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Abstract. We are concerned with the problem of the global (in time) exis-
tence of weak solutions to hyperbolic systems of conservation laws, in one spa-

tial dimension. First, we provide a survey of the different facets of a technique

that has been used in several papers in the last years: the path decomposition.
Then, we report on two very recent results that have been achieved by means

of suitable applications of this technique. The first one concerns a system of
three equations arising in the dynamic modeling of phase transitions, the sec-

ond one is the famous Euler system for nonisentropic fluid flow. In both cases,

the results concern classes of initial data with possibly large total variation.

1. Introduction. We consider the following initial-value problem for a 1-d system
of conservation laws

Ut + F (U)x = 0, (x, t) ∈ R× R+, (1)

U(x, 0) = U0(x), x ∈ R, (2)

where U = t(u1, u2, . . . , un) is an n-tuple of conserved quantities taking values in a
simply connected region Ω ⊂ Rn and F (U) is the flux function, which is a smooth
map from Ω to Rn. We assume that the system is strictly hyperbolic, which means
that F ′(U) has real and distinct eigenvalues

λ1(U) < λ2(U) < · · · < λn(U).

The corresponding right eigenvectors R1(U), R2(U), . . . , Rn(U) are called charac-
teristic vector fields. We further assume that each characteristic direction is

either genuinely nonlinear: ∇Uλj(U) 6= 0,
or linearly degenerate: ∇Uλj(U) ≡ 0.

(3)

The initial-value problem 1-2 does not possess, in general, smooth solutions that
are defined globally in time, even if the initial data are sufficiently smooth and
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small. Therefore, solutions will be meant in the weak sense: a bounded measurable
function is said to be a weak solution if∫∫

R×R+

[U · Φt + F (U) · Φx] dxdt+

∫
R
U0(x) · Φ(x, 0) dx = 0,

for any smooth function Φ(x, t) with bounded support in R× R+.
Since the system of equations 1 is invariant with respect to the similarity trans-

formation U(x, t)→ U(αx, αt), for every α > 0, the local structure and the asymp-
totic properties of the solutions are described by self-similar solutions, which are
solutions satisfying

U(αx, αt) = U(x, t).

Let U± ∈ Ω be constant vectors; then, the Riemann’s initial data

U0(x) =

{
U− if x < 0,
U+ if x > 0,

(4)

satisfy U0(αx) = U0(x). The Cauchy problem 1-4 is the Riemann initial-value prob-
lem.

We recall the following classical result, due to Lax [17], that provides the funda-
mental existence theorem of self-similar solutions to the Riemann problem.

Theorem 1.1 ([17]). Assume condition 3. If |U− − U+| is sufficiently small,
then there exists a unique admissible self-similar solution with small total varia-
tion to the Riemann problem 1-4, which consists of (n + 1) constant states U− =
U0, U1, . . . , Un = U+ connected by rarefaction waves, contact discontinuities or
shock waves.

Suppose that U is a weak solution such that the limits U(x0 ± 0, t0) exist and
the jump |U(x0 + 0, t0)−U(x0− 0, t0)| is small. The Riemann solution provided by
Theorem 1.1 with initial data U± = U(x0±0, t0) is a good approximation of U in a
neighborhood of (x0, t0) and, then, can be used to construct approximate solutions.
More precisely, let h, k be positive numbers satisfying

h

k
≥ max

1≤j≤n
U∈Ω

|λj(U)|.

Consider the points (mh, nk) as points of a grid, with m,n ∈ Z, n ≥ 0 and m+n =
even. For example, at t = 0, the initial data are approximated by a function that is
constant in every interval mh < x < (m+ 2)h, m = 0,±2, . . . Theorem 1.1 provides
us of a unique admissible solution in a neighborhood of (2mh, 0), for 0 < t < k,
as long as the amplitude of |U− − U+| is sufficiently small. Since two neighboring
Riemann solutions are connected by a constant state, the set of Riemann solutions
constitutes an explicit weak solution.

In order to construct approximate solution beyond t = k, one has to define a
piecewise approximation at t = k. Godunov [15] adopted the average of the solution
in the interval (2m− 1)h < x < (2m+ 1)h while Glimm [14] used the random sam-
pling point

(
(2m− 1 + 2θ1)h, k

)
. In this way, one can repeat the above arguments

and construct an approximate solution as long as each jump U−−U+ is kept suffi-
ciently small. In particular, Glimm [14] obtained the following remarkable existence
theorem (see also Lax [16]) for general initial data with small total variation.

Theorem 1.2 ([14]). Assume condition 3. If the total variation of the initial data
is sufficiently small, then there exists a global in time solution to the initial-value
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problem 1-2. Moreover, if the system admits a convex entropy function, such a weak
solution satisfies the entropy condition.

About the proof of Theorem 1.2, the first task consists of estimating the Riemann
solution at (mh, nk) by those at

(
(m − 1)h, (n − 1)k

)
and

(
(m + 1)h, (k − 1)k

)
in

the approximate solutions. Since system 1 is invariant with respect to similarity
transformations, we can enlarge both time and space scales simultaneously and turn
a local phenomenon into an asymptotic one: two sets of waves interact and then
a set of outgoing waves is generated. The task is to estimate the amplitudes of
the outgoing waves by those of incoming waves; this gives rise to the so-called local
interaction estimates.

For approximate solutions with small spatial total variation, the amplitude of the
outgoing wave of the j-th characteristic direction is a linear superposition of those
of the two incoming waves of the same direction plus a quadratic term, see Lemma
2.1. The second task is to show that the sum of the quadratic terms is uniformly
bounded with respect to h and to the initial data; this gives rise to the so-called
global interaction estimates.

Glimm existence Theorem 1.2 has a stochastic nature in the sense that the limit
function satisfies the equations for almost every choice of the random sequence
{θn}. Indeed, Liu [18] proved that the limit function satisfies the equations for
every choice of an equidistributed sequence. Later, DiPerna [13], Bressan [9] and
Risebro [23] proposed the method of the wave-front tracking, an alternative to the
random sampling method, and obtained the same general existence result. We note
that solutions obtained via wave-front tracking are more appropriate for studying
the uniqueness of admissible weak solution, see Bressan [10, 11].

