SELF-LINKED CURVES AND NORMAL BUNDLE.

PH. ELLIA

Abstract

We give necessary conditions on the degree and the genus of a smooth, integral curve $C \subset \mathbb{P}^{3}$ to be selk-linked (i.e. locus of simple contact of two surfaces). We also give similar results for set theoretically complete intersection curves with a structure of multiplicity three (i.e. locus of 2-contact of two surfaces).

Introduction.

The motivation of this note is the following question, raised in 5]: does there exist a smooth, integral curve $C \subset \mathbb{P}^{3}$, of degree 8 , genus 3 , which is self-linked? We recall that a curve is self-linked if it is the locus of (simple) contact of two surfaces (see Section 1). This question in turn is motivated by the following fact (proved in [5], Proposition 7.5): let $S \subset \mathbb{P}^{3}$ be a surface with ordinary singularities. Let $C \subset S$ be a smooth, irreducible curve which is the set theoretic complete intersection (s.t.c.i.) of S with another surface. If $C \not \subset \operatorname{Sing}(S)$, then C is self-linked (on S) (see Remark 7 for a precise statement). We recall that the problem to know whether or not every smooth irreducible curve $C \subset \mathbb{P}^{3}$ is a s.t.c.i. is still open. The study of self-linked curves is a first step in this long standing open problem. Self-linked curves have been studied by many authors (see 5] and the bibliography therein).

In this note we show that, as expected, no curve of degree 8 , genus 3 is self-linked. This follows from our main result (Theorem 4) which gives necessary conditions on the invariants of a curve to be self-linked. As a consequence we obtain that if $d \geq 13$ and $d>g-3$, then no curve of degree d, genus g can be self-linked (Corollary 6).

In the last section we obtain similar results for curves which are set theoretic complete intersections with a triple structure (i.e. curves admitting a triple structure which is a complete intersection).

Throughout this note we work over an algebraically closed field of characteristic zero.

1. Generalities.

We denote by $C \subset \mathbb{P}^{3}$ a smooth, irreducible curve of degree d, genus g. The curve C is self-linked if it is (algebraically) linked to itself by a complete intersection $F_{a} \cap F_{b}$ of two surfaces of degrees a, b. In particular $2 d=a b$. This is equivalent to say that there exists a double structure, C_{2}, on C which is a complete intersection of type (a, b).

[^0]Let's observe that if C is not a complete intersection, then $C \cap \operatorname{Sing}\left(F_{a}\right) \neq \emptyset$ and $C \cap$ $\operatorname{Sing}\left(F_{b}\right) \neq \emptyset$. This follows from the fact (see [5], Lemma 7.6) that for a surface $S \subset \mathbb{P}^{3}$, $\operatorname{Pic}(S) / \operatorname{Pic}\left(\mathbb{P}^{3}\right)$ is a torsion free abelian group.

The two surfaces F_{a}, F_{b} are tangents almost everywhere along C. Moreover at every point $x \in C$ one of the two is smooth (otherwise the embedding dimension of the intersection would be three). So F_{a}, F_{b} define a sub-line bundle $L \subset N_{C}$. Abusing notations $L=N_{C, F_{a}}=$ $N_{C, F_{b}}$. The quotient $N_{C}^{*} \rightarrow L^{*} \rightarrow 0$ defines the double structure C_{2}, hence:

$$
\begin{equation*}
0 \rightarrow L^{*} \rightarrow \mathcal{O}_{C_{2}} \rightarrow \mathcal{O}_{C} \rightarrow 0 \tag{1}
\end{equation*}
$$

By the exact sequence of liaison:

$$
0 \rightarrow \mathcal{I}_{C_{2}} \rightarrow \mathcal{I}_{C} \rightarrow \omega_{C}(4-a-b) \rightarrow 0
$$

we see that $\mathcal{I}_{C, C_{2}} \simeq \omega_{C}(4-a-b)$. This means that $L^{*}=\omega_{C}(4-a-b)$. In particular:

$$
\begin{equation*}
\operatorname{deg}(L)=: l=d(a+b-4)-2 g+2 \tag{2}
\end{equation*}
$$

Remark 1. If C is a complete intersection, then C is self-linked. If C is a curve on a quadric cone, then C is self-linked. In all these cases N_{C} splits.

