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One way to evaluate the hazard of environmental degradation of the quality of life in a place, because of bad odors, is to
consider the heterogeneity of possible types and of possible sources of malodors. In the literature, the problem of comparing
heterogeneities of types or of sources of odors in two geographical areas has not yet been dealt with the due attention. The
main reason is that methodological proposals for tests for heterogeneity comparisons are very rare. We propose a permuta-
tion test based on the comparison of linear combinations of sampling indices of heterogeneity. The good power behavior,
especially for small differences of the degrees of heterogeneity of the two compared areas, is proved through a Monte Carlo
simulation study. The application of the test for heterogeneity comparisons on the data of the survey on odor perceptions in
the region of Este (Italy) performed in 2010 shows the usefulness of the proposed methodology, which can be added, as a
complementary analysis, to the classical established techniques for studying the environmental impact of odors like dispersion
models, dynamic olfactometry, smell maps determination, and others. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Environmental odors can affect the assessment of air quality (Cain, 1987), can be considered a warning agent of ambient pollution (Cain and
Turk, 1985; Ames et al., 1993), and can influence moods and psychological health (Knasko, 1993; Schiffman et al., 1995). A study of odor
perception as information processing task is performed by Dalton (1996). Malodor can be seen as serious environmental problem, especially
when it is perceived as harmful and with possible negative effects on health. For this reason, Evans and Cohen (1987) consider malodor as
environmental stressor. As a consequence, “problem-oriented” and “emotion-oriented” coping efforts occur (refer to Campbell, 1983).
Before considering the specific problem of comparing odor heterogeneities between two areas or regions, let us review the literature

related to empirical studies on the environmental impact of odors. Typical problems in the literature specialized in environmental stress from
odors are exposure estimation, measurement of odor annoyance, and analysis of the relation between exposure estimation and annoyance
(Cavalini et al., 1991).
For assessing the odor impact, a very common and increasingly used approach, especially to predict areas of odor nuisance near animal

production facilities, is based on atmospheric dispersion models (Sheridan et al., 2004; Sarkar et al., 2003a; Boeker et al., 2000; Drew et al.,
2007). Materials released into the atmosphere are carried by the wind and diluted by turbulence. As a consequence, a plume of polluted air is
produced. This plume has the shape of a cone with the apex towards the source and is usually represented by a mathematical Gaussian model
(Carney and Dodd, 1989; Smith, 1995) because a Gaussian distribution of odor concentration is assumed. A limit of this approach is
represented by the lack of model validation (Sheridan et al., 2004). Furthermore, some of the models require the use of many years of hourly
data to obtain valid estimates of short-term hourly peaks or of longer time averages. Another limit is the complexity of specification and the
use of these models, whose inputs are topography, meteorological data, odor emission rates, and source characteristics like building heights,
chimney heights and locations, temperature, and others.
An alternative approach for evaluating the odor impact is to use field measurements by trained panelists (van Langenhove and van Broeck,

2001). In this case, a group of trained observers, called the sniffing team, determines the region of odor perception and contributes to the
assessment of emission rate and to determine the maximum odor perception distance. Nicolas et al. (2006) propose a method for odor
assessment based on the joint use of sniffing team and dispersion model. A similar approach, within release experiments, is applied by Bilsen
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and De Fré (2009). A possible drawback of the method based on a sniffing team is the fact that it is time-consuming, expensive, and difficult
to apply in the presence of variable local weather conditions. The engagement of people, especially within the local community, for the
measurement of odor impact, is typical of studies focused on the odor perception (Sarkar et al., 2003a).

A complementary method, based on the chemical nature of the phenomenon, is the gas chromatography–mass spectrometry (Kleeberg et al.,
2005). This approach is commonly used in solid waste disposal landfill areas to estimate chemical composition of the emission and the concen-
trations of the main compounds. For establishing odor concentration, dynamic olfactometry, performed in specialized laboratories by consider-
ing the chemical nature of odors and using a panel of sniffers, is also commonly used (Romain et al., 2008). The result of an olfactometric
measurement of an air sample is the odor concentration, expressed in odorimetric units per cubic meter (OUm�3). A concentration of 1OUm�3

corresponds to the perception threshold, that is to the situation where 50% of persons who sniff the sample perceive a smell and the remaining
50% of the persons do not perceive any smell. Van Langenhove and De Bruyn (2001) develop a procedure based on the joint use of
olfactometry and sniffing team to determine odor emissions of intensive animal farming houses. The poor versatility of the olfactometric method
represents its main defect and the main reason of its limited application, especially with low concentrations (Littarru, 2007).

