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Abstract

Purpose – Magnetic fluid hyperthermia experiment requires a uniform magnetic field in order to
control the heating rate of a magnetic nanoparticle fluid for laboratory tests. The automated optimal
design of a real-life device able to generate a uniform magnetic field suitable to heat cells in a Petri dish
is presented. The paper aim to discuss these issues.
Design/methodology/approach – The inductor for tests has been designed using finite element
analysis and evolutionary computing coupled to design of experiments technique in order to take into
account sensitivity of solutions.
Findings – The geometry of the inductor has been designed and a laboratory prototype has been built.
Results of preliminary tests, using a previously synthesized and characterized magneto fluid, are presented.
Originality/value – Design of experiment approach combined with evolutionary computing has been
used to compute the solution sensitivity and approximate a 3D Pareto front. The designed inductor has
been tested in an experimental set-up.

Keywords Multi-objective optimization, Finite element analysis, Sensitivity analysis,
Magnetic fluid hyperthermia, Magnetic nanoparticles, Uniform magnetic field

Paper type Research paper

1. Introduction
Magnetic fluid hyperthermia (MFH) is a cancer therapy that uses a magnetic nanoparticle
(NP) fluid to heat locally tumor cells (Hildebrandt et al., 2002; Goya et al., 2003, 2013;
Krishnan, 2010). The first device applied for this therapy is described in Gneveckow et al.
(2004) and Jordan et al. (1999, 2001). At the time being, a large variety of magnetic fluids
exists (Roca et al., 2009; Sun et al., 2003). In order to verify the magnetic fluid heating
capability in biological systems, the synthesized NPs have to be tested on cell cultures
( Jordan, 1999). The geometry of the device to generate the magnetic field must be suitably
designed in order to achieve a good uniformity in the region where cells are placed.
The design of the magnetic field source can be driven by means of various parametric
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or non-parametric optimization algorithms (Barba et al., 2013; Di Barba et al., 2010,
2012a, b, c, 2013, 2014). In the paper, the optimization of the magnetic field in a device to heat
a NP magnetic fluid, previously injected inside cells cultured in a Petri dish, isQ1 presented.
The inductor design is driven by means of NSGA-DOE algorithm, a multi-objective
optimization method NSGA based that incorporates a set of uncertain parameters
(Di Barba et al., 2014). In fact, the issue of handling a multi-dimensional solution space
in a cost-effective way is a prerequisite for selecting a specific algorithm (Riganti
Fulginei and Salvini, 2007). In computational electromagnetism, optimization problems
are characterized by one or more objective functions which are known in a numerical
form only; usually, their computation rely of 2D or 3D finite-element models of the
device or system under study. Therefore, the standard assumption of convexity cannot
be invoked by any means and the use of gradient-free algorithms is recommended.
Despite the statistical performance of an optimization algorithm across the whole class
of solvable problem is the same (Wolpert and Macready, 1997), the evolutionary
computing algorithms have proven to be effective in identifying the region of global
optimum both for both single-objective and multi-objective problems.
In the paper, a 3D objective space is investigated; in particular, three objective

functions are minimized: (f1) the inhomogeneity of the magnetic field strength in the
bottom region of the Petri dish, (f2) the sensitivity of the magnetic field inhomogeneity
and (f3) either the voltage at inductor ends or maximizing the magnetic field value in
the bottom of Petri dish. Finally, the designed device has been realized and tested using
NP suspensions produced by the chemical laboratory of the Department of Industrial
Engineering of Padova University. Nanofluids have been previously characterized in
terms of both physical and chemical properties and also in term of heat generation at a
given intensity of time-varying magnetic field.

