this case, the gas
pressure is measured with a capacitive transducer. To ensure
gas purity, the all-metal gas line is pumped by a turbo pump
before gas filling. When the chamber is dosed with noble
gases, the NEG pumps are not shut off.

3.1 Calibration

The apparatus is calibrated measuring the magnetic linear
birefringence of gases (Cotton–Mouton or Voigt effect) [26].
This effect is perfectly analogous to the vacuum magnetic
birefringence described by Eq. (3), but is far more intense
already at low gas pressures. The birefringence generated in
an atmosphere of gas at pressure P by a magnetic field B is
given by the expression

∆n = n∥ − n⊥ = ∆nu

(
B

1T

)2 P
1 atm

,

where ∆nu is the unit birefringence generated in 1 atm of
gas by a unitary field B = 1 T. Typical values of ∆nu
range from a minimum of ≈2 × 10−16 T−2 atm−1 for He
[34] to ≈ − 2.3 × 10−12 T−2 atm−1 for O2 [35] and to
≈10−11 T−2 atm−1 for a few other simple molecules [26].
These measurements give two calibration parameters: the
amplitude and the phase of the ellipticity signal. The ampli-
tude can be compared to theoretical calculations as well as to
other experimental results, and calibrates the linear response
of the polarimeter; the second parameter is the phase of the
ellipticity signal, which is determined by the geometry and
the electronic response of the apparatus (see Fig. 3). As seen
with the discussion of Fig. 3, the phase of the signal directly
depends on the angle θ0 of the polariser; this parameter has
not a single value during the experiment, but is adjusted from
time to time. Electronic components (lock-ins, filters, etc)
introduce a phase which depends on the frequency of the sig-
nal. The phase of the Cotton–Mouton signals defines what
we call the physical phase of the measurements; we expect
that the vacuum magnetic birefringence comes with the same
phase as the Cotton–Mouton measurement of the noble gases
[26]. Any signal in quadrature with respect to the physical
phase has to be considered as spurious. As a general princi-
ple, all the measured signals are projected onto the physical
axis. We explicitly note that the gas measurements are inter-
preted in terms of a pure birefringence (θ = 0). In fact, for
gases, no dichroism is associated to a transverse magnetic
field; however, a Faraday rotation, due to the time variation
of an eventual small longitudinal component of the rotating
magnetic field at the position of the mirrors, comes at the
magnet rotation frequency νB and not at 2νB [36].

Fig. 7 Cotton–Mouton effect measurements for 230 µbar of Ar gas:
Fourier spectra of the extinguished intensity demodulated at the modu-
lator frequency νm . A single magnet was rotating at νB = 6 Hz, inter-
esting signals are at 2νB . Upper panel Ellipticity measurement. Lower
panel Rotation measurement. Integration time is T = 640 s for both
spectra

In Fig. 7 we show the spectra of the residual intensity
after the analyser, demodulated at the frequency νm , with the
vacuum chamber filled with 230 µbar of Ar gas. In the top
panel, the Cotton–Mouton ellipticity signal is observed. The
bottom panel shows the rotation signal. This indicates that the
Fabry–Perot resonances of the two orthogonal polarisation
are separated, and the calculations of Sect. 2.2 apply. Taking
the ratio of the amplitudes of the two peaks [see Eqs. (21)
and (22)] one finds a value α = 3.7 µrad, corresponding to
an attenuation factor k(α) = 0.59. The frequency distance
of the two Airy curves is 27 Hz. From these data one can
extract a value for the unitary birefringence of Ar gas at room
temperature: ∆n(Ar)

u = (7.5 ± 0.5) × 10−15 T−2 atm−1.

