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We study, both theoretically and experimentally, modulational instability in optical fibers that have a
longitudinal evolution of their dispersion in the form of a Dirac delta comb. By means of Floquet theory,
we obtain an exact expression for the position of the gain bands, and we provide simple analytical estimates of
the gain and of the bandwidths of those sidebands. An experimental validation of those results has been carried
out in several microstructured fibers specifically manufactured for that purpose. The dispersion landscape of those
fibers is a comb of Gaussian pulses having widths much shorter than the period, which therefore approximate the
ideal Dirac comb. Experimental spontaneous modulational instability spectra recorded under quasicontinuous
wave excitation are in good agreement with the theory and with numerical simulations based on the generalized
nonlinear Schrödinger equation.
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I. INTRODUCTION

Modulational instability (MI) refers to a process where
a weak periodic perturbation of an intense continuous wave
(CW) grows exponentially as a result of the interplay between
dispersion and nonlinearity. MI constitutes one of the most
basic and widespread nonlinear phenomena in physics, and
it has been studied extensively in several different physical
systems such as water waves, plasmas, and optical devices [1].
For cubic nonlinearities, such as those of optical fibers
modeled by the nonlinear Schrödinger equation (NLSE),
the underlying physical mechanism can be understood in
terms of four-photon mixing between the pump, signal, and
idler waves. However, the scalar four-photon interactions
in a homogeneous fiber can be phase matched, and hence
efficient, only in the anomalous group-velocity dispersion
(GVD) regime. In the normal GVD regime, on the other hand,
MI can occur in detuned cavities [2,3], thanks to constructive
interference between the external driving and the recirculating
pulse. Alternatively, MI with normal GVD can also arise in
systems with built-in periodic dispersion [4–7], among which
dispersion oscillating fibers (DOFs) have recently attracted
renewed attention [8–14].

In DOFs, phase matching relies on the additional momen-
tum carried by the periodic dispersion grating (quasi-phase-
matching). The occurrence of unstable frequency bands can
then be explained using the theory of parametric resonance, a
well-known instability phenomenon which occurs in linearized
systems for which at least one parameter is varied periodically
during the evolution [8,15]. Up to now, most experimental
investigations carried out in optical fibers have been performed
with basic sinusoidal [9–13] or amplitude modulated [14]
modulation formats. Conversely, in this work, we study a
radically different periodic modulation of the GVD, in the
form of a periodic train (or comb) of Dirac delta spikes.
This is a fundamental and widespread modulation format,
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encountered in a variety of physical systems. In optics, delta
combs have been exploited to model lumped amplification
in long-haul fiber optic transmission systems [16–19], or to
model the power extraction in soliton-based fiber lasers [20].
Moreover, comblike dispersion-profiled fibers have been
exploited to generate trains of solitons starting from a beat
signal [21].

At a more fundamental level, kicked systems are widely
investigated as a paradigm for the emergence of chaos in
perturbed Hamiltonian systems, with the delta-kicked rotor
being the most renowned example [22]. Its quantum version is
described by a Schrödinger equation forced by a Dirac comb
and has been extensively analyzed to study chaos in quantum
systems [23]. Recirculating fiber loops have been used to
reproduce the quantum-kicked rotor with an optical system, to
study chaos and Anderson localization [24,25], and to illustrate
how an optical system can be used to mimic other physical
systems that are more difficult to reproduce experimentally.
In the same vein, we hope the experimental setup we propose
in this paper could be used as an experimental platform to
investigate such phenomena in the presence of nonlinearities,
a topic of much current interest.

Finally, the approach that we propose to analyze MI in
the fiber with delta-kicked GVD allows us, on one hand, to
enlighten the features of the parametric resonance that are not
dependent on the specific format of the modulation, and, on the
other hand, to compare and contrast the features of the ideal
delta-kicked profile with other formats including nonideal
(physically realizable) kicking as well as widely employed
profiles such as oscillating GVD.

The paper is organized as follows. In Sec. II, we provide a
simple argument allowing to determine the central frequencies
of the unstable sidebands for general periodically modulated
fibers. In Sec. III, we then use Floquet theory to analytically
compute the width of the gain bands and as well as their
maximum gain for dispersion-kicked fibers. In Sec. IV, we
investigate numerically the effect of the smoothing of the delta
comb. In Sec. V, we describe the experimental setup and we
compare the experimental results with theory and numerical
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simulations based on the generalized NLSE. We draw our
conclusions in Sec. VI.

II. IDENTIFYING THE GAIN BAND CENTRAL
FREQUENCIES

Let us consider the following NLSE:

i
∂u

∂z
− β2(z)

2

∂2u

∂t2
+ γ (z)|u|2u = 0, (1)

where we assume the z-dependent GVD β2(z) and the
nonlinear coefficient γ (z) to be of the form

β2(z) = βav + βmfZ(z), γ (z) = γav + γmgZ(z), (2)

where fZ and gZ are periodic functions of period Z such
that min fZ = −1 = min gZ , and their mean is vanishing, i.e.,∫ Z/2
−Z/2 fZ(z)dz = ∫ Z/2

−Z/2 gZ(z)dz = 0. Our aim is to analyze
the stability of the general stationary (or CW) solution of
Eq. (1) which reads as u0(z) = √

P exp[iP
∫ z

0 γ (z′)dz′], where
P is the power. We emphasize that in Eqs. (1) and (2)
all the coefficients, as well as distance z and time t , are
written in physical units. Hence, all the formulas that we
write in the following can be readily interpreted in terms of
real-world quantities, thus allowing for a direct comparison
with the experimental results. Nonetheless, in order to simplify
the graphical illustration of such results, in all the figures of the
theoretical sections, we will assume P = βav = γav = 1. This
is always possible, without loss of generality, by introducing
the normalized distance z/znl → z, time t/t0 → t , and field
u/

√
P → u, where znl = (γavP )−1 is the so-called nonlinear

length and t0 = √
βavznl is a characteristic time. In this case

βm, γm, and Z correspond to the physical quantities measured
in units of βav, γav, and znl , respectively.