An alternative way for the estimation of disturbance from odors is the research of odorous molecules in analytic way, that is with chemical
methods. Instead of (or together to) field measurements by trained panelists, sometimes, electronic measurements are used in the environment
under study. To this purpose, sensorial analyzers, called “electronic noses,” are used. These tools include a chemical sensor matrix and an in-
formatic system (structured as a neural network) for emulating the human olfactive system. The electronic nose modifies the gaseous mixture
into electronic signals and correlates measurements and properties to classify the odors, through a process of odor recognition by comparing the
results of new measurements with previously stored data. The main limits of this method are the impossibility of detecting odors whose olfactive
threshold is very low and the determination of possible synergic, masking, or exalting effects of some mixing of substances. Littarru (2007)
proposes a method for the study of odor nuisance based on the combined use of dynamic olfactometry and electronic nose.

Several works in the specialized literature are dedicated to the study of the relation between dispersion (computed exposure) and percep-
tion (Sarkar et al., 2003b; Sarkar and Hobbs, 2002). Some of these studies focus on the determination of the minimum separation distance
between possible sources of malodors (agricultural enterprises, solid waste landfills, plants for treatment of waste, etc.) and residential areas
(Nicolas et al., 2008; Guo et al., 2004; Schauberger et al., 2001). These works are very important for guidelines about land use planning.

Other research areas, related to odor perceptions, study perceptual relations between odors and use multidimensional scaling methods for
determining smell maps (Carrie et al., 1999; Dawes et al., 2004).

One way to evaluate the hazard of degradation of the quality of life in a place, because of bad odors, is to consider the heterogeneity of
possible types and of possible sources of malodors. This is especially crucial in small areas with several possible sources of malodors like
farms, cultivated lands, industrial plants, and waste treatment plants. that can cause different possible types of odors. In this case, rather than
dispersion models, chemical methods, olfactometry, or electronic noses, field measurements by trained sniffers represent the most suitable
method for measuring the disturbance from odors. The main reason of using sniffing teams is the impossibility of other methods of detecting
odors at very low concentrations. Another reason is related to the difficulty of distinguishing different types of odors, also considering that
bad odors are related to chemical composites. Finally, the use of trained individuals is valuable, given that the goal of the study is the analysis
of the quality of life. The typical study to which we refer is, for example, that described in Blumberg and Sasson (2001), regarding the rec-
ognition of bad odors through resident’s reports.

In the present paper, the focus is on the inferential problem of testing the equality of the heterogeneities of types of perceived odors and of
possible sources of odors in two regions. In particular, the goal is to test whether the heterogeneity of one region is greater than the hetero-
geneity of the other. To this aim, we propose a variant of the nonparametric test for heterogeneity comparisons in the presence of categorical
data, proposed by Arboretti Giancristofaro et al. (2009). Our proposal is based on the joint use of different indices for computing the test
statistic as linear combination of such indices of heterogeneity. In Section 2, the testing procedure is described. In Section 3, the results
of Monte Carlo simulations for studying the power behavior of the test are shown. Section 4 is dedicated to the application of the method
to a real problem related to a survey on the perceived odors of an area in the north of Italy. Section 5 contains some final remarks.

2. PERMUTATION TEST ON HETEROGENEITY OF ODOR PERCEPTIONS

Let us consider a categorical response variable X, and let us suppose that it takes categories in A= {A1,…,AK} with unobserved probability
distribution Pr{X=Ak} = πk, k= 1,…,K. A could be the set of types of odors, the set of possible sources of odors, or similar characteristics. An
index for measuring the degree of heterogeneity must satisfy the following properties:

a. It takes its minimum value when the distribution is degenerate.
b. It assumes increasingly greater values when moving away from the degenerate towards the uniform distribution.
c. It takes its maximum value when the distribution is uniform.

Several indices satisfy the three properties and can be used as a measure of the degree of heterogeneity. One of the most commonly used is
the Gini index (Gini, 1912):

τG ¼
XK

k¼1
πk 1� πkð Þ (1)

Another very common index, in particular in the theory of information, is the Shannon entropy (Shannon, 1948):

τS ¼ �
XK

k¼1
πk log πkð Þ (2)

where log(x) is the natural logarithm of x and 0 log (0) is assumed to be equal to zero.
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A general method for measuring heterogeneity is proposed by Rényi (1996) with the class of indices depending by the parameter δ:

τRδ ¼
1

1� δ
log

XK

k¼1
πkδ

� �
(3)

The special subcases τR3 ¼ � 1
2 log

XK

k¼1
πk3

� �
and τR∞=� logmax(π1,…, πK) are considered in this paper.