2. Heating problem
In MFH the heat is generated by the interaction of a magnetic fluid, a suspension of
superparamagnetic nanometric particles in a fluid, and a time-varying magnetic field.
The magnetic field allows the rotation of both the magnetic moments and entire NPs in
the biological medium. The power density (in (W/m3)) generated in the nanofluid can be
evaluated by means of the following relation (Rosensweig, 2002):

P ¼ m0pw
00 Hð ÞfH 2 (1)

where µ0 is the magnetic permeability of the vacuum, f the magnetic field frequency,
χ00 the magnetic susceptibility of the NPs,H the root means square amplitude of magnetic
field in (Am−1). Moreover, also the magnetic susceptibility χ00 (dimensionless) is a function
of the magnetic field H and Langevin’s parameter, ξ (Rosensweig, 2002):

w00 ¼
ot

1þðotÞ2
 !w0 (2)

where ω is the angular frequency ofH in (s−1), τ the relaxation time, in (s), of the NPs due
to Neel, τN, and Brown, τB, relaxation time constants, in (s), such that t

%1 ¼ t%1N þt%1B
(Rosensweig, 2002). The Brown relaxation time is correlated to the NP rotation in the
suspension media and depends on the medium viscosity, η in (Pa·s):

tB ¼ 3ZVH ðkBT Þ
%1 and tN ¼ t0 e

KVm
k
B
T (3)
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where kB is the Boltzman constant (1.38× 10
−23 ( JK−1)), T the temperature in (K), Vm is

the volume of the magnetic core with diameter D in (m3),VH is the hydrodynamic volume

considering a cover layer with a thick δ in (m3), (Vm ¼ 4p D=2
" #3

=3,

VH ¼ 1þd D=2
" #%1

$ %3

Vm). Whereas χ0 (dimensionless) is:

w0 ¼
3wi
x
U cothx%

1

x

& '

(4)

with

x ¼
m0MdHVm

kBT
and wi ¼

m0fM
2
dVm

3kT
(5)

where Md is the domain magnetization of the magnetic material in (Am−1) and ϕ the

fraction (dimensionless) of the magnetic NPs in the suspension (Rosensweig, 2002).

In particular, ξ and χi are dimensionless quantities. Equation (1) evidences the dependence

of the power density P on the square of the magnetic field strength. As a consequence, it is

necessary to have a homogeneous magnetic field strength in the volume where there are

the NPs. The optimal design of the inductor to generate the magnetic field used in the cell

cultures experiments is required in order to apply on the cell surface the same intensity of

magnetic field and obtain an uniform heating.

3. Direct problem
The direct problem has been solved by means of 2D models and coupled with an
optimization algorithm in order to find the geometry that improves the magnetic field
uniformity. Finally, the optimal solution found has been modeled also in a 3D domain to
assess the end effects of the inductor on the magnetic field uniformity.

3.1 2D analysis
Figure 1(a) shows the cross section of the 2D axy-symmetric geometry of the device.
The Petri dish is placed in a thermally insulated box where a water flow maintains the
temperature of the system at 37°C. The magnetic field device is a two-turn inductor
with five ferrite blocks placed as in Figure 1(a) in order to concentrate the magnetic flux
lines. The ferrite elements have been divided into five blocks for two reasons: first of all,
the uniformity of magnetic field in the region of interest can be improved by varying
independently the vertical position of each ferrite block in the upper part of the device;
moreover, the sizes of blocks that have been considered correspond to commercially
available parts. Ferrite elements are made of non-linear material (i.e. initial relative
permeability between 800 and 4,300, saturation magnetic flux density between 0.39 and
0.5 T). The magnetic field is solved in time-harmonics using a finite element code
(FLUX, n.d.). In particular, the problem is solved in terms of phasor of magnetic vector
potential, A, coupled with the electric scalar potential, V. When the Coulomb gauge is
applied to the magnetic vector potential, i.e. rUA ¼ 0, the following coupled equations
are solved (Di Barba et al., 2008, 2012; Binns et al., 1992):

r '
1

m
r ' Aþ jom

1

r
A ¼ %

1

r
r V (6)
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r U

1

r
jom Aþ r Vð Þ ¼ 0 (7)

with µ is the material permeability, ω field pulsation and ρ material resistivity for
copper turns.
The problem has been studied supplying the inductor by imposing either a current

or a voltage. A typical mesh (Figure 1(b)) is composed of 23,000 nodes and 13,000
second-order elements.

