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The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin
density of the CuCl2 and [CuCl4]2− systems using wave function methods. Various types of wave
functions are used here, both variational and perturbative, to analyse the effects impacting the spin
density. It is found that the spin density on the chlorine ligands strongly depends on the mixing
between two types of valence bond structures. It is demonstrated that the main difficulties found in
most of the previous studies based on wave function methods come from the fact that each valence
bond structure requires a different set of molecular orbitals and that using a unique set of molecular
orbitals in a variational procedure leads to the removal of one of them from the wave function.
Starting from these results, a method to compute the spin density at a reasonable computational cost
is proposed. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931639]

I. INTRODUCTION

Molecules containing open shell transition metals are
challenging systems for the modern computational chemistry.
Nowadays, the two most popular computational models are
Density Functional Theory (DFT) and Wave Function Theory
(WFT) and none of these approaches are able to give a defin-
itive answer to the general problem of the electronic corre-
lation, especially when transition metals are involved. The
main difficulties in such systems arise from the requirement
to have a balanced description of two key different physical
effects: the strong electronic correlation in the highly polaris-
able 3d shell and the delocalization of the electrons between
the metals and the ligands. These two effects are known to
be highly connected, since the delocalization of the elec-
trons between the metals and the surrounding ligands creates
different electrostatic situations, to which the 3d shell and the
ligand’s lone pairs are known to be very sensitive. In open shell
systems, the delocalization of the unpaired electrons can be
formally quantified by the spin density (SD). Experimentally,
this quantity can be determined through several techniques,
such as the nuclear magnetic resonance (NMR),1 polarized
neutron diffraction (PND) coupled with maximum entropy,2 or
electron paramagnetic resonance (EPR) spectroscopy.3 From
a theoretical point of view, the SD distribution among the
atoms of a system can reveal several physical phenomena,
such as the delocalization of the unpaired electrons, the spin
polarization, or the degree of ionicity of a metal-ligand bond.
The ability of a given computational approach to reproduce
correctly the main trends of the SD is crucial as it strongly
impacts the calculation of various quantities. Concerning the
magnetic coupling in Cu(II) binuclear complexes, for instance,
the SD on the metal atoms is strongly related to the level

a)Electronic mail: gnrmnl@unife.it
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of delocalization of the magnetic orbitals on the surrounding
ligands. This metal-ligand delocalization has been intensively
studied for a long time,4–11 and it has been shown that its correct
determination is compulsory to reproduce the experimental
values of the spin coupling constant. The importance of the
delocalization of the magnetic orbitals to compute the spin
coupling using perturbation theory has been addressed by
several works,11–13 both using the n-electron valence pertur-
bation theory (NEVPT214–16) and the complete active space
second order perturbation theory (CASPT217). Concerning the
metal-ligand delocalization itself, it has been shown in Ref. 8
that the magnetic orbitals obtained at various levels of calcula-
tion (mean-field, large configuration interaction expansions,
and DFT) in Cu(II) binuclear complexes exhibit qualitative
different delocalization on the surrounding ligands. In Refs. 8
and 10, the authors have highlighted the fact that a notable
metal-ligand delocalization appears when treating together
two particular classes of excitations, namely, the 1h and 2h1p
in the difference dedicated configuration interaction (CI) lan-
guage,18 on top of the complete active space (CAS). In such
work, the 1h were identified as ligand to metal charge transfer
(LMCT), and it has been shown that at difference dedicated
CI (DDCI) level their coefficient considerably improved with
respect to the CAS+S level. For the singlet state, this was
attributed to the interaction of the LMCT configuration with
the ionic forms of metal-metal charge transfer nature present
in the minimal CAS(2,2) description of the singlet. For the
triplet state, where the ionic components are vanishing, the
importance of the LMCT determinants was ascribed to the
interaction with the 2h1p determinants which lower the effec-
tive energy of the LMCT configuration, giving a ferromagnetic
contribution to the spin coupling. Nevertheless, all these mech-
anisms are intrinsically linked to the presence of two magnetic
centers, whether for the metal-metal ionic forms or of the
polarization of the hole from where the charge transfer has been
created. Other works by Broer et al.5,9 have highlighted the role
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of the LMCT states in the metal-ligand delocalization using
the non-orthogonal CI (NOCI) method. A notable difference
of such approach with respect to the considerations reported in
Ref. 10 relies in the interpretation of the mechanism of metal-
ligand delocalization: starting from self consistent field (SCF)
orbitals, the rising of the LMCT coefficient has been attributed
in Ref. 10 to the dynamical correlation through high order
effects, whereas Broer et al. have pointed out the importance
of the orbital relaxation of the LMCT states. Another practical
impact of the correct/incorrect determination of the SD con-
cerns the treatment of the spin orbit (SO) operator. This was
highlighted in the flourishing field of EPR spectroscopy, where
lot of effort has been devoted to reproduce the experimental
EPR spectrum through the mapping of the spin Hamiltonian
thanks to ab initio calculations. In this field, the SD on the
metal ions impacts drastically the calculation of the g tensor,
because of its importance on the SO matrix elements, as it has
been highlighted in Refs. 19–21, for instance.

The purpose of this paper is to study the main mechanisms
affecting the determination of the spin density for two mono
nuclear inorganic compounds, namely, CuCl2 and [CuCl4]2−,
within the WFT scheme. The paper is built as follows. The
first part contains a summary of the previous works in which
the calculation of the SD for CuCl2 and [CuCl4]2− has been
investigated. Next, the attention is dedicated to CuCl2 as a
model system, with the aim to reveal the key physical effects
and the issues one has to face studying copper complexes with
WFT. Calculations in a modest basis set (6-31G22,23) are car-
ried out up to near full configuration interaction (FCI) to obtain
reference values for the SD. The analysis of this “near FCI”
wave function and of the relevant Hamiltonian matrix elements
provides useful information to explain the key physical effects
involved in the qualitative changes of the SD passing from
the mean-field to the “near-FCI” wave functions. Then, the
importance of the MO set used in the context of correlated
methods is investigated. It is shown that the MOs have a drastic
impact on the computed values of the SD and that this is
the main source of the observed computational issues for this
molecule. Thanks to this understanding, a minimal CI space is
proposed to obtain accurate SD at a reasonable computational
cost. This minimal space is subsequently used to investigate
the effect of the basis set for the CuCl2 system and then applied
to [CuCl4]2− where experimental SD is available.24,25 Finally,
the main results of the present work are summarized in the
conclusion.

II. A SUMMARY OF THE PREVIOUS WORKS RELATED
TO THE SPIN DENSITY IN CuCl2 AND [CuCl4]2−

The SD of the 2Πg ground state of CuCl2 has been inves-
tigated using WFT and DFT with various functionals by
Ramírez-Solís et al.,26 and Caffarel et al.27 The main results
for the SD on the copper atom using the Mulliken population
analysis (MPA)28 are shown in Table I.

At the DFT level, the unpaired electron is strongly de-
localized on the chlorine ligands, with the SD on the copper
atom having values ranging from 0.41 to 0.65 with the TPSS29

and M06-2X30 functionals, respectively. These differences can
be related to the percentage of Hartree-Fock exchange (EHF

X )

TABLE I. Summary of the SD values on the copper atom obtained with
different DFT and WFT approaches for the 2Πg ground state of CuCl2 using
the Mulliken population analysis.