The requirement that the initial data have small total variation can be removed
in some cases, one of them being the isothermal gasdynamics equations:

vt − ux = 0, ut +
(a2

v

)
x = 0. (5)

Nishida [21], by using the Glimm difference scheme, showed that initial data with
merely bounded total variation give rise to global solutions.

Theorem 1.3 ([21]). If the total variation of the initial data (v0, u0) is finite, then
the initial-value problem for system 5 has a global solution.

In this case, the local interaction estimates are provided by the famous Nishida
lemma, see Lemma 2.2. Surprisingly, these estimates require no quadratic term.
Thus, the global interaction estimates are not necessary and Nishida showed instead
that the total amount of negative variation (the total amount of shock waves) is
uniformly bounded.

Though Nishida lemma is strong enough to yield global solutions, more informa-
tion on the approximate solutions is required to study decay properties, the local
structure of the solutions and so on. Asakura [4] proved that Nishida solutions
actually decay by introducing the notion of approximate shock fronts and the parti-
tion of elementary waves with large amplitudes. There, the crucial point is that the
amplitudes of the approximate shock fronts decay with the rate of a geometric series
as the characteristic directions change after the interaction with other waves. How-
ever, as long as Glimm difference scheme is concerned, tracing back the strengths
is hard. This is due to the fact that the local interaction potential contains not
only the present amount of wave interactions but also the future amount of wave
interactions.
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The study of the local interactions looks much easier in the approximate solutions
constructed by the wave-front tracking scheme than in those obtained by the Glimm
scheme. The reason is that, in the former case, the local interaction potential
contains only the present amount of wave interactions. This is why Asakura [5]
first introduced the path decomposition in the framework of a wave-front tracking
algorithm to study the equations of the isentropic gas dynamics (also including the
isothermal case)

vt − ux = 0, ut +
(a2

vγ

)
x = 0, (γ ≥ 1). (6)

The decay property of Nishida solutions obtained in the case γ = 1 still holds for
the solutions of system 6 and is interpreted as the pathwise Nishida lemma. This
method has been used in subsequent papers, see Asakura-Corli [7, 8]. We note that
also Temple and Young [25] introduced a (different) notion of path; a short account
of their work is found in Section 2.

After this general introduction, the paper goes on as follows. In the next Sec-
tion 2 we provide some more details about the constructions briefly outlined in
this Introduction, to the aim of motivating and introducing the path decomposition
method. Links to similar ideas are also given in a sort of short survey. Some recent
results obtained by the authors [7, 8] are then reported in Sections 3 and 4. In
particular, in Section 3 we show with full details this technique when applied to a
simple system of three equations arising in phase transition modeling; moreover, a
slightly stronger result than that given in [7] is proved.

2. A survey of the path decomposition method. In this section we trace back
the main ideas that led to the path decomposition method. Most results quoted here
are classical; we refer the reader to the book of Dafermos [12] for a comprehensive
treatment of the subject.

We begin with providing some more details about the Glimm scheme. Let θ =
{θn} be a sequence of random numbers in (0, 1); we may assume that θ is an
equidistributed sequence in (0, 1), see Liu [18]. For m,n ∈ Z, n ≥ 0, m+n = even,
the mesh points in the Glimm scheme are defined by

Am+1,n =
(
(m+ 2θn)h, nk

)
,

for n ≥ 0; see Figure 1. The half plane R× R+ is divided into a countable number
of diamond shaped domains ∆m,n, which are defined by the vertices

Am,n+1, Am−1,n, Am,n−1, Am+1,n.

The domain ∆m,n is called the interaction diamond centered at (mh, nk). A curve
consisting of segments joining Am,n to Am+1,n+1 and Am,n to Am+1,n−1 is called
an I-curve. We can partially order the I-curves: we say that I > J if every point
of J is either on I or it is contained between I and t = 0.

Next, we define Glimm approximations U = Uh,θ as follows. For n = 0 we denote

Uh,θ(Am,0) = U0

(
(m+ θ0)h

)
.

Then, assume that Uh,θ is defined at (x, t) = Am±1,n and that the Riemann problem:

Vt + F (V )x = 0 (m− 1)h ≤ x ≤ (m+ 1)h, nk < t < (n+ 1)k,

V (x, nk) =

{
V (Am−1,n) (m− 1)h ≤ x < mh,
V (Am+1,n) mh < x ≤ (m+ 1)h,
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:  Random Sampling Point

Figure 1. Glimm approximate solution.

is solved. Then we define Uh,θ(Am,n+1) = V (Am,n+1). It is convenient to set

Uh,θ(x, t) = V (x, t) for (m− 1)h ≤ x < (m+ 1)h and nk ≤ t < (n+ 1)k.

By using the above difference scheme, Glimm [14] proved Theorem 1.2.
Let us consider the approximate solution in an interaction diamond D = ∆m,n,

see Figure 2. For 1 ≤ j ≤ n we denote by αj the left incoming waves, by βj the
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Figure 2. Wave interaction in the Glimm scheme.

right incoming waves and finally by εj the outgoing waves. Each wave is either a
shock wave, a rarefaction wave or a contact discontinuity; all of them are called
elementary waves. The waves αj , βk are said to be approaching if either j > k or
j = k but then at least one of them is a shock wave. With a little abuse of notation,
we also denote by αj , βj and εj the strengths of the waves. Then, we define the
local interaction potential :

Q(D) =
∑
αj ,βk

approaching

|αjβk|.

The following local interaction estimates are crucial in the Glimm scheme.

Lemma 2.1 (Local Interaction Estimates, [14]). With reference to Figure 2 we
have, for i = 1, 2, . . . , n,

εi = αi + βi +O(1)Q(D).
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We observe that the amplitude of an outgoing wave corresponding to the charac-
teristic direction i is the sum of the amplitudes of the incoming waves of the same
characteristic direction plus a quadratic term. Once that we have briefly recalled
this background topic, we can focus on subsequent research.