We consider a perturbation of u0(z) in the form u(z,t) =
[v(z,t) + 1]u0(z), where the perturbation v(z,t) satisfies |v| �
1. Inserting this expression into Eq. (1), and retaining only the
linear terms, we find

i
∂v

∂z
− β2(z)

2

∂2v

∂t2
+ γ (z)P (v + v∗) = 0. (3)

Writing v = q + ip, with q and p real functions, we obtain
the following linear system:

∂q

∂z
− β2(z)

2

∂2p

∂t2
= 0,

∂p

∂z
+ β2(z)

2

∂2q

∂t2
− 2γ (z)Pq = 0.

Finally, taking the Fourier transform of this system in the time
variable t leads to

∂q̂

∂z
+ β2(z)

2
ω2p̂ = 0,

(4)
∂p̂

∂z
− β2(z)

2
ω2q̂ − 2γ (z)P q̂ = 0,

where we used the definiton q̂(z,ω) = 1√
2π

∫
q(z,t)e−iωt dt .

Note that this is a Hamiltonian dynamical system in a two-
dimensional phase plane with canonical coordinates (q̂,p̂).

Analyzing the linear (in)stability of the stationary solution
u0(z) therefore reduces to studying the solutions to (4) for

each ω. Since the coefficients in the equation are z periodic
with period Z, Floquet theory applies. This amounts to study
the linearized evolution over one period Z, to obtain the
Floquet map �βm,γm

which in the present situation is the 2 × 2
real matrix defined by �lin

βm,γm
[q̂(0),p̂(0)] = [q̂(Z),p̂(Z)]. As

a result [q̂(nZ),p̂(nZ)] = (�lin
βm,γm

)
n
[q̂(0),p̂(0)]. Note that

�lin
βm,γm

necessarily has determinant one since it is obtained
by integrating a Hamiltonian dynamics, of which we know
that it preserves phase-space volume. As a consequence, if λ

is one of its eigenvalues, then so are both its complex conjugate
λ∗ and its inverse λ−1. This constrains the two eigenvalues of
�lin

βm,γm
considerably: they are either both real, or lie both on the

unit circle. Now, the dynamics is unstable only if there is one
eigenvalue λ satisfying |λ| > 1, in which case both eigenvalues
are real. We will denote as λ± the two eigenvalues of �lin

βm,γm
.

We are interested in studying the gain, that is

G(ω,βm,γm) = 1

Z
ln (max{|λ+|,|λ−|}) (5)

as a function of ω, βm, and γm [an example of color-map plot
of G in the (ω,βm) plane is reported in Fig. 2, which will be
discussed below for the specific case of the delta comb GVD,
which is the main subject of this paper]. The gain G measures
the growth of [q̂(nZ),p̂(nZ)]. It vanishes if the two eigenvalues
lie on the unit circle. The regions where the gain does not
vanish are commonly referred to as Arnold tongues. We will
explain in the following that, whereas their precise form de-
pends on the choice of fZ,gZ , the position of their tips does not.

Since the system (4) is not autonomous, it cannot be solved
analytically in general. Nevertheless, the above observations
will allow us to obtain some information about its (in)stability
for small βm, γm, and valid for all perturbations fZ,gZ ,
whatever their specific form.

To see this, we first consider the case βm = 0 = γm. It is
then straightforward to integrate the system (4). The linearized
Floquet map is then given by

�lin
Z,0 =

⎛
⎝ cos(kZ) −

β2
2 ω2

k
sin(kZ)

k
β2
2 ω2

sin(kZ) cos(kZ)

⎞
⎠ := L, (6)

where

k2 = β2

2
ω2

(
β2

2
ω2 + 2γavP

)
. (7)

Here, β2 = βav > 0 (normal average dispersion) since we
restrict our investigations to the defocusing NLSE. Note that
the matrix L has determinant equal to 1, as expected. The
eigenvalues of L can be readily computed as

λ±(ω,βm = 0 = γm) = exp(±ikZ). (8)

What will happen if we now switch on the interaction terms
fZ(z) and gZ(z)? It is then no longer possible, in general, to
give a simple closed-form expression of the solution to the
system (4), which is no longer autonomous, and hence of the
linearized Floquet map �lin

Z,βm,γm
. Nevertheless, we do know

that, for small βm,γm, the eigenvalues of �lin
Z,βm,γm

must be
close to the eigenvalues λ±(ω,βm = 0 = γm). We then have
two cases to consider.

013810-2



MODULATIONAL INSTABILITY IN DISPERSION-KICKED . . . PHYSICAL REVIEW A 92, 013810 (2015)

Z
k

Z
k

Re

Im

Re

Im

FIG. 1. (Color online) Sketch illustrating, in the complex plane,
the effect of the interaction terms fZ(z) and gZ(z) on the eigenvalues
of the linearized Floquet map (6). Black dots correspond to the
unperturbed eigenvalues lying on the unit circle (dashed line). Colored
dots show the new position of the eigenvalues after switching on the
perturbations, leading to a stable regime when k �= π	

Z
(left sketch)

and an unstable one when k = π	

Z
(right sketch).