Given two regions or domains, D1 and D2, and the problem of comparing the heterogeneities of odor reports (obtained from the sniffers),
e.g., the heterogeneities of the types of odors or the heterogeneities of the possible sources of odors, let us denote with Het(D1) and Het(D2),
their corresponding heterogeneities, and with τj, a measure of Het(Dj), j= 1,2. The null hypothesis of the problem is

H0 : Het D1ð Þ ¼ Het D2ð Þ½ �≡ τ1 ¼ τ2½ � (4)

and the alternative is

H1 : Het D1ð Þ > Het D2ð Þ½ �≡ τ1 > τ2½ � (5)

Let us denote the probability that Ak is observed in Dj with Pr{X(Dj) =Ak} = πjk, j= 1,2, k= 1,..,K. If the order of {πj1, πj2,…, πjK} were
known, the probabilities could be arranged in nonincreasing order like in the Pareto diagram: πj(1) ≥ πj(2) ≥… ≥ πj(K), with j= 1,2. Considering
that heterogeneity is related to the concentration of probability, the null hypothesis of equality in heterogeneity could be written as the equal-
ity of the Pareto diagrams:

H0 : π1 kð Þ ¼ π2 kð Þ; k ¼ 1;…;K (6)

Similarly, the alternative hypothesis could be defined by comparing the cumulative sums of the ordered probabilities as follows:

H1 :
Xs

k¼1

π1 kð Þ ≤
Xs

k¼1

π2 kð Þ; s ¼ 1;…;K � 1 (7)

and the strict inequality holds for at least 1 s ∈ {1,…,K� 1}.

Trivially, we have that
XK

k¼1
π1 kð Þ ¼

XK

k¼1
π2 kð Þ ¼ 1, and for this reason, in the alternative hypothesis, the case s =K is not considered.

This problem presents similarity with the comparison of population diversities (refer to Pardo, 2006; Patil and Taille, 1982). Even if from
the environmental point of view, they are substantially distinct problems, from the statistical point of view, they are similar. As a matter of
fact, large number of species and abundance of those species (great diversity) correspond to high heterogeneity of the categorical variable
representing the species.
The specification of the hypotheses follows the same rules of any other testing problem. Instead of comparing means, variances, distribu-

tions, etc., we compare heterogeneities; thus, we can represent the hypotheses in terms of comparisons between two indices of heterogene-
ities. The directional test (where the alternative hypothesis is τ1> τ2 or τ1< τ2), that is dominance in heterogeneity, is more difficult to be
solved (refer to Arboretti Giancristofaro, Bonnini and Pesarin, 2009). Other possible alternative hypotheses can be considered for this test
but the equality (“=”) must be included in the null hypothesis (refer to Pesarin and Salmaso, 2010).
The nonincreasing order of the probabilities is used to evaluate the concentration of the probability, that is the heterogeneity. Such con-

centration can be represented by the cumulative ordered probability (COP)
Xs

k¼1
πj kð Þ s ¼ 1;…;Kð Þ, that is by the Pareto diagram. In the

presence of maximum concentration of probability (minimum heterogeneity), the distribution is degenerate because one category is observed
with probability equal to 1 and all the others with probability equal to 0; that is, we have the maximum probability equal to 1 and all the other
probabilities equal to 0; thus, the COP is equal to 1 for each s = 1,…,K. In the presence of minimum concentration of probability (maximum

heterogeneity), the distribution is uniform; that is, we have all the probabilities equal to K�1, and the COP is
Xs

k¼1
πj kð Þ ¼

s

K′ and it is equal

to 1 only when s =K. In general, in the intermediate situations, if the COP of a distribution is less than or equal to the COP of another
distribution, then the heterogeneity of the former is greater than the heterogeneity of the latter. Hence, for comparing the heterogeneities
of two distributions, we can compare the COP of the two distributions. In this sense, the problem is similar to the test for stochastic
dominance: under the null hypothesis, the two COPs are equal, then exchangeability between the variables, transformed according to the
Pareto diagram rule, holds. In other words, the equality in heterogeneity between X(D1) and X(D2) is equivalent to the equality in distribution
of Y(D1) and Y(D2), where Y(Dj) is the transformation of X(Dj) according to the Pareto diagram rule. Formally,

Y Dj

� � ¼ r if and only if X Dj

� � ¼ Ak and r ¼ rank πkð Þwith r ¼ 1;…;K (8)

Hence, exchangeability under H0 holds only for the new transformed Y variable and not for the original X variable.
Let us consider two samples of data of size n1 and n2 from D1 and D2, respectively, and let {fjk; j= 1, 2, k= 1,…,K} be the observed 2×K

contingency table and {fj(k); j= 1, 2, k= 1,…,K} be the table of the ordered frequencies, where fjk is the absolute frequency of Ak in the jth
sample and fj(k) is the kth ordered frequency in the jth sample. In the original contingency table, the marginal frequency of the kth column
(category Ak) is f� k= f1k+ f2k, while the marginal frequency of the jth row is the sample size nj. In the table of the ordered frequencies, the
marginal frequency of the kth column (rank k) is f� (k) = f1(k) + f2(k), while the marginal frequency of the jth row is the sample size nj. A per-
mutation of the dataset consists in reassigning some observations of sample 1 to sample 2 and vice versa. In case of permutations of the
dataset transformed with the Pareto rule, the corresponding table (permuted table) has the same marginal frequencies of the observed table
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of ordered frequencies, because neither the absolute frequencies of values 1,…,K in the pooled dataset nor the sample sizes change with the

permutations. In other words, if f �j kð Þ; j ¼ 1; 2; k ¼ 1;…;K
n o

denotes a permuted ordered table, we have f �� kð Þ ¼ f �1 kð Þ þ f �2 kð Þ ¼ f � kð Þ for k= 1,

…,K and
XK

k¼1
f �j kð Þ ¼ nj for j = 1, 2.

