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Mesenchymal Progenitors Aging Highlights a
miR-196 Switch Targeting HOXB7 as Master
Regulator of Proliferation and Osteogenesis
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ABSTRACT

Human aging is associated with a decrease in tissue functions combined with a decline in stem
cells frequency and activity followed by a loss of regenerative capacity. The molecular mecha-
nisms behind this senescence remain largely obscure, precluding targeted approaches to coun-
teract aging. Focusing on mesenchymal stromal/stem cells (MSC) as known adult progenitors,
we identified a specific switch in miRNA expression during aging, revealing a miR-196a upregu-
lation which was inversely correlated with MSC proliferation through HOXB7 targeting. A forced
HOXB7 expression was associated with an improved cell growth, a reduction of senescence, and
an improved osteogenesis linked to a dramatic increase of autocrine basic fibroblast growth fac-
tor secretion. These findings, along with the progressive decrease of HOXB7 levels observed dur-
ing skeletal aging in mice, indicate HOXB7 as a master factor driving progenitors behavior
lifetime, providing a better understanding of bone senescence and leading to an optimization of

MSC performance. STEM CELLS 2015;33:939-950

INTRODUCTION

Mesenchymal stromal/stem cells (MSC) have
been widely used in preclinical and clinical
applications for regenerative medicine mostly
relying on their proliferation and differentia-
tion potential [1]. The molecular bases driving
these pivotal MSC properties are still under
investigation, suggesting the need of a deeper
understanding for optimized and enduring
benefits. Our group and others observed a
transient regenerative potential of mesenchy-
mal progenitors after in vivo infusion, reveal-
ing a performance that may be limited by
extrinsic and intrinsic factors, as reported for
hematopoietic stem cells [2-4]. One of these
factors may be represented by an age-related
function decline indicating the impairment of
key MSC properties during human aging
[5-11].

Early observational studies explored several
molecular markers of MSC aging, evaluating
miRNA and gene expression profile [8, 11-15]
or determining the molecular relationship
between aging and replicative senescence [9,
16]. However, a proper understanding of age-
related and senescence-related changes
remains elusive and further insights are
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needed to reveal key factors influencing stem
cell aging, allowing a deeper knowledge on
human senescence, ultimately leading to opti-
mization in regenerative medicine.

Starting from these assumptions, we began
to compare adult and child MSC in the
attempt to identify molecular features that
may be differentially expressed. The initial
observation confirmed a significantly higher
expression of a marker associated with cell
proliferation in children. MicroRNA, as noncod-
ing RNAs involved in gene expression and
orchestrating a variety of cellular processes,
including aging [17-20], were also considered
revealing a small cluster of differentially
expressed miRNAs.

We focused on miR-196 being upregulated
in aged MSC and having several Homeobox
(HOX) genes as targets. HOX are involved in
tissue specification and cell identity during
embryonic development. In adulthood, HOX
proteins are pivotal regulators of either prolif-
eration or differentiation, and compelling evi-
dences suggest a key role for HOX in bone
repair [21, 22]. Among HOX targets our atten-
tion was attracted by HOXB7, since its down-
regulation in aged MSC was preliminarily
observed [16]. Thus, we considered the
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interplay between miR-196 and HOXB7 as a potential tool to
influence cell behavior overcoming aging interference on MSC
properties. Our hypothesis was corroborated by previous find-
ings where an enforced expression of HOXB7 in hematopoietic
progenitors stimulates self-renewal, sustaining proliferation,
and differentiation [23]. Here, we report that HOXB7 is a spe-
cific target of miR-196 in primary bone marrow (BM) MSC,
demonstrating that HOXB7 overexpression is associated with a
higher proliferative performance and an increase of osteo-
genic differentiation, opening the way for novel strategies of
tissue reconstruction in particular for skeletal disorders.

MATERIALS AND METHODS

Patients

BM harvests were performed from pediatric (n = 7) and adult
(n=7) patients referring to the Department of Medical and
Surgical Sciences for Children & Adults of the University-
Hospital of Modena after signature of the informed consent.
BM harvests were performed for staging in patients with
either suspected oncological disease or during major surgical
orthopedics intervention. A diagnosis of cancer excluded the
samples from the study. Informed consent and procedures
were approved by local Ethical Committee.

Animal Studies

Eleven, ninety, and one hundred and eighty days old male
and female FVB/n mice (Charles River Laboratory Interna-
tional, Lecco, Italy) were sacrificed and tibia, fibula, and femur
were harvested and processed. Six animals were used for
each group. Animal protocols were approved by the local Eth-
ical animal Committee.