3.2 Studies of the mirrors’ wave-plates

In Sect. 2.2 we assumed that the axes of the birefringent wave-
plates of the two mirrors were always aligned to the input
polarisation. Here we use a full description of the wave-plates
of the two mirrors, placing the second one at an azimuthal
angle φWP with respect to the first one. We recall [37] that the
effect of two birefringent wave-plates is equivalent to that of
a single wave-plate with a phase difference αEQ given by

αEQ =
√
(α1 − α2)2 + 4α1α2 cos2 φWP (24)
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Fig. 8 Rotation-to-ellipticity signals ratio plotted as a function of the
azimuthal angle of the input mirror in a Cotton–Mouton measurement of
230 µbar of Ar gas. The fit line is the (N/2-amplified) phase difference
αEQ of the equivalent wave-plate of the mirrors given by Eq. (24)

and placed at an angle φEQ with respect to the slow axis of
the first mirror, where

cos 2φEQ = α1/α2 + cos 2φWP√
(α1/α2 − 1)2 + 4(α1/α2) cos2 φWP

. (25)

As noted before, the ratio Rθ,ψ of Eq. (23) is exactly the
phase difference αEQ (amplified by −N/2) of the equivalent
wave-plate experienced by the light beam. By varying two of
the three quantities: the direction of the mirror axes and the
input polarisation direction, one is able to change the phase
difference of the equivalent wave-plate of the mirrors while
keeping the polarimeter at extinction, namely with the input
polarisation aligned with the axis of the equivalent wave-
plate. As this procedure changes the equivalent wave-plate,
it also changes the ratio of rotation to ellipticity. One is then
able to align the fast axis of one mirror wave-plate to the slow
axis of the other. In this configuration, if α1 were equal to
α2, the resonance curves of the two polarisation auto-states
would appear superimposed in a plot like that of Fig. 4. If
α1 ̸= α2, the two resonance curves are as near as possible
given the difference ∆α = α2 − α1.

In Fig. 8, we show the ratio of the values of rotation to ellip-
ticity in a Cotton Mouton measurement, plotted as a function
of the azimuthal angle of the first mirror. Each rotation step, of
about 15◦, has been followed by cavity realignment through
the adjustment of the two tilt stages of the mirror, by opti-
misation and measurement of the extinction ratio, and by
measurement of the finesse. The experimental points are fit-
ted with Eq. (23), where α is given by Eq. (24). The best fit
produces values for the quantities Nα1/2, Nα2/2, and for
the angular position of the maxima with respect to the ini-
tial angular position of the input mirror (φWP = 0). With
N/2 ≈ 2.2 × 105, the phase differences of the two mirrors
are calculated to be (2.4 ± 0.1) µrad and (1.9 ± 0.1) µrad.
From this fit only it is not possible to label each mirror with
its phase difference for reflection. According to the relative
angular position of the two mirrors, the value of αEQ can be

Fig. 9 Polariser angle as a function of the azimuthal angle of the mirror
in a Cotton–Mouton measurement of 230 µbar of Ar. Data are fitted
with φEQ as given by Eq. (25)

found between 0.6 µrad and 4.3 µrad, which is equivalent to
saying that the Airy curve of the ellipticity resonance is 5 to
31 Hz away from the resonance of the input polarisation.

In Fig. 9, the values taken by the polariser angle while
tracking the best extinction ratio in the process described
above are plotted against the input mirror angle. The curve
is fitted with Eq. (25). The best fit produces a value α1/α2 =
0.62 ± 0.08, allowing the assignment of the phase delay of
each mirror. This value is slightly different from the one
obtained by the fit in Fig. 8, but is compatible within the
fit uncertainties. However, the zero references of φWP in the
two fits appear to be different by about 10◦, well beyond the
fit uncertainty. This might be due to the presence of other
birefringent elements (mirror substrates and PEM) between
the two crossed polarisers. As these elements are fixed dur-
ing the measurement, while the equivalent wave-plate of the
mirrors is varying, their contribution to the total anisotropy
varies from one measurement to the other. The position of
the polariser tracks the position of the equivalent wave-plate
of all the wave-plates of the system, and not only of that of
the mirrors. On the contrary, the data of Fig. 8, being the
ratio of signals at 2νB , do not suffer from the same problem.
Anyway, the smallness of the difference of the two determi-
nations of the reference angle indicates that the importance
of birefringent elements other than the reflecting surface of
the mirrors is very limited.