Method 2Πg SD (Cu)

BLYPa 0.43
PBE96a 0.43
HCTH407a 0.42
TPSSa 0.41
M06-2Xa 0.65
B3LYPa 0.57
B97-2a 0.54
CASSCF(21-15)a 0.94
ROHF (6-31g)b 0.94
CIPSI (6-31g)b 0.87

aResults obtained in Ref. 26.
bResults obtained in Ref. 27.

present in the various functionals. The sensitivity of the global
shape of the SD to the percentage of EHF

X in the B3LYP31–33

functional has been investigated in more detail in Ref. 27. From
this study, it appears that the smaller the percentage of EHF

X ,
the bigger the delocalization of the singly occupied molecular
orbital (SOMO) on the chlorine ligands. A similar behaviour
has been also reported for other Cu(II) complexes.34–36 Using
a WFT strategy at the mean-field level, both restricted open
shell Hartree-Fock (ROHF) and complete active space self
consistent field (CASSCF), the unpaired electron is essentially
centered on the copper atom. A near-FCI wave function in a
modest basis set (6-31G ) can be computed thanks to the config-
uration interaction with perturbative selection done iteratively
(CIPSI).37,38 At this level, an intermediate situation is found
with a SD of 0.87 on the copper atom. More precisely, Caffarel
et al.27 had to enlarge the CI space up to a million Slater
determinants in the CIPSI algorithm to reach the convergence
of the global shape of the SD, suggesting that the electronic
correlation plays an important role in the delocalization of the
unpaired electron. From these results, it clearly appears that the
SDs obtained from WFT and DFT are qualitatively different.
Unfortunately, there are no experimental data available for the
SD of this molecule, which prevents us to know what is the
best computational approach in this case.

Considering now the SD of the 2B1g ground state of
[CuCl4]2− in its tetragonal structure, experimental data are
available24,25 and a value of 0.62 ± 0.02 electrons on the copper
atoms has been found. Szilagyi et al.34 have performed a cali-
bration of the gradient corrected (GGA) BP86 functional39,40

to match the experimental ground state SD. The only parameter
was the amount of EHF

X , which was found to be optimal at 38%,
roughly twice the percentage used in the B3LYP functional. It
should be noticed that with such a modified BP86 functional,
the calculated excitation energies for the LMCT and ligand
field (LF) transitions were also substantially improved with
respect to standard BP86, B3LYP, or BHandHLYP functionals.
In Refs. 36 and 41, the optimization of the EHF

X percentage in
various hybrid functionals was also reported for this molecule,
as a model for copper proteins in the context of the simulation
of EPR spectra. Using WFT in the same context, Pierloot
et al. performed multireference calculations both variational
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and by perturbation.20,21 In the first study,20 the g tensor was
calculated using a CASPT2 with a CASSCF zeroth order wave
function. The g tensor was found to be in poor agreement
with the experimental value. This effect was attributed to an
overestimation of the SD on the copper atom by the zeroth
order CASSCF wave function, 0.84 electrons instead of the
0.62 ± 0.02 value experimentally measured. In the second part
of the study,21 a multistate CASPT2 (MS-CASPT2) approach
was applied. In the present context, the main results of this
study are that the mixing of the CASSCF ground state with
a LMCT excited state (more than 6 eV above the ground
state) considerably improves the calculation of the g tensor.
More precisely, by allowing the perturbation correction to
bridge the interaction between these two CASSCF eigenstates
(Perturbation Modified CASPT2, PMCASPT2), one recovers
the experimental value of the SD on the copper atom, which
is known to be crucial for the L and SO matrix elements. The
impact of the SD on the calculation of the g tensor through the
various L and SO matrix elements has been also observed on
other Cu(II) complexes, such as [Cu(NH3)4]2+ by Neese19 and
Pierloot et al.20,21

From the analysis of these selected works, concerning the
determination of the SD on the two molecules we are interested
in, one can extract two major trends. At the DFT level, this
quantity depends strongly on the percentage of EHF

X , which
seems to be too low in the B3LYP functional, for instance.
From the WFT perspective, the mean-field approach, both
single and multireference, overestimates the SD on the metal
atom, exaggerating the ionic character of the Cu–Cl bond. The
effect of the electronic correlation is then crucial to recover
the correct SD and seems to have to be treated in a rather
sophisticated way, given that the convergence of this property
with respect to the quality of the wave function is very slow.

III. A CASE STUDY: THE CuCl2 MOLECULE

The present section is dedicated to the detailed analysis
of the various physical effects which have to be included in
the calculation of the SD in CuCl2 using wave function ap-
proaches.

The copper atom is at the origin of the reference frame,
while the two chlorine atoms are placed along the z axis at
±3.9 Å (that is, a Cu–Cl distance close to the experimental
value of 3.85 Å42). In order to focus on the spatial distribution
of the spin density, we chose the following definition for the
integrated spin density:

∆ρ(zi) = 1
∆z

 +∞

−∞
dy

 +∞

−∞
dx

 zi+
∆z
2

zi− ∆z2
dz

�
ρα(r) − ρβ(r)� ,

(1)

where ρα(r) and ρβ(r) are the α and β spin densities, zi is
a regular grid in z with zi+1 − zi = ∆z, and ∆z = 0.1 a.u. In
order to get reference values for ∆ρ(z), the same road reported
in Ref. 27 is followed, performing a near-FCI calculation in a
modest basis set (6-31G). To reduce the size of the FCI space,
the neon and argon cores for the chlorine and copper atoms,
respectively, are kept frozen. This results in an active space
of 25 electrons in the remaining 36 orbitals, leading to a total

FCI space of about 1018 determinants. Of course, the diago-
nalization of such CI matrix cannot be achieved by standard CI
techniques. To tackle the problem, the CIPSI algorithm37,38 has
been used, as detailed in the following paragraph. The analysis
of the converged CIPSI wave function is performed in terms of
Valence Bond (VB) structures and the impact on ∆ρ(z) of the
various classes of excitations is discussed. Finally, a detailed
analysis of the most important Hamiltonian matrix elements
in the CIPSI space is discussed and the effect of the size
consistency is investigated through the use of the configuration
interaction with single and double excitations (CISD) and also
with the CISD self consistent and size consistent approach
(CISD(SC)2).43–45

A. Reference value for the spin density with CIPSI
calculations

In the CIPSI algorithm, the configurations are selected
iteratively by estimating their contribution to the energy at sec-
ond order in perturbation theory (PT) or to the wave function at
first order, allowing one to keep only the determinants having
a significant impact on the energy and/or on the wave func-
tion. The concept of a selected CI algorithm with a selection
guided by PT is not new in computational chemistry37,38,46–49

and the CIPSI algorithm is one of the pioneering approaches
in this field. It has been used and analyzed intensively in
the past decades,38,50–53 and also recently reintroduced in the
context of fixed node diffusion Monte Carlo (FN-DMC)54–56

and in other contexts.57 In detail, one starts the CIPSI procedure
with a given reference wave function |ψref⟩ expressed as a
linear combination of Nref Slater determinants spanning what
is called the S space,

|ψref⟩ =

I∈S

cI|I⟩, (2)

where the coefficients cI are obtained by the minimization of
the variational energy Eref of |ψref⟩,

Eref = min
{cI}

⟨ψref |H |ψref⟩
⟨ψref |ψref⟩ . (3)

Considering a given determinant |µ⟩ not belonging to the S
space, its coefficient at first order (using here the Epstein Nes-
bet zeroth order Hamiltonian58,59) is given by

c(1)µ =
⟨µ|H |ψref⟩

Eref − ⟨µ|H |µ⟩
=

|I⟩∈S

cI
⟨µ|H |I⟩

Eref − ⟨µ|H |µ⟩ .