3.2 3D analysis
Results obtained after the optimization process based on 2D models have been assessed
a posteriori by means of the 3D model shown in Figure1(c). This model includes the two
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Figure 1.
(a)Geometry of the
device with design
variables and
uncertain parameters
(parameters
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(b) detail of a
typical mesh;
(c) 3D geometry

4

EC
32,7



inductor turns, represented as two circular bends, and the ferrite elements. The model
incorporates also the inductor ends, connected to the power supply. This model
disregards Petri and thermal insulating box, because they have no influence on the
magnetic field computation. The aim of this model is to assess the influence of the
inductor ends on the uniformity of the magnetic field distribution. The problem is
solved again in time-harmonics conditions using finite element analysis. The 3D
solutions have been obtained by applying the scalar potential formulation in terms of
scalar magnetic potential, Φ, and vector electric potential T. The electromagnetic
solution is coupled with an external circuit to apply the same current to each turn of the
inductor. This formulation allows to compute the magnetic field H and current density
J as (Biro et al., 2004):

H ¼ TþT 0%rF (8)

J ¼ r ' Tþr ' T 0 (9)

T0 is an impressed electric vector potential depending on the imposed current in the coil
that is computed as Biot-Savart field.
The ferrites are non-conductive regions with non-linear magnetic properties, where

r ' H ¼ 0 and the solution is obtained from the total scalar magnetic Φ, by solving:

rU m Hð ÞrFð Þ ¼ 0 (10)

In the inductor, the reduced scalar magnetic potential is coupled with the electric vector
potentials, T and T0 is calculated by means of Biot-Savart law. The air region that
encompasses the active parts in the model is solved in terms of reduced scalar potential.
The appropriate coupling conditions between total and reduced scalar potential are
applied on the interfaces between air and ferrite (Aliferov et al., 2010; Biro et al., 2004;
Meunier, 2008).
The 3D mesh has 5.2× 105 nodes and 3.0× 106 first-order volume elements.

4. Inverse problem
The optimization problem aims at minimizing the inhomogeneity of the magnetic field, H,
on the bottom of the Petri dish ( f1), evaluated as in Di Barba et al. (2014a, b, in press a, b)
with a tolerance interval of ±10 A/m. The ( f1) is evaluated in a fixed grid of sampling
points which does not change during the optimization process and accounts for the
number of points that satisfy the “proximity criterion”. Specifically, the value of ( f1) is
the minimum number of points of the fixed grid for which the magnetic field strength
is out of the prescribed tolerance interval. The ( f2) is the sensitivity of ( f1) with
respect to a set of uncertain parameters, which are different from the design variables,
computed by means of the NSGA-DOE algorithm (Di Barba et al., 2014).
The inhomogeneity of H is evaluated on a fixed grid of points positioned in the
bottom of the Petri dish; ( f1) is dimensionless and evaluate the maximum number of
points out of the tolerance interval. The ( f2) objective function computes the variation
of ( f1) due to a variation of the Petri dish position, for a given device geometry
(Di Barba et al., 2014a, b, in press a, b). In the NSGA-DOE algorithm the updating of the
design variables is managed by means of a NSGA-II inspired algorithm, whereas
the uncertain parameters are taken into account by means of a design of experiment
(DOE) strategy. Therefore, NSGA-DOE strategy is a combination of NSGA strategy,
to sort the current individuals in local fronts, and DOE strategy, to compute the
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sensitivity ( f2) which in turn is one of the objective function. It is emphasized that
uncertain parameters are not coincident with design variables and are used for the
computation of the sensitivity of a solution. As far as the third objective function ( f3)
two cases have been considered: in the first case, the inductor is supplied by a current
of 500 Arms at 350 kHz, and ( f3) is the voltage at the inductor ends to be minimized. In
fact, the applied voltage should not exceed the typical value made available at the
converter output. In the second case the inductor is supplied by a voltage of 600 Vrms at
350 kHz and ( f3) is the magnetic field value in the bottom of Petri dish to be maximized
(typical values are 6-10 kA/m). In particular, considering the voltage at the inductor
ends as the third objective function makes the optimization problem more oriented to
real-life engineering; this way, in fact, the operation of the power supply converter is
taken into account. On the other hand, after many numerical experiments, it could be
stated that the proposed method of multi-objective optimization is able to deal
successfully with more than two objective functions. In both cases the same set of eight
design variables is searched for. The eight design variables (Figure 1(a)) are the coil
distance from the insulated box, “dR”, the size of ferrite block under the box, “HF” and
“LF”, the vertical distance of the four ferrite blocks from the insulated box, “hf0”, “hf1”,
“hf2”, the vertical size of the turns and their gap, “HS” and “ST”. In turn, three uncertain
parameters are defined as the Petri dish radial position, “DP”, the vertical distance of
insulated box from lower ferrite, “SPF”, and the vertical position of the Petri dish from
the insulated box bottom, “HP”. Table I reports the design variables and their variation
ranges and the nominal values of parameters and the assigned uncertainty range.
The rows of Table II gives the four Yj, j¼ 1,…, 4, combinations of uncertain