In 1977, Liu [18] further developed the above issues and introduced the method
of partition of elementary waves, in order that the strengths of the elementary

waves at time T > 0 can be traced back to the initial data. Let ε
(m,n)
i denote

the strength of the i-th wave issuing from (mh, nk) and M a sufficiently large

number. By partitioning ε
(m,n)
i into smaller pieces, Liu constructed a one-to-one

correspondence between waves at n, where(p − 1)M ≤ n ≤ pM and p ∈ N, and
those at (p− 1)M , modulo the total amount of interactions and cancelations. This
fundamental paper was the main source of ideas for Asakura [4].

Later on, in 1993, in order to study how the above quadratic terms Q were
generated, Young [26] picked up a pure quadratic wave from the local interaction
potential, modulo third order waves, and provided two nice tools for tracing back
the speeds and strengths of the elementary waves: the reordering and the inter-
action maps. More precisely, let (γ1, γ2, · · · , γn) denote a sequence of elementary
waves such that γj and γj+1 are separated by constant states. As long as the linear
superposition of amplitudes in each interaction is concerned, the interaction is de-
scribed by a permutation of the above sequence: this is called the reordering . When
the quadratic part of the interaction has to be concerned, Young takes the k-th qua-
dratic wave into the sequence of elementary waves by adding its amplitude to that
of the nearest k-wave: this is the interaction map. Thus, in general, a reordering
determines an interaction map.

By following the thread of some ideas of Young [26], Temple and Young [25]
introduced in 1996 the notion of path for the system of compressible Euler equations.
Let jp denote a 1 or 3-wave and kp a contact discontinuity which interacts with jp.
A sequence (jp, kp), for p = 1, 2, . . . N , such that jp+1 is the image of the interaction
map induced by the (jp, kp) interaction, is called a path in [25]. Temple and Young
also provided various calculi along the paths and in particular introduced the notion
of path integral .

One of the main ideas leading to the path decomposition technique comes from
the paper of Nishida [21]. In the system 5 of the isothermal gasdynamics, a pair of
Riemann invariants is

w = u− log p, z = u+ log p.

Then, the amplitudes of the waves are defined by

ε1 = wR − wL, ε2 = zR − zL.

In particular, according to this definition, εj > 0 if and only if εj is a rarefaction
wave; then εj < 0 if and only if εj is a shock wave. For a real number ε we define its
positive and negative part as ε+ = max {ε, 0} and ε− = max {−ε, 0}, respectively.
We have the following result.

Lemma 2.2 (Nishida Lemma, [21]). Consider system 5. Then we have∑
j=1,2

ε−j ≤
∑
j=1,2

(α−j + β−j ).

This lemma shows that the sum of the strengths of the shock waves at t = nk is
decreasing. However, for example, when a 1-shock and a 1-rarefaction wave interact
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then an outgoing 2-shock wave is generated, which is not quadratically estimated
by the interacting waves. Hence, the strengths of the shock waves do not decrease
in each direction.

In order to study the time decay of solutions to the system of isothermal gas
dynamics, in 1993 Asakura [4] constructed a partition of elementary waves with
large amplitudes. Then, a wave partitioned at time T > 0 can be traced back to
the initial data. If a partitioned wave does not change its characteristic direction
between 0 and T, then its amplitude never increases; if a partitioned wave changes
characteristic direction, then the amplitude decreases with the rate of a geometric
series as the characteristic direction changes after the interaction.

A short description of the path decomposition method is now provided; details of
construction in the special case of a system of three equations will be given in Section
3. Consider a wave-front tracking approximate solution defined for 0 ≤ t < T. Let
P0, P1, . . . , Pn be a sequence of interaction points in the plane xt, such that Pm−1

and Pm are connected by a shock wave. According to [5, 7, 8], a path is a polygonal
line joining the points P0, P1, . . . , Pn. A single shock front is composed of several
segments of paths. The path decomposition consists in assigning a path’s strength
to all segments so that the strength of a single shock front is the summation of
paths’ strengths. Primary paths are generated at the initial line t = 0. At some
interaction points we have quadratic waves which generate secondary paths. The
strength of a single path never increases; if its characteristic direction changes, its
strength decreases at a geometric rate.

3. A model from phase transitions. We consider the following system of con-
servation laws arising in modeling phase transitions in fluids: vt − ux = 0,

ut + p(v, λ)x = 0,
λt = 0,

(7)

for t > 0 and x ∈ R. Here v > 0 stands for the specific volume, u the velocity and
λ ∈ [0, 1] the mass density fraction of vapor in the fluid. About the pressure p we
assume that, for a C1 function a defined on [0, 1],

p(v, λ) =
a2(λ)

v
, with a(λ) > 0, a′(λ) > 0. (8)

Under assumption 8 on the pressure, system 7 is easily proved to be strictly hyper-
bolic for (v, u, λ) ∈ Ω = (0,+∞)×R×[0, 1] with characteristic speeds e1 = −a(λ)/v,
e2 = 0, e3 = a(λ)/v; the characteristic speed e2 is linearly degenerate, the other
ones are genuinely nonlinear.

We refer to [7] for more information on system 7. We just remark that if λ is
constant then we recover system 5; on the other hand, system 7 can be read as the
system of non-isentropic gas-dynamics in Lagrangian coordinates in case of smooth
solutions, if we intend λ to represent the entropy; see Liu [19, 20]. Moreover, our
main result, see Theorem 3.1, reminds of an analogous result due to Nishida and
Smoller [22] for system 6.

The global existence of weak solutions to system 7 for initial data with large total
variation was first proved by Amadori and Corli [1] by using a front-tracking scheme
inspired by a paper of Amadori and Guerra [3]. The approach in [7] differs from
that in [1] under several respects. In particular, Riemann coordinates as in [22] are
exploited; as a consequence, the treatment of wave curves, Riemann problem and
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the study of wave interactions is mostly given by geometric considerations, following
[22]. The final results are not easily comparable, since they refer to related but
different quantities. However, as we stressed above, the main difference lies in the
introduction of the path decomposition in the algorithm.