According to the definition of H1 in terms of cumulative ordered probabilities, heterogeneity comparisons could be performed by compar-
ing the COPs. In this sense, the problem is similar to the test for stochastic dominance in the presence of ordered categorical variables, where
the cumulative distribution functions of the variables transformed according to the Pareto diagram rule, Y(D1) and Y(D2), are compared. Test-
ing procedures for stochastic dominance problems have been proposed by Hirotsu (1986), Lumley (1996), Loughin and Scherer (1998),
Nettleton and Banerjee (2001), Han et al. (2004), Loughin (2004), Agresti and Klingenberg (2005). The restricted maximum likelihood ratio
test is one of the most common solutions (Wang, 1996; Cohen et al., 2000; Silvapulle and Sen, 2005), and it is based on mixtures of chi-
squared asymptotic distributions for the test statistic. The main limit of these solutions is that the weights of the mixture depend on the un-
known population distribution. Nonparametric solutions are proposed by Pesarin (1994), Brunner and Munzel (2000), Pesarin (2001),
Troendle (2002), and Pesarin and Salmaso (2006).

If the true ordering of the probabilities were known, we could apply a permutation testing procedure similar to that for stochastic ordering
problems because under the null hypothesis, exchangeability would hold. The fact that the ordered probabilities are unknown implies the
need of estimating them by means of the ordered frequencies:

π̂ j kð Þ ¼
f j kð Þ
nj

(9)

Hence, we use a data-driven ordering that may differ from the true one and that presents sampling variability. The main consequence is
that under the null hypothesis, exchangeability is not exact but only approximated. According to the Glivenko–Cantelli theorem (Shorack
and Wellner, 1986), for large sample sizes, data-driven and true ordering are equal with probability 1; thus, exchangeability holds only
asymptotically.

A reasonable test statistic for the problem may be

T τ ¼ τ̂1 � τ̂2 (10)

where τ̂ j ¼ τ π̂ j 1ð Þ;…; ; π̂ j Kð Þ
� �

is a sampling index of heterogeneity computed for the jth sample. For example, the test statistic based on the
index of Gini is

TG ¼
XK

k¼1

f 2 kð Þ
n2

� �2

� f 1 kð Þ
n1

� �2
" #

(11)

the test statistic computed with the index of Shannon is

TS ¼
XK

k¼1

f 2 kð Þ
n2

� �
log

f 2 kð Þ
n2

� �
� f 1 kð Þ

n1

� �
log

f 1 kð Þ
n1

� �� 	
(12)

the test statistic related to the index of Rényi of order 3 is

TR3 ¼
1
2

log
XK

k¼1

f 2 kð Þ
n2

� �3

� log
XK

k¼1

f 1 kð Þ
n1

� �3
" #

(13)

finally, the test statistic corresponding to the index of Rényi of order ∞ is

TR∞ ¼ log
f 2 1ð Þ
n2

� �
� log

f 1 1ð Þ
n1

� �
(14)

where fj(1) is the maximum absolute frequency observed in the jth sample.
By denoting with Tτ(0) the observed value of Tτ, the procedure of the permutation test for the problem under study is the following:

1. perform B independent permutations and, for the bth permutation, compute the permuted ordered table f �j kð Þ; j ¼ 1; 2; k ¼ 1;…;K
n o

and
the corresponding permutation value of the test statistic: T�

τ bð Þ ;
2. compute the permutation p-value as proportion of permutation values of the test statistic greater than or equal to the observed value: λτ =XB

b¼1
I T�

τ bð Þ ≥ T τ 0ð Þ
� �

=B, where I(x) is the indicator function that takes value 1 when x is true and value 0 otherwise;

3. reject the null hypothesis of equality in heterogeneity in favor of the alternative hypothesis if λτ< α and do not reject the null hypothesis
otherwise.

We recall that we are not interested in comparing the distributions of X(D1) and X(D2) but only their heterogeneities; thus, we consider the
difference of the sampling indices of heterogeneity as test statistic. The observed proportions (relative frequencies) are sampling estimates of
the unknown probabilities and are used to compute the mentioned indices. In the computation of the test statistic, the order is not important
because each of the considered indices of heterogeneity is order invariant, that is τj = τ(πj1,…, πjK) = τ(πj(1),…, πj(K)). The order is important
only for the transformation of the original X variables into new Y variables, according to the Pareto diagram rule.