On the other hand it is easy to give examples of curves which are not self-linked. Let $C \subset \mathbb{P}^{3}$ be a smooth, irreducible curve whose degree, d, is an odd prime number. Assume $h^{0}\left(\mathcal{I}_{C}(2)\right)=0$. If C is self-linked by $F_{a} \cap F_{b}$, then $2 d=a b, a \leq b$. Since d is prime, $a=2$, in contradiction with the assumption $h^{0}\left(\mathcal{I}_{C}(2)\right)=0$.

A less evident fact: if $C \subset \mathbb{P}^{3}$ is a smooth subcanonical curve (i.e. $\omega_{C} \simeq \mathcal{O}_{C}(a)$ for some $a \in \mathbb{Z}$) which is not a complete intersection, then C is not self-linked (see [1]).

We can add a further class of examples:
Lemma 2. Let C be a smooth, irreducible curve lying on a smooth quadric $Q \subset \mathbb{P}^{3}$. If C is not a complete intersection and $\operatorname{deg}(C)>4$, then C is never self-linked.

Proof. Assume C self-linked by $F_{a} \cap F_{b}, a \leq b$. Let $(\alpha, \beta), \alpha<\beta$, denote the bi-degree of C on Q. If $F_{a}=Q$, then $F_{b} \cap Q$ is a curve of bi-degree $(b, b)=(2 \alpha, 2 \beta)$. It follows that $\alpha=\beta$ and C is a complete intersection. So we may assume that F_{a} is not a multiple of Q. The intersection $F_{a} \cap Q$ consists of C and of curve A of bi-degree $(a-\alpha, a-\beta)$. Since A is not empty (C is not a complete intersection) we have $a>\alpha$ and $a \geq \beta$. It follows that: $2 a>\alpha+\beta=d$. So $a>d / 2$. Since $a b=2 d$, we get $b=2 d / a \geq a>d / 2$, so $a \leq 3$ hence $d \leq 5$. If $d=5$, then $(a, b)=(2,5)$ in contradiction with $a>d / 2$. Hence $d \leq 4$.

If $d<5$, then C is rational or elliptic, see Theorem4. This lemma is in contrast with the fact that every curve on a quadric cone is self-linked.

2. The Gauss map associated to $L \subset N_{C}$.

We first recall some constructions associated to a sub-bundle of N_{C}. In what follow we don't assume C self-linked, C is just any smooth, irreducible curve not contained in a plane. If L is a sub-bundle of N_{C}, then $L(-1) \subset N_{C}(-1)$ comes from a rank two vector bundle: $\mathcal{T}_{L} \subset T_{\mathbb{P}^{3}}(-1) \mid C$. At each point $x \in C, \mathcal{T}_{L}(x) \subset T_{\mathbb{P}^{3}}(-1)(x)=V / d_{x}$, defines a plane of \mathbb{P}^{3}
containing the tangent line $T_{x} C$ (here we see \mathbb{P}^{3} as the projective space of lines of the four dimensional vector space V and $d_{x} \subset V$ is the line corresponding to the point $x \in \mathbb{P}^{3}$).

Local computations show that the plane $\mathcal{T}_{L}(x)$ is the Zariski tangent plane to the double structure C_{2} defined by $N_{C}^{*} \rightarrow L^{*} \rightarrow 0$.

Now the bundle \mathcal{T}_{L} defines the Gauss map $\varphi_{L}: C \rightarrow D \subset \mathbb{P}_{3}^{*}\left(\varphi_{L}(x)=\mathcal{T}_{L}(x)\right)$. It is known that φ_{L} can't be constant and that D can't be a line ([2], [6] Theorem 1.6). By the Nakano's exact sequence $\varphi_{L}^{*}\left(\mathcal{O}_{\mathbb{P}_{3}^{*}}(1)\right)=T_{\mathbb{P}^{3}}(-1) \mid C / \mathcal{T}_{L}$, which has degree $d-\operatorname{deg}\left(\mathcal{T}_{L}\right)$. Since $L(-1)=\mathcal{T}_{L} / T(-1)_{C}$, we get:

$$
\begin{equation*}
\operatorname{deg}\left(\varphi_{L}^{*}\left(\mathcal{O}_{\mathbb{P}_{3}^{*}}(1)\right)\right)=\operatorname{deg}\left(\varphi_{L}\right) \cdot \operatorname{deg}(D)=3 d+2 g-2-l \tag{3}
\end{equation*}
$$

