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Abstract: Internal levels of selected endocrine disruptors (EDs) (i.e., perfluorooctane 

sulfonate (PFOS), perfluorooctanoic acid (PFOA), di-2-ethylhexyl-phthalate (DEHP),  

mono-(2-ethylhexyl)-phthalate (MEHP), and bisphenol A (BPA)) were analyzed in 

blood/serum of infertile and fertile men from metropolitan, urban and rural Italian areas. 

PFOS and PFOA levels were also evaluated in seminal plasma. In peripheral blood 

mononuclear cells (PBMCs) of same subjects, gene expression levels of a panel of nuclear 
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receptors (NRs), namely estrogen receptor α (ERα) estrogen receptor β (ERβ), androgen 

receptor (AR), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated 

receptor γ (PPARγ) and pregnane X receptor (PXR) were also assessed. Infertile men from 

the metropolitan area had significantly higher levels of BPA and gene expression of all 

NRs, except PPARγ, compared to subjects from other areas. Subjects from urban areas had 

significantly higher levels of MEHP, whereas subjects from rural area had higher levels of 

PFOA in both blood and seminal plasma. Interestingly, ERα, ERβ, AR, PXR and AhR 

expression is directly correlated with BPA and inversely correlated with PFOA serum 

levels. Our study indicates the relevance of the living environment when investigating the 

exposure to specific EDs. Moreover, the NRs panel in PBMCs demonstrated to be a 

potential biomarker of effect to assess the EDs impact on reproductive health. 

Keywords: human exposure; men infertility; PFOS; PFOA; BPA; DEHP; MEHP; biomarkers 

 

1. Introduction 

Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence 

of human infertility rates, implying a growing demand for assisted reproduction. The male infertility 

factors are estimated to account for 30% couples’ infertility, defined as “the failure to achieve a 

clinical pregnancy after 12 months or more of regular unprotected sexual intercourse” [1]. Indeed,  

the reference values for semen quality assessment have been recently updated by the World Health 

Organization (WHO) to improve diagnosis criteria [2]. Noticeably, for many providers, semen analysis 

is the only marker responsible for many of the couple referrals to fertility clinics, without paying 

attention to etiology or risk factors [3]. In the meanwhile, a growing number of studies associate the 

human exposure to specific chemicals identified as endocrine disruptors (EDs), as detected by their 

presence in body fluids, with a vast array of reproductive disorders in both sexes [4]. In particular,  

the widespread decline in semen quality may be a long-term consequence of altered reproductive 

programming (so called Testicular Dysgenesis Syndrome), as well as consequence of continuous 

exposure to EDs in the living environment [5–7]. 

Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has 

led the scientific community to hypothesize that these compounds may disrupt hormonal homoeostasis 

leading to a variety of physiological impairments, mainly on reproductive health, but also on thyroid 

function and related neurodevelopmental effects, homeostasis of fat and glucose metabolism as well as 

increased susceptibility to some cancers [7]. 

Di-2-ethylhexyl phthalate (DEHP) and Bisphenol A (BPA) are non-persistent EDs mainly used as 

plasticizers, which are widely present in foods, living environment and consumer products. DEHP is 

used primarily in soft polyvinyl chloride products (PVC) such as building materials, electronic devices 

floorings, clothing, furniture, food contact materials, and personal care products. Upon intake, DEHP is 

quickly metabolized to its major toxic metabolite, mono-(2-ethylhexyl) phthalate (MEHP), representing 

the toxicologically relevant biomarker of DEHP exposure [8]. BPA is used in food containers (bottles, 

microwave ovenware, and linings for canned foods and beverages) but also in non-food items, including 
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epoxy-resin based paints, PVC medical devices, surface coatings, thermal paper, parts of electronic 

products, and flame retardants [9]. The perfluorinated EDs, such as perfluorooctane sulfonate (PFOS) 

and perfluorooctanoic acid (PFOA), are more persistent than DEHP and BPA; although their use in 

consumer products is currently restricted, they have been used in a wide range of industrial products such 

as textiles, paper, cleaning agents paints and insecticide formulations, leading to their widespread 

presence in the environment. They also concentrate in food chains, especially in fish [10].  

Several studies have reported the association of exposure to phthalates and BPA with impaired 

semen quality as well as steroid and thyroid hormone levels in infertile men [11–13]. PFOS and PFOA 

exposure have also been associated with poor semen quality [14,15]. Experimental studies show that 

all these EDs interact with several nuclear receptors (NRs): PFOS/PFOA enhance the activity of the 

estrogen receptors (ERs) [16], the peroxisome proliferator-activated receptors (PPARs) [17,18] and the 

pregnane X receptor (PXR) [19]; DEHP and MEHP are agonists of PPARs and PXR [20–23]. 