The same testing procedure may be applied by using other test statistics. In particular, to obtain a test statistic not strictly dependent on a
specific index τ, we propose to consider a linear combination of the four considered statistics, with weights given by the inverse of the max-
imum value of the corresponding indices. This weights ensure that all the combined indices have the same scale, that is the interval [0,1];
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thus, the sampling differences of their normalized values can be summed, and the degree of importance of each index is not affected by the
specific scale, where the index is defined. Formally,

TLC ¼ wGTG þ wSTS þ wR3TR3 þ wR∞TR∞ ¼ w’T (15)

where w= wG;wS;wR3 ;wR∞

� �
′ is the vector of weights and T= TG; TS;TR3 ;TR∞

� �
′ is the vector of test statistics. The weights are

wG ¼ K

K � 1
(16)

and
wS ¼ wR3 ¼ wR∞ ¼ 1

logK
(17)

In other words, the test statistic TLC is given by the sum of the test statistics based on the differences of the normalized sampling indices,
TLC ¼ TeG þ TeS þ TeR3

þ TeR∞, where TeG ¼ eτG;1 �eτG;2 denotes the difference of the normalized sampling indices of Gini and TeS;TeR3
; TeR∞

have similar meanings for the indices of Shannon and Rènyi.
It is worth noting that there is another important reason for using a combined test. Heterogeneity of categorical variables is not

uniquely defined. Within the general definition of heterogeneity related to the “concentration” of probability, which can be evaluated
through the Pareto diagrams, we consider, in the test statistic, more than one index for measuring heterogeneity. Literature proposes
several indices of heterogeneity, and each of them considers a different aspect of heterogeneity. As a matter of fact, the four considered
that the indices are not equivalent, because in some situations, heterogeneity of a population can be greater than another according to
one index and less than the other according to a different index. Thus, the indices that are used to measure heterogeneity put into ev-
idence different aspects of it. This is the reason why instead of considering only one index as test statistic, we prefer to combine the
information of four test statistics, that is to combine four tests. The linear combination is just one possible choice of combining the four
tests, not yet considered in the specific literature, alternative to the combination of the significance level functions commonly used. It is
simple and reasonable because it is equivalent to the sum of four indices normalized in the [0,1] interval. The underlying idea is not to
choose as a test statistic, a combined measure of heterogeneity according to the Euclidean geometry, but to combine the “information”
provided by different tests, each informative on one aspect of the phenomenon under study. According to the Nonparametric Combi-
nation (NPC) methodology (refer to Pesarin, 2001), the proposed procedure consists in determining the multivariate permutation dis-
tribution of the four tests and in combining the permutation values of the test statistics through the linear combination, which in any
case is “admissible” in the sense that it does not exist any other test, which is “uniformly better than it” (Pesarin, 2001). This is also
because of the fact that

1) all permutation tests are conditional on the observed dataset;
2) pooled observed dataset is always sufficient for any underlying distribution in H0;
3) the dimensionality of the minimal sufficient statistic is n, because except for very simple problems (only if data distribution belongs to

regular exponential family the minimal sufficient statistic is unidimensional), the minimal sufficient statistic is the whole n-
dimensional dataset;

4) does not exist any unidimensional test statistic containing the whole information in the dataset;
5) four specialized statistics contain more information than only one.

The result of combination is an univariate statistic that sums up the information on the multivariate distribution of the original test statis-
tics, without specifying or assuming any distribution function and without explicitly formalizing the dependence structure of the partial tests
(as usual within the likelihood methods). Hence, using a terminology typical of the NPC theory, we apply the direct combination to a
multiaspect test (refer to Pesarin, 2001).

3. SIMULATION STUDY

To compare the power behavior of the tests TG; TS;TR3 ; TR∞ , and TLC, a Monte Carlo simulation study has been performed. Data of
population j have been randomly generated by the random variable Yj = 1 + int[KU

γj] , where U is a uniform random variable in the
interval [0,1], int(x) is the integer part of the real number x, and γj is a parameter denoting the degree of heterogeneity of population
j. Random variable Yj is discrete, and it takes the first K integer numbers, each of them representing one of the K categories. When
γj = 1, Y follows a uniform distribution in the set {1, 2,…,K} and the heterogeneity is maximum. The more γj is far from 1, the lower
the heterogeneity. Without loss of generality, we consider γj values in the interval [0, 1]. Trivially, when γj = 0, the distribution
would be degenerate and the heterogeneity would be minimum. Hence, the greater γj in the interval [0, 1], the higher the heterogeneity.
Several different simulation settings have been taken into account, considering the K values of 5 and 10, different sample sizes (in the
balanced and unbalanced cases), and different values for γ1 and γ2, under the null and alternative hypothesis. For each setting, one
thousand datasets have been generated and one thousand permutations have been performed to compute the p-values. The adopted
method is not the only way for simulating data. We choose this formula because the use is very simple and the results can be easily
interpreted.
In Figure 1, the rejection rates of the five tests under the null hypothesis of equality in heterogeneity (γ1 = γ2), as function of the degrees of

heterogeneity γ1 and γ2, are plotted. It is evident that the power decreases as the heterogeneities increase. For low degrees of heterogeneity
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(specifically when γ1 = γ2 = 0.2), the estimated powers of some of the tests tend to be slightly greater than the significance level α but in
general, we can say that all the tests all well approximated. When K = 10, the rejection rates are lower than in the case K = 5.