Now consider the dual curve of $D, D^{*} \subset \mathbb{P}^{3}$ (defined by the osculating planes of D). The tangent surface $\operatorname{Tan}\left(D^{*}\right)$ is called the characteristic surface of L and is denoted by S_{L}^{\vee}. This surface is the envelope surface of the family of planes $\left\{\mathcal{T}_{L}(x)\right\}_{x \in C}$. Since the $\mathcal{T}_{L}(x)$ are the tangent spaces to the double structure C_{2}, we have $C_{2} \subset S_{L}^{\vee}$ (see also [8] Lemma 2.1.2).
If D is a plane curve, then S_{L}^{\vee} is the cone over the (plane) dual curve D^{*}.
We will need the following result, which is contained in [7]:
Lemma 3. A smooth, integral curve $C \subset \mathbb{P}^{3}$, of degree 9 , genus 7 is never self-linked.
Proof. If C is self linked it is by a complete intersection of type $(3,6)$. If the cubic surface, F_{3}, is normal, then by (the proof of) Theorem 3.1 in [7], we should have $9.6 \leq 6.7$, which is not the case. If the cubic is ruled we conclude with Propositions 3.4, 3.5 of [7]. Finally if F_{3} is a cone, it has to be the cone over a smooth cubic curve (see the proof of Theorem 5.1 of [7]). But a degree 9 curve on such a cone is a complete intersection $(3,3)$, hence has genus 10 .

Now we can state and prove our main result:
Theorem 4. Let $C \subset \mathbb{P}^{3}$ be a smooth, irreducible curve of degree d, genus g. Assume $d \geq 5$ and $h^{0}\left(\mathcal{I}_{C}(2)\right)=0$. If C is self-linked by a complete intersection of type (a, b), then one of the following occurs:
$g=3, d=6$ and $(a, b)=(3,4)$, or:

$$
\begin{equation*}
g \geq 4 \text { and } 4 g \geq d(a+b-7)+12 \tag{4}
\end{equation*}
$$

Proof. From (2) and 3 we get

$$
\begin{equation*}
r:=\operatorname{deg}\left(\varphi_{L}^{*}\left(\mathcal{O}_{\mathbb{P}_{3}^{*}}(1)\right)=\operatorname{deg}\left(\varphi_{L}\right) \cdot \operatorname{deg}(D)=4 g-4-d(a+b-7)\right. \tag{5}
\end{equation*}
$$

Hence we have:

$$
\begin{equation*}
4 g-4-r=d(a+b-7) \text { and } 2 d=a b \tag{6}
\end{equation*}
$$

The assumption $h^{0}\left(\mathcal{I}_{C}(2)\right)=0$ implies $b \geq a \geq 3$ and $\operatorname{deg}(D) \geq 3$. Indeed we already know that $\operatorname{deg}(D) \geq 2$. If we have equality, then $C \subset S_{L}^{\vee}$ which is a cone over the dual conic D^{*}. So we have: $r \geq 3$.

If $g \leq 1,4 g-4-d(a+b-7) \geq 3$ implies $a+b \leq 6$, hence $(a, b)=(3,3)$, which is impossible. So $g \geq 2$. If $2 \leq g \leq 3$, we get $(a, b)=(3,4)$, hence $d=6$. Moreover $r=4$ if $g=2$ and $r=8$ if $g=3$.

Assume first that φ_{L} is bi-rational. Then $D \subset \mathbb{P}_{3}^{*}$ is an integral curve of degree r and geometrical genus g. If D is not contained in a plane, then $g \leq p_{a}(D) \leq G(r, 2)$, where $G(r, 2)$ is given by the Halphen-Castelnuovo's bound: $G(r, 2)=(r-2)^{2} / 4$ if r is even, $G(r, 2)=(r-1)(r-3) / 4$, if r is odd. It follows that $g \leq G(7,2)=6$. Since $g \geq 2$ we immediately get $r \geq 5$. From what we said above, this implies $g \geq 3$, hence $d \geq 6$. We have $4 g-4-r \leq 15$ and from (6), since $d \geq 6, a+b-7 \leq 2$. It follows that $(a, b ; d)=(3,4 ; 6),(4,4 ; 8),(3,6 ; 9),(4,5 ; 10)$. From (6) we get: $4(g-1)=r, r+8, r+18, r+20$ and we see that there is no solution with $5 \leq r \leq 7,3 \leq g \leq 6$.