BPA is considered mainly as an ERα and ERβ agonist but it can also affect other endocrine pathways, 

e.g., by acting as antagonist of the androgen receptor (AR) or as agonist of the aryl hydrocarbon receptor 

(AhR), involved in cross talk processes with ERs, AR and other NRs, and of PXR [24–26].  

In the frame of the PREVIENI project (“Study in model areas on the environmental and health 

impact of some emerging chemical contaminants (endocrine disrupters): living environment, 

reproductive outcomes and repercussions in childhood”), we investigated in fertile and infertile 

subjects of both sexes the internal exposure levels of PFOS, PFOA, BPA, DEHP and its metabolite 

MEHP, as well as the gene expression of ERα, ERβ, AR, PPARγ, AhR and PXR, as potential biomarkers 

of effect. Both biomarkers of exposure and effect were studied in blood, since contaminants can directly 

affect NRs expression in peripheral blood mononuclear cells (PBMCs), relevant for their physiological 

significance. Indeed, these cells may represent one of the first targets possibly affected by EDs exposure as 

reported in both in vitro [27] and human population studies [28,29]. Blood is considered the matrix of 

choice for compounds like PFOS and PFOA, but not for BPA and phthalates, which are regarded as 

EDs undergoing quick metabolism [30]. Nevertheless, several recent studies in humans measured BPA 

and/or MEHP in serum evidencing their presence into the bloodstream addressing possible 

environment-health associations, such as the potential relationships with reproductive function and 

hormonal balance [31], diabetes [32], coronary risk [33] and hypertension [34].  

Subjects were enrolled in three Italian areas representing different living environment scenarios, 

which may be related to different EDs exposure patterns: Rome (Lazio, Central Italy), with all of the 

features of a metropolitan environment and lifestyle; Ferrara (Emilia-Romagna, Northern Italy),  

a medium-sized town amid a prosperous area with many farms and small- or medium-sized industries; 

Sora (Lazio, Central Italy), a rural municipality characterized by intensive agricultural activities. 

Previously, we published PREVIENI data on women showing that the area of residence can be relevant 

for exposure assessment of EDs and that modulation of selected NRs expression (ERα, ERβ, AR, AhR, 

and PXR) may represent a useful biomarker for reproductive disorders and EDs exposure [29].  

This work presents data on fertile and infertile men from the tree areas under study showing EDs 

internal levels measured in whole blood (PFOS and PFOA) or in serum (BPA and DEHP) and in 

seminal plasma (PFOS and PFOA) as well as NRs gene expression in PBMCs. The aim is to: assess 

whether the area of residence can be related to a different exposure scenario; evaluate the possible 

association between male infertility and biomarkers of exposure to specific EDs; and estimate the 
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correlation between EDs exposure and NRs gene expression, to define, as final goal, a panel of 

biomarkers of effect related to biomarkers of exposure.  

2. Methods  

2.1. Areas Characterization 

Three different geographic areas were considered in this study: metropolitan area (Rome, Lazio 

Region, Central Italy); medium-sized urban area (Ferrara, Emilia-Romagna Region, Northern Italy); 

rural area (Sora, Lazio Region, Central Italy). The three areas were chosen by considering territorial, 

demographic, and productive (number and percentage of industries by category of production per km2) 

indicators due to their potential contribution to the environmental contamination as regards the EDs 

considered. Data on the selected indicators for each area were obtained for the year 2011 from the Italian 

National Institute of Statistics (ISTAT) and are reported in Table 1 and in our previous study [29]. 

Table 1. Distribution of a set of territorial, demographic and productive indicators in the 

study areas. Data from the Italian National Institute of Statistics (ISTAT). 

Areas Metropolitan (Rome) Urban (Ferrara) Rural (Sora) 

Indicators 
1–10 

employees 

>10 

employees 

1–10 

employees 

>10 

employees 

1–10 

employees 

>10 

employees 

Agricultural 

enterprises 
393 17 1684 10 4 0 

Textile industries 206 9 40 2 4 0 

Petroleum refinery 16 12 0 1 0 0 

Manufactures of 

chemicals 
121 43 12 8 4 0 

Manufactures of 

articles of rubber 
0 0 0 0 0 0 

Manufacture of 

articles of plastics 
0 0 0 0 0 0 

Sanitation and waste 

management 
39 6 2 0 0 0 

Population 2,724,347 134,464 26,542 

Surface (km2) 1307.71 404.36 71.82 

Population density 

(inhabitants/km2) 
2083.30 332.54 369.56 

2.2. Study Subjects 

From January 2009 to December 2011, on a voluntary basis, 70 infertile men were enrolled in the 

study in the following medical centers per area:  

• n = 28: Department of Women Health and Territorial Medicine of “Sapienza” University 

“Sant’Andrea” Hospital, Rome; 
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• n = 19: Department of Biomedical Sciences and Advanced Therapies, Section of Obstetrics and 

Gynaecology, University of Ferrara; and 

• n = 23: Infertility Center Sterility Therapy and Study of Sora. 