parameters to evaluate the sensitivity according to Plackett-Burman DOE strategy
(Di Barba et al., 2014; Plackett and Burman, 1946). The “+” and “−” mean the sign
alternance of the variation applied to each parameter.
So, given a solution, four fi,j, j¼ 1, …, 4, ( fi,1, fi,2, fi,3, fi,4) values of the fi objective

functions are derived by varying the design variable values as in the following: for the
kth uncertain parameter, k¼ 1, 3, the sums of fi values ( fi,j) corresponding to a “+” in
Table I, S+,Pk, and the ones corresponding to a “−”, S−,Pk, are computed as follows:

Sþ ;Pk ¼
X

4

j¼1

f i; j Y j¼
0þ 0 (11)

S%;Pk ¼
X

4

j¼1

f i; j Y j¼
0%0 (12)

Design variable Range (mm) Uncertain parameters Nominal value± uncertainty range (mm)

dR (3, 10) SPF 3± 1
ST (0, 30) DP 0± 1
HS (10, 60) HP 3± 1
LF (20, 80)
HF (5, 20)
hf0 (1, 30)
hf1 (1, 30)
hf2 (1, 30)

Table I.
Lower and upper
bounds of design
variables and
nominal values and
uncertainty intervals
of uncertain
parameters
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Then, the influence sPk of a variation of the kth design variable on the value of objective
function fi is evaluated as [34Q2 ]:

sPk ¼
Sþ ;Pk

N þ

%
S%;Pk

N%
(13)

where N+ and N− are the number of sign “+” and “−” in the column corresponding to
the considered variable in Table I. For the kth design variable the partial sensitivity,
sPk, is estimated using (13). Finally, the total sensitivity with respect to all the uncertain
design variable, f2, is given by:

f 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

3

k¼1

s2
Pk

v

u

u

t (14)

Under a multi-objective context, f2 given by (14) can well be regarded as a secondary
objective function in addition to the design criterion f1.

5. Results
The optimal design results of the magnetic device to heat cell cultures, as well as
preliminary experimental results to evaluate the heating of a NP magnetic fluid,
are presented.