In conclusion if $r \leq 7$ and if φ_{L} is bi-rational, then D is a plane curve of degree r and geometric genus $g \geq 2$. We have $2 \leq g \leq(r-1)(r-2) / 2=p_{a}(D)$. Moreover C_{2} lies on the cone, K, over the (plane) dual curve D^{*}. Finally since φ_{L} is bi-rational, C is a unisecant on the cone K. This implies that $\operatorname{deg}\left(D^{*}\right)+\varepsilon=d(+)$, where $\varepsilon=1,0$, according to whether C passes through the vertex of the cone or not.

Since $g \geq 2$, we get $r \geq 4$.
If $r=4$ then $2 \leq g \leq 3$ and we already know that $d=6$. If $g=3, D$ is smooth and $\operatorname{deg}\left(D^{*}\right)=12$, in contradiction with $(+)$. If $g=2, D$ has one double point which can be a node, a cusp or a tacnode. It follows that $\operatorname{deg}\left(D^{*}\right)=10,9$ or 8 . In any case we get a contradiction with $(+)$.

If $r=5$, then $2 \leq g \leq 6$ and from (6) we get $4 g-9=d(a+b-7)$. Since $d \geq 5$, the cases $2 \leq g \leq 3$ are impossible. If $g=4$, the only possibility is $d=7, a+b=8$. Hence $a=b=8$, but then again $d=a b / 2=8$: contradiction. In the same way we see that the cases $g=5,6$ are impossible.

If $r=6$ then $2 \leq g \leq 10$ and $4 g-10=d(a+b-7)$, with $d=a b / 2$. Observe that if $a+b-7=1$, then $a=b=4$ and $d=8$, if $a+b-7=2$, then $(a, b, d)=(3,6,9)$ or $(4,5,10)$. We get that for $g<10$ the only possibility is $g=7, d=9,(a, b)=(3,6)$, which is excluded by Lemma 3. Finally if $g=10$, then D is smooth. It follows that $d=\operatorname{deg}\left(D^{*}\right)+\varepsilon=30+\varepsilon$. Since (6) yields $30=d(a+b-7)$, we get $d=30$ and $a=b=4$, which is impossible.

If $r=7$ then $2 \leq g \leq 15$ and $4 g-11=d(a+b-7)$. For most values of $g \leq 15,4 g-11$ is a prime number and anyway it always has a simple factorization into prime numbers. Bearing in mind that if $a+b-7=1$, then $a=b=4$ and $d=8$; if $a+b-7=2$ the $(a, b, d)=(3,6,9)$ or $(4,5,10)$ and if $a+b-7=3$, then $(a, b, d)=(4,6,12)$, we easily see that there are no solutions.

In conclusion if $r \leq 7$ and φ_{L} is bi-rational, then the only possibility is for $r=6, d=9$, $g=7$ and $(a, b)=(3,6)$ (in this case D is a plane curve with a triple point).

Now for $3 \leq r \leq 7, r=\operatorname{deg}\left(\varphi_{L}\right) \cdot \operatorname{deg}(D)$ and $\operatorname{deg}(D) \geq 3$, we see that if φ_{L} is not bi-rational, then $r=6, \operatorname{deg}\left(\varphi_{L}\right)=2$ and $\operatorname{deg}(D)=3$.

If D is not contained in a plane it is a twisted cubic. The dual curve D^{*} is again a twisted cubic and $S^{\vee}=\operatorname{Tan}\left(D^{*}\right)$ is a quartic surface. Since $C_{2} \subset S^{\vee}, S^{\vee}=A F_{a}+B F_{b}$. If $b>4$, it follows that $F_{a}=S^{\vee}$, i.e. $a=4$. From (6) we get: $4 g=d(d-6) / 2+10$. Since $b=d / 2, d$ is even, hence $d \equiv 0,2(\bmod 4)$ and we see that the previous equation never gives an integral value for g. This shows $b \leq 4$, hence $(a, b, d)=(3,4,6),(4,4,8)$. Plugging these values into (6) we get a contradiction.