The contribution of |µ⟩ to the energy at second order in PT is

e(2)µ = c(1)µ ⟨ψref |H |µ⟩
=

|⟨µ|H |ψref⟩|2
Eref − ⟨µ|H |µ⟩ .

An iteration of the CIPSI algorithm consists in selecting
the |µ⟩ determinants with a contribution e(2)µ greater than a
given threshold η. The reference spaceS is then augmented by
the selected |µ⟩ and the coefficients in Eq. (2) are reoptimized
to obtain a new reference wave function. This procedure is iter-
ated lowering the selection threshold η. This selection scheme
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is hereafter referred to as the “E-selection.” Other selection
schemes are possible, see, for instance, the “aimed selection.”52

In the present study, the calculations are stopped when the size
of the reference space S reaches a given number of determi-
nants fixed in the beginning of the procedure. The convergence
of a given quantity (as, for instance, the variational energy or
∆ρ(z)) is studied as a function of the number of determinants
present in the S space. It should be emphasized that the CIPSI
selection scheme is not based on an a priori selection criterion
expressed according to the degree of excitation with respect to
a given reference space, as it is usually done in truncated CI
calculations. The CIPSI algorithm, thanks to the iterative PT
strategy, realizes an adaptive selection.

In order to study the importance of the selection criterion,
another version of CIPSI has been implemented based on the
work of Angeli and Cimiraglia.60 The key idea is a selection
scheme based on a one body property of interest. In practice,
the selection is done by the estimation, at the first order in PT,
of the contribution of a |µ⟩ determinant to the expectation value
of a given one body operator Ô1. This approach has shown to
improve the convergence of the target one body property for
selected case studies. With respect to the original proposal,
here a part of the second order contribution is also considered
and the contribution of the determinant |µ⟩ to the expectation
value of Ô1 is taken as

o(2)
µ = c(1)µ

(
2⟨ψref |Ô1|µ⟩ + c(1)µ ⟨µ|Ô1|µ⟩

)
. (4)

In the present context, the one body operator used is of course
the spin density ∆ρ(z), and given that the ∆ρ(z) vanishes at
the nucleus of the copper atom (i.e., at z = 0 Å), ∆ρ(z) is
computed at z = 3.9 Å, that is, near one chlorine atom. The
contribution of a given determinant |µ⟩ to ∆ρ(z) at the nucleus
of one chlorine atom is

∆ρ
(2)
µ = c(1)µ

(
2⟨ψref |∆ρ(z)|µ⟩ + c(1)µ ⟨µ|∆ρ(z)|µ⟩) ,

z = 3.9 Å. (5)

In this version of the CIPSI algorithm, a determinant |µ⟩ is
selected if the absolute value of ∆ρ(2)µ is greater than a certain
threshold η. This will be referred to as the “∆ρ selection.” In the
following paragraph, the numerical results of the CIPSI calcu-
lations are presented. The molecular orbitals (both occupied
and virtual) are taken from a standard ROHF calculation done
using the GAMESS(US) program61 and all CI and perturbation
calculations are done with the Quantum Package program,62 an
open source post Hartree-Fock program developed recently by
Scemama, Applencourt, Caffarel, and Giner.

The convergence of the variational energy of the 2Πg

ground state computed using the∆ρ-selection and E-selection,
as well as the estimated FCI energy extracted from the data
of Caffarel et al. is reported in Figure 1. This figure shows
that, as expected, the variational energy converges faster for
the E-selection than for the ∆ρ-selection. Nevertheless, at
large number of determinants, the energies for both selec-
tion schemes are quite close to the estimated FCI value,27

indicating that the associated wave functions are of very
high quality. It should be stressed here that reaching a near-
FCI energy with a variational method is remarkable in a
FCI space containing approximately 1018 determinants. The

FIG. 1. Convergence of the variational energy (hartree) for the CIPSI wave
function using the ∆ρ-selection and E-selection compared to the converged
CIPSI energy of Caffarel et al.,27 as a function of the number of determinants.
ROHF molecular orbitals are used.

values of ∆ρ(z) at z = 3.9 Å for the various CIPSI wave
functions are presented in Figure 2, from which it appears
that the rising of the SD near the chlorine atoms is faster
with the ∆ρ-selection. Nevertheless, the values obtained at
large numbers of determinants for both selection schemes
are comparable, indicating that a value of ∆ρ(z) = 0.046 at
z = 3.9 Å is a good approximation of the FCI value. It is worth
noticing that reaching the convergence for the SD requires ap-
proximatively 106 determinants, even using the ∆ρ-selection,
which means that, in the present case, the selection criterion
of the CIPSI algorithm does not have a major impact on the
convergence speed of this one body property. It should be
emphasized that the slow convergence of this one body prop-
erty with the size of the variational space is quite remarkable,
highlighting the difficulty for this system of determining∆ρ(z)
using WFT.

In order to get a more global picture of the shape of the
SD at different levels of calculations, we report in Figure 3
the plot of ∆ρ(z) as a function of z computed with three
different wave functions using the 6-31G basis set: ROHF,
CASSCF(21,15), and the CIPSI wave functions containing
1.5 × 106 determinants selected with the ∆ρ-selection. Here,
the CASSF is composed of the 3d, 4s, and 4p shells of the
copper atom, together with the 3p shell of each chlorine atom,
which leads to a complete active space of 21 electrons in 15
orbitals, whose size is approximatively around 40 000 determi-
nants. From this picture, it appears clearly that there is a quali-
tative change of the SD between the mean-field wave functions
(both single and multireference) and the near-FCI wave func-
tion. The CIPSI wave function gives a notable delocalization
of the unpaired electron on the chlorine ligands, while the

FIG. 2. Convergence of the value of ∆ρ(z) for z = 3.9 Å calculated from
CIPSI wave functions obtained using the ∆ρ-selection and E-selections as a
function of the number of determinants. ROHF molecular orbitals are used.
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FIG. 3. ∆ρ(z) for the ROHF, CASSCF(21,15), and CIPSI wave functions
containing 1.5×106 determinants selected with the ∆ρ-selection.

mean-field wave functions mainly localize the unpaired elect-
ron on the copper atom.

B. Qualitative analysis of the CIPSI wave function

To understand how the delocalization of the unpaired
electron occurs at the CIPSI level, a qualitative analysis of
the wave function is proposed in this paragraph. This analysis
is reported here for a CIPSI wave function containing 1.5
× 106 determinants selected with the ∆ρ-selection, indicated
as |CIPSI⟩. In this wave function, the determinant having
the largest weight after the ROHF determinant is a single
excitation of a β electron from a b2g orbital (referred here to
as the b2g(px) orbital) to the SOMO, also belonging to the b2g
irreducible representation. The b2g(px) orbital is essentially
composed of the out of phase combination of the chlorine
atom 3px orbitals and the SOMO is dominated by the copper
3dxz atomic orbital. Therefore, the single excitation from the
b2g(px) to the SOMO can be thought as a charge transfer from
the ligand to the metal and it will indicated here as the LMCT
determinant (|LMCT⟩),

|LMCT⟩ ≡ a†
β SOMOaβ b2g (px)|ROHF⟩. (6)

The two main configurations of the CIPSI wave function can
be analyzed in terms of VB structures. The ROHF determi-
nant represents the Cl−Cu2+Cl− VB structure where the Cu2+

cation and Cl− anions are, respectively, in the [Ar]3d 9 and
the [Ne]3s23p6 electronic configurations. On the other hand,
the |LMCT⟩ configuration represents the resonance of the two
Cl−Cu+Cl and ClCu+Cl− VB structures, in which the Cu+

cation is in the 3d 10 electronic configuration.
In order to emphasize the role of the |LMCT⟩ configura-

tion, Figure 4 reports the shape of∆ρ(z) (closed to one chlorine
atom) computed with the normalized wave function containing
only the ROHF and LMCT determinants with their relative
coefficients taken from the CIPSI wave function.