A unique feature of our apparatus is the possibility of vary-
ing the set point of the feedback electronic circuit that locks
the laser frequency to the resonance frequency of the cavity.
This allows to perform polarimetric measurements with arbi-
trary values of δ, in this way fully testing the mathematics
presented in Sect. 2.2. In Fig. 10, we show an experimental
realisation of Fig. 4. The continuous lines are the fits of the
data obtained with formulas (15), (21), and (22). In the three
fits, a single value of the resonance width has been used.
Ellipticity and rotation curves are forced to have the same
centre of resonance and the same amplitude coefficient. The
fit determines the scale factor between the feedback set point
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Fig. 10 From left to right: ellipticity, transmitted intensity, and rota-
tion, measured for 230 µbar of Ar gas, plotted as functions of the set
point of the laser locking feedback circuit. The continuous lines are the
fits obtained with formulas (21), (15), and (22)

and the phase δ. The distance between the two Airy curves is
found to be α = 1.5µrad (with negative sign), corresponding
to a frequency difference of the two resonance frequencies
of about 11 Hz.

4 Vacuum measurements results and discussion

In this section we present the polarimetric measurements car-
ried out on vacuum in the attempt to test its opto-magnetic
properties. The runs considered in this work are listed in
Table 1. Differently from what we used to do before, we now
normally rotate the two magnets at different frequencies, as
a strategy to beat the systematics. Runs 1 and 2 make use of
the same data, analysed at two different frequencies corre-
sponding to the second harmonic of the rotation frequencies
of the two magnets; the same holds for runs 3 and 4. Since the
measurements have been taken making use of a birefringent
cavity, the ellipticity data can be interpreted also in terms of
rotation; the converse is also true. The integrated noise level
in the ellipticity measurement allow to cast upper limits on
the magnetic birefringence predicted by QED, and also on the
existence of hypothetical particles coupling to two photons,
ALPs and milli-charged particles. Two ellipticity runs, run 1
at νB = 4 Hz and run 4 at νB = 6.25 Hz, respectively with
integration time T = 106 s and T = 8.9 × 105 s, have been
discarded due to the presence of spurious structures in the
Fourier transform of the signals around 2νB (see Fig. 11). In
fact, a signal coming from a magnetic birefringence cannot
occupy more than a single bin. These structures are the con-
sequence of a misalignment of the glass tubes traversing the
rotating magnets. We have developed an alignment proce-
dure for the tubes that prevents the appearance of systematic
peaks in the spectra, but this does not prevent a small drift of
their positions during the long runs.

In Fig. 12 the results of all the runs are shown. In the
left column of plots, the amplitudes of the complex Fourier

Table 1 Experimental conditions for the runs in vacuum. In the “0 run”,
taken from Reference [38], the magnet rotation frequency ranged from
2.4 to 3 Hz. T is the integration time. Runs 1 and 2 were taken at the
same time; the same holds for runs 3 and 4

Run # Quantity Magnets 2νB (Hz) T (s) F k(α)

0 ψ MA + MB 6.7 × 105 6.7 × 105 0.50

1 ψ MB 8 1.0 × 106 7.0 × 105 0.65

2 ψ MA 10 1.0 × 106 7.0 × 105 0.65

3 ψ MB 10 8.9 × 105 7.0 × 105 0.65

4 ψ MA 12.5 8.9 × 105 7.0 × 105 0.65

5 θ MA + MB 10 1.4 × 105 7.0 × 105 0.65

transform of the signal in a narrow interval around 2νB show
the absence of any structure due to spurious signals. The
values at 2νB , projected along the physical axis, represent the
results of the measurement. In the right column of plots, the
histograms of the ellipticity noise amplitude values plotted
on the left are shown, fitted with the Rayleigh distribution

PR(ρ) =
ρ

σ 2 e− ρ2

2σ2

of a two-dimensional variable ρ =
√
x2 + y2, where x and

y are two independent Gaussian variables having the same
standard deviation σ . In our case, x and y are the projection
of the complex Fourier components of the signal onto the
physical and the quadrature axes. The values obtained for σ

define the noise level of the measurement for an integration
time T . The measured sensitivity Smeas

2νB
of the apparatus at

the frequency of interest is then

Smeas
2νB

=
√
T σ.

