## **Additional files**

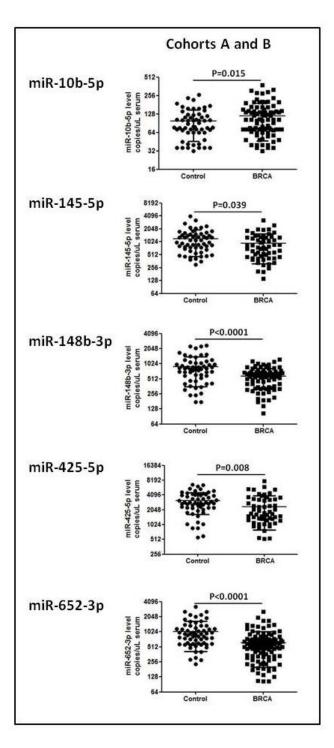
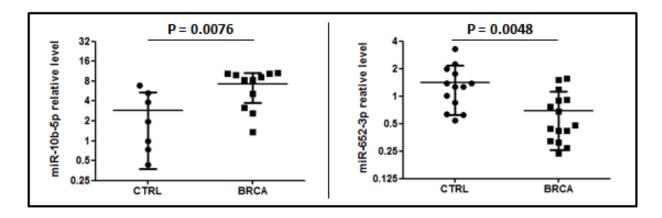
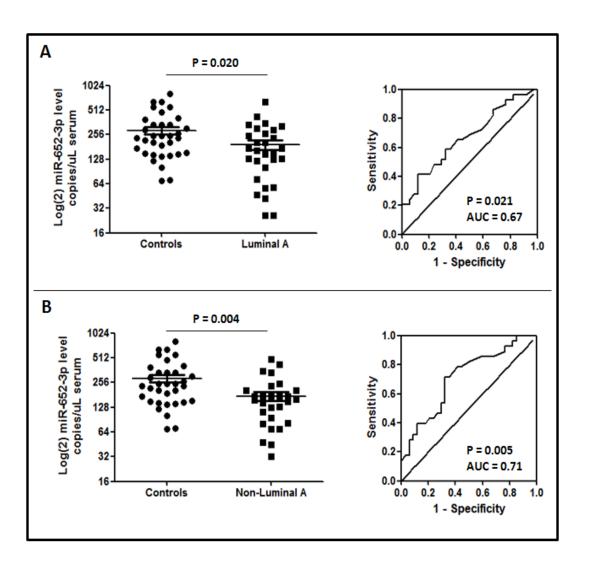





Figure S1. Distribution of miRNA levels in sera of the two combined cohorts of breast cancer and disease-free patients. Results of the two cohorts shown in Figure 1 were combined. The unpaired t-test with Welch's correction was performed to assess significance of differences between breast cancer patients and control groups. P-values of less than 0.05 were deemed to be significant. Significant discrimination between breast cancer patients and disease-free controls as well as trends of dysregulation were all confirmed. BRCA = breast cancer patients



**Figure S2. Validation of ddPCR results using Real-Time PCR.** The serum levels of miR\_10b-5p (left) and miR-652-3p (right) were investigated in a subset of samples from cohort B using Real-Time PCR instead of ddPCR method. The same trend of dysregulation found with ddPCR was also confirmed with this method. Cel-miR-39 was used as standard reference to normalize results as described in manuscript text.



**Figure S3. Serum miR-652-3p is significantly reduced in patients affected by either Luminal A or non-Luminal A breast cancers.** Analysis of cohort B indicated that the levels of serum miR-652-3p are significantly reduced in Luminal A (ER+/PR+/HER2-) (panel A) and other non-Luminal A cases (panel B) in comparison with disease-free controls. The same results were obtained by analysis of cohort A. AUC = area under the curve.