Case 1. k �= π	
Z

,	 ∈ Z. Now λ−(ω,βm = 0 = γm) =
λ∗

+(ω,βm = 0 = γm), they are distinct, and they both lie on
the unit circle, away from the real axis. They then must remain
on the unit circle under perturbation since, for the reasons
explained above, they cannot move into the complex plane
away from the unit circle. Consequently, in this case, the
stationary solution u0(z) is linearly stable under a sufficiently
small perturbation by βmfZ(z) and γmgZ(z), and this statement
does not depend on the precise form of fZ(z) or of gZ(z). In
fact, with growing βm and/or γm, the two eigenvalues will
move along the unit circle until they meet either at −1 or at
+1 for some critical value of the perturbation parameters. Only
for values of the latter above that critical value can the system
become unstable. A pictorial description of this situation is
shown in the left-hand side of Fig. 1.

Case 2. k = π	
Z

, 	 ∈ Z. Now, λ+ = λ− = ±1 (upper or
lower sign holds for 	 even or odd, respectively) is a doubly
degenerate eigenvalue of �lin

Z,0. Under a small perturbation,
the degeneracy can be lifted and two real eigenvalues can be
created, one greater than one, one less than one in absolute
value. The system has then become unstable! Of course, it
will now depend on the type of perturbation whether the
system becomes unstable, remains marginally stable (the two
eigenvalues do not move at all, but stay at 1 or −1), or becomes
stable (the two eigenvalues move in opposite directions along
the unit circle). A pictorial description of this situation is shown
in the right-hand side of Fig. 1. For the Dirac comb modulation
of β2(z), which is our main object of study in this paper, the
details are given in the next section.

In conclusion, examining Eq. (7), one sees that only if
ω = ω	, where

ω2
	 = 2

βav

⎡
⎣

√
(γavP )2 +

(
	π

Z

)2

− γavP

⎤
⎦, (9)

can an infinitely small Hamiltonian perturbation of �lin
Z,0 lead

to an unstable linearized dynamics near the fixed points u0(z)
considered. These values of ω therefore correspond to the tips
of the Arnold tongues, that is, to the positions of the (centers
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FIG. 2. (Color online) (a) Color level plot of the gain G(ω,βm) =
ln (max{|λ+|,|λ−|})/Z in the (ω,βm) plane, for βav = 1, Z = 1,
γav = 1, and P = 1. The dashed black lines correspond to the tips
of the Arnold tongues (9) at ω = ω1 = 2.1433 and ω2 = 3.2748.
The solid red lines correspond to the gain bandwidth, which can
be computed from Eq. (19). (b) MI gain for βm = 0.1; red circles,
estimates of maximum gain from Eq. (18); black crosses, estimates of
the bandwidth (19). (c) Solid blue curve, MI gain for ω = ω1; dashed
red curve, approximation of maximum gain from Eq. (18).

of) the unstable sidebands of the defocusing NLSE under a
general periodic perturbation fZ,gZ . This is illustrated for
a Dirac comb modulation of the GVD in Fig. 2. One also
observes in that figure that, for a value of ω close to some
ω	, the system becomes unstable only for a small but nonzero
critical value of βm, that we shall compute below for the Dirac
delta comb GVD.

Equation (9) was derived in Ref. [8] by appealing to
the theory of parametric resonance and Poincaré-Lindstedt
perturbation theory. Our argument above is elementary and
shows in a simple manner that the resonant frequencies ω	

do not at all depend on the form of fZ or gZ . Note that, if
gZ(z) = sin( 2π

Z
z) and fZ(z) = 0, the system (4) is equivalent

to the equation of a harmonic oscillator of (spatial) frequency
k, sinusoidally modulated with period Z. In that case, the
system leads to a Mathieu equation for which it is known
that resonance occurs when the period of the modulation is an
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integer multiple of the half (spatial) period of the oscillator,
which is 2π/k.

Additional physical insight can be obtained by expanding
Eq. (9) for small power, i.e., assuming γavP � |	|π/Z. At
zero order, we recover the well-known quasi-phase-matching
relation [5,9,16]

βavω
2
	 + 2γavP = 2π	

Z
. (10)

Equation (10) entails the conservation of the momentum
(corrected for nonlinear phase shifts), made possible thanks
to the virtual momentum carried by the dispersion grating, of
the four-photon mixing interaction between two photons from
the pump, going into two photons in the symmetric unstable
bands at lower (Stokes) and higher (anti-Stokes) frequencies
with respect to the pump.

III. CALCULATION OF THE MODULATIONAL
INSTABILITY GAIN BANDS: DIRAC COMB

We now turn our attention to the computation of the gain
G(ω), in particular for values of ω close to the resonant
frequencies. We concentrate on the special case where the
GVD is a Dirac delta comb:

fZ(z) =
[∑

n∈Z
δ(z/Z − n)

]
− 1, γm = 0. (11)

Since in the rest of this paper γm = 0, we will drop it
from the notation (the case of periodic nonlinearities can be
considered along similar lines). We decided to not consider
here the modulation of nonlinear coefficient because, as it will
be detailed in Sec. V, its impact is negligible compared to the
modulation of GVD. To compute the gain, we need to compute
the linearized dynamics �lin

βm
and determine the behavior of

its eigenvalues λ±(βm,ω) in the neighborhood of βm = 0 and
ω = ω	 in the (ω,βm) plane.