Inclusion criteria were: residing in the municipalities included in the area, age from 27 to 40 years, 

body mass index (BMI) < 30 and PBMCs levels within the range of normal values for age and sex.  

Infertile men affected by non-genetic oligospermia (decreased number of spermatozoa in semen) and/or 

reduced sperm motility, or by idiopathic infertility were enrolled in the study. Occupational exposure to the 

selected EDs (plastic, housewares or textile industries), smoking habit, vegetarian diet, azoospermia, 

associated varicocele, any genital surgery including corrective surgery for undescended testis, a history of 

previous epididymo-orchitis or prostatitis, history of cancer chemotherapy, testosterone and antiandrogens 

treatment, and eukocytospermia, were considered as exclusion criteria. Aged- and BMI-matched fertile 

men from Rome (n = 34), Ferrara (n = 41) and Sora (n = 8) were enrolled as controls in the same centers. 

They were men with normal reproductive function who obtained a spontaneous pregnancy and had healthy 

babies in the last year. The study has been carried out in accordance with The Code of Ethics of the World 

Medical Association (Declaration of Helsinki). Approval from the ethical committees of the responsible 

structures of the collaborating medical centers were obtained before the beginning of this study and all 

patients gave informed consent to study inclusion. 

2.3. Collection and Storage of Samples  

Blood and seminal plasma samples were collected for each subject enrolled in the study, with the 

exception of ten subjects enrolled as controls in the area of Rome that provided exclusively blood 

samples. Glass vials were used in order to avoid possible release of DEHP or BPA from plastics. Three 

aliquots of venous blood were collected from each man. For EDs level determination, 5 mL of  

heparin-treated whole blood and 10 mL centrifuged blood to obtain serum were sampled and sent to 

the Environment Science Department “G. Sarfatti” (now Department of Physical, Earth and 

Environmental Sciences) of the University of Siena.  

For NRs gene expression evaluation in PBMCs, two different blood sampling methods were adopted, 

depending on the sampling site, in order to avoid RNA denaturation: blood samples from Rome were 

collected in heparin tubes and processed within 48 h, whereas samples from Ferrara and Sora were 

collected in PAXgene Blood RNA Tubes (PreAnalitiX, Plymouth, UK) and frozen until use. All samples 

were sent to the Food and Veterinary Toxicology Unit (Istituto Superiore di Sanità, Rome).  

All semen samples were collected in wide-mouthed sterile container by masturbation after 3–5 days 

of sexual abstinence. All samples were kept at 37 °C and examined immediately after complete 

liquefaction. Only one sample per patient was included in the study. 

2.4. Chemical Analysis of Biomarker of Exposure  

Based on established literature methods, BPA, DEHP and MEHP were measured in serum, PFOS 

and PFOA in whole blood and in seminal plasma.  
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2.4.1. PFOS/PFOA 

Details for the analysis of PFOS/PFOA in whole blood were previously reported [29,35]. Chemical 

analysis of seminal plasma was performed following the same procedure adopted for whole blood and 

yet tested for these and other body fluids [15]. Briefly, the samples were homogenized and extracted 

with methyl tert-butyl ether (MTBE, J.T. Baker, Center Valley, PA, USA). The solvent was evaporated 

under nitrogen and replaced with methanol (J.T. Baker). Quantification was performed in a HPLC 

(equipped with Betasil© C18 column, Thermo Electron Corporation, San Jose, CA, USA) interfaced to 

a mass spectrometer at linear triple quadrupoles, by electrospray ionization (ESI) source, working in 

negative ion mode (Finnigan LTQ Thermo Electron Corporation, San Jose, CA, USA). The limit of 

detection (LOD) for both PFOS and PFOA were 0.4 ng/mL, corresponding to the value of the 

compounds in the blanks +3 Standard Deviation (SD). 

2.4.2. DEHP/MEHP 

The analytical procedure for the extraction of DEHP and MEHP from serum samples has been 

previously described [29,35]. Briefly, 0.5 g of each thawed sample were added with 4 mL of acetone (J.T. 

Baker), sonicated and centrifuged for 15 min at 3000 rpm for two times. Supernatants were evaporated in a 

centrifugal evaporator (Thermo Scientific, Waltham, Massachusetts, MA, USA) and suspended with 0.5 

mL of deionized water and 4 mL of acetic acid (J.T. Baker). Quantification was performed by LC-ESI-MS 

system, equipped with a reverse phase HPLC column (Wakosil3C18, 2.0 × 100 mm, 3 μm; Wako Pure 

Chemical Industries Ltd., Richmond, VA, USA), operating in negative (MEHP) or positive (DEHP) 

ion mode. The LODs were 2 ng/mL for MEHP and 10 ng/mL for DEHP.  