Histology

Specimens were fixed with 10% buffered formalin for 2 days,
decalcified in PBS-buffered EDTA (15%, pH 7.4; Carlo Erba,
Milano, Italia) for 14 days, and then paraffin embedded as
described [24]. Paraffin sections (5-mm thick) were dehy-
drated and stained with rabbit anti-human HOXB7 (1:75;
Abnova, Walnut, CA) and rabbit anti-human HOXB9 (1:75;
Abnova) using a goat anti-rabbit biotinylated secondary Ab
(1:200; Vector Laboratories, Burlingame, CA) and an avidin-
biotin-horseradish peroxidase detection system (Vector Labo-
ratories). Antigen retrieval relied on 0.6 U/ml of proteinase k
(Promega Corporation, Madison, WI) for 30 minutes at room
temperature, blocking nonspecific binding with 10% new-calf
serum blocking reagent (Sigma-Aldrich, St. Louis, MO). The
primary antibody in 0.1% bovine serum albumin (Sigma-
Aldrich) and 0.4% Triton-X (Sigma-Aldrich) was applied over-
night at 4°C. After secondary Ab (Vector Laboratories) incuba-
tion and quenching, slides were incubated with Vectastain
ABC (Vector Laboratories) as per manufacturer’s instructions
with color development using NovaRED (Vector Laboratories).
Slides were counterstained with Harris hematoxylin (Bio
Optica, Milano, Italia). Negative control specimens were
stained with a rabbit isotypic IgG primary Ab (Vector Labora-
tories). Stained slides were examined using a Zeiss Axioskop
(Carl Zzeiss, Milano, Italy) with either a 10/0.25NA or 40/0.6NA
dry objective. Photomicrographs were acquired with an
Axiocam-IcC3 color camera and Axiovision-4.8.2 software (Carl
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Zeiss). Quantification of HOXB7 positive stained area was per-
formed using Image J software (http://rsb.info.nih.gov/ij/).

Isolation and Ex Vivo Expansion of MSC

BM specimen harvests were performed from posterior iliac
crest following standard procedure. All MSC samples were iso-
lated, amplified, and cumulative population doubling (CPD)
was calculated as previously reported [25, 26]. RNA extrac-
tion, immunophenotypical analyses, and differentiations were
performed after four passages (P4), as below described.

Fluorescence-Activated Cell Sorting Analyses

Immunophenotype of ex vivo expanded MSC was performed
as reported [27]. The following panel of monoclonal antibod-
ies was introduced, CD14-APC, CD73-PE, CD105-PE (all from
BD Pharmingen, San Diego, CA), CD90-APC (eBioscience, San
Diego, CA), FGFR1-APC (R&D Systems, Minneapolis, MN), and
analyzed with FACS-ARIA (Becton Dickinson, Franklin Lakes,
NJ). Collected data were elaborated by fluorescence-activated
cell sorting (FACS) Diva software (Becton Dickinson).

Human MicroRNA Expression Detection

RNAs from MSC samples were hybridized on Agilent Human
miRNA microarray (#G44708B, Agilent Technologies, Palo Alto,
CA). This microarray consists of 60-mer DNA probes synthesized
in situ and contains 15,000 features which represent 723 human
microRNAs, sourced from the Sanger miRBASE public database
(Release 10.1). One-color miRNA expression was performed
according to the manufacturer’s procedure. Briefly, total RNA
fraction is obtained from samples using the Trizol Reagent (Invi-
trogen, Carlsbad, MN). RNA quality is assessed using the Agilent
2100 Bioanalyzer (Agilent Technologies). Low quality RNAs (RNA
integrity number below 7) were excluded from microarray analy-
ses. RNA labeling and hybridization were performed in accord-
ance to manufacturer’s indications as detailed in [28]. Agilent
scanner and the Feature Extraction 10.5 software (Agilent Tech-
nologies) were used to obtain the microarray raw-data.

Microarray Data Analysis

Microarray results were analyzed using the GeneSpring GX 11
software (Agilent Technologies). Data transformation was
applied to set all the negative raw values at 1.0, followed by
quantile normalization. A filter on low gene expression was
used to keep only the probes expressed in at least one sample
(flagged as Marginal or Present). Then, samples were grouped
in accordance to their differentiation status and compared. Dif-
ferentially expressed genes were selected as having a 1.5-fold
expression difference between the groups of interest and a
statistically significant p-value (<.05) by unpaired t test.

Quantitative Real-Time RT-PCR

Total RNA from MSC cultures was harvested by Trizol (Invitro-
gen). cDNAs of total RNA fraction were generated with ran-
dom hexamers using RevertAid First Strand cDNA Synthesis
Kit (Fermentas, Thermo Fisher Scientific, Waltham, MA), fol-
lowing the manufacturer’s recommendations. RNA and cDNA
were quantified with Beckman Coulter spectrophotometer.
Ten nanograms of small RNA input was reverse transcribed
using RevertAid First Strand cDNA Synthesis Kit (Fermentas,
Thermo Fisher Scientific) together with specific primers
(Ambion, Van Alley Way, CA).
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PCR reactions to quantify microRNA expression were pre-
pared using TagMan MicroRNA Assays (Ambion) with TagMan
Universal Master Mix Il, no UNG (Applied Biosystems, Thermo
Fisher Scientific). RNU24 was used for normalization. PCR
reactions to quantify mRNA expression were prepared using
fast SYBR green master mix (Applied Biosystems, Thermo
Fisher Scientific). f-Actin was used for normalization. Quanti-
tative PCR was performed on Step One Real-Time PCR System
(Applied Biosystems, Thermo Fisher Scientific). Primers are
listed in Supporting Information Table S1. All measurements
were performed in triplicate and analysis was made by Step
One software using ACt method [29].