In this case, the linearized Floquet map is easily seen to be
explicitly given by

�lin
βm

= LK, (12)

where L is defined by Eq. (6), but now with β2 = [βav − βm],
and

K =
(

cos
(
βm

ω2

2 Z
) − sin

(
βm

ω2

2 Z
)

sin
(
βm

ω2

2 Z
)

cos
(
βm

ω2

2 Z
)

)
. (13)

The characteristic polynomial of LK is given by

λ2 − 2ρ(ω,βm)λ + 1 = 0,

so that the eigenvalues of (12) can be computed explicitly as

λ±(ω,βm) = ρ(ω,βm) ±
√

ρ(ω,βm)2 − 1, (14)

with ρ = ρ(ω,βm) reading as

ρ = cos(kZ) cos (θ ) −
β2
2 ω2 + γavP

k
sin(kZ) sin (θ ),

and θ = βm
ω2

2 Z.
A Taylor expansion of ρ(ω,βm) about (ω	,0) yields

ρ(,βm) ≈ (−1)	
[
1 + C	β

2
m − D	(ω − ω	)2], (15)

where  = ω − ω	 and

C	 = Z2

(
ω2

	

2

)2(
Z

π	

)2

(γavP )2, (16)

D	 = β2
avZ

2ω2
	

[(
Z

π	

)2

(γavP )2 + 1

]
. (17)

The dependence in β2
m (not in βm) entails that the sign of the

kick has no incidence in this regime, i.e., assuming |βm| � 1.
Formula (15) shows that (ω	,0) is a saddle point for

ρ(ω,βm). If 	 is even, λ+(ω,βm) > 1 occurs close to (ω	,0),
and if 	 is odd, λ−(ω,βm) < −1 close to (ω	,0). More
precisely,

max (|λ+|,|λ−|) = 1 +
√

C	β2
m − D	(ω − ω	)2

from which we obtain the following estimate of the gain
amplitude G(ω	,βm) and of the bandwidth B(ω	,βm) near the
tips of the tongue at ω	:

G(ω	,βm) ≈ |βm|ω
2
	

2

Z

π	
γavP, (18)

B(ω	,βm) = |βm|
βav

ω	

2

γavP√(
π	
Z

)2 + (γavP )2
. (19)

Note that the threshold value for βm above which instability
occurs can be read off from the above by setting |ρ(βm,ω)| = 1
which corresponds to

|βm| �
√

D	

C	

|ω − ω	|.

This confirms again, as expected, that an arbitrary small βm

will generate instability right at ω = ω	.
In Fig. 2(a), we show an example of the analytically

computed MI gain, showing the first two Arnold tongues. As
can be seen, for a small enough strength of perturbation, let us
say |βm| � 0.1, the approximation (19) gives a good estimate
of the width of the parametric resonance (see red curves). This
situation is detailed further in Figs. 2(b) and 2(c), showing a
section for βm = 0.1 and ω = ω1, respectively.

Finally, a straightforward calculation gives the asymptotic
behavior of the gain G at ω	 for 	 large and βm fixed, that is,

G(ω	,βm) ≈
√

4β2
av sin2[α(	)](γavP )2 − β2

m(γavP )4Z2

2|β2|π	
(20)

with α(	) = βm

βav
(π	 − γavPZ) whenever 4β2

av sin2[α(	)] −
β2

m(γavP )2Z2 > 0, and G(ω	) ≈ 0 otherwise.
In Fig. 3, we show an example of the analytically computed

MI gain at ω	 as a function of 	. We compare it to the
approximation (20), which is very accurate, even for small 	

(see red circles). Note in particular that the oscillating behavior
of the gain is well captured by Eq. (20) which, for 	 large
enough and βm small, can be approximated by

G(ω	,βm) ≈ |βm|
∣∣∣∣∣
sin

[
βm

βav
(π	 − γavPZ)

]
βm

βav
π	

∣∣∣∣∣.
Summing up. It is clear from the above discussion that,

precisely at the values ω	, which only depend on Z and on
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FIG. 3. (Color online) MI gain for ω = ω	 as a function of 	; red
circles, estimated gain given by (20). Parameter values are βav = 1,
Z = 1, γav = 1, P = 1, βm = 0.1.

γavP , but not on the precise form of fZ , any small perturbation
can create an instability and hence a gain. At frequencies ω

near these particular values, a minimal threshold strength of βm

is needed to create an instability. This minimal value, and even
the fact that an instability is indeed generated, does depend
on the precise form of fZ . For the Dirac comb the explicit
expression for the gain in this regime can be read off from
Eq. (20).

IV. APPROXIMATIONS OF THE DELTA FUNCTION

In order to shed light on the dependence of the gain on the
shape of the periodic modulation, and also with an eye towards
the experimental realization of the Dirac comb fiber, we now
analyze what happens when the Dirac comb is approximated
by a train of physically realizable “kicks.” We thus consider a
smoothened Dirac comb described by

fZ(z) =
[∑

n∈Z
η(z − nZ)

]
− 1, (21)

where we normalize the positive function η(z) in order to have∫ Z/2
−Z/2 fZ(z)dz = 0. For a rectangular pulse of width w < Z,

we get

η(z) =
{

h = Z
w
, −w

2 < z < w
2

0, elsewhere.
(22)

For a Gaussian function η(z) = h exp[−z2/(2w2)], the
maximum amplitude of the kick can be calculated as

h =
∑
n∈Z

Z

w
√

π
2

[
Erf

( (1−2n)Z
2
√

2w

) + Erf
( (1+2n)Z

2
√

2w

)] ,

that in the limit w � Z gives

h ≈ Z

w
√

2π
.

Note that, in these models, we have (βm � 0)

βav − βm � βmin � βav, βmax = βav + (h − 1)βm.