2.4.3. BPA 

Total BPA in serum was analyzed according to the procedure previously described [29,35]. Before 

extraction with ethyl ether (J.T. Baker), each aliquot of 0.5 mL of serum was incubated with 2 μL/mL 

of the enzyme I glucuronidase (Sigma-Aldrich, Saint Louis, MO, USA) at 37 °C for 12 h. After 

centrifugation, the collected supernatants were evaporated and reconstituted in 0.5 mL of methanol. 

HPLC-ESI-MS instrument, equipped with a Betasil C18 column 50 × 2.1 mm operated in negative ion 

mode. The identification of BPA was obtained by fragmentation of the ion 227 with collision energy of 

35 and production of the ion (m/z) 212. The ESI source was set at a voltage of 5 kV and to a rush of  

3 μA. The LOD was 0.5 ng/mL.  

2.4.4. Data Quality Assurance and Quality Control  

Measures to avoid contamination from plasticizers in test materials included the use of metal 

needles and glassware vials for collection and storage of samples, the use of glass labware rinsed by 

acetone and hexane to remove potential contaminants and the assessment of method blanks. Data 

quality assurance and quality control protocols for all compounds included matrix spikes, laboratory 

blanks, and continuing calibration verification. Blanks were analyzed with each set of five samples as a 

check for possible laboratory contamination and interferences: levels of chemicals in such samples 

resulted below the limit of detection for each compound. 
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2.5. Gene Expression Analysis of Nuclear Receptors 

Procedures for RNA extraction and gene expression analysis of NRs were previously reported [29]. 

Briefly, heparin-treated blood samples obtained by subjects from Rome were processed using 

Lympholyte®-H density gradient separation medium (Cederlane Laboratories Limited, Ontario, 

Canada) to isolate PBMCs according to manufacturer’s instructions. Total RNA was then extracted by 

the RNeasy Mini Kit (Qiagen, Hilden, Germany). Blood samples from Ferrara and Sora, collected in 

PAXgene RNA content was extracted by the PAXgene Blood RNA Kit (Qiagen, Hilden, Germany). 

For each sample, total RNA was quantified by NanoDrop (Thermo Scientific Wilmington, DE, USA) 

and assessed for its integrity by 1% agarose gel electrophoresis. From each sample, 1 μg of RNA was 

reverse transcribed to cDNA by the cDNA Synthesis Kit (Quantace, London, UK). Gene expression 

analysis was performed by quantitative Real time polymerase chain reaction (PCR) using the Sensi 

Mix SYBR Kit (Quantace, London, UK). As reference gene, we assessed the stability of beta-actin and  

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on a limited sub-group of fertile and infertile 

individuals among the first sampled. Since the stability of beta-actin was much lower than that of 

GAPDH, we chose to use only the latter as reference gene. Indeed, mean cycle threshold (Ct) value for 

all the men analyzed in the three areas was 20.3 with a standard deviation of 1.2, which we considered 

acceptable given the number of subjects and the inter-individual variability. The list of the specific 

primers for the selected NRs and GAPDH were published in the previous report [29]. Real-time PCR 

reactions were run on a Stratagene MP3005P Thermocycler (Stratagene, La Jolla, Ca, USA). 

Data from Real-time PCR experiments are expressed as 2−ΔCt values (ΔCt = CtTG – CtRG, where  

TG = target gene; RG = reference gene) for both control and infertile individuals instead of 2−ΔΔCt, as 

generally performed, to avoid loss of information of controls which, otherwise, would have been 

flattened to 1. 

Seven samples from infertile subjects (three from Rome, three from Ferrara and one from Sora) plus 

eight control samples (four from Rome and four from Ferrara) were not analyzed for NRs gene 

expression due to delivery problems. 

2.6. Statistical Analysis 

We performed statistical descriptive and comparative analysis using non-parametric tests.  

We decided to limit the inference to single variable analysis (univariate statistics) stratifying by areas 

to provide unbiased results, taking into account the number of samples. 

The concentration of each ED below the respective LOD has been considered as “<LOD” for the 

statistical analyses. For the inferential analyses and comparisons the value below LOD has been 

replaced by half the LOD value (medium-bound). Dichotomous variables for concentrations of the 

EDs (0 if ≤ LOD and 1 if > LOD) were created. EDs concentrations in blood, PFOA and PFOS 

concentrations in semen and NRs expression values were not normally distributed and the log 

transformation did not normalize the distributions. Therefore, the differences of EDs internal 

exposures related to the health status (infertile vs. fertile men) and the area of residence (rural, urban or 

metropolitan) were assessed with the Wilcoxon Mann-Whitney test, adjusting for multiple 
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comparisons using Bonferroni procedure for correcting the p-value, which for each individual test was 

set at 1/5 of the level of statistical significance chosen. 