5.1 Magnetic device design
Figure 2 shows an approximation of the 3D Pareto front obtained for the current-supplied
model after running a population of 20 individuals for 50 generations. The initial
population was randomly generated. The solutions of different runs have been collected.
Figure 3 reports the 2D orthogonal projections of the Pareto front. In Table III a set

of solutions on Pareto front are reported. The corresponding geometries are shown
in Figure 4.
Figure 5(a) reports the magnetic field strength on the bottom of the Petri dish as

a function of position for the cases in Table III. The device geometry with relevant field
lines is shown in Figure 5(b) for the solution S0.
Table IV reports the f1, named f1

*, computed with the optimized design variables
rounded to the nearest integer. The influence of design variables variation on f1 is
shown in the Table V. The sensitivity of f1 is calculated by varying only one design
variable at time inside the interval ± d, d¼ 1 mm:

@f 1
@vi
ffi

f 1 xiþdð Þ%f 1 xi%dð Þ

2d

1

mm

- .

(15)

SPF DP HP

Y1 + + + fi,1
Y2 − + − fi,2
Y3 − − + fi,3
Y4 + − − fi,4

Table II.
Sign alternance for

DOE evaluation of f2
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Figure 6 shows an approximation of the 3D Pareto front obtained for the voltage-supplied
model after running a population of 20 individuals for 50 generations. The initial
population was random generated. The solutions of different runs have
been collected.
Figure 7 reports the 2D orthogonal projections of the Pareto front. In Table V a set

of solutions on Pareto front are reported. The corresponding geometries are shown
in Figure 8.
Figure 7 (a) reports the magnetic field strength on the bottom of the Petri dish as a

function of position for the cases in Table VI. The device geometry with relevant field
lines is shown in Figure 9 (b) fort solution S0.
Table VII reports f1

*, i.e. the values of f1 computed with the optimized design
variables rounded to the nearest integer. The influence of design variables variation on
f1 is shown in the Table VIII. The sensitivity of f1 is calculated using the (15).
The aim of the proposed multi-objective optimization is to give to the designer the

possibility to select the best feasible solutions in terms of field uniformity and solution
robustness in accordance with the power supply characteristics. The designer can
decide to achieve an excellent field uniformity using a weak solution in terms of
sensitivity or vice versa accordingly to the experience in practical realizing such a kind
of devices. The final choice depends also on the quality of the available manufacturing
technology. A picture of the two-turn inductor which has been realized is shown in
Figure 10: the internal diameter of 18 cm.

5.2 3D model
The magnetic field has been sampled along some lines on a ring positioned (internal
radius 18 mm, external radius 62 mm) in the same position of the Petri dish bottom as
in Figure 11.

dR st LF hf hf0 hf1 hf2 HS f1 f2 f3

S0 3.5 6.5 67.7 7.7 23.7 26.2 22.4 58.8 288 60.1 647.8
S1 4.7 30.0 43.7 5.6 24.0 26.8 18.9 59.7 819 54.4 588.6
S2 7.8 8.9 61.0 8.6 24.5 23.8 28.6 38.0 1 108.3 824.1
S3 5.3 2.5 78.7 13.9 10.2 12.2 11.0 46.5 122 47.1 819.8

Note: Design variables on [mm], objective function f1 and f2 values dimensionless, f3 in [V]

Table III.
Some solutions

on the Pareto front

S0 S1 S2 S3

Figure 4.
Geometries of the
designed device
on pareto front
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dR st LF hf hf0 hf1 hf2 HS f1
* f1-f1

*

S0
* 4 7 68 8 24 26 22 59 315 −29

S1
* 5 30 44 6 24 27 19 60 832 −12

S2
* 8 9 61 9 25 24 29 38 6 −5

S3
* 5 3 79 14 10 12 11 47 154 −33

Table IV.
f1
* obtained rounding
design variables
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Figure 12(a) reports the magnetic field strength along the arcs A and B. Any influence
of the inductor tails appears evident. Moreover, any influence to the uniformity
of the magnetic field strength due to inductor tails appears along lines from C to F
(Figure 12(b)).