Figure 2 shows the rejection rates as function of the difference of the degrees of heterogeneity γ1� γ2 (when γ1 = 1). As expected, the

Figure 1. Rejection rates under the null hypothesis of equality in heterogeneity: n1 = n2 = 60, α = 0.05, B = 1000

Figure 2. Rejection rates as function of the difference between the degrees of heterogeneity γ1� γ2 : γ1 = 1, n1 = n2 = 60, α = 0.05, B = 1000
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estimated powers are increasing function of the difference. When the difference is greater than 0.2, the growth rate of the power function is
very high for all the tests. The performances of all the tests are very similar and very good. An exception to this rule is represented by the test
TR ∞, which seems to be less powerful than the others.
In Figure 3, the rejection rates are plotted as function of the sample sizes in the balanced case. According to the growth rates of the curves,

we can say that the tests have a good power behavior in terms of consistency. Even in this case, the test based on the index of Rényi of order
infinity shows the worst performance. Instead, the index of Shannon seems to be slightly preferable for large sample sizes.
Similar conclusions, about the comparative properties of the tests, can be drawn from the curves of the power as function of the difference

between the sample sizes in the unbalanced case (Figure 4). By keeping fixed n1 + n2 = 120 and considering increasing values of the differ-
ence, starting from n1 = 20 and n2 = 100 (n1� n2 =�80) up to n1 = 100 and n2 = 20 (n1� n2 = 80), we can see that the power function reaches
its maximum when the difference is zero, that is in the balanced case (n1 = n2 = 60).
Finally, in Figure 5, the rejection rates as function of the sample sizes in the balanced case are shown for the case γ1 = 1 and γ2 = 0.8, that is

for small difference of the degrees of heterogeneity. In this peculiar setting, the test based on the linear combination of the indices seems to be
the most powerful, together with the test based on the index of Rényi of order infinity. In the case K= 10, the power growth rate with the
sample size of TLC is the highest.
Hence, we proved the good power behavior of the test. Basically, the rejection rates under H0 do not exceed the nominal alpha level. Of

course, the test is not exact for finite sample sizes, but it is well approximated and asymptotically exact. We point out that most parametric
methods are not exact. Many of them are based on asymptotic chi-squared distributions, and the approximation rate is not evaluated.
Furthermore, the chi-squared test, commonly used for tests on contingency tables, is only asymptotically exact, and the convergence rate
mainly depends on the unknown minimum probability. Usually, the approximation of the test is not taken into account by the researchers.
In the present work, we show the good approximation of the proposed test and the approximation is evaluated as a function of the

heterogeneities, of the sample sizes, and of the number of categories.

4. APPLICATION EXAMPLE FOR THE ODOR PERCEPTIONS IN THE AREA OF ESTE
(NORTH OF ITALY)

The application example considered in this paper is related to a statistical survey performed in the period of February 2010 to January 2011 in
the area of Este, in the north-east of Italy. The goal of the survey was to determine the odor perceptions in that territory, characterized by the
presence of several possible sources of malodors like farms, cultivated lands, and industrial and waste treatment plants. In particular, 81
trained sniffers (panelists), resident in the two municipalities of the area, Este and Ospedaletto Euganeo (refer to Figure 6), in the cited period,
were asked to report perceived odors and to indicate, among other information, the type of perceived odor and the possible source.
This area is characterized by stable meteorological conditions, small extension, and presence of several possible sources of odors. To

avoid possible confounding factors on the analysis, the period of the survey is divided into four seasonal periods (quarters) such that some

Figure 3. Rejection rates under the alternative hypothesis as function of the sample sizes (balanced case): γ1 = 1 and γ2 = 0.6, α = 0.05, B = 1000
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environmental conditions, like ambient temperature and types of activities in the territory, are homogeneous within each period. The quarters
are defined in Table 1.

We are interested, for each quarter, in comparing the reports of odor perceptions of the two municipalities and test whether the heteroge-
neity of odor perceptions, in terms of types of odor and possible sources of odor, in Este are greater than in Ospedaletto Euganeo. Hence, the

Figure 4. Rejection rates under the alternative hypothesis as function of the difference of sample sizes (n1 + n2 = 120): γ1 = 1 and γ2 = 0.6, α = 0.05, B = 1000

Figure 5. Rejection rates under the alternative hypothesis as function of the sample sizes (balanced case): γ1 = 1 and γ2 = 0.8, α = 0.05, B = 1000

R. ARBORETTI GIANCRISTOFARO ET AL.Environmetrics

wileyonlinelibrary.com/journal/environmetrics Copyright © 2015 John Wiley & Sons, Ltd. Environmetrics (2015)



hypotheses of the testing problem are

H0 : Het Esteð Þ ¼ Het Ospedaletto Euganeoð Þ (18)

against

H1 : Het Esteð Þ > Het Ospedaletto Euganeoð Þ (19)

The contingency tables of the perceived odors in the four quarters are shown in Table 2 (types of odor) and Table 3 (possible sources of odor).
About the types of perceived odors, from the descriptive point of view, the distributions in Este and Ospedaletto Euganeo seem different.