The risk of infertility in relation to the EDs concentration in blood and to PFOA and PFOS 

concentration in semen was calculated comparing infertile and fertile subjects by the exposure (as 

explained above) using univariate analysis and stratifying by area of residence. Chi-square was 

calculated for each test according to Mantel-Haenszel. 

Correlation between EDs concentrations in blood with the PFOA and PFOS concentrations in 

semen was assessed with a Spearman’s rank correlation test with Bonferroni correction, separately 

among cases and controls. The same test was run to investigate the correlation between EDs 

concentrations in blood with the NRs expression. 

Statistical analysis was performed with STATA 11.2 (StataCorp, 4905 Lakeway Drive, College 17 

Station, Texas, TX, USA) setting significance at p < 0.05 for all the statistical tests performed. 

3. Results 

3.1. Study Population 

The mean age and BMI of enrolled men in the three areas are summarized in Table 2. No significant 

difference was observed between infertile and fertile subjects (data not shown), according to age- and 

BMI-matching criteria used for enrollment.  

Table 2. Age (mean and range) and body mass index (BMI) (mean ± SD) of men enrolled 

in the three areas. 

Areas Age BMI 

Metropolitan (n = 62) 37.2 (32–40) 25.0 ± 3.1 

Urban (n = 60) 34.02 (30–40) 25.2 ± 3.0 

Rural (n = 31) 35.6 (27–40) 26.3 ± 2.9 

n, number of subjects enrolled in each area; BMI, body mass index. 

3.2. Biomarkers of Exposure 

PFOS, PFOA, MEHP and BPA serum/blood levels are summarized in Table 3 (serum/blood).  

The results, expressed as mean, median and interquartile range (25th–75th percentile) values, are 

provided for both fertile and infertile groups by area.  

The percentage of subjects exposed to each specific ED, by considering the numbers of subjects in 

which the levels were above the limit of detection (LOD), varied considerably among the three areas under 

study. Since DEHP was found above the LOD only in four infertile men in the rural area (three subjects 

levels in the range 14.04–21.33 ng/mL; one subject level: 112.40 ng/mL) it was excluded from the analysis. 

PFOA was detected in over 75% of the subjects in the rural area compared to the urban (47%) and 

metropolitan (7%) areas, whereas PFOS was detected in about 30% of the subjects in each area. MEHP 

was detected in about 60% of subjects from the urban area, compared to 20% and less than 10% in the 

metropolitan and rural areas, respectively. BPA was detected in over 60% of subjects from the metropolitan 

area, compared to about 30% and only 3%, in the urban and rural areas, respectively (Table 3).  
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Next, we compared the blood/serum median concentration levels of EDs among infertile and fertile 

men residing in different areas. Similar exposure patterns were observed in the two groups: PFOA 

levels increased significantly from the metropolitan (the lowest), to the urban, up to the rural area (the 

highest, with 5.59 ng/mL blood and 4.9 ng/mL blood in infertile and fertile subjects, respectively). 

BPA levels were significantly higher in the metropolitan area (infertile: 19.7 ng/mL serum; fertile:  

4.1 ng/mL serum) than in the urban and, especially, the rural areas. MEHP levels were significantly 

higher in men from the urban area (infertile: 2.8 ng/mL serum; fertile: 4.2 ng/mL serum) with respect 

to men in metropolitan and rural areas, which presented comparable levels. 

The comparison of EDs internal levels between infertile and fertile men highlighted that, when 

considered together irrespective of area of residence, fertile men had significantly higher levels of 

MEHP. Such difference was no more present when data were stratified by area. In the meanwhile, 

stratification by area put into evidence significant differences between infertile and fertile subjects in 

the metropolitan area, where infertile men had significantly higher BPA and PFOS levels compared to 

fertile men (Table 3). 

Table 3. Analytical values of PFOS, PFOA (ng/mL blood), MEHP and total BPA (ng/mL 

serum) in enrolled men grouped by area of residence and subject group. 