5.3 Experimental results
Before testing the designed inductor to heat cell cultures previously incubated with
NPs, a preliminary experiment has been conducted to evaluate the heat generated
in different magnetic fluids named samples A, B and C, respectively (Sun et al.,
2003; Sun and Zeng, 2002; Bertani et al., 2015, 2010; Sgarbossa et al., 2011; Scaffaro
et al., 2011).
Sample A has been prepared by thermal decomposition of iron(III) chloride

(FeCl3)6H2O) in 2-pyrrolidone at 270°C for 24 h according to the method proposed by
Li et al. (2005). Similarly, sample B has been synthesized from a 2:1 mixture of iron(III)
acetylacetonate ([Fe(acac)3]) and manganese(II) acetylacetonate ([Mn(acac)2]). Sample
C has been obtained by thermal decomposition of iron(III) acetylacetonate ([Fe(acac)3])
in diphenyl ether at 200°C for 2 h and then 300°C for 1 h according to the method
developed by Sun et al. (2003) for the preparation of NPs with a diameter of 6 nm. The
morphology of the NPs has been investigated by transmission electron microscopy
(TEM) analysis using a TECNAI FEI G2 microscope. The magnetic properties of the
samples have been detected by means of a RSO-SQUID magnetometer. Magnetization
(M) vs temperature (T) measurements have been performed in the 6-300 K
range using both in ZFC (zero-field-cooled) and FC (field-cooled) configurations

dR st LF hf hf0 hf1 hf2 HS

S0 −26.5 −0.5 33.5 70 13 −76.5 −15.5 −6
S1 9.5 −19 37.5 −29.5 −0.5 42 2.5 −8.5
S2 14 0.5 50 14.5 −39 6 −30.5 −25
S3 25 −30.5 −2.5 −109 −62.5 14.5 14 25.5

Table V.
sensitivity of f1

*
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(D’Addato et al., 2010). Magnetization loops were recorded at 300 K. In order to gain
indications about the type of magnetic material synthetized, we made resort to
Mössbauer spectroscopy (Morais, 2008). Indeed, this technique may probe the
chemical, structural and magnetic environment surrounding Fe atoms. Mössbauer
data have been collected at room temperature using a 57Co in Rh source and the
spectrometer has been calibrated using an α-Fe foil.
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In Figure 13, TEM images show that the NPs of sample A and B are flower-shaped;
regarding the NPs of sample C, the majority are spherical, but a small fraction of
triangle-shaped NPs are found, as well. Both samples A and B exhibit NPs with a
radius close to 12 nm, whereas the average radius of NPs of sample C is about 3 nm.
NPs sizes have been estimated using ImageJ software (“ImageJ”, n.d.) measuring the
diameter of a large number of particles in TEM images; standard deviation is intended
as computed on the logarithm of the diameter values according to Rosensweig (2002).
The Mössbauer data collected on the different samples are presented in Figure 14(a).
The spectrum of sample B clearly shows the presence of a magnetic signal, mainly
made of two different sextets; the corresponding hyperfine magnetic fields (HF) are
BHF,1¼ 45.0± 0.1 T and BHF,2¼ 48.63± 0.05 T. As this sample was produced using
both Fe and Mn diketonates with a 2:1 ratio, for comparison we may use the HF values
measured for magnetite (Diamandescu et al., 1998) and for the natural and synthetic
Manganese Ferrite (namely Jacobsite, MnFe2O4) (Araujo et al., 1989; Maia et al., 1993).
The found HF values and the relative ratio of the sextets areas are closer to those
expected for magnetite, indicating that the NPs relative Mn concentration is smaller
than that found in the starting mixture.
In samples A and C, no sextet structure is found, but just a doublet structure can be