3.1. The main result. We denote by TV(f) the total variation of f : R → R. If
f is strictly positive we also use the weighted total variation of f ,

WTV(f) = 2 sup

n∑
j=1

|f(xj)− f(xj−1)|
f(xj) + f(xj−1)

, (9)

where the supremum is taken over all n ≥ 1 and (n + 1)-tuples of points xj , xo <
x1 < . . . < xn. The weighted total variation is close to the logarithmic variation,
as the following estimate shows [1]:

inf f

sup f
TV (log(f)) ≤WTV(f) ≤ TV (log(f)) .

We denote the initial data for system 7 at t = 0 by(
v̄(x), ū(x), λ̄(x)

)
with v̄(x) ≥ v0 > 0 and 0 ≤ λ̄(x) ≤ 1. (10)

Moreover, we write ā(x) = a(λ̄(x)) and

ā∗ = inf
x∈R

ā(x) , ā∗ = sup
x∈R

ā(x), [ā]∗ =
ā∗ − ā∗
ā∗ + ā∗

.

Theorem 3.1 ([7]). Consider system 7 under the assumption 8 and initial data 10.
There exists a positive constant c ∈ (0, 1) such that if

1

2

WTV(ā)

1− [ā]∗
e

1
2

WTV(ā)
1−[ā]∗ · 2− c

1− c
<

1

2
(11)

and

WTV(ā) · TV(v̄, ū) is sufficiently small, (12)

then the Cauchy problem 7-10 has a weak entropic solution defined for t > 0.

We observe that condition 11 requires that WTV(ā) < 1/2, as in [1]. Throughout
the paper [7], Riemann coordinates r and s for the first two equations in 7 with
respect to ā∗ are exploited; they are r = u − ā∗ log p and s = u + ā∗ log p. The
strength of an i-wave joining (po, uo, λo) to (p, u, λ) is defined by

ε1 = r − ro , ε2 = 2
a− ao
a+ ao

, ε3 = s− so . (13)

The total variation in 12 is computed by using the above Riemann coordinates and
the max metric; more precisely,

|(v′, u′)− (v, u)| = max
{
|r(v′, u′)− r(v, u)|, |s(v′, u′)− s(v, u)|

}
. (14)

The proof of Theorem 3.1 is based on a wave-front tracking algorithm. First, the
initial data (v̄, ū, λ̄) are approximated by a sequence of piecewise constant functions
(v̄ν , ūν , λ̄ν), ν ∈ N, with a finite number of jumps. Second, an accurate and a
simplified Riemann solver are introduced as in the book by Bressan [11]. About
the functionals, we denote by Si(t) (Ri(t)) the i-shock (resp., rarefaction) waves at
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time t and by CD the contact discontinuities in the approximate solution; by A(t)
we denote the set of approaching waves. Then,

L(t) =
∑

δi∈Si(t)
i=1,3

|δi|, L+(t) =
∑

δi∈Ri(t)
i=1,3

|δi|, Ltot(t) = L(t) + L+(t),

Q(t) =
∑

δi,δ
′
i
∈Si(t)

i=1,3

|δiδ′i|, Q2(t) =
∑

(δ2,δi)∈A(t)
i=1,3

|δ2δi| ,

and finally F (t) = L(t) +KQ(t) +K2Q2(t). We also denote L2 =
∑
δ2∈CD |δ2|.

Now, we may comment on the quantities introduced in Theorem 3.1. The term
c depends on the slopes of the shock curves in the region where the solution takes
its values and is related to the damping of waves emitted in an interaction. More
precisely, it depends on M̄ , ā∗ and ā∗, where M̄ is a uniform bound to the strengths
of the shocks in the approximated solutions. In [7] we showed that we can take

M̄ = 2|(v̄+∞, ū+∞)− (v̄−∞, ū−∞)|+ 24

1− [ā]∗
TV (v̄, ū) .

For y < 0 we denote by g(y, a) = 2ā∗y + 2a sinh y a (negative) function arising in
the parametrization of shock curves. For any fixed a, the function g is invertible
with respect to y and we denote f(x, a) = 2a sinh

(
g−1(x, a)

)
− 2ā∗g

−1(x, a), which
is again negative. Notice that we have

fx(x, a) =
a cosh(y)− ā∗
a cosh(y) + ā∗

, for y = g−1(x).

The function fx is positive when a ≥ ā∗. Then, the term c can be estimated by

c(M̄, ā∗, ā
∗)

≤ max

{
max

ā∗≤a≤ā∗
−M̄≤δ≤0

fx (δ, a) , max
ā∗≤a≤ā∗
−M̄≤δ,δ′≤0

fx

(
δ + δ′ − a− ā∗

2(a+ ā∗)2
δδ′, a

)}
. (15)

Indeed, we can simplify a bit the previous estimate.

Proposition 1. We have

c(M̄, ā∗, ā
∗) ≤ max

ā∗≤a≤ā∗
fx

(
−2M̄ − a− ā∗

2(a+ ā∗)2
M̄2, a

)
. (16)

Moreover, if ā∗ < 3ā∗ we have

c ≤ fx
(
−2M̄ − ā∗ − ā∗

2(ā∗ + ā∗)2
M̄2, ā∗

)
. (17)

Proof. For simplicity we drop all ·̄’s in M , a∗ and a∗. We see that for δ and δ′

negative we have

δ + δ′ − a− a∗
2(a+ a∗)2

δδ′ ≤ δ.

We proved in [7, Lemma 3.1] that x → f(x, a) is concave for every a > 0; then
x→ fx(x, a) is decreasing for every a > 0. Therefore we have

fx

(
δ + δ′ − a− a∗

2(a+ a∗)2
δδ′, a

)
≥ fx (δ, a) .
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As a consequence we deduce that

c(M,a∗, a
∗) ≤ max

a∗≤a≤a∗
−M≤δ,δ′≤0

fx

(
δ + δ′ − a− a∗

2(a+ a∗)2
δδ′, a

)
.

