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A RESTRICTION THEOREM FOR STABLE RANK TWO

VECTOR BUNDLES ON P
3.

PHILIPPE ELLIA - LAURENT GRUSON

Abstract. Let E be a normalized, rank two vector bundle on P
3. Let H be a

general plane. If E is stable with c2(E) ≥ 4, we show that h0(EH(1)) ≤ 2 + c1.

It follows that h0(E(1)) ≤ 2 + c1. We also show that if E is properly semi-stable

and indecomposable, h0(EH(1)) = 3.

1. Introduction.

We work over an algebraically closed field of characteristic zero. Let E denote

a stable, normalized (−1 ≤ c1(E) ≤ 0) rank two vector bundle on P
3. By Barth’s

restriction theorem ([1]) if H is a general plane, then EH is stable (i.e. h0(EH) = 0)

except if E is a null-correlation bundle (c1 = 0, c2 = 1). In this note we prove:

Theorem 1. Let E be a stable, normalized, rank two vector bundle on P
3.

Assume c2(E) ≥ 4. Let H be a general plane, then:

(a) h0(EH(1)) ≤ 1 if c1 = −1 and

(b) h0(EH(1)) ≤ 2 if c1 = 0.

In particular it follows that h0(E(1)) ≤ 2 + c1.

The idea of the proof is as follows: if the theorem is not true then every general

plane contains a unique line, L, such that EL has splitting type (r,−r+c1), r ≥ c2−1.

We call such a line a ”super-jumping line”. Then we show that these super jumping

lines are all contained in a same plane, H. The plane H is very unstable for E.

Performing a reduction step with H, we get a contradiction.

We observe (Remark 5) that the assumptions (and conclusions) of the theorem

are sharp.

For sake of completeness we show (Proposition 6) that if E is properly semi-stable,

indecomposable, then h0(EH(1)) = 3 for H a general plane.

2. Proof of the theorem.

We need some definitions:
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Definition 2. Let E be a stable, normalized rank two vector bundle on P
3. A

plane H is stable if EH is stable; it is semi-stable if h0(EH) 6= 0 but h0(EH(−1)) = 0.

A plane is special if h0(EH(−m)) 6= 0 with m > 1.

A line is general if the splitting type of EL is (0, c1). A line L is a super jumping

line (s.j.l.) if the splitting type of EL is (r,−r + c1), with r ≥ c2 − 1.

Lemma 3. Let E be a stable, normalized rank two vector on P
3. Assume

c2(E) ≥ 4 and h0(EH(1)) > 2 + c1 if H is a general plane. Then:

(i) Every stable plane contains a unique s.j.l. all the other lines are general or, if

c1 = 0, of type (1,−1).

(ii) A semi-stable plane contains at most one s.j.l.

(iii) There is at most one special plane.

Proof. (i) If H is a stable plane every section of EH(1) vanishes in codimesion two:

0 → OH → EH(1) → IZ,H(2 + c1) → 0 (∗)

We have h0(IZ,H(2+ c1)) ≥ 2+ c1. If c1 = −1, Z has degree c2 and is contained in a

line LH . If c1 = 0, we have h0(IZ,H(2)) ≥ 2. Since deg(Z) = c2 + 1 > 4, the conics

have a fixed line, LH , and there is left a pencil of lines to contain the residual scheme

of Z with respect to LH . It follows that the residual scheme is one point and that

length (Z ∩ LH) = c2. So in both cases there is a line, LH , containing a subscheme

of Z of length c2. Restricting (∗) to LH we get ELH
→ OLH

(1 + c1 − c2). It follows

that the splitting type of ELH
is (c2 − 1, c1 − c2 + 1), hence LH is a s.j.l. If L 6= LH

is another line in H, let s be the length of L ∩ Z. Restricting (∗) to L we get:

0 → OL(s− 1) → EL → OL(c1 − s+ 1) → 0

This sequence splits except maybe if c1 = s = 0 (in this case the splitting type is

(0, 0) or (1,−1)). If L is a s.j.l. then s ≥ c2, hence L = LH . This shows that a stable

plane contains a unique s.j.l. Since s ≤ 1 (resp. s ≤ 2) if c1 = −1 (resp. c1 = 0), a

line different from LH is general or has splitting type (1,−1).

(ii) If H is semi-stable then we have:

0 → OH → EH → IT,H(c1) → 0 (∗∗)

Here deg(T ) = c2. If L is a line in H let s denote the length of L∩ T . From (∗∗) we

get: 0 → OL(s) → EL → OL(c1 − s) → 0. This sequence splits, so the splitting type

of EL is (s,−s + c1). If L is a s.j.l. then s ≥ c2 − 1 and L contains a subscheme of

length at least deg(T )− 1 of T . Since c2 ≥ 4, such a s.j.l. is uniquely defined. This

shows that an unstable plane contains at most one s.j.l.

(iii) We may assume h0(EH(−m− 1)) = 0. We have:

0 → OH → EH(−m) → IX,H(c1 − 2m) → 0 (∗ ∗ ∗)

If L is a general line of H (L ∩ X = ∅) then EL has splitting type (m,−m + c1),

with m > 1.
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Let’s show that such a special plane, if it exists, is unique. Assume H1,H2 are two

special planes. Let H be a general stable plane. If Li = H ∩Hi, then L1, L2 are two

lines of H with splitting type (ki,−ki + c1), ki > 1. By (i) this is impossible. �

We are ready for the proof of the theorem.