observed; regarding sample C, the doublet structure displays a large width, featuring
the effects of possible relaxation phenomena. The hyperfine parameters of sample A
and C doublets are in agreement with those found in magnetite, supporting the fact that
the NPs are made of magnetite. The absence of sextet structures and the appearance of
a doublet structure can be generally traced back to the presence of small size NPs
(Spizzo et al., 2004).
Regarding sample C, this observation is in agreement with TEM observations. In the

case of sample A, this result may be possibly accounted for considering the presence of
the flower-shaped NPs, namely clusters made of smaller NPs. The ZFC-FC
measurements of the three samples are presented in Figure 14(b). M vs T data for
sample C show a behavior that resembles the superparamagnetic one, as expected for
small sized particles. Differently, in samples A and B the signature of magnetic
irreversibility extends up to room temperature, as expected for large particles or for
systems where the magnetic size of the particles is large due to interparticle
interactions (Allia et al., 2006), as it may happen in flower-shaped NPs. From room
temperature magnetization measurements we obtained the bulk saturation
magnetization, Md (Md¼M[emu/g]·d(kg/m3), 1(emu/g)¼ 1(Am2/kg), assuming for

magnetite a bulk density, d, of 5,180 kg/m3 and for jacobsite a 4,870 kg/m3 (Rosensweig,
2002; Haynes, 2014); Md is 109.8 kA/m for the sample A, 85.5 kA/m for sample B and
255.9 kA/m for sample C, whereas the anisotropy constant K is close to 10.45 kJ/m3 for
the sample A and 126.5 kJ/m3 for sample C. The strong variation of K for the three

dR st LF hf hf0 hf1 hf2 HS f1 f2 f3

S0 5.1 10.9 79.9 10.2 4.6 26.6 5.8 51.1 72 230.4 6,369.4
S1 3.0 3.0 21.7 15.0 15.9 12.9 5.9 55.8 805 37.3 6,802.7
S2 4.7 23.1 25.6 16.4 1.2 14.8 19.1 53.2 1,091 1.7 7,246.4
S3 4.7 9.9 78.5 8.8 3.4 26.5 8.0 29.9 359 8.2 6,451.6

Note: Design variables on [mm], objective functions f1 and f2 dimensionless, f3 in [A/m]

Table VI.
Some solutions on

pareto front
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dR st LF hf hf0 hf1 hf2 HS f1
* f1−f1

*

S0
* 5 11 80 10 5 27 6 51 101 −29

S1
* 3 3 22 15 16 13 6 56 803 3

S2
* 5 23 26 16 1 15 19 53 1,091 0

S3
* 5 10 79 9 3 27 8 30 373 −9

Table VII.
f1
* obtained rounding
design variables
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samples may be interpreted as a signature of the presence of interparticle magnetic
interactions (Allia and Tiberto, 2011). The sample A was suspended in water that has
a viscosity close to 0.001 Pa s, whereas the sample C is dispersed in PEG 400 with
a viscosity of 90 mPa s. Both sample A and C have a volume fraction ϕ of 0.0019 (10 mg of
powder was dispersed in each ml of suspension fluid, ϕ¼ (mg/ml)/d(kg/m3)), whereas for
sample B ϕ is 0.0021. The data of the NP samples are summarized in Table IX.
The power density generated by NP suspensions was evaluated before applying them

to cell cultures. A sample of 2 ml of a water suspension (NP concentration: 10 mg/ml)
placed in a test tube was subjected for 5 min to a magnetic field (maximum intensity
13.6 kA/m at 177 kHz, current of 300 Arms) generated by means of a cylindrical
inductor with seven turns, 8 cm internal diameter, connected to an EASYHEAT LI

dR st LF hf hf0 hf1 hf2 HS

S0
*

−24 −39.5 12.5 7.5 64.5 48.5 −27 −23.5

S1
*

−5.5 −4 −7 2 3 11 −16.5 1

S2
*

−1.5 1 0 0 −1 0 1 0

S3
*

−12 49 −1.5 −0.5 −114 −91 70.5 39
Table VIII.