Moreover, for any a ∈ [ā∗, ā
∗] the negative function [−M̄, 0] × [−M̄, 0] 3 (δ, δ′) →

δ + δ′ − a−a∗
2(a+a∗)2 δδ

′ reaches it minimum when δ = δ′ = −M and then we get 16.

To prove 17 we define

Φ(a) = fx

(
−2M − a− a∗

2(a+ a∗)2
M2, a

)
.

We need to maximize Φ. We have

Φ′(a) = −M
2

2

3a∗ − a
2(a+ a∗)3

· fxx
(
−2M − a− a∗

2(a+ a∗)2
M2, a

)
+ fxa

(
−2M − a− a∗

2(a+ a∗)2
M2, a

)
.

By differentiating the expression g
(
g−1(x, a), a

)
= x with respect to a we deduce

∂ag
−1(x, a) = − sinh y

a cosh y + a∗
.

Moreover, we have

fxa(x, a) =
2a∗(a∗ cosh y + a)

(a cosh y + a∗)3
, y = g−1(x, a).

Then

Φ′(a) =
a∗

(a cosh y + a∗)3

[
−M

2

2

3a∗ − a
(a+ a∗)3

a sinh y∗ + 2(a∗ cosh y∗ + a)

]
,

where

y∗ = −2M − a− a∗
2(a+ a∗)2

M2.

Since fxx < 0, fxa > 0, we deduce that if a < 3a∗ then Φ′(a) > 0, whence 17.

We emphasize that c depends on TV(v̄, ū) through M̄ . Condition 11 concerns
the size of 2-waves. If λ̄ is constant then c only depends on M̄ and 11-12 are trivially
satisfied; in this way we recover the result of Nishida [21].

A precise threshold for the smallness of the quantity WTV(ā) ·TV(v̄, ū) in 12 is
that both inequalities below are satisfied (the related formulas in [7, Remark 11.9],
namely (11.40) and (11.42), have a couple of typos):

2− c
2ā∗

e
1
2

L2
1−[ā]∗

{
1 +

1− c
8c

(
2− c
2ā∗

Ltot(0) +
1

1− [ā]∗

)}
L2Ltot(0)

<
1

2

(1− c)2

2− c
− 1

2

WTV(ā)

1− [ā]∗
e

1
2

WTV(ā)
1−[ā]∗ , (18)

L2Ltot(0) ≤ 2ā∗
2(1− [ā]∗)(1− c)− (2− c)L2

(2− c)2(1− [ā]∗)
. (19)

They are both satisfied if L2Ltot(0) is small. These conditions are expressed in
terms of the approximate initial data; now, we write these conditions in terms of
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the real initial data and show that they can be reduced to a single condition. To
this aim, we introduce the following notation

V = TV(v̄, ū), W = WTV(ā),

V =
2(2− c)V

ā∗
, W =

1

2

W

1− [ā]∗
.

(20)

Proposition 2. Conditions 11 and 12 in Theorem 3.1 are implied by the single
condition

2VW
{

1 +
1− c

8c(1− [ā]∗)
(1 + V)

}
eW +WeW <

1

2

(1− c)2

2− c
. (21)

Proof. First, notice that by 132, 9 and [7, (6.1)] it follows that

L2 ≤WTV(ā).

Second, consider a Riemann problem with initial data (vL, uL, λL), (vR, uR, λR) and
solved by waves εi, i = 1, 2, 3; by [7, (4.4)] it follows that

|ε1|+ |ε3| ≤
2

1−max{kL, kR}
(|rR − rL|+ |sR − sL|) .

Here, kL = aL−ā∗
aL+ā∗

, kR = aR−ā∗
aR+ā∗

. Since kL, kR ≤ [ā]∗, it follows that |ε1| + |ε3| ≤
2

1−[ā]∗
(|rR − rL|+ |sR − sL|). By the inequality a+ b ≤ 2 max{a, b}, which is valid

for a ≥ 0, b ≥ 0, we deduce that

Ltot(0) ≤ 4

1− [āν ]∗
TV(v̄ν , ūν) ≤ 4

1− [ā]∗
TV(v̄, ū),

by the choice of the approximating sequence, see [7, §6]. Using notation 20 we see
that conditions 18 and 19 are satisfied if

2(2− c)VW
ā∗(1− [ā]∗)

e
1
2

W
1−[ā]∗

{
1 +

1− c
8c(1− [ā]∗)

(
1 +

2(2− c)
ā∗

V

)}
<

1

2

(1− c)2

2− c
− 1

2

W

1− [ā]∗
e

1
2

W
1−[ā]∗ ,

2

1− [ā]∗
VW ≤ ā∗

2(1− [ā]∗)(1− c)− (2− c)W
(2− c)2(1− [ā]∗)

.

By using the quantities V and W introduced above we can simplify the above
conditions:

2VW
{

1 +
1− c

8c(1− [ā]∗)
(1 + V)

}
eW +WeW <

1

2

(1− c)2

2− c
,

VW +W ≤ 1− c
2− c

.

The second condition is clearly implied by the first one. Then, we see that 18-19
reduce to a single condition, namely 21. We observe that condition 21 also contains
condition 11 as a necessary condition; then, 21 is the only condition required in
order that Theorem 3.1 holds.

We remark that, even if the product VW is small, condition 21 imposes a bound
on WTV(ā). This is not surprising: an analogous bound for the same quantity was
required in [1, (2.8)], see also the slightly different statement in [2, Theorem 3.1].

Moreover, notice that while the conditions in [1, 2] only related the (weighted)
total variations, condition 21 also involves the L∞ bounds of the initial data of the
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solution by means of the quantities c and [ā]∗. This means that some compatibility
conditions between the (weighted) total variation and the oscillation of the initial
data must be satisfied; these compatibility conditions are expressed as bounds from
below of the variation. For instance, by [7, (6.4)] we now that WTV(ā) ≥ 2[ā]∗; on
the other hand, since |(v̄+∞, ū+∞)− (v̄−∞, ū−∞)| ≤ TV(v̄, ū), we deduce that

M̄ ≤ 2

(
1 +

12

1− [ā]∗

)
TV (v̄, ū) ,

which gives a bound to TV (v̄, ū).