Chemicals PFOA PFOS MEHP BPA 

Areas  infertile fertile infertile fertile infertile fertile infertile fertile 

Total mean 2.3 1.8 3.8 1.1 2.9 5.6 9.3 5.7 

(70 infertile; median <0.4 <0.4 <0.4 <0.4 <2.0 * <2.0 * <0.5 <0.5 

83 fertile) 25th p # <0.4 <0.4 <0.4 <0.4 <0.2 <2.0 <0.5 <0.5 

 75th p 4.4 2.9 1.6 0.8 <2.0 6.7 16.8 7.9 

 %>LOD 47.10% 45.80% 32.90% 26.50% 24.30% 42.20% 42.90% 33.70% 

Metropolitan mean 0.5 0.5 8.1 1.6 3.6 5.5 19.2 11.2 

(28 infertile; median <0.4 a <0.4 a <0.4 * <0.4 * <2.0 a <2.0 a 19.7 a,* 4.1 a,* 

34 fertile) 25th p <0.4 <0.4 <0.4 <0.4 <2.0 <2.0 3.2 <0.5 

 75th p <0.4 <0.4 15.9 <0.4 3.3 <2.0 33.1 21.7 

 %>LOD 7.10% 8.80% 42.90% 23.50% 17.90% 20.60% 75.00% 50.00% 

Urban mean 1.8 2.5 0.5 1 3.8 6.4 2.8 2.2 

(19 infertile; median <0.4 b 2.4 b <0.4 <0.4 2.8 b 4.2 b <0.5 b <0.5 b 

41 fertile) 25th p <0.4 <0.4 <0.4 <0.4 <2.0 <2.0 <0.5 <0.5 

 75th p 3.6 4.0 0.5 0.7 5.9 8.1 5.5 4.6 

 %>LOD 47.40% 70.70% 26.30% 26.80% 57.90% 65.90% 42.10% 26.80% 

Rural mean 5.2 4.3 1.2 1 <2.0 1.5 2.6 <0.5 

(23 infertile; median 5.5 c 4.9 b <0.4 <0.4 <2.0 a <2.0 a <0.5 c <0.5 b 

8 fertile) 25th p 4.4 2.1 <0.4 <0.4 <2.0 <2.0 <0.5 <0.5 

 75th p 6.1 6.6 0.6 1.3 <2.0 <0.2 <0.5 <0.5 

 %>LOD 95.70% 75.00% 26.10% 37.50% 4.40% 12.50% 4.40% 0.00% 

LOD = 0.4 ng/mL for PFOS and PFOA; 2 ng/mL for MEHP; 0.5 ng/mL for BPA. * indicates statistically 

significant different values between fertile and infertile men in the same area of residence (Mann-Whitney 

test corrected with the Bonferroni procedure). a,b,c Different superscript letters indicate statistically significant 

different values between areas within subjects of the same group (Mann-Whitney test corrected with the 

Bonferroni procedure). # 25th and 75th p indicate percentile values. PFOA, perfluorooctanoic acid; PFOS, 

perfluorooctane sulfonate; MEHP, mono-(2-ethylhexyl)-phthalate; BPA, bisphenol A.  
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The concentrations of perfluorinated EDs in seminal plasma are summarized in Table 4. The results, 

expressed as mean, median and interquartile range (25th–75th percentile) values, are provided for both 

fertile and infertile groups by area. PFOA was detected in more than 75% of subjects from the rural 

area and in about 30% from the urban area while it was not detected in subjects from the metropolitan 

area. Otherwise, PFOS was detected in 20% of the subjects from the urban and rural areas and in less 

than 10% of the subjects from the metropolitan area (Table 4). 

Similarly to what was observed in blood, PFOA seminal plasma levels of infertile men residing in 

the rural area showed the highest levels (Table 4). Such difference was also observed, to a lower 

extent, in fertile men where PFOA seminal plasma levels were higher in the rural area compared to 

metropolitan and urban areas, which had comparable levels. No significant difference was highlighted 

between infertile and fertile subjects, in any area. PFOS concentration in the semen did not show any 

difference neither by area nor between infertile and fertile subjects (Table 4). 

Table 4. Analytical values of PFOS and PFOA (ng/mL semen) in enrolled men grouped by 

area of residence and subject group. 

Chemicals PFOA PFOS 

Areas  infertile fertile infertile fertile 

Total mean 1.6 1.2 1.1 1.1 

(70 infertile; median <0.4 <0.4 <0.4 <0.4 

73 fertile) 25th p # <0.4 <0.4 <0.4 <0.4 

 75th p 3.1 2.4 <0.4 <0.4 

 %>LOD 32.90% 32.90% 18.60% 11.00% 

Metropolitan mean <0.4 <0.4 1.2 1.7 

(28 infertile; median <0.4 a <0.4 a <0.4 <0.4 

24 fertile) 25th p <0.4 <0.4 <0.4 <0.4 

 75th p <0.4 <0.4 <0.4 <0.4 

 %>LOD 0.00% 0.00% 7.10% 8.30% 

Urban mean 1 1.5 1.4 1 

(19 infertile; median <0.4 b <0.4 b <0.4 <0.4 

41 fertile) 25th p <0.4 <0.4 <0.4 <0.4 

 75th p <0.4 2.7 3.1 <0.4 

 %>LOD 21.10% 43.90% 26.30% 14.60% 

Rural mean 3.7 2.5 0.8 <0.4 

(23 infertile; median 3.4 c 3.2 b <0.4 <0.4 

8 fertile) 25th p 2.4 1.3 <0.4 <0.4 

 75th p 5.5 3.5 1.5 <0.4 

 %>LOD 82.60% 75.00% 26.10% 0.00% 

LOD = 0.4 ng/mL for PFOS and PFOA; a,b,c Different superscript letters indicate statistically significant 

different values between areas within subjects of the same group (Mann-Whitney test corrected with the 

Bonferroni procedure). # 25th and 75th p indicate percentile values. PFOA, perfluorooctanoic acid; PFOS, 

perfluorooctane sulfonate. 