Hence, h = 2 corresponds to a rather symmetric situation
where βav is close to the midpoint between βmin and βmax,

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

h−1

G
(ω

1)

h

h

FIG. 4. (Color online) Gain G(ω1) := G(ω1,βm), with βm = 0.1,
calculated numerically at the first parametric resonant frequency ω1,
for two approximations of delta functions as a function of their inverse
height h−1. Solid blue curve, Gaussian approximation; dashed red
curve, rectangular pulse approximation; dashed horizontal line, Dirac
delta limit; dashed-dotted horizontal line, sinusoidal modulation.
Other parameter values are βav = 1, Z = 1, γav = 1, P = 1.

so that β2(z) fluctuates symmetrically about its average value,
whereas h 
 1 corresponds to a very asymmetric situation
where β2(z) has a large abrupt peak. The parameter h therefore
controls the shape of the GVD modulation at fixed βav and βmin

(or βm).
As shown in the previous section, by changing the shape

of the kick, we do not change the frequency of the parametric
resonances. The smoothing of the delta function nevertheless
does modify the characteristics of the MI by changing the
value of the gain, as we now illustrate by computing the gain
numerically at the resonant frequencies ω	. An example of
how the changing shape of the modulation fZ modifies the
first parametric resonance is illustrated in Fig. 4, that shows
the gain G(ω1,βm) at fixed ω1 and βm, as a function of the peak
amplitude h (or, equivalently, the width w) of the kicks. We
make the following observations. First, a good approximation
of the gain given by the Dirac comb is obtained for h > 10,
both for the rectangular and Gaussian pulses. Second, for h =
1, the gain of the square pulse modulation is zero, as expected,
since we are then in the limit case of a constant modulation
(and normal GVD). Third, it is apparent that the Dirac comb
gives the highest possible gain, for a fixed area of the kicks
and fixed βm and βav. Finally, it is interesting to note that a
sinusoidal modulation fZ(z) = sin( 2π

Z
z), with the same value

of βm, gives a gain close to one half with respect to the delta
case. Indeed, for a sinusoidal modulation, it has been shown
that [see Eq. (7) from Ref. [11]]

Gsin(ω	,βm) =
∣∣∣∣J	

(
βm

ω2
	

2

Z

π	

)∣∣∣∣γavP. (23)

By expanding Eq. (23) for small βm, we get

Gsin(ω	,βm) = 1
2G(ω	,βm), (24)

at first order in βm. In conclusion, a large concentrated
perturbation of the GVD about its average enhances the MI
gain.
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V. EXPERIMENTAL RESULTS

It is well known that in homogeneous fibers, the GVD
depends on the diameter of the fiber for a given transverse
structure. One can therefore modulate the GVD by modulating
the diameter of the fibers as a function of z, as in [9–11]. We
manufactured three different microstructured optical fibers,
whose geometrical properties were designed to have a zero
dispersion wavelength around 1 μm. Their diameter was
modulated by a periodic sequence of Gaussian functions, in
order to approximate the ideal Dirac delta comb studied in
Sec. III. The change of their outer diameters d(z) along the
fiber is represented in Fig. 5(a). As can be seen in the inset, their
diameters have a Gaussian shape with a standard deviation w,
which is the same for all three fibers, and very small (w � 0.14
m) compared to the period of the comb (Z = 10 m). Hence,
we can write

d(z) = dmin + �gw(z) � dmax = dmin + �,

where gw(z) = ∑
n exp[−(z − nZ)2/2w2]. The three fibers

have a very similar minimum diameter dmin = 137 μm, while
their maximum values are different. We have dA

max � 172 μm,
dB

max � 207 μm, and dC
max � 240 μm for fibers labeled A, B,

and C, respectively, corresponding to �A = 35 μm, �B =
70 μm, �C = 103 μm. To understand how the two exper-
imental parameters w and � control the quality of the
approximation of the delta function on the one hand, and the
value of βm on the other hand, we proceed as follows. First,
dav = d0 + �

Z
w

√
2π , so that dA

av = 139.1, dB
av = 141.2, dC

av =
143.2. A first-order Taylor expansion of β2(d) about dav yields

β2(z) = β2[d(z)] � β2(dav) + β ′
2(dav)�

[
gw(z) − w

Z

√
2π

]
.

Comparing this to (2) we find

βav = β2(dav), βm = β ′
2(dav)

w�

Z

√
2π

and

fZ(z) = Z

w
√

2π
gw(z) − 1.

Hence, with the notation of Sec. IV, h = Z

w
√

2π
� 28.5. This

corresponds to h−1 ≈ 0.03 proving that these Gaussian pulses
should induce a very similar parametric gain compared to
ideal Dirac delta functions (see Fig. 4). Furthermore, the
height � of the Gaussian pulse controls βm, which will allow
us to investigate the impact of this parameter on the first
MI side lobe gain, as it was done in the theoretical study
and illustrated in Fig. 2. For all three fibers, the ratio of
the diameter of the holes over � (the pitch of the periodic
cladding) is assumed to be constant along the fiber and
estimated to about 0.48 from scanning electron microscope
images. The diameter variations of the fibers are proportional
to those of the pitch, with �min = 3.445 μm corresponding
to the minimum value of the diameter [137 μm, green line
in Fig. 5(a)] and �A,B,C

max � 4.48, 5.17, and 6.03 μm, blue,
black, and red curves, respectively, for the maximum values.
As an example, the behavior of the GVD against wavelength
corresponding to the minimum pitch value has been calculated
from Ref. [26] and is represented in Fig. 5(b) as a green curve.
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FIG. 5. (Color online) (a) Outer diameter evolution versus fiber
length for fibers A, B, and C. Inset: snapshot on one leitmotif. (b)
Calculated GVD curves corresponding to the background diameter
(green curve) and the maximum diameter values of fibers A (blue
curve), B (black curve), and C (red curve). (c), (d) Dependence of
GVD (c) and nonlinear coefficient (d) on the diameter at wavelength
of 1052.5 nm. Curves in (b), (c), and in (d) calculated from Ref. [26]
with d/� = 0.48 and �min = 3.445 μm.