miRNA Target Site Prediction

A search for predicted target miRNAs was performed using
the database TargetScan (http://www.targetscan.org/), PicTar
(http://pictar.mdc-berlin.de/), and DIANA microT v3.0 (http://
diana.cslab.ece.ntua.gr/microT/).

Dual Luciferase Reporter Gene Construct

A 469-bp fragment of the HOXB7 3'UTR containing the predicted
binding site for has-miR-196a was amplified from human total
RNA using primers with a short extension containing cleavage
sites for Sacl (5" end) and Xbal (3’ end): HOXB7—3'UTR forward (5'-
tatcgagct/cgAGAAGCCCAGCTCTGGGAA C-3') and HOXB7—3'UTR
reverse (5'-tatct/ctagagCCAGGCGCTTGGGGAACAC-3'). Ampli-
cons were cleaved with Sacl and Xbal and cloned in between
the Sacl and Xbal cleavage sites of the pmiRGLO vector (Prom-
ega, Madison, WI) downstream of the Firefly luciferase reporter
gene. The delete form of HOXB7—3'UTR, AHOXB7—3'UTR, lack-
ing miR-196a complementary sequence (TTCAACACTGAAAAAA-
TACTACCTA) has been created by SOE-PCR technique [30], using
additional primers (A forward: 5-AAATTTTGGTTTTAGGAA
AGTCTGTCAGGTTTGGTTTTTTTG-3/; A reverse 5-CAGACTTT
CCTAAAACC AAAAT TTCTCCTTTCTCCCTCC-3').

Luciferase Assay

Primary MSC were cotransfected by Nucleofector 2b device
(Lonza, Basel, Switzerland) with 50 nM pre-miR-196a or miR
control (Ambion, Van Alley Way, CA) and 100 ng of pmiRGLO
vector, pmiRGLO-HOXB7—3'UTR, or the delete form using
Amaxa Human MSC Nucleofector Kit (Lonza) as per manufac-
turer’s instructions. Firefly and Renilla luciferase were meas-
ured after 28 hours in cell lysates using a Dual-Luciferase
Reporter Assay System (Promega) on a Victor Light plate
reader (PerkinElmer, Waltham, MA). Renilla luciferase activity
was used for normalization and as an internal control for
transfection efficiency.

Viral Infection with MigRI-HOXB7 Vector

HOXB7 coding sequence (NM_004502.3) was amplified from
human total RNA using primers with a short extension con-
taining cleavage sites for Bglll (5 end) and EcoRl (3’ end):
HOXB7 forward (5'-TATCAGATCTAAATCATCCGGCCAAATTATGAG-
3’) and HOXB7 reverse (5'-TATCGAATTCTGCCCTTTCTCCATCCCTC
AC-3'). Amplicons were cleaved with Bglll and EcoRI and
cloned between the Bglll and EcoRl cleavage sites of the
MigR1 (MSCV-GFP) vector. The resulting vector was defined as
MIGR1-HOXB7, whereas the empty MIGR1-GFP vector was
used as control. Retrovirus production was performed by the
FLYRD18 packaging cell lines and three different BM-MSC samples

www.StemCells.com

were then transduced by virus-containing media from either
FLYRD18-HOXB7 or FLYRD18-GFP (both ~1 X 10° transducing
units/ml), as described [31]. The obtained MSC lines were defined
as MSC1-HOXB7, MSC1-GFP, MSC2-HOXB7, MSC2-GFP, MSC3-
HOXB7, and MSC3-GFP, respectively. MSC cell lines were analyzed
by Western blot to check HOXB7 overexpression. Protein extracts
were prepared with direct lysis in Laemmli sample buffer
(125 mM TRIS HCl pH 6.8, 20% glycerol, 4% SDS, Bromophenol
0.04% Blue). Protein from each extract was fractionated in a SDS-
polyacrylamide gel (Bio-Rad, Hercules, CA) and then transferred
to nitrocellulose. HOXB7 detection was performed by a rabbit
anti-HOXB7 polyclonal as primary antibody (Invitrogen) and goat
anti-rabbit IRDye800CW (LI-COR, Lincoln, NE) as secondary anti-
body. Normalization of protein loading was performed with anti-
GAPDH antibody (Cell Signaling Technology, Danvers, MA). The
signal was captured by Odyssey infrared imaging system (LI-COR).