For example, the most frequent perceived odor in Este is “acrid-pungent” in the first and fourth quarters and “droppings” in the two central
quarters, while in Ospedaletto Euganeo, only in the first quarter, the most perceived odor (acrid-pungent) coincides with that of Este, because
in the other quarters, the mode is “putrid-rotten.” About the possible sources of odors, the prevalent response is “waste treatment plant” in
both the municipalities and in all the quarters, even if the frequency distributions do not seem similar. Because we are interested in comparing
the heterogeneities of the distributions, let us consider the sampling indices of heterogeneity reported in Tables 4 and 5.
For the types of odors, indices of heterogeneities of Este tend to be greater than those of Ospedaletto Euganeo in the first and second quar-

ters, while the opposite inequality is true in the third and fourth quarters. Hence, the greater heterogeneity of Este is not evident. For the pos-
sible sources of odors, in all the quarters, the indices related to Este take greater values than those related to Ospedaletto Euganeo.
By performing the permutation test for heterogeneity comparisons, it is possible to test whether Este has a greater heterogeneity than

Ospedaletto Euganeo for both types and sources of odors, in all the four quarters. We highlight that in this study, like in the survey for mon-
itoring bad odor dispersion in the northern Negev, described by Blumberg and Sasson (2001), the statistical unit is a single report of odor,
characterized by a specific type of perceived odor and by a specific possible source. Hence, more than one report can be related to the same
panelist, and reports coming from the same panelist could be assumed dependent. The panelist can be considered the block factor of the ex-
periment or identifies a second level in a multilevel structure of data; thus, the idea of panelist effect is reasonable. However, we assume that
there is no panelist effect for two main reasons.
First, for removing the possible panelist effect, we could design the experiment with a matching technique, where the same number of

panelists is considered in the two areas and each panelist in one area provides the same number of reports (replicates) of a “similar” panelist
in the other area, and analyze data like in a paired data problem. With this design, exchangeability under H0 holds between the two corre-
sponding observations in Este and Ospedaletto Euganeo for each couple of paired data. The possible difference could come only by the sym-
bolic treatment effect represented by the area. In this survey, this approach cannot be applied because the reports are spontaneous initiatives
of each sniffer whenever it perceives a smell. Hence, the number of reports can change with the sniffer and can be zero, one, or more than
one. In this survey, there were other goals, and one of them was to determine the number of spontaneous reports in the two areas.

Figure 6. Municipalities of Este and Ospedaletto Euganeo

Table 1. Subperiods in the survey on odor perceptions in the area of Este

Period Interval

Quarter 1 February 2010 to April 2010
Quarter 2 May 2010 to July 2010
Quarter 3 August 2010 to October 2010
Quarter 4 November 2010 to January 2011
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An alternative strategy could be assuming under H0 exchangeability of the panelists (and not of the single reports) between the areas. This
solution assumes that the possible differences observed in the reports are because of the area effect. But assuming the presence of a panelist
effect is equivalent to thinking that some personal characteristics of the sniffers can affect the perceptions and that we are in presence of two
or more confounding factors. In this case, the possible observed differences between the two areas may also be determined by other factors,
in addition to the area of origin, and exchangeability under H0 is not guaranteed.

Table 2. Types of perceived odors: observed contingency tables

Animal Acrid-Pungent Ammonia Hay-Forage Roasting Droppings Putrid-Rotten Other

Quarter 1

Este 39 164 10 1 4 92 94 123
Ospedaletto E. 31 113 5 1 9 43 77 48

Quarter 2

Este 34 100 10 3 5 108 69 37
Ospedaletto E. 30 75 3 0 12 51 103 31

Quarter 3

Este 30 85 10 6 0 101 49 31
Ospedaletto E. 3 37 26 1 8 38 50 22

Quarter 4

Este 8 84 2 2 3 31 40 22
Ospedaletto E. 6 11 16 0 12 16 37 24

Table 3. Possible sources of odors: observed contingency tables

Poultry farm Cattle breeding Pigs breeding Manure Dung Waste treatment Feed mill Cement factory Other Trafic