Consistent with the above finding, PFOA semen and blood concentration levels were highly 

correlated in the infertile group (Rho = 0.59; p < 0.001), while no correlation was found in the fertile 
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group (Rho = 0.08; p = 1) (data not shown). No correlation was detected in either infertile or fertile 

groups between PFOS semen and blood levels. 

Finally, we assessed whether the EDs under investigation could be identified as risk factors for male 

infertility based on measured internal exposure levels. Grouping together the subjects from the three 

areas, a significant negative association was found between MEHP serum levels and infertility  

(odds ratio = 0.4, with 95% confidence limits 0.2-0.9). However, when stratifying by area of residence, 

no significant association was found either for MEHP or for the others EDs (data not shown). 

3.3. Nuclear Receptors Gene Expression 

NRs gene expression levels (mean, median and interquartile range) in infertile and fertile men by 

area are summarized in Table 5.  

The mRNAs of the selected NRs were detected in all samples examined, therefore confirming the 

plausibility of the panel. Expression levels in PBMCs were approximately comparable for ERα, ERβ, 

AR and PXR, while AhR and PPARγ were expressed at lower levels.  

Expression levels of ERα, ERβ, AR, AhR and PXR were significantly higher in infertile subjects 

from the metropolitan area compared to the other two areas, showing the pattern metropolitan > urban 

> rural areas. The median expression levels in men from the metropolitan area were about four-(PXR) 

to eight-fold (ERα) higher than in men from the urban area and about 15-(AhR) to 492-fold (PXR) 

higher than those from the rural area. Similar significant differences were observed in fertile men as 

regards ERα and PXR with the same pattern metropolitan > urban > rural areas. More evident 

differences in median expression levels were observed between men from metropolitan and urban 

areas (about 28- and 46-fold for ERα and PXR, respectively) and still large difference between 

metropolitan and rural residing men (about 55- and 162-fold for ERα and PXR, respectively). ERβ, AR 

and AhR expression was significantly higher in fertile men from the metropolitan area compared to 

men from both urban and rural areas, which were comparable, with difference ranging from about 

three-(AhR) to 39-fold (ERα) in expression levels. No differences were detected for PPARγ in either 

areas or infertile and fertile men.  

A difference between infertile and fertile subjects was observed only for AhR, its expression being 

significantly higher in infertile men from the metropolitan area compared to fertile subjects of the same 

area (Table 5). 

The analysis of the correlation between EDs concentration and the NRs expression in blood 

evidenced that, in both infertile and fertile men, PFOA levels were negatively correlated to the 

expression of ERα, ERβ, AR, AhR and PXR. On the contrary, BPA serum levels were positively 

correlated with the same NRs. No correlation was found with PPARγ (Table 6). 
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Table 5. Gene expression values of nuclear receptors in enrolled men grouped by area of residence and subject group. Data are expressed as 

2−ΔCt values with GAPDH as reference gene. 

Nuclear Receptors ERα ERβ AR PPARγ AhR PXR 

Areas  infertile fertile infertile fertile infertile fertile infertile fertile infertile fertile infertile fertile 

Total mean 0.0658 0.0717 0.0551 0.0667 0.0314 0.0354 0.0003 0.0007 0.0049 0.0036 0.0635 0.0684 

(63 infertile; median 0.0091 0.0013 0.0079 0.0031 0.0045 0.0016 0.0002 0.0002 0.0016 0.0013 0.0071 0.0008 

75 fertile) 25th p # 0.0005 0.0004 0.0011 0.0008 0.0007 0.0004 0.0001 0.0001 0.0006 0.0007 0.0002 0.0002 

 75th p 0.0561 0.0511 0.0457 0.0544 0.0274 0.0260 0.0003 0.0003 0.0080 0.0040 0.0509 0.0525 

Metropolitan mean 0.1511 0.1595 0.1278 0.1487 0.0718 0.0774 0.0002 0.0002 0.0108 0.0046 0.1338 0.1492 

(25 infertile; median 0.0629 a 0.0277 a 0.0550 a 0.0391 a 0.0324 a 0.0157 a 0.0001 0.0002 0.0090 a,* 0.0035 a,* 0.0492 a 0.0325 a 

30 fertile) 25th p 0.0209 0.0006 0.0172 0.0013 0.0092 0.0004 0.0000 0.0001 0.0035 0.0009 0.0157 0.0004 