Clonogenic Assay

Triplicate samples of MSC were seeded at 100 cells per
square centimeter in culture media as described [26]. On day
10, cells were fixed with cooled absolute methanol for 2
minutes and stained for 5 minutes with 1% crystal violet
aqueous solution (Sigma-Aldrich). Colonies with more than 50
cells were then scored and cloning efficiency (E) was calcu-
lated as E% = (n clones/cell seeded) X 100.

Beta-gal Staining

Expression of pH-dependent senescence associated f-
galactosidase (SA-f-gal) activity was analyzed in the gene
modified samples of MSC using the SA-f-gal staining kit (Cell
Signaling Technology). Positive cells were counted considering
seven fields for each sample.

Karyotypic Evaluation

Cytogenetic analyses were performed at passage 13 or higher
as described [32].

Differentiation Assay

Three lineages differentiation potential of MSC was assessed
as reported [25]. In particular for osteogenic induction, MSC
were seeded in conditioned medium with Dulbecco’s modified
Eagle’s medium (Euroclone, Milano, Italy) containing 10% Fetal
Bovine Serum (FBS) (Hyclone, Logan, UT), 1% P/S (10* Ul/ml
and 10 mg/ml), and glutamine (2 mM) supplemented with
dexamethasone (10 nM), L-ascorbic acid-2-phosphate
(0.1 mM), beta-glycerol phosphate (2 mM) (all from Sigma-
Aldrich), and bone morphogenic protein (BMP)—2 (100 ng/
ml; Tebu-Bio, Magenta, Italy) for 2 weeks. Osteogenic differen-
tiation was assessed by von Kossa staining on cultured cells
that were fixed on ice cold methanol for 2 minutes, rinsed in
distilled water, and incubated with 1% silver nitrate for 30
minutes under a UV lamp. Stained samples were then washed
and visualized by X10 magnification using an inverted micro-
scope (Zeiss). The percentage of Von Kossa stained dark area
was calculated by Image J software (http://rsb.info.nih.gov/ij/)
[26].

ELISA

Basic fibroblast growth factor (bFGF) levels on gene modified
MSC were measured by Quantikine Human bFGF kit (R&D
Systems) according to manufacturer instructions.
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Figure 1. Ki-67 expression is age repressed in human MSC and negatively correlates with miR-196 levels. (A): Average age of adult (A)
and pediatric (P) groups; *, p=1.1 X 10 °. (B): Ki67 mRNA expression in MSC from adult (A-MSC) and pediatric (P-MSC) groups; *,
p =.01. (C): Correlation analysis between age and Ki67 DCt; lower values of DCT correspond to higher Ki67 expression. (D): Relative
miR-196a and miR-196b levels in A-MSC (n = 4) and P-MSC (n = 3) identified by microarray analyses; *, p = .04. (E): Validation of miR-
196a expression performed by quantitative RT-PCR in A-MSC (n =7) and P-MSC (n=7); *, p=.003. (F): Correlation analysis between
miR-196a levels and Ki67 mRNA expression in A-MSC and P-MSC. All p values by unpaired two-tailed Student’s t test. Error bars, SEM.

Abbreviations: A-MSC, adult mesenchymal stromal/stem cells; P-MSC, pediatric mesenchymal stromal/stem cells.

FGFR Inhibition

MSC were seeded at 7,000 cells per square centimeter and,
after 24 hours, PD166285 (Calbiochem, Merck Chemicals
International, Darmstadt, Germany) in DMSO was added to
culture media at final concentration of 55 nM. PD166285 was
added again at 48 and 72 hours. DMSO only was used as con-
trol. After 96 hours from seeding, cells were harvested for
molecular studies.

Statistical Analyses

Data are presented as mean = SEM. Comparisons and correla-
tions were made by two-tailed t test and Pearson’s, respec-
tively, by Microsoft Excel 2010 with values considered
statistically significant at p <.05.

RESULTS

Pediatric and Adult MSC Significantly Differ for Ki-67
Expression in an Age-Dependent Manner

Adult group (A) consisted of two females and five males rang-
ing from 39 to 78 years-old, while pediatric group (P) consid-
ered subjects ranging from 3 to 13 years-old and was
composed by four females and three males. There was a sig-
nificant difference in the average age between adults
(54.7 £ 14.1) and pediatric donors (4.8 = 3.7) (Fig. 1A). Having
defined the age as a highly discriminating parameter, we
began to assess the proliferative potential of A-MSC and
P-MSC using Ki67, a well established index of cell proliferation
capacity [33]. Ki67 expression is significantly higher in pediat-
ric samples (Fig. 1B) showing an inverse correlation with
donor age (Fig. 1C). These findings confirm at the molecular
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level the greater proliferative potential of MSC from pediatric
donors [5, 7-10].