From this figure, it appears that the main delocalization
effect of the unpaired electron from the Cu atom to the chlo-
rine ones occurring at the CIPSI level can be taken into ac-
count using only the two dominant configurations (|ROHF⟩
and |LMCT⟩) if one knows their relative coefficients. In the
CIPSI wave function, the amplitude of the |LMCT⟩ configura-
tion (that is, the ratio between the coefficient of the |LMCT⟩
and the coefficient of the |ROHF⟩) is −0.195. The fact that this
single excitation has such an important coefficient is unusual
at least for two reasons. First, its energy is 11.15 eV higher

FIG. 4. ∆ρ(z) around one chlorine atom for the normalized wave function
containing only the ROHF and LMCT determinants with their relative coeffi-
cients taken from the CIPSI wave function. Comparison with the ROHF and
CIPSI values.

than the ROHF energy, which means that no near degeneracy
effects can explain its importance in the wave function. Second,
the |LMCT⟩ configuration, being a single excitation, does not
interact with the ROHF determinant (which is the dominant
determinant in the CIPSI wave function) because of the Bril-
louin theorem.63,64 Therefore, one can wonder how such an un-
favoured determinant ends up to be the second most important
determinant after |ROHF⟩. The next paragraph is dedicated to
answer this question.

C. The origin of the importance
of the |LMCT⟩ configuration

From single reference perturbation theory (SRPT), the
first non-vanishing contribution to the coefficient of the
|LMCT⟩ configuration appears at second order for the wave
function, due to its interaction with the double excitations,
suggesting that the double excitations play a major role for
the inclusion of the |LMCT⟩ configuration. To investigate this
effect, a CISD calculation has been performed and the shape
of ∆ρ(z) obtained at this level is reported in Figure 5. From
this figure, it appears that the CISD wave function does not
reproduce correctly the SD. Of course, it is well known that
CISD is the archetype of truncated CI presenting strong size
consistency errors and such errors have large impact on the
|LMCT⟩ configuration whose amplitude is −0.07 in the CISD
wave function, far from−0.195, the value obtained in the near-
FCI wave function.

To study the impact of the size consistency error in the
determination of the correct SD, the CISD(SC)2 approach has
been chosen, rather than the coupled cluster with single and

FIG. 5. ∆ρ(z) calculated with the CISD and CISD(SC)2 wave functions,
compared with the CIPSI and ROHF ∆ρ(z).
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double (CCSD) or the quadratic CISD65 (QCISD), which are
also size consistent methods. This choice has been motivated
by the fact that CISD(SC)2 suppresses exactly and only the
disconnected terms present in the CISD calculation, which
are known to be the root of size consistency errors,66 whereas
CCSD and QCISD introduce also various correlation effects
(such as connected terms), thus overpassing the strict bound-
aries of the size consistency problem. The global shape of
∆ρ(z) calculated with the CISD(SC)2 wave function is also
shown in Figure 5 and it is found to be very close to the near-
FCI spin density. Once more, there is a correlation between
the quality of the SD obtained with a given wave function and
the amplitude of the |LMCT⟩ determinant. In the CISD(SC)2

wave function its value is −0.23, very close to the best value,
−0.195. The only difference between the CISD and CISD(SC)2

is the disconnected terms present in the CISD eigenvalue equa-
tion, which are suppressed in the CISD(SC)2 eigenvalue equa-
tion by taking into account (through a dressed Hamiltonian)
the possible repeatability of the double excitation operations
that would generate triple and quadruple excitations.43,67 This
mechanism can also explain why the CIPSI algorithm man-
ages to give such an importance to the |LMCT⟩ configuration,
even if it remains a truncated CI approach submitted to size

consistency errors: the triple and quadruple excitations, present
in the CIPSI wave function, kill a huge part of the disconnected
terms, allowing the double excitations to have correct coeffi-
cients and then the |LMCT⟩ coefficient to rise properly. This
suggests that the physics giving the correct coefficient of the
|LMCT⟩ determinant is within the double excitations, once the
size consistency error has been eliminated.

Among the double excitations, those who are single
excitations on top of the |LMCT⟩ determinants are found to
strongly interact with it. In order to study the impact of these
double excitations using a semi quantitative model, a second
order state specific intermediate Hamiltonian68,69 has been
built. The model space is spanned by the ROHF determinant,
the intermediate model space is the |LMCT⟩ determinant, and
the outer space is built with all single excitations on top of
the |LMCT⟩ determinant (many of them are double excitations
with respect to the ROHF determinant). It should be pointed
out that in the present case, as there are no interactions between
the determinants in the model space and intermediate space,
such an approach is free from size consistency errors as it can
be shown in Ref. 70. For the sake of clarity, the ROHF energy
has been subtracted on the diagonal. The explicit definition of
the intermediate Hamiltonian matrix elements is

⟨ROHF|H (eff )|ROHF⟩ =

µ

|⟨ROHF|H |µ⟩|2
EROHF − ⟨µ|H |µ⟩ ,

⟨ROHF|H (eff )|LMCT⟩ = ⟨LMCT|H (eff )|ROHF⟩
= ⟨ROHF|H |LMCT⟩ +


µ

⟨ROHF|H |µ⟩⟨µ|H |LMCT⟩
EROHF − ⟨µ|H |µ⟩ ,

⟨LMCT|H (eff )|LMCT⟩ = ⟨LMCT|H |LMCT⟩ − ⟨ROHF|H |ROHF⟩ +

µ

|⟨LMCT|H |µ⟩|2
EROHF − ⟨µ|H |µ⟩ ,

(7)

where the |µ⟩ determinants are all single excitations on top
of the |LMCT⟩ determinant, excluding, of course, the ROHF
determinant. The explicit values of the “naked” Hamiltonian
(that is, without the perturbative dressing from the |µ⟩) and
of the intermediate Hamiltonian corrected to second order are
reported in Figure 6 (in eV).

FIG. 6. Exact Hamiltonian (H , up) projected on the |ROHF⟩ and |LMCT⟩
configurations and intermediate Hamiltonian (H (eff ), down) projected on
the same space taking into account at second order the effect of the |µ⟩
determinants that are single excitations on top of the |LMCT⟩ configuration.
Values in eV.

Several effects can be observed from these Hamiltonians.
The first one is that, thanks to the |µ⟩ determinants, an effective
interaction of about 1.24 eV is observed between the ROHF
and the LMCT determinants, allowing for the mixing of these
two configurations in the ground state of CuCl2. Furthermore,
the differential effect of the |µ⟩ on the effective energies of
|ROHF⟩ and |LMCT⟩ is huge because the energy difference
passes from 11.15 eV without the dressing to 1.66 eV once the
perturbation is included, suggesting that the |µ⟩ should not be
treated by perturbation. To justify this assumption, the H (eff )
has been diagonalized: in its lowest eigenstate, the |LMCT⟩
configuration has an amplitude of about −0.5, which is more
than twice the amplitude of the same determinant in the near-
FCI wave function. This result further confirms that the effect
of the single excitations on top of the |LMCT⟩ determinant
cannot be treated by a perturbation approach.