It follows that D must be a cubic plane curve. If D is smooth (has a node, a cusp), then $\operatorname{deg}\left(D^{*}\right)=6(4$ or 3$)$. Since φ_{L} has degree two, C is a bi-secant on the cone S^{\vee} over D^{*}. It follows that $d=2 \operatorname{deg}\left(D^{*}\right)+\varepsilon$. Since $C_{2} \subset S^{\vee}, S^{\vee}=A F_{a}+B F_{b}$. If $b>\operatorname{deg}\left(D^{*}\right)$, then
$F_{a}=S^{\vee}$ and $a=\operatorname{deg}\left(D^{*}\right)$. It follows that $b=2 d / \operatorname{deg}\left(D^{*}\right)$. This implies $b=4$. It follows that $(a, b, d)=(3,4,6),(4,4,8)$. Plugging these values into (6) we get a contradiction.

In conclusion we must have $r \geq 8$.

Remark 5. Because of Lemma 2 the assumption $h^{0}\left(\mathcal{I}_{C}(2)\right)=0$ is harmless.
There exist smooth curves of degree 6, genus 3 which are self-linked (4], 3]).
This improves Theorem 7.8 of [5]. It follows from (4) that no curve of degree 8, genus 3 can be self-linked. This answers to a question raised in [5] (Introduction and Remark 7.19).

Corollary 6. let $C \subset \mathbb{P}^{3}$ be a smooth, irreducible curve of degree $d>4$, genus g, with $h^{0}\left(\mathcal{I}_{C}(2)\right)=0$. If C is self-linked, then:

$$
\begin{equation*}
g \geq \frac{d(\sqrt{8 d}-7)}{4}+3 \tag{7}
\end{equation*}
$$

Moreover if $d \geq 13$ and $d>g-3$ no curve of degree d, genus g can be self-linked.
Proof. If $2 d=a b, a \geq 2$, then $a+b$ varies from $d+2(a=2, b=d)$ to $2 \sqrt{2 d}(a=b=\sqrt{2 d})$. The inequality then follows from (4).

A curve with $d>g-3$ and $d \geq 13$ cannot lie on a quadric cone. Moreover if $d \geq 13$, then $2 d=a b \geq 26$. It follows that $a+b \geq 11$ and inequality 4 is never satisfied if $d>g-3$.

Remark 7. A reduced surface $S \subset \mathbb{P}^{3}$ is said to have ordinary singularities if its singular locus consists of a double curve, R, the surface having transversal tangent planes at most points of R, plus a finite number of pinch points and non-planar triple points. As proved in [5], Proposition 7.5, if a smooth curve is a set theoretic complete intersection on S with ordinary singularities and if $C \not \subset \operatorname{Sing}(S)$, then C is self-linked (on S).

3. Triple structures.

To conclude let's see how this approach applies also to set theoretic complete intersections (s.t.c.i.) with a triple structure. Assume $F_{a} \cap F_{b}=C_{3}$, where C_{3} is a triple structure on a smooth, irreducible curve of degree d, genus g (i.e. C_{3} is a locally Cohen-Macaulay (in our case l.c.i.) scheme with $\operatorname{Supp}\left(C_{3}\right)=C$ and $a b=3 d$). The complete intersection $F_{a} \cap F_{b}$ links C to a double structure, C_{2}, on C. By liaison we have: $p_{a}\left(C_{2}\right)-g=d(a+b-4) / 2$. Now C_{2} (which as any double structure on C is a locally complete intersection curve) corresponds to a sub-line bundle $L \subset N_{C}$. From the exact sequence (1), we get:

$$
\begin{equation*}
l:=\operatorname{deg}(L)=\frac{d}{2}(a+b-4)-g+1 \tag{8}
\end{equation*}
$$

Theorem 8. Let $C \subset \mathbb{P}^{3}$ be a smooth, connected curve of degree d, genus g. Assume C does not lie on a plane nor on a quadric cone. If there exists on C a triple structure which is the complete intersection of two surfaces of degrees a, b, then:

$$
\begin{equation*}
3 g \geq \frac{d}{2}(a+b-10)+6 \tag{9}
\end{equation*}
$$

In particular: $g \geq \frac{d}{6}(\sqrt{12 d}-10)+1$.