Pediatric MSC Reveal a Distinct miRNA Profile

In order to understand whether the observed different prolifera-
tive potential of P-MSC was linked to distinct miRNA expression,
the groups were further compared considering platform of 723
miRNA. From these analyses, we were able to identify only
seven differentially expressed miRNA between the two groups:
miR-99a, miR-100, miR-196a, miR-196b, miR-337-5p, miR-376b,
miR-431, and miR-543 (p < .04; data not shown). Among those,
both miR-196a and miR-196b resulted less expressed in P-MSC
(Fig. 1D). While having overlapping sequences except for one
nucleotide, isoforms a and b of miR-196 derive from three dif-
ferent chromosome loci (chromosomes 17 and 12 for isoform a,
chromosome 7 for isoform b) and share predicted targets [34].
In addition, miR-196a seems to impact on differentiation and
proliferation of human adipose-derived MSC [35], therefore we
focused on the a isoform only. To validate microarray findings,
quantitative real-time RT-PCR (qRT-PCR) revealed a consistently
lower miR-196a expression in P-MSC (Fig. 1E) whose level was
inversely correlated with Ki67 (Fig. 1F), indicating a link between
the proliferative attitude of P-MSC and the identified miRNA.

HOXB7 Expression Is Regulated by miR-196a in MSC

In silico analysis revealed several HOX genes as predicted
miR-196a targets (not shown). During prenatal development
HOX regulate neuro-ectodermal and mesodermal progenitors
proliferation and fate [36, 37]; therefore, we hypothesized a
role of this family in the observed proliferative events of post-
natal mesenchymal progenitors in relationship with miR-196a.
Among HOX targets we focused on HOXB7, since its
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Figure 2. HOXB7 is a direct target of miR-196a in MSC. (A): HOXB7 mRNA expression in A-MSC (n =7) and P-MSC (n=7); *, p = .04.
(B): Correlation analysis between miR-196a and HOXB7 mRNA levels in A-MSC and P-MSC. (C): Diagram illustrating HOXB7 3'UTR. In
gray the conserved sequence among species. In the box the predicted consequential pairing of 3'UTR target region (top) and miR-196a
(bottom). Seed region in bold. (D): Schematic representation of luciferase reporters with the wild-type HOXB7 3'UTR (HOXB7_3'UTR_wt)
or the mutated HOXB7 3'UTR lacking of the whole (A199-227) miR-196a complementary sequence (HOXB7_3'UTR_mut). (E): The effect
of pre-miR-196a and pre-miR negative control (miR control) on luciferase activity in MSC transfected with the HOXB7_3'UTR_wt reporter
(lanes 1-3) or the HOXB7_3'UTR_mut reporter (lanes 4 and 5). *, p =.0007 and **, p =.001. Experiments were performed in triplicate.
All p values by unpaired two-tailed Student’s t test. Error bars, SEM. Abbreviations: A-MSC, adult mesenchymal stromal/stem cells; Hm,
Homo sapiens; Mm, Mus musculus; P-MSC, pediatric mesenchymal stromal/stem cells; Pt, pan troglodytes; Rn, Rattus norvegicus.

expression has been previously related with cell aging and
senescence [14, 16]. Comparing groups, we observed a signifi-
cantly higher expression of HOXB7 in P-MSC (Fig. 2A) and an
inverse correlation between miR-196a and HOXB7 levels (Fig.
2B), indicating a link between HOXB7 and donor age and sug-
gesting an interplay between the HOXB7 and miR-196a.

The relationship between miR-196a and HOXB7 in MSC
was then explored by miRNA mimic and inhibitor assays as

www.StemCells.com

shown in Supporting Information Figure S1. While miR-196
mimic determined the reduction of HOXB7 level (Supporting
Information Fig. S1A), conversely miRNA inhibition resulted in
its upregulation (Supporting Information Fig. S1B).

To ultimately verify whether HOXB7 is a target of miR-
196a in our system, direct targeting of the 3’UTR region of
the HOXB7 gene was then challenged by a dual luciferase
reporter assay. HOXB7 has 8-nt seed match site for miR-196a

©AlphaMed Press 2014
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FACS analysis in MSC-GFP and MSC-HOXB7 (p > .2 for all markers). Data are the mean of three biological samples. All p values by paired

two-tailed Student’s t test. Error bars, SEM. Abbreviations: GFP, green fluorescent protein; MSC, mesenchymal stromal/stem cells.

within its 3'UTR, and this putative target site is highly con-
served among the vertebrates (Fig. 2C). Thus, we cloned the
entire 3'UTR of HOXB7 into pmiRGLO vector (Fig. 2D, left).
MSC cotransfection of the HOXB7 3’'UTR luciferase reporter
with pre-miR-196a resulted in a significant downregulation of
luciferase activity compared with the miRNA negative control
(Fig. 2E). As expected, no significant downregulation in lucifer-
ase activity was observed with mutated form lacking of the
3’UTR (Fig. 2D, 2E), confirming the specificity of miR-196a
binding and originally demonstrating that HOXB7 is a direct
target of miR-196a in primary human BM-MSC.