3.2. The path decomposition technique. First, we need some results on wave
interactions. We first deal with interactions of the 2-wave. Below, we write R, S
and C for rarefactions, shocks and contact discontinuities, respectively; an index
denotes the family.

Proposition 3. Assume that a 1- or a 3-wave δi interacts with a 2-wave δ2 of side
states λL, λR. Then, the outgoing waves are as follows:

(i) C2R1, aL < aR and R3C2, aL > aR → R1C2R3;
(ii) C2R1, aL > aR → R1C2S3 and R3C2, aL < aR → S1C2R3;

(iii) C2S1, aL < aR and S3C2, aL > aR → S1C2S3;
(iv) C2S1, aL > aR → S1C2R3 and S3C2, aL < aR → R1C2S3.

The strengths εi of the transmitted wave, εj of the reflected wave and ε2 satisfy

|εi − δi| ≤ |εj |, ε2 = δ2.

At last, the following quadratic interaction estimates hold for i, j = 1, 3, i 6= j:

|εj | ≤ 1
2 |δ2δi|, |ε1|+ |ε3| ≤ |δi|+ |δ2δi|; in all cases but (ii),

|εj | ≤ 1
2

1
1−[a]∗

|δ2δi|, |ε1|+ |ε3| ≤ |δi|+ 1
1−[a]∗

|δ2δi|, in case (ii).

Now, we focus on interactions of waves of families 1 and 3; we denote by λo the
constant value of λ in the interaction and

ko
.
=
ao − a∗
ao + a∗

, lo
.
=

1

2(ao + a∗)
.

Proposition 4. Assume that an i-wave Wi and a j-wave Wj, i, j ∈ {1, 3} interact
at time t > 0. Let δi, δj (or δi, δ

′
i if they are of the same type) be their strengths,

εk be the strengths of the outgoing waves, k = 1, 3, UL, UR the outer states in the
interaction.

Then, there exists a constant 0 ≤ cLR < 1, depending on UL and UR and uni-
formly on λo, such that the following estimates hold.

(1) W3W1 →W1W3: εi = δi for i = 1, 3.
(2) SiR

′
i → SiSj: |εj | ≤ cLRζi for ζi

.
= |δi| − |εi| > 0.

(3) SiR
′
i → RiSj: |εj | ≤ cLR|δi|.

(4) SiS
′
i → SiRj: |εj | ≤ min {cLR|δi|, cLR|δ′i|, lo|δiδ′i|}, |εi| ≤ |δi|+ |δ′i|+ kolo|δiδ′i|.

The constants cLR are uniformly estimated if there exists M > 0 such that

the size of any interacting shock wave is less than M . (22)

Then there exists c = c(M) ∈ (0, 1) bounding from above all cLR’s and such that

|εj | ≤


c · ζi in case (2) ,

c · |δi| in case (3) ,

min {c|δi|, c|δ′i|, lo|δiδ′i|} in case (4) .

(23)
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We resume below what we stated on shocks produced by physical interactions.

Proposition 5. Consider an interaction between physical waves, under the notation
of Propositions 3,4 and assume 22. Then, there exist h′ ≥ 0 and h′′ ≥ 0, possibly
changing from line to line, such that:

2-int’s: (ii) |εj | = h′′|δ2δi|, h′′ ≤ 1

2(1− [a]∗)
,

(iii) |εi| ≤ |δi| |εj | = h′′|δ2δi|, h′′ ≤ 1/2,
(iv) |εi| = |δi|+ h′′|δ2δi| h′′ ≤ 1/2,

13-int’s: (2) |εi| = |δi| − ζi |εj | = h′ζi, h′ ≤ c,
(3) |εj | = h′|δi|, h′ ≤ c,
(4) |εi| = |δi|+ |δ′i|+ h′′|δiδ′i| h′′ ≤ kolo .

We finally introduce in detail the technique of decomposition by paths. Consider
an approximate solution defined for 0 ≤ t < T and a sequence P0, P1, . . . , Pn of
interaction points in the plane xt, with Pm = (xm, tm) and 0 ≤ t0 < t1 < . . . < tn,
such that Pm−1 and Pm are connected by a shock wave, for m = 1, . . . , n. A path
Γ : P0 → P1 → · · · → Pn is a polygonal line joining the points P0, P1, . . . , Pn.
At any interaction of waves of families 1 or 3, the strength of an outgoing shock is
decomposed as in Proposition 5 into a linear and a quadratic part, which are the
strengths of the segment defined by that shock; a 2-wave is never decomposed. A
path is primary and denoted ΓP if it starts at t = 0 and its segments have strengths
obtained either from linear parts of decompositions or from shocks transmitted
through an interaction with a 2-wave. Secondary paths are denoted by ΓS and
are associated to the quadratic parts of the decomposition. Paths are constructed
according to the inductive process below and a generation order (order, for brevity)
is assigned.
• t = 0. Any shock generated at t = 0 gives raise to a primary path, which is

composed by a single segment. If δi is a shock from P0 ∈ {t = 0} and interacting at
P1 = (x1, t1), then we have a primary path ΓP : P0 → P1 of order 1 and strength
|δi| composed by the segment P0P1. We also assign order 1 to all rarefaction waves
generated at t = 0.
• t = t1. Let P1 be the first interaction point and assume that the accurate

Riemann solver is used in solving the interaction; we refer to Figure 3.
If no shock is involved in the interaction, then three cases are possible: in cases

(i) and (1), two interacting rarefactions, no path is generated; in case (ii) we define
a secondary path ΓS : P1 → P′2 of order 2 and strength h′′|δ2| · |δi|.

Assume that a shock δi from P0 ∈ {t = 0} interacts at P1 with a wave δ. Let εi,
εj be the emitted waves and P2, P′2 the next interaction points for the waves εi, εj ,
respectively; we have the following cases.