In the first half of Table 2 we summarise the results of all
the measurements in vacuum. Due to the mixing of ellipticity
and rotation, each line can be interpreted also in terms of the
reciprocal quantity. The second half of the same table, with
primed run numbers, presents the values obtained by apply-
ing Eqs. (21) and (22). The lines marked with ψ give four
determinations of the magnetic birefringence of vacuum; as
many determinations of the dichroism are given by the lines
marked with θ . These numbers are listed in Table 3.2 The
weighted averages of the numbers listed in the “In-phase”
column of Table 3 are

2 One must note that the measured ψ and θ are intrinsically integral
quantities. As a consequence, the values of ∆n and ∆κ in the table
are not point functions, but average quantities. Moreover, they are cal-
culated with the length of the magnets defined for convenience as the
FWHM of B2(z). Hence, they have a precise meaning only in the cases
in which their expression is proportional to B2

ext , namely the QED vac-
uum and the birefringence of ALPs and MCPs in the limit of large
mass.
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Fig. 11 Fourier transform of the ellipticity signals of run 1 and 4. In both cases, a structure is present around 2νB . These data do not contribute to
the results presented in this work

Fig. 12 Ellipticity and rotation runs in vacuum. First column Ampli-
tude of the complex Fourier transforms of the signal in a narrow interval
around 2νB . The values are corrected for the k(α) factor. Second column
Histograms of the values plotted in the first column; the data are fitted
with the Rayleigh distribution, the vertical arrowsmark the unprojected

values at 2νB . The strips at the bottom of the plots correspond to the
68.3, 95.5, and 99.7 % integrated probabilities. First row One magnet
rotating at 5 Hz, with integration time T = 106 s. Second rowOne mag-
net rotating at 5 Hz, T = 8.9 × 105 s. Third row two magnets rotating
at 5 Hz

∆n(PVLAS) = (−1.5 ± 3.0) × 10−22 @ B = 2.5 T, (26)

∆κ(PVLAS) = (−1.6 ± 3.5) × 10−22 @ B = 2.5 T. (27)

The quadrature value of ∆n results to be (+5.2 ± 3.2) ×
10−22. All the numbers found are compatible with zero. The
value of ∆n(PVLAS) is an order of magnitude larger than the

birefringence predicted by QED [Eq. (4)] and serves only as
an upper limit.

Figure 13 shows the time evolution of the measurement
of the QED magnetic birefringence of vacuum. To compare
the different experiments, the measured birefringence values
have been normalised to B2

ext. By extrapolation, one could
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Table 2 Ellipticity and rotation
results for all the runs in
vacuum. The first four lines
refer to the measurements
actually performed. The lower
half of the table, with primed
run numbers, reports the values
obtained through the use of
Eqs. (21) and (22)

Run # Quantity In-phase Quadrature σ Smeas
2νB

(1/
√

Hz)

0 ψ +5.2 × 10−10 +6.5 × 10−10 2.6 × 10−9 2.1 × 10−6

2 ψ −6.9 × 10−11 +2.6 × 10−10 4.9 × 10−10 4.9 × 10−7

3 ψ −4.1 × 10−10 +1.0 × 10−9 5.4 × 10−10 5.1 × 10−7

5 θ (rad) −6.6 × 10−11 −1.9 × 10−9 1.3 × 10−9 4.8 × 10−7

0′ θ (rad) +5.2 × 10−10 2.6 × 10−9 2.1 × 10−6

2′ θ (rad) −9.4 × 10−11 6.7 × 10−10 6.7 × 10−7

3′ θ (rad) −5.6 × 10−10 7.4 × 10−10 6.9 × 10−7

5′ ψ +9.0 × 10−11 1.8 × 10−9 6.5 × 10−7

Table 3 Determinations of the
magnetic birefringence and
dichroism of vacuum for
B = 2.5 T. The primed
measurements are obtained
through the use of Eqs. (21) and
(22)