HOXB7 Overexpression Influences MSC In Vitro
Behavior

In order to investigate whether an ex vivo overexpression
strategy based on HOXB7 could be able to improve cell per-
formance of MSC, three different donors (MSC1, MSC2, and
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MSC3) were transduced by a vector encoding for full-length
human HOXB7 (MIGR1-HOXB7) or by an empty vector as con-
trol (MIGR1-GFP). Cloning strategy of HOXB7 coding sequence
(cds) in MIGR1 vector is shown in Figure 3A. In all cases, high
transduction efficiencies were obtained (Fig. 3B), and HOXB7
overexpression was confirmed by either qRT-PCR or Western
blot (Fig. 3C). After transduction, cells were amplified and
evaluated for morphology and antigenic profile. Microscopic
visual assessments indicated that HOXB7 overexpression
resulted in relevant morphological changes in all samples (Fig.
3D, upper panels). In particular, MSC-HOXB7 grew at higher
density retaining a smaller size (arrows) than MSC-GFP that,
on contrary, revealed larger cytoplasmic bodies with a highly
visible cytoskeleton (Fig. 3D, lower panels, arrow heads). To
validate these early observations, FACS analyses were per-
formed evaluating main MSC markers and physical parame-
ters, such as Forward Scatter (FSC) and Side Scatter (SSC) as
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stem cells.

reported criteria to assess MSC senescence [9]. MSC-HOXB7
reduced their size (FSC) with a lower internal complexity (SSC),
suggesting a diminished in vitro aging versus the MSC-GFP (Fig.
3E). Regarding surface markers, MSC immunophenotype was
not influenced by HOXB7 (Fig. 3F). Collectively, these data indi-
cate that extensively amplified MSC overexpressing HOXB7 rev-
eled distinct morphological changes in vitro associated with a
persistence of the typical surface fingerprints of MSC.

HOXB7 Overexpression Is Associated with Higher
Proliferative Potential and Reduced Senescence

In the attempt to verify the hypothesis of an improved cell
performance due to forced expression of HOXB7, in vitro
expansion was monitored by Ki67 analysis. In MSC-HOXB7, we
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observed a higher expression of the proliferation marker com-
pared to MSC-GFP (Fig. 4A), suggesting an impact of this HOX
in regulating adult MSC proliferation. Interestingly, HOXB7
overexpression was associated with downregulation of miR-
196a levels as shown in Supporting Information Figure S2.
Long-term in vitro propagation studies were then introduced
to assess the CPD of transduced cells. Once more, MSC-
HOXB7 samples were associated with a better proliferative
performance compared to the relative green fluorescent pro-
tein (GFP) control (Fig. 4B) without cytogenetic alterations
(not shown). Additionally, the effect of HOXB7 on MSC clono-
genic activity was assessed by CFU-F assay, showing that
MSC-HOXB7 were generating a higher number of colonies
(Fig. 4C). The greater cloning efficiency and proliferative
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potential of MSC-HOXB7 were then also considered in terms
of senescence, measuring cellular aging in vitro using a f-
galactosidase (f-Gal) staining [9]. Confirming morphological
changes and growth curves of MSC-GFP, the staining outlined
a significantly higher quote of f-gal positive cells in these lat-
ter samples (Fig. 4D, 4E, arrow heads), indicating that HOXB7
improves MSC performance increasing proliferation and
reducing senescence.

HOXB7 Generates a bFGF-Mediated Autocrine Loop in MSC

In order to provide an understating of the proliferative atti-
tude of MSC-HOXB7, we focused on bFGF as a pivotal MSC
mitogen and known transcriptional target of HOXB7 in cancer
[38]. Measuring bFGF levels in modified MSC, we observed
that bFGF mRNA was highly expressed in MSC-HOXB7 (Fig.
4F). These data were then confirmed measuring secreted
bFGF that was significantly increased in MSC-HOXB7 superna-
tants after both 24 hours and 48 hours of culture (Fig. 4G). To
further explore whether FGF signaling was effectively respon-
sible of HOXB7 action on proliferation, we assessed FGFR1
expression on modified MSC, observing comparable levels
between MSC-GFP and MSC-HOXB7 (Supporting Information
Fig. S3). Finally, using PD166285, a known inhibitor of FGFR1
tyrosine kinase [39], we wanted to verify if FGF signaling
blockage could abrogate the MSC-HOXB7 proliferative advant-
age. After 4 days of treatment with PD166285, the expression
of Ki67 became comparable to the control MSC-GFP, indicat-
ing that a specific inhibition of FGF signaling is able to revert
the increased proliferative potential due to HOXB7 overex-
pression (Fig. 4H), further outlining HOXB7 as influential
player on in vitro behavior of human primary stem cells by

©AlphaMed Press 2014

bFGF autocrine loop. To further explore the impact of HOXB7
on MSC, a loss of function experiment was introduced. The
reduction of HOXB7 expression was associated with decreased
bFGF and Ki67 levels as shown in Supporting Information Fig-
ure S4, confirming the relationship among these players and
the role of HOXB7 on MSC proliferation.