It is worth noticing that most of the |µ⟩ determinants
are double excitations with respect to the ROHF configura-
tion, which means that they should introduce some corre-
lation effects. Nevertheless, with respect to the |LMCT⟩
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configuration they are single excitations suggesting that their
role is to relax the orbitals for the |LMCT⟩ determinant.
Given that the |µ⟩ cause a lowering of the effective energies
which are much more important for the |LMCT⟩ than for
the ROHF configuration (9.65 eV and 0.16 eV, respectively),
the dominant effect is the relaxation of the orbitals of the
|LMCT⟩ determinant. Nevertheless, even if the lowering of
the effective energy caused by the orbital relaxation is more
spectacular than the effective interaction that appears between
the |ROHF⟩ and |LMCT⟩ configurations, without the latter
the two configurations could not mix in the ground state.
Considering a determinant |µ⟩ which is a single excitation on
top of |LMCT⟩ (|µ⟩ = a†rai |LMCT⟩), the contribution to the
effective interaction between |ROHF⟩ and |LMCT⟩ is propor-
tional to (ir,SOMOb2g(px)) × ⟨r |JSOMO − Jb2g (px)|i⟩, where
the integrals are defined as

(i j, kl) =


dr1


dr2 φi(r1)φ j(r1) 1

r12
φk(r2)φl(r2), (8)

⟨φi |Jj |φk⟩ =


dr1


dr2

�
φ j(r1)�2 1

r12
φi(r2)φk(r2). (9)

The contribution of the very same determinant to the effective
energy of |LMCT⟩ is proportional to ⟨r |JSOMO − Jb2g (px)|i⟩2. In
Ref. 6, the authors showed that there is a relation of proportion-
ality between (ir,SOMOb2g(px)) and ⟨r |JSOMO − Jb2g (px)|i⟩,
which means that the contribution of |µ⟩ to the effective energy
of |LMCT⟩ is directly proportional to the effective interaction
between |ROHF⟩ and |LMCT⟩. In other words, there is a direct
relation between the strong orbital relaxation of |LMCT⟩ and
the coupling term between |LMCT⟩ and |ROHF⟩. Having such
an important impact on the effective parameters of H (eff ), the
orbital relaxation for the |LMCT⟩ determinant indicates that its
optimal orbitals are different from those obtained by the ROHF
optimization. Sec. III D is dedicated to the investigation of the
role of the used MOs.

D. The role of the molecular orbitals

The request of the orbital relaxation for the LMCT deter-
minant can be easily understood, given that it represents the
resonance of two electrostatic situations (ClCu+Cl− and
Cl−Cu+Cl) which are markedly different from that represented
by the ROHF determinant (Cl−Cu2+Cl−). The aim of this para-
graph is to show that the problem of the correct determination
of the delocalization of the unpaired electron comes from the
fact that the two important VB structures require different
orbitals.

1. Near optimal orbitals for the |LMCT ⟩ configuration

The optimal orbitals for the LMCT configuration can be
obtained from a general rotation of the canonical orbitals,
which at first order reduces to a CI expansion considering the
LMCT and all single excitations on top of it,

|LMCT⟩opt ≈ c|LMCT⟩|LMCT⟩
+

p>q


σ=α,β

cσpqa†σ paσ q |LMCT⟩. (10)

Of course, one has to exclude the single excitation bringing
back to the ROHF determinant. The diagonalization of the CI
matrix expressed in this determinant basis gives the optimal
coefficients for the |LMCT⟩opt wave function. An analysis of
the Hamiltonian matrix elements has revealed a number of
large interactions (in the range of 4–7 eV) between the LMCT
determinant and the determinants in which an electron occu-
pying a 3d copper’s orbital is excited to copper’s d ′ diffuse
virtual orbitals. All these Hamiltonian matrix elements are
dominated by bielectronic integrals ⟨φ3d |J3dxz |φd′⟩ which give
the contribution of the β electron occupying the 3dxz copper’s
orbital in the LMCT configuration to its own Fock operator
(see Ref. 71). Of course, other polarization terms involving the
chlorine orbitals are also present, but they are less important,
suggesting that the dominant effect is the polarization of the 3d
electrons of the copper atom. To study quantitatively the differ-
ences between the natural orbitals of the |LMCT⟩opt (indicated
hereafter as NO-LMCT) and the ROHF orbitals, the overlap
between the two MO sets has been computed obtaining the
corresponding orbitals72 for both MO sets, together with the
average value of ⟨x2⟩, ⟨y2⟩, and ⟨z2⟩ for each set of MOs. The
five orbitals with the lowest overlap are reported in Table II.

From this table, it clearly appears that the overlaps be-
tween the two MO sets are all greater than 0.96, which means
that the optimal orbitals for each VB structure are qualitatively
equivalent. The main difference between the two MO sets
concerns the 3dCu

2z2−(x2+y2) orbital which is more diffuse for
the LMCT structure. This can be understood considering that
the copper atom passes from Cu2+ in the ROHF determi-
nant to Cu+ in the |LMCT⟩ configuration. The energy differ-
ence between the LMCT configuration expressed in the NO-
LMCT MO set and the ROHF determinant is 5.6 eV, showing
that the orbital relaxation for the LMCT configuration, not
completely accounted for at this level, is at least 5.55 eV (the
energy difference passes from 11.15 eV to 5.6 eV). On the
other hand, the energy of the Cl−Cu2+Cl− VB configuration
described with the NO-LMCT is 2.20 eV higher than that of
the LMCT structure expressed with the same orbitals. This
reveals the high sensitivity of the energetic ordering of the
VB structures on the MOs. A similar dependency on the
molecular orbitals of the relative energies of electronic config-
urations differing by a charge transfer has been previously
observed in different contexts, see, for instance, Refs. 73 and
74. In such works, the target was the calculation of the energy
separation of electronic states dominated by two different

TABLE II. Overlap between the corresponding orbitals obtained from the
ROHF orbitals and the |LMCT⟩opt natural orbitals and the ⟨x2⟩, ⟨y2⟩, and
⟨z2⟩ values (left for ROHF orbitals, right for |LMCT⟩opt natural orbitals) for
each type of molecular orbital.

Nature of orbital Overlap ⟨x2⟩ ⟨y2⟩ ⟨z2⟩
3dCu

2z2−(x2+y2) 0.9620 0.321/0.927 0.294/0.886 0.985/1.93

3pCl1
z −3pCl2

z 0.9981 1.118/1.180 1.192/1.257 11.51/12.0

3dCu
xz 0.9981 0.728/0.738 0.242/0.246 2.970/3.07

3pCl1
z +3pCl2

z 0.9985 0.890/0.845 0.890/0.845 12.89/13.5

3dCu
x y 0.9988 0.202/0.207 0.607/0.623 1.980/2.05
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electronic distributions, whereas the present study is focussed
on the correct mixing of two electronic structures in the ground
state.

It should be stressed that such a mixing in the CuCl2
ground state could be obtained with a unique determinant in
which the SOMO will have proper delocalization tails on the
chlorine 3px atomic orbitals. At this point, one can qualita-
tively understand why the ClCu+Cl− and Cl−Cu+Cl VB struc-
tures are not present in the ROHF determinant: delocalizing
the SOMO on the 3px atomic orbitals of the chlorine atoms
would realize a compromise that is very unfavourable ener-
getically, then, the minimization of the energy imposes to
sacrifice the ClCu+Cl− and Cl−Cu+Cl VB structures to focus on
the optimization of the orbitals for the Cl−Cu2+Cl− electronic
distribution. There are many unpleasant consequences arising
from this sacrifice, fully caused by the principle of energy
minimization of a unique determinant. The first one is that the
one body density matrix is qualitatively wrong using the ROHF
wave function, which means that all the one body properties
calculated with such an approach will also be qualitatively
wrong. Moreover, the LMCT VB structure is energetically
destabilized because it is described using the ROHF MO set.
Finally, due to the fact that the ClCu+Cl− and Cl−Cu+Cl VB
structures are single excitations with respect to the ROHF
determinant, they do not interact with the latter, they appear
only at high order in PT (at least fourth order on the energy),
and one has to include correctly the effect of the double excita-
tions to bridge the interaction between them at the CI level. All
the troubles of the post mean-field wave function methods to
describe correctly the delocalization of the unpaired electron
come from this critical unbalanced treatment of the two VB
structures during the optimization of the orbitals in the mean-
field treatment.