(iii) We decompose ΓP into ΓP1 and ΓP2 ; ΓP1 has order 1 and strength |εi|, ΓP2 has
order 1 and strength |δi| − |εi|. The path ΓP1 is extended to P2, ΓP2 stops at
P1. A secondary path Γ′S : P1 → P′2 is generated, of order 2 and strength
h′′|δ2| · |δi|.

(iv) The path ΓP is extended to P2; order and strength of P0P1 are unchanged,
the order of P1P2 is 1, the strength |δi|. A secondary path Γ′S : P1 → P2 is
generated with order 2 and strength h′′|δ2| · |δi|.

(1) If δi is a shock, then ΓP is extended to P2, with order and strength unchanged.
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Figure 3. Interactions of a 1-wave with a 2-wave (above) and
with another 1-wave (below). Primary paths are depicted with
thick lines, secondary paths with thin lines, rarefactions and con-
tact discontinuities with broken lines. Numbers refer to generation
orders.

(2) Two paths ΓP1 , ΓP2 from P0 are defined. ΓP1 has order 1 and strength |εi| =
|δi| − ζi in the segment P0P1; it is extended to P2 where the order of P1P2 is
1, the strength |εi|. ΓP2 has order 1 and strength ζi in the segment P0P1; it is
extended to P′2 where the order of P1P′2 is 2, the strength |εj | = h′ζi.

(3) The path ΓP is extended to P′2; order and strength of P0P1 are unchanged, the
order of P1P′2 is 2, the strength |εj | = h′|δi|.

(4) The path ΓP is extended to P2. Generation order and strength of P0P1 are
unchanged; the order of P1P2 is 1, the strength |δi|. A secondary path ΓS :
P1 → P2 is generated with order 2 and strength h′′|δiδ′i|.

If the wave δi interacts with a physical wave δ but |δiδ| < ρ, then the simplified
Riemann solver is used. Cases (i), (ii) and (1), two interacting rarefactions, do
not generate paths. In cases (iii) and (iv) a path is extended with the same order;
the same happens in case (1) if a shock interacts. When a shock δi interacts with
rarefaction δ′i of the same family, then the path is extended with strength |δi| − δ′i
if |δi| − δ′i > 0, otherwise it stops. If a shock δi meets another shock δ′i of the same
family then the path is extended with the same strength.
• Definition of orders. Let Γ = {Γ`} be the collection of paths in the approximate

solution up to the interaction time tn. The segment associated to a shock γ belongs
to N paths which can be ordered by putting first the p primary paths for increasing
order, then the s = N − p secondary paths, again for increasing order; by dropping
the indexes P and S and denoting km the order of a segment, we write

Γ1, . . . Γp, Γp+1, . . . ΓN , for k1 ≤ . . . ≤ kp, kp+1 ≤ . . . ≤ kN . (24)

The order of the shock wave γ is defined by kγ = min1≤l≤N{kl}.
We also define the generation order of rarefactions. A rarefaction of size σ con-

tains N = [σ/η] + 1 fronts and each has strength σ/N < η. If a rarefaction wave of
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order k interacts with a 2-wave, then the possibly transmitted (reflected) rarefaction
has order k (k + 1, respectively). By Proposition 3 it follows

|εi − δi| ≤ |εj | ≤
1

2

1

1− [a]∗
|δ2||δi| ≤ |δi|. (25)

Then, the outgoing i-rarefaction wave is decomposed into at most two rarefaction

fronts of order k so that εi = ε
(1)
i + ε

(2)
i , where

εi =

{
ε

(1)
i if δi < εi

δi + ε
(2)
i if εi ≤ δi ≤ 2εi .

(26)

When an i-rarefaction front interacts with a j-wave, with i, j = 1, 3, i 6= j, strengths
and orders do not change. In case (3) the outgoing rarefaction keeps the same order
of the interacting one, in case (4) it is assigned order max{k, k′}+ 1, where k and
k′ are the orders of the colliding shocks.

The generation order of nonphysical waves is defined as follows. If a wave of
order k interacts with a 2-wave, then the order of the outgoing nonphysical wave
is k + 1. If two waves of the same family 1 or 3 interact and a nonphysical wave
is generated, then it is assigned order max{k, k′}+ 1, where k, k′ are the orders of
interacting shocks.
• t = tn. Consider a path Γ : P0 → P1 → · · · → Pn to t = tn and δi a

shock connecting Pn−1 to Pn. Let the segment Pn−1Pn be contained in paths Γl of
strengths |δl|, 1 ≤ l ≤ N , so that, as in (24),

|δi| =
p∑
l=1

|δl|+
N∑

l=p+1

|δl|, (27)

where we omitted the dependence on i in the strengths |δl|. Assume that δi interacts
at Pn with a physical wave δ and |δiδ| ≥ ρ. Let εi, εj be the emitted waves
(i, j ∈ {1, 3}) and Pn+1, P′n+1 the next interaction points for εi, εj , respectively.
Only the following cases deserve consideration.

(iii) There exist 1 ≤ r ≤ N and δr with 0 ≤ |δr| < |δr| such that |δi| − |εi| =

|δr| +
∑N
l=r+1 |δl|. We split Γr into Γ

(1)
r and Γ

(2)
r so that the orders of the

paths are not changed while the absolute values α
(1)
r , α

(2)
r of their strengths

are decomposed according to α
(2)
r : α

(1)
r = |δr| :

(
|δr| − |δr|

)
. We extend

every Γl for 1 ≤ l ≤ r − 1 and Γ
(1)
r up to Pn+1 with orders and strengths

unchanged. The paths Γ
(2)
r and Γl for r + 1 ≤ l ≤ N stop. A secondary path

Γ′S : Pn → P′n+1 is generated with order kδi + 1 and strength h′′|δ2| · |δi|.
(iv) All paths Γl, 1 ≤ l ≤ N , are extended to Pn+1 with equal orders and strengths.

A secondary path Γ′′S : Pn → Pn+1 is generated with order kδi + 1 and
strength h′′|δ2| · |δi|.