HOXB7 Specifically Enhance MSC Osteogenic Potential

Since bFGF levels are associated with an increase MSC prolif-
eration coupled with osteogenesis in vivo [24, 40] and HOX
are linked with prenatal skeletal development [34, 37, 41], we
evaluated whether HOXB7 overexpression may be associated
by an increased mineralizing potential in extensively amplified
MSC. Thus, a BMP-2 in vitro assay was introduced and, after
2 weeks of induction, MSC-HOXB7 showed an impressive von
Kossa staining versus the induced MSC-GFP with more of
threefold increase in osteogenic commitment (Fig. 5A), while
no apparent differences could be detected in inducing MSC-
HOXB7 toward chondrogenic and adipogenic lineages (Sup-
porting Information Fig. S5). A clustered gene expression anal-
ysis outlined an increase of pivotal osteogenic-related
biomarkers in MSC-HOXB7 versus MSC-GFP (Fig. 5B), support-
ing the role of HOXB7 in bone formation, further suggesting
that the observed HOXB7 levels in osteoprogenitors from
pediatric population may be linked to higher osteogenesis in
the early phase of postnatal life.

HOXB7 Expression in Skeletal Tissues Is Age Related in
Mice

To explore this latter hypothesis, we considered HOXB7 levels
into skeletal tissue of mice aged 11, 90, and 180 days. At the

STEM CELLS



Candini, Spano, Murgia et al.

947

A
11 days
90 days
180 days
B §§
R
#
1 *

% of HOXB7 stained area
O = NN WA TN ® OO

11 days old
Figure 6.

90 days old
HOXB7 levels decreases in vivo during aging. (A): Anti-HOXB7 antibody IHC staining of murine bone from 11, 90, and 180

= EPIPHYSIS
m METAPHYSIS
B DIAPHYSIS

180 days old

days old mice. Staining with isotypic 1gG antibody (negative control) in inset panels. Representative images are shown. Scale bar = 100
um. (B): Quantification (by Imagel) of HOXB7 positive stained area at epiphyseal, metaphyseal, and diaphyseal levels of murine bone.
Three mice were analyzed, n =3 (n of fields = 3 for each animal). All p values indicated by symbols *, **, *** # ## ##t# §, §§ are
<.05 by unpaired two-tailed Student’s t test. Error bars, SEM. Abbreviations: BM, bone marrow; Bo, bone; C, cartilage.

early time point, the immunohistochemical studies revealed a
relevant expression of HOXB7 into the different bone regions,
having the epiphyseal areas the highest expression (Fig. 6A,
upper row). At 90 days, while stained cells could be still
detected at the growth plate as well as in the endosteal and
periosteal areas, a progressive reduction of HOXB7 staining
was evident (Fig. 6A, middle row). This pattern further
changed at 180 days with a dramatic decline of HOXB7
expression that became undetectable at cellular level while
remaining into the matrix (Fig. 6A, lower row). To quantify
the histological staining, we measured the percentage of
HOXB7 positive stained tissue, demonstrating a progressive
and significant reduction of HOXB7 during aging and confirm-
ing a preferential expression at epiphyseal level for all time
points (Fig. 6B). To verify the specificity of HOXB7 staining
additionally addressing the expression of another HOX factor
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[42], HOXB9 expression was assessed. Murine bone did not
express HOXB9 which was instead limited to articular cartilage
in newborn mice and was almost undetectable in 90 and 180
days old mice (Supporting Information Fig. S6) indicating that
besides the known redundancy of HOX family in skeletal tis-
sues there is a distinct pattern of HOX expression. Collectively,
these results emphasize the importance of HOXB7 during in
vivo skeletal formation and in postnatal skeletal homeostasis.

DiscussION

Adult stem cells, as somatic cells, undergo an age-dependent
decline in their number and function resulting in tissue aging
and disease [43-45]. In addition, since their ex vivo isolation
is often a prerequisite for regenerative medicine applications,
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these impairments may limit stem cells performance in vitro
and after transplantation [46].

In this study, we began considering age as a highly dis-
criminating parameter demonstrating that MSC isolated from
young donors have a substantial difference in proliferative
attitude, confirming previous findings on the negative correla-
tion between donor age and cell growth [5, 7-10].

Several investigators, in order to identify fingerprints in
aged MSC, have explored chromatin remodeling, genomic
integrity, and regulation of transcription focusing on telomer-
ase activity [15, 47], DNA methylation [12], mRNA, and miRNA
expression [11, 13, 15, 16]. This pioneering research provided
early insights on age-modulated genomic features contributing
to the perception that aging represents a controlled develop-
mental program. However, these observations were incapable
to clarify specific player/s driving the age-related cell
performance.