sensitivity of f1
*

Figure 10.
Realized inductor

for Petri dish
experiments

AB

CD

Petri bottom
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Inductor turns

E

F

X

Y

Figure 11.
XY section of the
3D geometry and

position of the lines
where the magnetic

field has been
sampled
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5,060 converter (Figure 15) or a two turns 18 cm internal diameter (Figure 10).
Temperature was measured by means of an Optocom Fotemp-1H thermometer with a
TS3/2 fiber optic.
The experimental heating rate has been estimated as the ratio between the

temperature increasing, ΔT (K), occurred during the experiment and the time interval
of the magnetic field application, Δt (s):

HRm ¼
DT

Dt
ðK=sÞ (16)

The heating rate obtained using (12) has been compared with the expected one, HRc,
estimated in adiabatic conditions according to Fortin et al. (2007) and Rosensweig
(2002) from the power density P, in (W/m3), computed using (1) and taking into account
the polydispersion of NPs radii as in Fortin et al. (2007) and Rosensweig (2002):

HRc ¼
P

dUc
ðK=sÞ (17)
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where c and d are, respectively, the specific heat ( J/(kg K)) and the density (kg/m3)
of the suspension fluid. In this case the density of the magnetic nanofluid has
been approximated with the one of the suspension fluid as in Fortin et al. (2007).
The measured and computed temperature increasing for the sample described in
Table IX are presented in Table X. Figure 16 shows the heating rate (17) for the sample
A, B and sample C as a function of the NPs radius considering the nanofluid
characteristics of Table IX. The dot represents the computed heating rate for the NPs
with the radius in Table IX.
The temperature increasing produced in a 4 ml NP suspensions (sample B) in a

Petri dish with a diameter of 3 cm has been measured for 5 min applying a magnetic
field (using the inductor in Figure 10 with a maximum magnetic field strength

20 nm 20 nm

(a) (b)

20 nm

(c)

Notes: (a) Sample A; (b) sample B; (c) sample C

Figure 13.
NPs shape x
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of 6.3 kA/m at 240 kHz (supply current 450 Arms) or 7.8 kA/m at 240 kHz (supply
current 500 Arms)). In the preliminary experiment with Petri dish no thermal
insulation has been used; therefore, the heating rate has not been computed because
measurements have not been conducted in adiabatic conditions. In this preliminary
experiment 3 ml of nanofluid has been put in the Petri dish.
From reported data it appears that suspensions prepared using synthetized NPs are

promising to heat cells.
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Sample R (nm) σ M (emu/g) Md (kA/m) K (kJ/m3) η (Pa s) ϕ

A 12.0 0.29 21.2 109.8 10.45 0.001 0.0019
B 14.4 0.31 18.0 87.7 7.19 0.001 0.0021
C 3.43 0.21 49.4 255.9 126.5 0.09 0.0019

Table IX.
Magnetic nanofluid
characteristics

Figure 15.
Inductor for
preliminary
experimental tests
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6. Conclusion
Numerical models coupled with optimization algorithms have been applied to
the robust design of an electromagnetic device able to produce a uniform magnetic
field in a prescribed region. Some preliminary experiments have been also carried
out in order to exploit the required performance of the system, in order to
properly heat magnetic nanofluids. Finally, the designed device has been realized
and tested.

Sample H (kA/m) F (kHz) HRc (K/s) HRm (K/s) ΔTc (K) ΔTm (K)

A 13.6 177 0.049 0.036 14.7 10.8

B_1 13.6 177 0.03 0.067 9 20

C 13.6 177 0.004 0.00033 1.2 0.1

B_2 6.3 240 0.009 0.009 2.7 2.7

B_3 7.8 240 0.013 0.012 3.9 3.7

Note: Temperature measurements related to sample B_2 and B_3 are performed putting 3 ml of
nanofluid (10 mg/ml) in a Petri dish

Table X.
Experimental results
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