Proof of Theorem 1:

Let U ⊂ P
∗

3
be the dense open subset of stable planes. We have a map ϕ : U → G(1, 3)

defined by ϕ(H) = LH where LH is the unique s.j.l. contained in H. So ϕ gives a

rational map ϕ : P∗

3
−−− > G(1, 3). We claim that ϕ doesn’t extend as a morphism

to P
∗

3
. Indeed in the contrary case we would have a section of the incidence variety

I = {(H,L) | L ⊂ H} → P
∗

3
. Since I ≃ Proj(ΩP

∗

3
(1)) (indeed the fibre at H

of ΩP
∗

3
(1) is the hyperplane corresponding to H), such a section corresponds to an

injective morphism of vector bundles OP
∗

3
→֒ TP

∗

3
(k), for some k. But there is no

twist of TP
∗

3
with a non-vanishing section. This can be seen by looking at c3(TP

∗

3
(k))

or with the folllowing argument: the quotient would be a rank two vector bundle

with H1
∗
= 0, hence, by Horrocks’ theorem, a direct sum of line bundles which is

absurd.

If H is a singular point of the ”true” rational map ϕ, then, by Zariski’s Main

Theorem, H contains infinitely many s.j.l. This implies that H is the unique special

plane (and that ϕ has a single singular point). We claim that every s.j.l. is contained

in H. Indeed let R be a s.j.l. not contained in H. Let z = R ∩ H. There exists

a s.j.l. L ⊂ H through z. The plane 〈R,L〉 contains two s.j.l. hence it is special:

contradiction.

Since there are ∞2 s.j.l. we conclude that the general splitting type on the special

plane H is (c2 − 1,−c2 + c1 + 1). So m = c2 − 1 i.e. h0(EH(−c2 + 1)) 6= 0 (and this

is the least twist having a section). Now we perform a reduction step (see [6] Prop.

9.1).

If c1 = 0 we get:

0 → E′ → E → IW,H(−c2 + 1) → 0

where E′ is a rank two reflexive sheaf with Chern classes c′
1
= −1, c′

2
= 1, c′

3
=

c2
2
− c2 + 1. Since E is stable, E′ too is stable. By [6] Theorem 8.2 we get a

contradiction.

If c1 = −1, since E∗

H = EH(1) we get:

0 → E′(−1) → E → IR,H(−c2) → 0

where the Chern classes of E′ are: c′
1
= 0, c′

2
= 0, c′

3
= c2

2
. Since E is stable E′ is

semi-stable. By [6] Theorem 8.2 we get, again, a contradiction. �

Remark 4. The argument to show that ϕ doesn’t extend to a morphism is taken

from [4]. Another way to prove this is to consider the surfaces SL: if L is a general

line every plane through L is (semi-)stable, the general one being stable. So almost

every plane of the pencil contains a unique s.j.l. taking the closure yields a ruled
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surface SL. Then one shows that SL 6= SD if L,D are general and then concludes

by looking at SL ∩ SD (see [3]).

Remark 5. The assumption c2 ≥ 4 cannot be weakened. If c1 = −1 every stable

rank vector bundle, E, with c1 = −1, c2 = 2 is such that h0(EH(1)) = 2 for a general

plane H (see [7]). If E(1) is associated to four skew lines, then h0(EH(1)) = 3 for H

general and ci(E) = (0, 3).

On the other hand a special t’Hooft bundle, (E(1) associated to c2 +1 disjoint lines

on a quadric) is stable with c1(E) = 0 and, if c2 ≥ 4, satisfies h0(EH(1)) = 2 for H

general.

By the way, Theorem 1 gives back h0(E(1)) ≤ 2 for an instanton, a result first proved

by Boehmer and Trautmann (see [8] and references therein).

Finally let E(1) be associated to the disjoint union of c2/2 double lines of arithmetic

genus -2. Then E is stable with c1 = −1 and, if c2 > 2, h0(EH(1)) = 1 for H general.

Concerning properly semi-stable bundles (c1(E) = 0, h0(E) 6= 0, h0(E(−1)) = 0)

we have:

Proposition 6. Let E be a properly semi-stable rank two vector bundle on P
3.

Assume E indecomposable. If H is a general plane then h0(EH(1)) = 3.

Proof. We have 0 → O → E → IC → 0, where C is a curve (E doesn’t split) with

ωC(4) ≃ OC . Twisting and restricting to a general plane: 0 → OH(1) → EH(1) →

IC∩H,H(1) → 0. If h0(IC∩H,H(1)) 6= 0 it follows from a theorem of Strano ([9], [2])

that C is a plane curve, but this is impossible (ωC(4) 6≃ OC for a plane curve). �

Remark 7. To apply Strano’s theorem we need ch(k) = 0 (see [5]). The previous

argument gives a quick proof of Theorem 1 in case c1 = −1, h0(E(1)) 6= 0. In fact

this remark has been the starting point of this note.

Remark 8. Let C be a plane curve of degree d. A non-zero section of ωC(3) ≃

OC(d) yields: 0 → O → F(1) → IC(1) → 0, where F is a stable rank two reflexive

sheaf with Chern classes (−1, d, d2). If H is a general plane, h0(FH(1)) = 2 if d > 1

(resp. 3 if d = 1). Similarly, considering the disjoint union of a plane curve and of a

line, we get stable reflexive sheaf with c1(F) = 0 and h0(FH(1)) = 3. So Theorem

1 doesn’t hold for stable reflexive sheaves. The interested reader can try to classify

the exceptions.
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