Here, we explored miRNA expression profile and, compar-
ing the two highly age-distinct groups, we identified only
seven differentially expressed miRNA on a platform of 723
(0.9%). Among those, we focused on miR-196a whose levels
negatively correlate with Ki67 expression, allowing to
hypothesize a link between the proliferation potential of MSC
during aging and the identified miRNA (Fig. 7). Decrease in
cellular proliferation is a hallmark of aging contributing to a
reduced tissue renewal and regeneration [11, 44]. Thus, we
thought that miR-196a may represent a pivotal mechanism by
which MSC progressively lose their properties. In a previous
study on gene modified adipose progenitors, it has been sug-
gested that a forced miR-196a overexpression has a negative
influence on both proliferation and differentiation through
HOX gene modulation [35]. Our data confirm these early find-
ings, further indicating that miR-196a may also impact on pro-
liferation in unmodified primary MSC and suggesting that
miRNA-196a upregulation naturally occurs during aging at the
progenitor level as previously suggested [48].

It is known that miR-196a has a critical role in the devel-
opment regulating HOX expression [34]. The HOX family plays
essential roles in limb morphogenesis and skeletal formation
being also closely involved in stem cell proliferation and dif-
ferentiation [49, 50]. Interestingly, the modulation of HOX
expression has been previously associated with aging [12]
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and, in particular, HOXA5, HOXB3, and HOXB7 were repressed
in aged MSC [14, 16].

For these reasons, we explored the connection between
miR-196a, HOXB7, and MSC aging. The observed lower HOXB7
levels in adult group confirm the negative modulation of
HOXB7 in aged cells and the original identification of HOXB7,
as a target of miR-196a on primary human stem cell, suggests
a miR-196a impact on cellular aging through HOXB7
expression.

Based on these relevant observations, we hypothesized
that the higher proliferative potential of young MSC could be
attributable to HOXB7 action. Thus, we forced HOXB7 expres-
sion obtaining a MSC cellular reprogramming in vitro associ-
ated with smaller size, increased levels of Ki67, and decreased
f-gal positive cells with maintenance of immunophenotypic
profile and no evidence of cytogenetic abnormalities. Previ-
ously, HOX have been studied in other human stem cells pro-
viding clear evidences of their regulatory functions and
allowing to develop therapeutic strategies to optimize self-
renewal and commitment [23, 51]. For instance, HOXB4 over-
expression enhances hematopoietic progenitors ex vivo expan-
sion promoting their in vivo regenerative potential by
multiple transcriptional activities leading to a modulation of
several target genes [52, 53]. Our data suggest that HOXB7
may represent the HOXB4 counterpart in MSC.

HOXB7 regulates several genes playing a significant role in
cell proliferation, differentiation, and receptor signaling [27,
54-58]. In our model, we focused on bFGF, a known HOXB7
target [56] strongly involved in progenitor self-renewal, prolif-
eration, and differentiation [59, 60]. HOXB7 modified MSC
showed enhanced bFGF expression that may explain the
induced MSC reprogramming, rendering bFGF a key factor to
counteract aging. Additionally, using computational predictive
algorithms (not shown), we were able to identify the FGFR3
as predicted target of miR-99a and miR-100, both found
upregulated in aged cells, empowering the role of FGF in MSC
aging and suggesting the need of deeper studies to reveal the
epigenetic network ruling aging through FGF signaling.

In skeletal tissue, FGFs and their receptors maintain a suffi-
cient pool of progenitors during bone development, growth,
homeostasis, and repair in mammalians lifespan [59]. It has also
been demonstrated that bFGF expanded MSC displayed in vitro a
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higher osteogenic differentiation, underlining the supporting role
of bFGF in bone precursors [61]. Our data strongly follow these
observations additionally indicating that MSC-HOXB7 have higher
levels of secreted bFGF linked with a greater osteogenesis. Sev-
eral evidences indicate that HOX are involved in skeletal develop-
ment being also reactivated during fracture repair [21, 22, 41,
62]. Translating our findings during murine aging, we originally
showed in postnatal life skeletal compartment, a progressively
reduction of HOXB7 expression, suggesting that a similar dynamic
may be relevant for humans (Fig. 7).

CONCLUSIONS

In conclusion, this research starting from an age-related com-
parison of a know stem cell type provides insights on the spe-
cific role played by miRNA in aged cells and identifies HOXB7
as a key factor to enhance cell performance and skeletal
regeneration in ex vivo reprogramming strategies by bFGF
secretion. The identification of HOXB7 decrease during aging
in skeletal tissue may also retain important implication on
prevalent degenerative pathologies, such as osteoporosis,
prompting more investigations to better clarify the role of
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