Its zero dispersion wavelength (ZDW) is located at 1055 nm
while those of the GVD curves corresponding to the maximum
values of the diameters of fibers A, B. and C are red-shifted
to 1110, 1136, and 1168 nm, respectively [see Fig. 5(b)].
In order to give another illustration of the large dispersion
variations induced in these fibers by varying their diameters,
the maximum GVD values for fibers A, B, and C have been
calculated at a fixed wavelength (1052.5 nm) and compared to
the background value. As can be seen in Fig. 5(b), an increase
of the diameters by a factor of only 1.27, 1.45, and 1.75 [see
inset in Fig. 5(a)] leads to a one-order-of-magnitude increase
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for the GVD values: 21, 29, and 35, respectively. Under such
large variation of the fiber diameter, the GVD can no longer
be considered as proportional to the pitch value, as was the
case in Ref. [10] for instance. This is illustrated in Fig. 5(c),
where we display the dependence of the GVD, calculated at
1052.5 nm, on the fiber diameter. It can be seen to be well
approximated by a linear function in the range between 140
and 180 μm, but not beyond. As a consequence, the shape of
the GVD variations will be slightly different from the one of
the diameter, specifically for fiber C. However, we checked
numerically that this can be considered as a relatively weak
distortion that does not significantly impact the gain of the
MI process. We can still consider that the key parameters
remain the different heights in GVD of the Gaussian-type
pulses in fibers A, B, and C. In order to get a more complete
picture of the impact of the fiber diameter variations on the
guiding properties, the variation of the nonlinear coefficient
is plotted as a function of the fiber diameter in Fig. 5(d). The
most important feature to note here is that the amplitude of
variation is much smaller, remaining nearly of the same order
of the diameter variations. Hence, these variations are more
than one order of magnitude lower than those of the GVD
and we have checked numerically that their impact on the MI
process is negligible. Consequently, we can infer that these
fibers represent a good prototype to validate our theoretical
investigation in the previous sections, where only longitudinal
GVD variations have been taken into account.

The experimental setup is schematized in Fig. 6. The pump
system is made of a continuous-wave tunable laser (TL) diode
that is sent into an intensity modulator (MOD) in order to
shape 2-ns square pulses at 1-MHz repetition rate. They are
amplified by two ytterbium-doped fiber amplifiers (YDFAs) at
the output of which two successive tunable filters are inserted
to remove the amplified spontaneous emission in excess around
the pump. These quasi-CW laser pulses have been launched
along the birefringent axis of the fibers. The pump peak power
has been fixed to P = 6.5 W and the pump wavelength at
1052.5 nm for fiber A.

The spectrum recorded at the output of the periodic fiber is
displayed by the blue curve in Fig. 7(a). Two MI side lobes,
located at ±4.8 THz, appear on both sides of the pump. These
experimental results have been compared with numerical
simulations performed by integrating the generalized NLSE.
We used the variations of the GVD, higher-order dispersion
and nonlinear coefficient γ calculated from the measured
diameter values (see Fig. 5). Note that we checked that except
for the longitudinal variation of the GVD, all other parameters
can be assumed to be constant and equal to the average
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FIG. 6. (Color online) Scheme of the experimental setup. MOD:
intensity modulator; YDFA: ytterbium-doped fiber amplifier; DOF:
dispersion oscillating fiber; PM: polarization maintaining; TL: tun-
able laser; OSA: optical spectrum analyzer.
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FIG. 7. (Color online) Spectra recorded at the output of fibers
A, B, and C (we use the same color label than in Fig. 5): (a)
experiments; (b) numerical simulations which include higher-order
dispersions β3 = 5.6 × 10−41 s3/m, β4 = −1 × 10−55 s4/m, and
losses α = 5 dB/km.

values (their practical values, extracted from the experiment,
are listed in the caption of Fig. 7). As shown by the blue
curve in Fig. 7(b), two symmetric MI side lobes also appear
in the computed spectrum, in a very good agreement with
experiments. Their positions have been also compared with
the predictions of Eq. (9) [see green dashed vertical lines in
Fig. 7(b)], where we make use of the average GVD value
βav = +0.59 ps2/km. An excellent agreement is also obtained.
We also notice that, under such experimental conditions, also
the nonlinear quasi-phase-matching relation [Eq. (10)] gives
a quite accurate estimate of such frequencies (relative error in
frequency is around 0.4% at 	 = 1). This is due to the fact that
we have [γP/(π/Z)]2 � 0.015 � 1, which legitimizes the
approximation of Eq. (9) at zero order, thus obtaining Eq. (10).

In order to show that the MI gain is larger when the weight
of the Dirac delta function grows larger, we performed similar
experiments in fibers B and C where the areas of the Gaussian
pulses are larger than in fiber A. However, in experiments,
due to the fact that the Dirac comb has been approximated
with a series of Gaussian functions, changing their amplitudes
also modifies the average value βav of the dispersion. As a
consequence, MI side lobes would be generated at different
frequency shifts. In order to keep constant the position of the
MI side lobes, and then provide a correct comparison with
the theoretical study, one has to take care to keep the average
GVD value constant in all the fibers. To do so experimentally
in fibers B and C, we slightly tuned the pump wavelength until
the first MI side lobe is generated at 4.8 THz as in fiber A. As
can be seen in Fig. 7(a) (red and black curves), the position of
the first MI side lobe in fibers B and C is indeed located at that
frequency by tuning the pump wavelength to 1061.8 and 1067
nm, respectively. We can therefore consider that the average
GVD values are very similar in the three fibers and hence that
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only the areas of the Gaussian functions, i.e., the equivalent
of the Dirac weights, vary. The amplitudes of the first MI side
lobes generated in fibers B and C are indeed larger compared
to fiber A, as predicted by the theory. This is in pretty good
agreement with numerical simulations [see Fig. 7(b)], where
the same procedure was used. We found that the average GVD
values in fibers B and C are βav = +0.58 and +0.51 ps2/km,
respectively. The small discrepancy between these values is
attributed to spurious longitudinal fluctuations arising during
the drawing process. Indeed, as can be seen in Fig. 5(a), the
background over which Gaussian pulses are superimposed
is not perfectly flat, and in fiber C, it is not horizontal. To
counterbalance these imperfections, it was necessary to adjust
the average dispersion values. We checked that with a series of
perfect Gaussian pulses superimposed on a flat and horizontal
background, the same average GVD value would be obtained.
Furthermore, we can note that in fibers B and C, additional
MI side lobes are generated due to the periodic modulation of
the GVD [labeled MIi , i = 2,3, . . ., in Fig. 7(a), extending up
to i = 5 in fiber B]. Their positions are also well predicted
by numerical simulations and by Eq. (9) [green lines in 7(b)].
This excellent agreement confirms that their detunings indeed
scale approximately as