(2) This case is analogous to case (iii).
(3) The paths Γl, 1 ≤ l ≤ N , are extended to P′n+1 leaving unchanged the orders

and strengths of their segments until Pn; the order of PnP′n+1 is kδi + 1, the
strength |εj | = h′|δi|.

(4) Let the shock δ′i : P′n−1Pn be contained in the paths Γ′l of strengths |δ′l|, 1 ≤
l ≤ N ′. All paths Γl, 1 ≤ l ≤ N , and Γ′l, 1 ≤ l ≤ N ′, are extended to Pn+1

with orders and strengths unchanged. A secondary path Γ′′S : Pn → Pn+1 is
generated with order max{kδi , kδ′i}+ 1 and strength h′′|δiδ′i|.
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The case when δi interacts with a physical wave δ and |δiδ| < ρ is dealt as in the
previous step. At last, in the interaction of a physical wave with a nonphysical wave
a path is extended with the same order.

This concludes the definitions of paths. In this way, a collection of primary
paths ΓP = {ΓP` } and secondary paths ΓS = {ΓS` } is defined up to the next
interaction time tn+1 and hence as long as the approximate solution exists; we

denote Γ = ΓP ∪ ΓS .
Without entering in the details of the proof of Theorem 3.1, we now state some

immediate consequences of the above construction. The first result shows how the
generation order is related to the decreasing of the strength along a path.

Lemma 3.2. Consider any approximate solution valued in a bounded domain and
any path Γ : P0 → P1 → · · · → Pn; assume 22. Let km be the order and αm the
strength of the segment Pm−1Pm in Γ. Then

km+1 = km ⇒ αm+1 = αm
km+1 = km + 1 ⇒ αm+1 ≤ c · αm .

(28)

By the above lemma we deduce the following important result on the decreasing
of the strength along a path.

Lemma 3.3. Assume 22. For any approximate solution valued in a bounded domain
we have:

(i) αΓ(t) ≤ ckΓ(t)−kΓ(t′)αΓ(t′), for any Γ ∈ Γ and 0 ≤ t′ ≤ t;
(ii) L(t) =

∑
Γ∈Γ αΓ(t).

For Γ ∈ Γ denote by t0,Γ the time at which Γ is generated. Then, by Lemma 3.3
we have

αΓ(t) ≤ ckΓ(t)−kΓ(t0,Γ)αΓ(t0,Γ) . (29)

We denote the total amount of the strengths at time t of all primary paths whose
order at time t is k (resp., larger than k) by

LPk (t) =
∑

Γ∈ΓP
kΓ(t)=k

αΓ(t) V Pk (t) =
∑
l≥k

LPl (t) .

By 29 we finally deduce the decreasing of the collections of primary paths LPk (t)
and V Pk (t).

Proposition 6. Assume 22. For every approximate solution valued in a bounded
domain we have, for k ≥ 1,

LPk (t) ≤ ck−1L(0) ,

V Pk (t) ≤ L(0)
∑
l≥k

cl−1 =
ck−1

1− c
L(0) .

We refer to [7] for further properties of the path decomposition and, in particular,
for how it is exploited to control the wave interactions.

4. The system of nonisentropic gasdynamics. In this section we briefly show
another important application of the method of path decomposition. We are con-
cerned with the non-isentropic system of gasdynamics; in Lagrangian coordinates
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it is written as 
vt − ux = 0,
ut + px = 0,(
E + 1

2u
2
)
t

+ (pu)x = 0.

(30)

Here, v and u are as in Section 3; the pressure p and the internal energy E are
linked together with the temperature Θ and the entropy S by the second law of
thermodynamics dE = ΘdS − pdv. We assume that the gas is ideal and polytropic;
this means that pv = RΘ and E = CvΘ, respectively, where R and Cv are positive
constants. We denote by γ = 1 +R/Cv > 1 the adiabatic gas constant.

We provide system 30 with the initial data

(v, u, S)|t=0 =
(
v̄(x), ū(x), S̄(x)

)
, with v̄(x) ≥ v0 > 0. (31)

In 1977 Liu [20] proved the following fundamental result.

Theorem 4.1 ([20]). Assume 1 < γ ≤ 5
3 . If (γ−1)TV(v̄, ū, S̄) is sufficiently small,

then there exists a global solution with bounded total variation to 30-31.

In the degenerate case γ = 1, the two first equations in 30 decouple from the
third one; then, the entropy is expressed in terms of v and we recover the result
by Nishida [21]. Another proof of Theorem 4.1, which still relied on the Glimm
scheme, was given in [24].

Here follows the main result on the Cauchy problem for system 30, which, on the
contrary, is based on the wave-front tracking algorithm.

Theorem 4.2 ([8]). Under the same assumptions of Theorem 4.1, the wave-front
tracking scheme is stable and provides a global solution with bounded total variation
to 30–31.

We briefly show here the main features of the proof. First, as in Theorem 3.1 and
[20], we introduce Riemann coordinates to analyze the wave curves. The study of
the interactions is particularly heavy, as the related abridged and condensed part in
[20] showed, where eleven patterns of interactions had to be taken into consideration.
A fully detailed analysis was performed by Asakura [6], where also some new and
refined interaction estimates, which are exploited in the proof of Theorem 4.2, were
provided.

Second, the path decomposition technique is applied not only to shocks fronts
but also to entropy fronts (contact discontinuities); that was not the case for the
simpler system 7. Moreover, the notion of secondary rarefaction (analogous to that
of secondary path) needs to be introduced, even if we never need to deal with
rarefaction paths.

Apart from these difficulties, results analogous to those provided in Lemmas 3.2
and 3.3 still hold, where now L(t) includes not only shocks but also the entropy
waves. In particular, the analog of Lemma 3.3 could be interpreted as the pathwise
version of Nishida’s lemma [21]. Moreover, we show that the total amount of
secondary waves (which include secondary rarefactions) is bounded from above by
(γ − 1) times the interaction potential ; this leads to a further understanding of the
assumptions made in Theorem 4.1.
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