2. Performance of breathing orbital valence bond,
orthogonal, and non-orthogonal

On the basis of the results of Sec. III D 1, one would like
to perform a CI including all important VB structures, each
one described with its own optimal orbitals. This would lead
to a non-orthogonal CI recalling the breathing orbital Valence
Bond (BOVB)75 or the NOCI strategy.4,5,9 Despite the compli-
cations due to the non-orthogonality of the molecular orbitals,
such an approach is not directly related to the calculations
previously reported. To tackle these problems, one can build
the CI matrix between the ROHF and the |LMCT⟩opt wave
functions, which uses the ROHF orbitals as a common set
of orthonormal orbitals (it is worth noticing that in this case
the |LMCT⟩opt wave function is a multideterminantal wave
function). This can be seen as an orthogonal valence bond strat-
egy76–78 with breathing orbitals. One can easily find that the
interaction between the |ROHF⟩ and |LMCT⟩opt is controlled
by the double excitations that are single excitations on top of
the |LMCT⟩ determinant, just like in the intermediate Hamilto-
nian used in the previous paragraph. In this case, however, the
cσpq coefficients are fixed in order to have an optimal description
of the LMCT structure (see Eq. (10)). We report in Figure 7
the values of the Hamiltonian matrix elements between the
|LMCT⟩opt and ROHF configurations, referred here as H (breath).

FIG. 7. Hamiltonian matrix elements in the |ROHF⟩ and |LMCT⟩opt basis.
ROHF orbitals are used, and values are reported in eV.

Despite the rather small stabilization of the ROHF effec-
tive energy caused by the |µ⟩’s which is introduced in H (eff )
(see Figure 6), the H (breath) and H (eff ) contain basically the
same physical ingredients, and the main differences between
them require some comments. In H (eff ), the effect of the single
excitations on top of the LMCT configuration is treated at
second order in perturbation, whereas this effect is treated vari-
ationally in H (breath). The variational treatment gives a lower
interaction (0.84 eV instead of 1.24 eV) together with a higher
effective energy for the LMCT configuration (3.57 eV instead
of 1.50 eV), implying that the single excitations on top of the
LMCT configuration have a more tempered effect when one
moves from perturbation to a variational treatment. Neverthe-
less, even at the strict variational level there is a lowering of
the energy of the LMCT determinant of 7.58 eV, which is a
remarkable effect. As said, the interaction between the LMCT
configuration and some of its single excitations is as large as
7 eV, which clearly cannot be considered as a perturbation,
explaining the failure of the perturbative H (eff ) approach in the
correct determination of the mixing between the ROHF and
LMCT configuration.

The diagonalization of H (breath) can be seen as a contracted
CI approach, and the lowest root of this Hamiltonian is referred
hereafter to as |Contracted CI⟩. If one releases the constraint
imposed on the coefficients of the single excitations on top of
|LMCT⟩, it turns out to be a simple diagonalization of the CI
matrix expressed in the basis of the |ROHF⟩, |LMCT⟩, and all
the single excitations on top of |LMCT⟩. This wave function
is hereafter referred to as the uncontracted CI wave function
(|Uncontracted CI⟩). The global shape of ∆ρ(z) is reported in
Figure 8 for the contracted and uncontracted wave functions,
and compared to those obtained with ROHF and the largest
CIPSI wave function.

From these figures, it appears that ∆ρ(z) obtained with
the contracted and uncontracted wave functions are almost
indistinguishable at this scale. Moreover, the global shape of
the ∆ρ(z) for the contracted/uncontracted wave functions is
close to that obtained with the near-FCI wave function. In

FIG. 8. ∆ρ(z) calculated with the contracted and uncontracted wave func-
tions, compared with the CIPSI and ROHF ∆ρ(z) (see text).
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the contracted/uncontracted wave function, the amplitude of
the |LMCT⟩ determinant is about −0.197, which is very close
to the value of −0.195 in the largest CIPSI wave function.
These results confirm that the CI space here used contains all
physical effects required for a correct description of the mixing
between the ROHF and the LMCT determinants. To confirm
this general point of view, non-orthogonal VB calculations
have been performed using the XMVB-2.0 program.79 In the
6-31G basis set, using the three VB structures (ClCu+Cl−,
Cl−Cu+Cl, and Cl−Cu2+Cl−) as the basic ingredients of the
calculations, it appears that at the VB Self Consistent Field
(VBSCF) the SD on the copper atom is 0.96, a value very close
to 0.94 obtained at the ROHF level. The composition of the
VBSCF wave function is dominated by the Cl−Cu2+Cl− VB
structure, the ClCu+Cl− and Cl−Cu+Cl VB structures having
a negligible contribution. Moving to the BOVB approach, the
SD on the copper atom is decreased to 0.86, a value which
compares well with 0.87 obtained at near FCI level. In this case,
the ClCu+Cl− and Cl−Cu+Cl electronic structures bring consid-
erable contributions to the wave function. On the other hand,
the energy difference between the ground state and first excited
state (essentially of LMCT character) passes from 11.07 eV
at the VBSCF level, to 5.5 eV at the BOVB level, which is
very similar to what has been obtained using the |LMCT⟩opt

and H (breath) approach.

E. Proposal of minimal CI space to compute
accurately the spin density

As it has been highlighted in Secs. III A–III D, the delo-
calization of the unpaired electron is essentially given by the
correct mixing of the ROHF and LMCT determinants. The
wave function built with all single excitations with respect
to these two determinants contains all physical ingredients
required to obtain a SD of near-FCI quality. Such approach
is referred to as the First-Order Breathing Orbital CI (FOBO-
CI). The ∆ρ(z) calculated from the FOBO-CI wave function
(|FOBO-CI⟩) built with the ROHF orbitals and with the natural
orbitals of the |Contracted CI⟩ wave function is reported in
Figure 9.

From this figure, it is apparent that the two ∆ρ(z) are
very similar and very close to that computed with the largest
CIPSI wave function, indicating that the FOBO-CI approach
is quite stable with the change of the MO set. The fact that

FIG. 9. ∆ρ(z) using the FOBO-CI approach, in the canonical MO set
(|FOBO-CI⟩) and using the natural orbitals of the |ContractedCI⟩ wave func-
tion (|FOBO-CI⟩ Nat. Orb. Contracted CI). Comparison with the ROHF and
largest CIPSI wave function.

the FOBO-CI approach gives such an accurate SD can be
explained as follows. First, the FOBO-CI contains the two
main determinants ruling the physics of the delocalization
of the unpaired electron. Second, the FOBO-CI contains all
the determinants that are single excitations on top of the two
relevant configurations, which allows for the orbital relaxa-
tion of both configurations, and also bridge the interaction
between them. Moreover, all the double excitations present in
the FOBO-CI have in common the single excitation generating
the LMCT configuration, which means that none of them are
repeatable one after the other. This implies that disconnected
terms in the FOBO-CI eigenvalue equation are absent and
that this wave function is not subjected to size consistency
errors, even if it remains a truncated CI. Finally, the FOBO-
CI wave function contains also single excitations with respect
to the ROHF determinant, which play different roles in this
wave function. First, those determinants are double excitations
with respect to the LMCT configuration and one can easily
show that the bielectronic integrals involved in the interaction
between the single excitations and the LMCT configuration are
exactly the same involved in the interaction between the ROHF
determinant and the double excitations present in the FOBO-
CI wave function. This allows to have the same correlation
effects for the ROHF determinant (with the double excitations)
and for the LMCT configuration (with the single excitations
with respect to the ROHF determinant). Second, the single
excitations can introduce the spin polarization coming from the
global distribution of the unpaired electrons, which is impor-
tant for the correct determination of the SD. For all these
reasons, the two main determinants are described in a very
balanced way, which leads to a SD of near-FCI quality.