Proof. As before we consider the Gauss map φ_{L}. By (3) and (8), we have:

$$
r:=\operatorname{deg}\left(\varphi_{L}\right) \cdot \operatorname{deg}(D)=3 g-3-\frac{d}{2}(a+b-10)
$$

We know that $r \geq 2$ and if equality C lies on a quadric cone. So we may assume $r \geq 3$ and (9) follows. For the second inequality, if $a b=3 d$, then $a+b \geq 2 \sqrt{3 d}$.

Combining with Corollary 6 we get:
Corollary 9. Let $C \subset \mathbb{P}^{3}$ be a smooth, connected curve of degree d, genus g. If C is not contained in a plane nor in a quadric cone and if $g<\frac{d(\sqrt{12 d}-10)+6}{6}$, then C cannot be a s.t.c.i. with a structure of multiplicity $m \leq 3$.

By the way let us observe the following elementary fact:

Lemma 10. Let $C \subset \mathbb{P}^{3}$ be a smooth, connected curve of degree d, genus g. Let s denote the minimal degree of a surface containing C. Assume C is the set theoretic complete intersection of two surfaces of degrees $a, b ; a \leq b$ and that a is minimal with respect to this property. Let $m d=a b$. If $a>s$ or if $h^{0}\left(\mathcal{I}_{C}(s)\right)>1$, then $m \geq d / s^{2}$.

Proof. Assume $C=F_{a} \cap F_{b}$ as sets with $a \leq b$ and $a b=m d$. If $S \in H^{0}\left(\mathcal{I}_{C}(s)\right)$, then $S^{m} \in H_{*}^{0}\left(\mathcal{I}_{X}\right)$, where X denotes the m-1-th infinitesimal neighbourhood of $C\left(\mathcal{I}_{X}=\mathcal{I}_{C}^{m}\right)$. It follows that $S^{m} \in\left(F_{a}, F_{b}\right)$. So $S^{m}=A F_{a}+B F_{b}$. If $b>s m$, then $S^{m}=A F_{a}$ and since S is integral, we get $S^{t}=F_{a}$. It follows that $S \cap F_{b}=C$ as sets. By minimality of a, it follows that $F_{a}=S$. This is excluded by our assumptions $\left(a>s\right.$ or $\left.h^{0}\left(\mathcal{I}_{C}(s)\right)>1\right)$. So $b \leq s m$. Thus $m \geq b / s$, hence $m^{2} \geq a b / s^{2}=m d / s^{2}$ and the result follows.

Let $C \subset Q, Q$ a smooth quadric surface. Assume C is the s.t.c.i. of two surfaces of degrees a, b. Then if $d>3$ and C is not a complete intersection, it is easy to see that $b \geq a>2$. Hence $m \geq d / 4$, where $d m=a b$.

References

[1] Beorchia, V.-Ellia, Ph.: Normal bundle and complete intersections, Rend. Sem. Mat. Univers. Politecn. Torino, vol. 48, 4, 553-562 (1990)
[2] Eisenbud, D.-Van de Ven, A.: On the normal bundles of smooth rational space curves, Math. Ann., 256, 453-463 (1981)
[3] Ellia, Ph.: Exemples de courbes de \mathbb{P}^{3} à fibré normal semi-stable, stable, Math. Ann., 264, 389-396, (1983)
[4] Gallarati, D.: Ricerche sul contatto di superficie algebriche lungo curve, Mémoire Acad. Roy. Belge 32, 1-78 (1960)
[5] Hartshorne, R.-Polini, C.: Divisors class groups of singular surfaces, Preprint arXiv: 1301. 3222v1 [math.AC], 15 Jan 2013 (2013)
[6] Hulek, K.-Sacchiero, G.: On the normal bundle of elliptic space curves, Arch. Math., 40, 61-68 (1983)
[7] Jaffe, D.: On set theoretic complete intersections in \mathbb{P}^{3}, Math. Ann., 285, 165-176 (1989)
[8] Ramella L.: Sur les schémas définissant les courbes rationnelles lisses de \mathbb{P}^{3} ayant fibré normal et fibré tangent restreint fixés, Mémoire (nouvelle sèrie) de la Soc. Math. de France, 54, (1993)

Dipartimento di Matematica, 35 via Machiavelli, 44100 Ferrara
E-mail address: phe@unife.it

[^0]: Date: February 21, 2014.
 2010 Mathematics Subject Classification. 14H50, 13C40.
 Key words and phrases. Space curves, self-linkage, set theoretic complete intersections.