Run # Quantity In-phase Quadrature σ Smeas
2νB

(1/
√

Hz)

0 ∆n +2.5 × 10−22 +3.1 × 10−22 1.3 × 10−21 1.0 × 10−18

2 ∆n −6.4 × 10−23 +2.4 × 10−22 4.5 × 10−22 4.5 × 10−19

3 ∆n −3.8 × 10−22 +9.3 × 10−22 5.0 × 10−22 4.7 × 10−19

5′ ∆n +4.2 × 10−23 8.2 × 10−22 3.0 × 10−19

0′ ∆κ +2.5 × 10−22 1.3 × 10−21 1.0 × 10−18

2′ ∆κ −8.7 × 10−23 6.2 × 10−22 6.2 × 10−19

3′ ∆κ −5.2 × 10−22 6.8 × 10−22 6.4 × 10−19

5 ∆κ −3.1 × 10−23 −8.8 × 10−22 6.0 × 10−22 2.2 × 10−19

| ∆
n|

 / 
B2

(T
-2
)

Fig. 13 Time evolution of the measurement of vacuum magnetic bire-
fringence normalised to B2

ext . Error bars correspond to 1σ . Values have
been taken from the following references: BFRT [23], Legnaro [24,25],
Ferrara Test [16], BMV [39], PVLAS 2014 [38]

predict that it should not take too long before the measure-
ment is performed successfully. Anyway, this will not happen
if the sensitivity of the polarimeter will not improve by an
order of magnitude. The next section briefly discusses the
noise issue.

4.1 Noise considerations

The values found for the sensitivity of the polarimeter (see
last column of Table 2) are a factor four better than the values

obtained in previous versions of the experiment [38], but are
still far from the theoretical value 6 × 10−9 1/

√
Hz that is

computed by adding all the known noise sources, as in Fig. 5.
With respect to the 2014 version of the experiment, a few
minor changes have been made: the input polariser was sub-
stituted and a few iris diaphragms have been inserted along
the beam. It is not clear which of these changes determined
the improvement.

It is not clear either which could be the sources of the
excess noise. A few things are known, though: first of all,
the noise comes from the cavity; in fact, when the mirrors
are removed, the polarimeter performance is limited only
by intrinsic noise; this would exclude the laser as a source of
noise. Since we are talking of noise in ellipticity and rotation,
one must find a mechanism that produces noise in these two
quantities.

A possible source of noise is the intrinsic birefringence
of the mirrors. One could imagine a few mechanisms for a
wide band modulation of this parameter. One of them could
be mechanical movement of the mirrors induced by seis-
mic noise: as the surface of such mirrors has a birefringence
pattern both in amplitude and in axis direction [40], one
could imagine that environmental mechanical noise moves
the beam spot on the surface of the mirror, modulating the
birefringence in a wide frequency range. However, this mech-
anism can be excluded: the amplitude of the ellipticity signal
generated by forcing the optical bench to oscillate at a single
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Fig. 14 Exclusion plot for ALPs particles from laboratory experiments
at 95 % c.l. The excluded region is above the curves. The limits hold
for both scalar and pseudoscalar ALPs. Besides the PVLAS results, the
figure shows also the measurements by OSQAR [42] and ALPS [43]
collaborations

frequency with known amplitude was measured and com-
pared to the observed mechanical noise floor at 2νB . The
measurement was repeated for the three spatial directions; in
all cases the observed noise floor was found much too weak
to account for the observed sensitivity of the polarimeter.
Moreover, no improvement of the sensitivity was observed
when the polarimeter was running in the quietest situations
(during nights, with air conditioning switched off, etc.).