F. Effect of the basis set on the ∆ρ(z)
The previous calculations have been performed using

a modest basis set (6-31G) where the CIPSI algorithm can
closely approach the FCI solution, thus giving reference values
for the SD. Such an approach has allowed for the understanding
of the key physical ingredients involved in the delocalization
of the unpaired electron, and to propose the FOBO-CI strategy
which has shown to reproduce very accurately the near-FCI
shape of ∆ρ(z). Nevertheless, the obtained results must be
considered as semi-quantitative because of the modest size
of the 6-31G basis set, which lacks diffuse and polarization
functions, for instance. Here, the FOBO-CI is used as a tool to
study the effect of the basis set on the global shape of ∆ρ(z),
considering basis sets for which the CIPSI algorithm would
need an excessively large number of determinants to reach
convergence. The ∆ρ(z) has been computed with the FOBO-
CI and ROHF wave functions with three types of basis sets of
double and triple zeta quality: the correlation consistent basis
set (cc-pVDZ, cc-pVTZ), the same basis set augmented with
diffuse functions (aug-cc-pVDZ, aug-cc-pVTZ),80,81 and the
Roos augmented atomic natural orbitals82,83 (ANO-DZ, ANO-
TZ). For the sake of clarity, only the results obtained for the cc-
pVXZ, ANO-XZ (X=D,T), and 6-31G are shown in Figure 10.
From this figure, it appears that at the ROHF level, the global
shape of ∆ρ(z) is unchanged moving from the 6-31G to the
ANO-DZ basis sets. The same behaviour is also observed

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.167.209.10 On: Tue, 29 Sep 2015 13:27:49



124305-10 E. Giner and C. Angeli J. Chem. Phys. 143, 124305 (2015)

FIG. 10. ∆ρ(z) using the FOBO-CI and ROHF wave function in various
basis sets.

for the other basis sets, suggesting that the optimal orbitals
for the Cl−Cu2+Cl− VB structure depend weakly on the basis
set. Using the FOBO-CI wave function, three main qualitative
differences can be observed moving from the 6-31G to the
cc-pVXZ, aug-cc-pVXZ, and ANO-XZ (X = D,T) basis sets.
First, the SD is much higher on the chlorine ligands using the
cc-pVXZ, aug-cc-pVXZ, and ANO-XZ basis sets. This can be
understood considering that the SD on the chlorine atoms is
originated from the correct relaxation of the two ClCu+Cl− and
Cl−Cu+Cl VB structures which requires flexibility, especially
on the copper atom. Second, using the cc-pVXZ, aug-cc-
pVXZ, and ANO-XZ basis sets the shape of the ∆ρ(z) is no
longer spherical around the chlorine ligands. This behaviour is
due to the polarization functions on the chlorine ligands which
allow the singly occupied 3px orbitals of the ClCu+Cl− and
Cl−Cu+Cl VB structures to be distorted towards the “outside”
of the molecule, in order to avoid the increased electronic
density on the Cu+ center. Third, a notable negative SD appears
between the Cu and the Cl atoms, suggesting that the spin
polarization mechanism is important here. Finally, the global
shape of ∆ρ(z) using the four basis sets having polarization
functions is almost indistinguishable. To obtain a quantity
summarizing the information of the ∆ρ(z) in one number, the
SD on the copper atom has been calculated with the MPA
approach on the ROHF and the FOBO-CI wave functions
for all basis sets. The results, together with those obtained
with DFT (B3LYP functional), are reported in Table III. From
this table, it appears that, for a given WFT model, the SD
on the copper atom weakly depends on the basis set as soon
as polarization and diffuse functions are included. Moreover,
a strong reduction of the SD on the Cu atom is confirmed

TABLE III. Values of the spin density on the copper atom using MPA with
the ROHF and FOBO-CI wave functions in various basis sets. DFT (B3LYP)
values are reported for comparison.

Basis set SD (Cu) ROHF SD (Cu) FOBO-CI B3LYP

6-31G 0.942 0.880 0.703

cc-pVDZ 0.970 0.685 0.496
cc-pVTZ 0.970 0.665 0.495

aug-cc-pVDZ 0.971 0.675 0.511
aug-cc-pVTZ 0.971 0.680 0.499

ANO-DZ 0.970 0.672 . . .
ANO-TZ 0.971 0.688 . . .

moving from the self consistent field model to a fully correlated
approach, thus supporting the interpretative schemes in which
the SCF approach strongly penalizes the VB structures with the
unpaired electron on the Cl atoms. Such a biased description
is corrected improving the representation of these structures
by allowing the orbitals to relax and to be optimal also for
these charge distributions. As the FOBO-CI has shown to
reproduce very accurately the ∆ρ(z) at near-FCI level with the
6-31G basis set, it is reasonable to propose a value of 0.68(1)
unpaired electrons on the copper atom at the non-relativistic
FCI level using a basis set of augmented triple zeta quality
with polarization functions.

IV. APPLICATION TO [CuCl4]2−
The Cu atom in this system is in a 3d9 configuration. The

ground state is a doublet and the SOMO belongs to the b1g
irreducible representation of the D4h symmetry group of the
molecule. The chlorine atoms are placed on the x and y axes
and the Cu–Cl distance is taken to be 2.291 Å which is the
optimal CASPT2 value computed by Pierloot and Vancoillie.21

At the mean-field level, both single and multiconfigurational,
the SOMO is dominated by the 3dx2−y2 Cu atomic orbital
with small contributions of the chlorine 3px and 3py orbitals
pointing toward the Cu atom. This results in a SD on the
copper atom at mean-field level which is between 0.92 and
0.84, as it has been found in previous studies,20,21 too high a
value if compared to the experimental finding of 0.62(2). This
overestimation of the SD on the copper atom indicates that
the mean-field methods underestimate the delocalization of
the unpaired electron between the copper and chlorine atoms,
resulting in a too ionic Cu–Cl bond, just like in the CuCl2
molecule. In order to apply the FOBO-CI method, one has to
identify the LMCT determinant responsible for the delocaliza-
tion of the unpaired electron, that is, a single excitation from a
b1g orbital (dominated by contributions of the AOs belonging
to the chlorine ligands) to the SOMO. Intuitively, the molecular
orbital obtained from the combination (with the proper phase)
of the 3px and 3py AOs of the chlorine ligands pointing to the
Cu atom is a good candidate. The FOBO-CI consists of the
diagonalization of the CI matrix built with all single excitations
with respect to the ROHF and the appropriate LMCT deter-
minants. The results for the SD (computed with the MPA) on
the copper atom for the ROHF and FOBO-CI wave functions
are reported in Table IV for various basis sets and compared

TABLE IV. Values of the spin density on the copper atom using MPA with
the ROHF and FOBO-CI wave functions and various basis sets, compared
with DFT (B3LYP) and the experimental value.