Quarter 1

Este 45 12 6 4 8 119 6 15 81 30
Ospedaletto E. 26 1 18 7 4 195 14 7 20 2

Quarter 2

Este 53 18 2 3 10 70 1 30 53 9
Ospedaletto E. 15 6 25 1 8 170 10 0 23 1

Quarter 3

Este 37 16 1 1 8 67 0 9 53 9
Ospedaletto E. 5 2 15 0 13 143 14 0 7 3

Quarter 4

Este 15 3 1 0 0 57 0 21 12 21
Ospedaletto E. 6 1 4 0 3 74 12 1 1 0

Table 4. Sampling indices of heterogeneities for the types of odors

Index Municipality Quarter 1 Quarter 2 Quarter 3 Quarter 4

Gini Este 0.780 0.783 0.776 0.724
Ospedaletto E. 0.776 0.776 0.809 0.815

Shannon Este 1.632 1.678 1.651 1.524
Ospedaletto E. 1.660 1.644 1.760 1.808

Rényi (3) Este 1.457 1.453 1.407 1.158
Ospedaletto E. 1.401 1.406 1.598 1.587

Rényi (∞) Este 1.167 1.221 1.128 0.827
Ospedaletto E. 1.063 1.086 1.308 1.193
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Second, those involved in the survey are selected and well trained sniffers; hence, it is reasonable to assume that a possible sniffer
effect is negligible and that reports from the same sniffer are approximately independent. By assuming that the specific geographic
area is characterized by stable meteorological conditions and small extension and that the sniffers are well trained, possible
differences in the perceptions of the two areas can approximately be attributed to the area effect. As the statistical unit is the single
report, under the null hypothesis exchangeability of reports between the two areas at least approximately holds, thus permutation con-
cern reports.
Let us consider the permutation test based on the index of Gini that based on the index of Rényi of order ∞ and the proposed index based

on the linear combination and consider the significance level α= 0.01. In Table 6, the p-values of the tests are shown.
All the tests related to the types of odors, in all the four quarters, lead to not reject the null hypothesis of equality in distribution

because the p-values are greater than α. Hence, there is no empirical evidence in favor of the hypothesis of greater heterogeneity
of the types of odors in Este. Despite this result, the possible sources of odors, according to the sniffers’ perceptions, present a
greater heterogeneity in Este: as a matter of fact, the p-values of all the tests are approximately zero; thus, they are less than α in
all the quarters.

5. CONCLUSIONS

The aim of comparing the environmental impact of odors perceived in two distinct geographical areas has been addressed by means of a test
that compares the heterogeneities of the reports of odors perceived by teams of trained sniffers operating in two areas.
The proposed testing procedure consists in the transformation of sample data according to the Pareto diagram rule and in performing a two

sample permutation test on the transformed variable, similar to the permutation test for stochastic dominance alternatives. Instead of consid-
ering as test statistic the difference of suitable sampling indices of heterogeneity, we propose to use a linear combination of the sampling
indices of Gini, Shannon, Rényi of order 3, and Rényi of order ∞, where the weights of the combination are the inverse of the maximum
value of each index.
The simulation study proves the good power behavior of all the procedures. All of them are well approximated, consistent ,and with high

power growth rate, with respect to the differences of the heterogeneities. The solution based on the linear combination of the indices shows
similar performance to the other considered tests, but it is the most powerful when the difference of the degrees of heterogeneity of the two
areas is small. Also, the test based on the Rènyi index of order ∞ satisfies this good property, but in several other settings, it is much less
powerful than the other tests.
The application of the permutation tests for heterogeneity comparisons on the data of the survey on odor perceptions in the region of Este,

in the north of Italy, shows that the odor perceptions in the municipality of Este are more heterogeneous than in the municipality of
Ospedaletto Euganeo, from the point of view of the possible sources of odors but not in terms of types of perceived odors. This result is
conformed in all the quarters of the year.

Table 5. Sampling indices of heterogeneities for the possible sources of odors

Index Municipality Quarter 1 Quarter 2 Quarter 3 Quarter 4

Gini Este 0.773 0.807 0.773 0.733
Ospedaletto E. 0.540 0.546 0.482 0.454

Shannon Este 1.762 1.824 1.690 1.544
Ospedaletto E. 1.275 1.245 1.115 1.018

Rényi (3) Este 1.347 1.565 1.387 1.177
Ospedaletto E. 0.614 0.628 0.517 0.479

Rényi (∞) Este 1.008 1.269 1.099 0.824
Ospedaletto E. 0.411 0.421 0.345 0.321

Table 6. P-values of the tests for heterogeneity (H1: Het(Este)>Het(Ospedaletto E.)

Test Quarter 1 Quarter 2 Quarter 3 Quarter 4

Typesof odors TG 0.384 0.319 0.986 0.999
TR∞ 0.146 0.121 0.928 0.991
TLC 0.281 0.177 0.980 0.999

Possible sources of odors TG 0.000 0.000 0.000 0.000
TR∞ 0.000 0.000 0.000 0.000
TLC 0.000 0.000 0.000 0.000
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