Considering again the intrinsic birefringence, another
mechanism that could be invoked to explain the sensitiv-
ity is the insufficient thermal stability of the mirrors [41].
This mechanism would imply a dependence of the sensitiv-
ity upon the light power inside the cavity. Such a dependence
is observed only for frequencies below ≈1 Hz. Nonetheless,
we are planning to cool the mirrors down to the liquid nitro-
gen temperature.

A notable aspect of the observed noise, is that it is
quite independent from the value of the coefficient k(α),
as was observed during the rotation of the mirrors reported
in the previous section. This seems to indicate that the
noise may originate from diffused light inside the polarime-
ter and have nothing to do with intrinsic birefringence of
the mirrors. However, the system of optical baffles and
diaphragms that was installed along the beam path was able
to get rid of the spurious signals at frequency 2νB that
haunted the measurements in the past [16], but seems not
to have benefited the wide band noise. Further studies are
ongoing.

4.2 Limits on hypothetical particles

The measurements of ellipticity and rotation can be used
to draw an exclusion plot in the plane (m, g) for Axion-
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Fig. 15 Exclusion plots for MCP particles at 95 % c.l. deriving from
the dichroism and birefringence values of Eqs. (26) and (27). Top panel
Fermion MCP. Bottom panel Scalar MCP. The excluded region is above
the curves. The limit derived from rotation dominates at small masses,
whereas the limit of birefringence is effective at large masses. The two
branches of the birefringence curve are not connected in the mass range
around χ = 1 (dashed line), where ∆n changes sign. The two branches
of the dichroism curve are joined by a cubic spline

like particles. One must note, however, that it is not possi-
ble to average together measurements taken with different
magnet lengths [cf. Eq. (5)]. The best limits we can pro-
vide derive from the ellipticity measurements taken with one
rotating magnet (run 2 and 3 in Table 3) and from the rotation
measurements taken with two magnets (run 0’ and 5). The
results are shown in Fig. 14. The limits hold for both scalar
and pseudoscalar ALPs. Below 0.5 meV, the most stringent
results are given by a recent measurement by the OSQAR
experiment [42], whereas our ellipticity measurement dom-
inates the m ≥ 1 meV region. Between these two values,
our rotation measurement almost coincides with the 2010
ALPS result [43]. One must obviously remind that the whole
region has already been excluded by the CAST solar helio-
scope down to the level g ∼ 10−10 GeV−1 [44,45]. The
interest for the laboratory experiments resides in the fact that
their results are model independent.

In Fig. 15 we show the exclusion plots on the existence of
milli-charged particles. Two independent limits are derived
from the birefringence and the dichroism measurements of
Eqs. (26) and (27), the latter being more stringent in the low-
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mass range (mϵ ≤ 0.1 eV), whereas the former is dominating
the high-mass range. We explicitly note that the Fermion
exclusion plot applies also to all types of neutrinos, limiting
their charge to be less than ≈3×10−8e for mass smaller than
10 meV.

5 Conclusions

We have presented a detailed report of the status of the
PVLAS experiment, which strives to push further the frontier
of the opto-magnetic polarimetry of small signals. As for the
magnetic birefringence of vacuum, the new measurements
are approaching the goal of the experiment. The measure-
ments have given new limits also on the existence of hypo-
thetical particles which couple to two photons, both axion-
like and milli-charged. The sensitivity, although improved
with respect to the past, has not yet reached the level that
would guarantee the capability to perform the measurement
in a reasonable time. The challenge of the experiment is now
to lower the wide band noise. A few tests are ongoing, which
should reduce the noise or at least shade light on its nature.
Among them, we plan to rotate the magnets faster to reduce
the incidence of the 1/ f noise, to further reduce the scattered
light, to search for mirrors with even higher reflectivity and
lower losses and with smaller intrinsic birefringence, and to
test the possibility of significantly lowering the temperature
of the mirrors.
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