√
	 [see Eq. (10)], 	 being the side

lobe order, that is the typical signature of the MI process
occurring in dispersion oscillating fibers. It was already
reported experimentally in Refs. [10,14], with a sinusoidal
variation of the GVD, both modulated in amplitude or not, and
it is now illustrated in this paper with a Dirac delta comb.

Finally, in fibers B and C two symmetric side lobes that
are not predicted by the theory appear around the pump at
about 2.15 THz [labeled spurious side lobes in Fig. 7(a)]. They
result from a non-phase-matched four-wave mixing process
involving the pump, and the first and second MI side lobes.
The energy conservation relation that involves these waves
predicts for the generated wave a frequency shift of 2.2 THz
from the pump, which is in good agreement with the shift of
2.15 THz measured experimentally.

VI. CONCLUSIONS

Modulation instability has been investigated theoretically
and experimentally in dispersion-kicked optical fibers. An
analytical expression of the parametric gain has been obtained
allowing to predict the behavior of the MI process in such
fibers. Specifically, it was shown that increasing the weights of
the Dirac functions leads to larger MI gains for the first MI side
lobe. We exploit the fact that the Dirac delta comb can be well
approximated by a series of short Gaussian pulses in order to
perform an experimental investigation using microstructured
optical fibers. We then experimentally report multiple MI side
lobes at the output of these dispersion-kicked optical fibers. We
demonstrate that they originate from the periodic variations of
the dispersion. We also validate experimentally that increasing
the height of the modulation leads to a larger gain for the first
MI side lobe.

Besides the specific interest towards the engineering of
parametric frequency generation in fibers, these results illus-
trate the fact that fiber-based setup constitutes an interesting
platform to carry out experimental investigations of fundamen-
tal phenomena such as the parametric resonance with accurate
control of the shape of the perturbation.
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Economique Régional. S.T. acknowledges kind hospitality
from Labex CEMPI and PhLAM, as well as funding from
Italian Ministry of Research (Grant No. PRIN 2012BFNWZ2).

[1] V. E. Zakharov and L. A. Ostrovsky, Phys. D (Amsterdam) 238,
540 (2009).

[2] M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Lett. 17, 745
(1992).

[3] S. Coen and M. Haelterman, Phys. Rev. Lett. 79, 4139 (1997).
[4] J. C. Bronski and J. N. Kutz, Opt. Lett. 21, 937 (1996).
[5] N. J. Smith and N. J. Doran, Opt. Lett. 21, 570 (1996).
[6] F. Kh. Abdullaev, S. A. Darmanyan, A. Kobyakov, and

F. Lederer, Phys. Lett. A 220, 213 (1996).
[7] F. Kh. Abdullaev and J. Garnier, Phys. Rev. E 60, 1042 (1999).
[8] A. Armaroli and F. Biancalana, Opt. Express 20, 25096 (2012).
[9] M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and

A. Mussot, Opt. Lett. 37, 4832 (2012).
[10] M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, A.

Mussot, A. Armaroli, and F. Biancalana, Opt. Lett. 38, 3464
(2013).

[11] M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and
A. Mussot, Phys. Rev. A 87, 013813 (2013).

[12] C. Finot, J. Fatome, A. Sysoliatin, A. Kosolapov, and S. Wabnitz,
Opt. Lett. 38, 5361 (2013).

[13] M. Conforti, A. Mussot, A. Kudlinski, and S. Trillo, Opt. Lett.
39, 4200 (2014).

[14] F. Copie, A. Kudlinski, M. Conforti, G. Martinelli, and
A. Mussot, Opt. Express 23, 3869 (2015).

[15] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley,
New York, 1979).

[16] F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, Opt.
Lett. 18, 1499 (1993).

[17] N. J. Smith, K. J. Blow, and I. Andonovic, J. Lightwave Technol.
10, 1329 (1992).

[18] Y. Kominis and K. Hizanidis, J. Opt. Soc. Am. B 19, 1746
(2002).