Basis set SD (Cu) ROHF SD (Cu) FOBO-CI B3LYP

6-31G 0.93 0.81 0.70

cc-pVDZ 0.92 0.63 0.55
cc-pVTZ 0.92 0.66 0.55

ANO-DZ 0.92 0.65 . . .

Experimental SD (Cu)24,25

0.62(2)
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to the SD obtained with DFT using the B3LYP functional.
From this table, it appears that the FOBO-CI spin density is
quite stable with respect to the basis set, as soon as the basis
set is of good quality. Moreover, the FOBO-CI wave function
gives SD values between 0.63 and 0.66, a range very close
to the experimental finding of 0.62(2). In the FOBO-CI wave
function obtained with the ANO-DZ basis set, the determinant
having largest coefficient, besides the ROHF determinant, is
the LMCT determinant whose amplitude is about 0.25, which
is unusual for a single excitation. The LMCT determinant is
12.65 eV higher in energy than the ROHF determinant, but
if one performs the contracted CI previously described (see
Eq. (10)) of the LMCT and its own single excitations (in
order to relax the orbitals of the LMCT configuration) the
energy difference decreases to 5.11 eV. This behavior is very
similar to that observed for CuCl2: the dominant configura-
tion after the ROHF determinant is a single excitation and
the relaxation of the orbitals on such determinant has a huge
energetic impact. If one uses the natural orbitals of the FOBO-
CI wave function to build a pseudo Hartree-Fock determinant,
one obtains a SD on the copper atom of about 0.72, which
is not in perfect agreement with the experimental value but
represents an important improvement with respect to all mean-
field approaches reported for this system. It should be pointed
out that the DFT results underestimate the SD on the copper
atom if polarization functions are used, implying that such an
approach overestimates the importance of the LMCT VB struc-
tures, a reasonable result if one considers that DFT tends to
underestimate the energy of the charge transfer states. Similar
results have also been observed by Szilagyi et al. with the BP86
functional.34

V. CONCLUSION AND DISCUSSIONS

In this work, the CuCl2 and [CuCl4]2− molecules have
been considered as prototypes to investigate the physics of
the metal-ligand delocalization through a detailed study of the
SD. The main computational tools used here belong to WFT.
Every approach has provided a clue to understand the various
problems encountered using WFT for these systems. One can
summarize the main ingredients leading to a good description
for these systems as follows. First, there are two types of VB
structures that dominate the fully correlated wave function
and the correct metal-ligand delocalization is controlled by the
proper mixing between these two types of VB structures. The
most important VB structure is the one where the copper atom
is in its Cu2+(3d9) oxidation state and the chlorine ligands in
the Cl−(3p6) state. The other important VB structures represent
the resonance of all electronic distributions where the copper
atom is in its Cu+(3d10) ionized form and one chlorine atom in
its neutral form, the other remaining ligands being Cl−. All VB
structures belonging to this class can be considered as charge
transfer states where an electron is excited from one ligand
to the metal, thus, all are single excitations with respect to
the dominant VB form. Using symmetry adapted molecular
orbitals (as it is the case here), all these VB structures can
be taken into account with a unique single excitation, the
LMCT configuration, where a β electron is promoted from
a doubly occupied molecular orbital belonging to the same

irreducible representation as the SOMO and dominated by
the appropriate 3p chlorine atomic orbitals. The use of mean-
field optimization procedures, both single and multireference,
provide optimal orbitals for the dominant VB structure, which
markedly penalize the LMCT structure, shifting its energy at
too high a value, thus such approaches miss, almost totally,
the LMCT VB structure. As it has been shown, the two types
of dominant VB structures are energetically very sensitive to
the MOs and they need different types of optimal MOs. This
requirement cannot be taken into account at the mean-field
level, which explains why only the more stable of the two
VB structures is present in the mean-field wave functions. It
should be mentioned that this kind of problem occurs also at
the SCF level in other applications, such as in bond length
alternation in conjugated pi systems,84,85 or in the determi-
nation of correctly delocalized molecular orbitals in organic
magnetic molecules,86,87 where in any case, neutral and ionic
components of the wave function cannot be both correctly
treated using a mean-field approach. To correct this biased
treatment, one has to include the double excitations on top of
the mean-field wave function using a size consistent approach
in order to realize properly a bridging interaction between the
two dominant classes of VB structures. Among the double
excitations, those who are single excitations on top of the
LMCT configuration have shown to play a crucial role, as they
strongly relax the orbitals of the LMCT configuration. This has
been found to be compulsory to allow for the correct mixing
between the various VB structures in the ground state wave
function. Similar considerations have been reported previously
in pioneering works in this field,5,9 for other transition metal
containing systems. The orbital relaxation of the various VB
structures has been considered in such studies within a non-
orthogonal CI approach. The understanding of the key ingre-
dients of the problem has led us to a proposal of a mini-
mal CI space (the FOBO-CI approach) which stays within an
orthogonal CI strategy, fulfilling all conditions found here to
allow for the correct determination for the SD in such systems.
It contains the dominant VB structures and all determinants
required to relax their own orbitals, it also contains the deter-
minants describing the spin polarization, it is free from size
consistency errors, and it introduces electronic correlation in
a very balanced way between the various VB structures. The
FOBO-CI approach has shown, at a reasonable computation
cost, to reproduce accurately the SD on the copper atom, both
for the CuCl2 and the [CuCl4]2− ground states. For the CuCl2
molecule, near-FCI reference values have been obtained in
the modest 6-31G basis set using the CIPSI algorithm and
the FOBO-CI has shown to reproduce very accurately these
results. For [CuCl4]2−, the SD obtained with the FOBO-CI
approach is in very good agreement with the available experi-
mental data. On the basis of such successes, a reference value
for the SD on the copper atom in CuCl2 (non-relativistic, near-
FCI, and extended basis sets), for which experimental values
are not available, has been proposed.

It should be pointed out that the FOBO-CI approach con-
tains the LMCT configuration and its single excitations, which
can be interpreted as determinants belonging to the 1h and
2h1p classes of excitations, respectively. The simultaneous
presence of such excitation classes was identified as crucial
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for the metal-ligand delocalization in binuclear complexes in
Refs. 7, 8, and 10. In such works, the 2h1p excitations were
found to increase the weight of the 1h LMCT determinants
and this increase was interpreted as a correlation induced delo-
calization of the magnetic orbitals, with respect to the min-
imal CASSCF(2,2) orbitals. Using the CuCl2 and [CuCl4]2−
as prototypes of transition metal containing systems, it has
been shown that this delocalization is a purely static effect
given that among the 2h1p excitations, the most important are
those describing the relaxation of the orbitals of the LMCT
determinant, which are different from the optimal orbitals of
the dominant VB structure (unpaired electron on the Cu atom).
This electronic structures are artificially removed from the
mean-field wave function by the orbital optimization proce-
dure. Such a biased description, which leads to an excessive
localization of the unpaired electron on the Cu atom, is at the
origin of the difficulties previously observed in the calculation
the spin density. Indeed, the orbital relaxation, if not described
within an ad hoc strategy, is taken into account only at high
level of theory (in PT at least second order on the wave func-
tion and variational logic at DDCI2 or very large selected CI
space). The FOBO-CI strategy, here proposed, staying within
a scheme based on a unique set of MOs, aims at mimicking
the individual orbital optimization for the two relevant VB
structures. Because the FOBO-CI relies on the identification of
the meaningful LMCT determinants, further work in progress
will focus our attention on the systematic determination of
these determinants.
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