| miRNA Sample type |              | Experimental design                                                                         | Results                                                                                                                                              | References |
|-------------------|--------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| miR-10b-5p        | Serum        | SyberGreen qRT-PCR<br>Normalizer: miR-16                                                    | Higher in BRCA vs healthy controls                                                                                                                   | (1)        |
|                   | Serum        | TaqMan qRT-PCR<br>Normalizer: 18S RNA                                                       | Higher in BRCA vs healthy controls                                                                                                                   | (2)        |
|                   | Serum        | TaqMan qRT-PCR<br>Normalizer: miR-16                                                        | Higher in pM1 BRCA vs pM0 BRCA                                                                                                                       | (3)        |
|                   | Serum/plasma | TaqMan qRT-PCR<br>Normalizer: miR-16                                                        | No significant difference between BRCA and<br>healthy controls                                                                                       | (4)        |
|                   | Serum        | LNA RT-PCR human<br>miRNA panel (Exiqon)<br>Normalizer: miR-103, miR-191                    | Higher in BRCA vs healthy controls                                                                                                                   | (5)        |
|                   | Serum        | LNA-based qRT-PCR<br>QX200 digital PCR system                                               | Higher in BRCA vs healthy controls<br>Higher in BRCA stage-IV vs I<br>Higher in pN + BRCA vs pN0 BRCA<br>Higher in grade III BRCA vs grade I-II BRCA | This paper |
| miR-145-5p        | Serum        | TaqMan qRT-PCR<br>Normalizer: 18S RNA                                                       | Higher in BRCA vs healthy controls                                                                                                                   | (2)        |
|                   | Plasma       | SyberGreen qRT-PCR<br>Normalizer: RNU6B                                                     | Lower in BRCA vs healthy controls                                                                                                                    | (6)        |
|                   | Serum        | LNA-based qRT-PCR<br>Normalizer: based on the mean of<br>the assays detected in all samples | Lower in BRCA vs healthy controls                                                                                                                    | (7)        |
|                   | Serum        | LNA-based qRT-PCR<br>QX200 digital PCR system                                               | Lower in BRCA vs healthy controls                                                                                                                    | This paper |
| miR-148b-3p       | Plasma       | TaqMan qRT-PCR<br>Normalizer: Spike-in cel-miR-39                                           | Higher in early BRCA vs healthy controls                                                                                                             | (8)        |
|                   | Plasma       | TaqMan qRT-PCR<br>Normalizer: Spike-in cel-miR-39                                           | Higher in BRCA vs healthy controls<br>Higher in benign BRCA vs healthy controls                                                                      | (9)        |
|                   | Plasma       | miRCURY LNA Universal RT<br>microRNA PCR/TaqMan qRT-PCR<br>Normalizer: miR-93               | Higher in early BRCA vs healthy controls                                                                                                             | (10)       |
|                   | Serum        | LNA-based qRT-PCR<br>QX200 digital PCR system                                               | Lower in BRCA vs healthy controls                                                                                                                    | This paper |
| miR-425-5p        | Serum        | LNA-based qRT-PCR                                                                           | Higher in ER+ BRCA vs healthy controls                                                                                                               | (7)        |

## **Table S1.** Published data on circulating microRNAs in human breast cancer patients

|            |        | Normalizer: based on the mean of the assays detected in all samples |                                                                                       |            |
|------------|--------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------|
|            | Serum  | LNA-based qRT-PCR<br>QX200 digital PCR system                       | Lower in BRCA vs healthy controls                                                     | This paper |
| miR-652-3p | Blood  | TaqMan qRT-PCR<br>Normalizer: miR-16                                | Lower in Luminal A-like BRCA vs healthy controls                                      | (11)       |
|            | Plasma | TaqMan qRT-PCR<br>Normalizer: Spike-in cel-miR-39                   | Higher in BRCA vs healthy controls<br>Higher in benign BRCA vs healthy controls       | (9)        |
|            | Serum  | LNA-based qRT-PCR<br>QX200 digital PCR system                       | Lower in BRCA vs healthy controls<br>Lower in Luminal A-like BRCA vs healthy controls | This paper |

- 1. Zhao FL, Hu GD, Wang XF, Zhang XH, Zhang YK, Yu ZS. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res 2012; 40:859-66.
- 2. Mar-Aguilar F, Mendoza-Ramirez JA, Malagon-Santiago I, et al. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers 2013; 34:163-9.
- 3. Roth C, Rack B, Muller V, Janni W, Pantel K, Schwarzenbach H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 2010; 12:R90.
- 4. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 2010; 251:499-505.
- 5. Chan M, Liaw CS, Ji SM, et al. Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res 2013; 19:4477-87.
- 6. Ng EK, Li R, Shin VY, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One 2013; 8:e53141.
- 7. Kodahl AR, Lyng MB, Binder H, et al. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol 2014; 8:874-83.
- 8. Cuk K, Zucknick M, Heil J, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer 2013; 132:1602-12.
- 9. Cuk K, Zucknick M, Madhavan D, et al. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One 2013; 8:e76729.
- 10. Shen J, Hu Q, Schrauder M, et al. Circulating miR-148b and miR-133a as biomarkers for breast cancer detection. Oncotarget 2014; 5:5284-94.
- 11. McDermott AM, Miller N, Wall D, et al. Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS One 2014; 9:e87032.

|                      | Cohort A (Italy)       |              | Cohort B (USA)         |              |
|----------------------|------------------------|--------------|------------------------|--------------|
|                      | <b>Cancer patients</b> | Controls     | <b>Cancer</b> patients | Controls     |
| Total                | 28                     | 27           | 59                     | 35           |
| Mean age, years (SD) | 65.3 (±14.4)           | 54.2 (±14.8) | 56.73 (±10.4)          | 53.2 (±11.5) |
| Range                | 33-91                  | 28-78        | 34-81                  | 27-94        |
| < 50                 | 4 (14.3%)              | 8 (29.6%)    | 15 (25.4%)             | 12 (34.3%)   |
| 50-60                | 8 (28.6%)              | 8 (29.6%)    | 22 (37.3%)             | 14 (40.0%)   |
| 60-70                | 6 (21.4%)              | 3 (11.1%)    | 15 (25.4%)             | 8 (22.9%)    |
| > 70                 | 10 (35.7%)             | 5 (18.5%)    | 7 (11.9%)              | 1 (2.9%)     |
| not known            | 0                      | 3 (11%)      | 0                      | 0            |

 Table S2.
 Demographic characteristics of study populations