013810-8

http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1364/OL.17.000745
http://dx.doi.org/10.1364/OL.17.000745
http://dx.doi.org/10.1364/OL.17.000745
http://dx.doi.org/10.1364/OL.17.000745
http://dx.doi.org/10.1103/PhysRevLett.79.4139
http://dx.doi.org/10.1103/PhysRevLett.79.4139
http://dx.doi.org/10.1103/PhysRevLett.79.4139
http://dx.doi.org/10.1103/PhysRevLett.79.4139
http://dx.doi.org/10.1364/OL.21.000937
http://dx.doi.org/10.1364/OL.21.000937
http://dx.doi.org/10.1364/OL.21.000937
http://dx.doi.org/10.1364/OL.21.000937
http://dx.doi.org/10.1364/OL.21.000570
http://dx.doi.org/10.1364/OL.21.000570
http://dx.doi.org/10.1364/OL.21.000570
http://dx.doi.org/10.1364/OL.21.000570
http://dx.doi.org/10.1016/0375-9601(96)00504-X
http://dx.doi.org/10.1016/0375-9601(96)00504-X
http://dx.doi.org/10.1016/0375-9601(96)00504-X
http://dx.doi.org/10.1016/0375-9601(96)00504-X
http://dx.doi.org/10.1103/PhysRevE.60.1042
http://dx.doi.org/10.1103/PhysRevE.60.1042
http://dx.doi.org/10.1103/PhysRevE.60.1042
http://dx.doi.org/10.1103/PhysRevE.60.1042
http://dx.doi.org/10.1364/OE.20.025096
http://dx.doi.org/10.1364/OE.20.025096
http://dx.doi.org/10.1364/OE.20.025096
http://dx.doi.org/10.1364/OE.20.025096
http://dx.doi.org/10.1364/OL.37.004832
http://dx.doi.org/10.1364/OL.37.004832
http://dx.doi.org/10.1364/OL.37.004832
http://dx.doi.org/10.1364/OL.37.004832
http://dx.doi.org/10.1364/OL.38.003464
http://dx.doi.org/10.1364/OL.38.003464
http://dx.doi.org/10.1364/OL.38.003464
http://dx.doi.org/10.1364/OL.38.003464
http://dx.doi.org/10.1103/PhysRevA.87.013813
http://dx.doi.org/10.1103/PhysRevA.87.013813
http://dx.doi.org/10.1103/PhysRevA.87.013813
http://dx.doi.org/10.1103/PhysRevA.87.013813
http://dx.doi.org/10.1364/OL.38.005361
http://dx.doi.org/10.1364/OL.38.005361
http://dx.doi.org/10.1364/OL.38.005361
http://dx.doi.org/10.1364/OL.38.005361
http://dx.doi.org/10.1364/OL.39.004200
http://dx.doi.org/10.1364/OL.39.004200
http://dx.doi.org/10.1364/OL.39.004200
http://dx.doi.org/10.1364/OL.39.004200
http://dx.doi.org/10.1364/OE.23.003869
http://dx.doi.org/10.1364/OE.23.003869
http://dx.doi.org/10.1364/OE.23.003869
http://dx.doi.org/10.1364/OE.23.003869
http://dx.doi.org/10.1364/OL.18.001499
http://dx.doi.org/10.1364/OL.18.001499
http://dx.doi.org/10.1364/OL.18.001499
http://dx.doi.org/10.1364/OL.18.001499
http://dx.doi.org/10.1109/50.166771
http://dx.doi.org/10.1109/50.166771
http://dx.doi.org/10.1109/50.166771
http://dx.doi.org/10.1109/50.166771
http://dx.doi.org/10.1364/JOSAB.19.001746
http://dx.doi.org/10.1364/JOSAB.19.001746
http://dx.doi.org/10.1364/JOSAB.19.001746
http://dx.doi.org/10.1364/JOSAB.19.001746


MODULATIONAL INSTABILITY IN DISPERSION-KICKED . . . PHYSICAL REVIEW A 92, 013810 (2015)

[19] S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, Phys. Rep. 521,
135 (2012).

[20] S. M. J. Kelly, Electron. Lett. 28, 806 (1992).
[21] S. V. Chernikov, J. R. Taylor, and R. Kashyap, Opt. Lett. 19,

539 (1994).
[22] B. V. Chirikov, Phys. Rep. 52, 263 (1979).

[23] G. Casati, B. V. Chirikov, F. M. Izraelev, and J. Ford, Lect. Notes
Phys. 93, 334 (1979).

[24] B. Fisher, A. Rosen, and S. Fishman, Opt. Lett. 24, 1463 (1999).
[25] S. Atkins, A. Rosen, A. Bekker, and B. Fisher, Opt. Lett. 28,

2228 (2003).
[26] K. Saitoh and M. Koshiba, Opt. Express 13, 267 (2005).

013810-9

http://dx.doi.org/10.1016/j.physrep.2012.09.004
http://dx.doi.org/10.1016/j.physrep.2012.09.004
http://dx.doi.org/10.1016/j.physrep.2012.09.004
http://dx.doi.org/10.1016/j.physrep.2012.09.004
http://dx.doi.org/10.1049/el:19920508
http://dx.doi.org/10.1049/el:19920508
http://dx.doi.org/10.1049/el:19920508
http://dx.doi.org/10.1049/el:19920508
http://dx.doi.org/10.1364/OL.19.000539
http://dx.doi.org/10.1364/OL.19.000539
http://dx.doi.org/10.1364/OL.19.000539
http://dx.doi.org/10.1364/OL.19.000539
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1007/BFb0021757
http://dx.doi.org/10.1007/BFb0021757
http://dx.doi.org/10.1007/BFb0021757
http://dx.doi.org/10.1007/BFb0021757
http://dx.doi.org/10.1364/OL.24.001463
http://dx.doi.org/10.1364/OL.24.001463
http://dx.doi.org/10.1364/OL.24.001463
http://dx.doi.org/10.1364/OL.24.001463
http://dx.doi.org/10.1364/OL.28.002228
http://dx.doi.org/10.1364/OL.28.002228
http://dx.doi.org/10.1364/OL.28.002228
http://dx.doi.org/10.1364/OL.28.002228
http://dx.doi.org/10.1364/OPEX.13.000267
http://dx.doi.org/10.1364/OPEX.13.000267
http://dx.doi.org/10.1364/OPEX.13.000267
http://dx.doi.org/10.1364/OPEX.13.000267