 75th p 0.2044 0.1170 0.1684 0.0788 0.0967 0.0527 0.0003 0.0003 0.0121 0.0052 0.2229 0.2094 

Urban mean 0.0223 0.0159 0.0156 0.0144 b 0.0103 0.0089 0.0007 0.0049 0.0018 0.0034 0.0408 0.0162 

(16 infertile; median 0.0081 b 0.0010 b 0.0084 b 0.0019 0.0055 b 0.0013 a,b 0.0001 0.0002 0.0013 b 0.0011 b 0.0136 b 0.0007 b 

37 fertile) 25th p 0.0009 0.0005 0.0018 0.0007 0.0008 0.0005 0.0001 0.0001 0.0006 0.0005 0.0004 0.0003 

 75th p 0.0343 0.0093 0.0274 0.0066 0.0174 0.0042 0.0011 0.0004 0.0026 0.0033 0.0564 0.0134 

Rural mean 0.0005 0.0005 0.0013 0.0013 0.0008 0.0007 0.0003 0.0002 0.0006 0.0010 0.0003 0.0002 

(22 infertile; median 0.0003 c 0.0005 c 0.0010 c 0.0010 b 0.0005 c 0.0005 b 0.0002 0.0002 0.0006 c 0.0008 b 0.0001 c 0.0002 c 

8 fertile) 25th p 0.0002 0.0002 0.0006 0.0005 0.0003 0.0002 0.0001 0.0001 0.0003 0.0005 0.0001 0.0001 

 75th p 0.0006 0.0006 0.0019 0.0013 0.0011 0.0011 0.0003 0.0003 0.0009 0.0015 0.0004 0.0002 

* Indicates statistically significant different values between infertile and fertile men in the same area of residence (Mann-Whitney test corrected with the Bonferroni 

procedure). a,b,c Different superscript letters indicate statistically significant different values between areas within men of the same group (Mann-Whitney test corrected 

with the Bonferroni procedure). # 25th and 75th p indicate percentile values. ERα, estrogen receptor α; ERβ, estrogen receptor β; AR, androgen receptor; PPAR γ, 

peroxisome proliferator-activated receptor γ; AhR, aryl hydrocarbon receptor; PXR, pregnane X receptor.  
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Table 6. Correlation between the endocrine disruptors concentration in blood/serum and 

nuclear receptors gene expression in infertile and fertile subjects (Spearman’s rank correlation 

test, Bonferroni corrected). (a) Fertile subjects; (b) Infertile subjects. 

(a) 

Chemicals PFOA PFOS MEHP BPA 

Nuclear Receptors     

ERα –0.51 * 0.04 –0.17 0.53 * 

ERβ –0.46 * 0.02 –0.2 0.51 * 

AR –0.49 * 0.02 –0.18 0.53 * 

AhR –0.31 * 0.19 –0.23 0.42 * 

PXR –0.52 * 0.08 –0.14 0.61 * 

PPARγ 0.12 0.22 0.04 –0.34 

(b) 

Chemicals PFOA PFOS MEHP BPA 

Nuclear Receptors     

ERα –0.76 * 0.04 0.02 0.51 * 

ERβ –0.75 * 0.04 0.03 0.49 * 

AR –0.74 * 0.03 0.01 0.50 * 

AhR –0.69 * 0.20 –0.02 0.50 * 

PXR –0.76 * 0.05 0.07 0.50 * 

PPARγ 0.34 –0.19 –0.09 0.33 

* Indicates statistically significant correlation. PFOA, perfluorooctanoic acid; PFOS, perfluorooctane 

sulfonate; MEHP, mono-(2-ethylhexyl)-phthalate; BPA, bisphenol A; ERα, estrogen receptor α; ERβ, 

estrogen receptor β; AR, androgen receptor; PPAR γ, peroxisome proliferator-activated receptor γ; AhR, aryl 

hydrocarbon receptor; PXR, pregnane X receptor. 

4. Discussion 

This study investigated EDs internal levels and gene expression levels of a panel of NRs in infertile 

and fertile men residing in metropolitan, urban and rural areas; the potential association between male 

infertility and internal levels of specific EDs and the association between EDs and NRs expression 

levels were also evaluated.  

The three areas (Rome, Ferrara and Sora) included in this study represent quite distinct living 

environment scenarios according to selected territorial, demographic and productive indicators. 

Briefly, the metropolitan area was characterized by high population density and also included a 

number of industrial and even agricultural enterprises, the urban area showed the highest proportion of 

enterprises with more than 10 employees, while in the rural area neither factories nor farms with more 

than 10 employees were reported. Indeed, analyses of biomarkers of exposure and effects in the 

population of men under study highlighted relevant differences according to the area of residence.  

The subjects from the metropolitan area are characterized by higher internal levels of BPA as well 

as gene expression of ERα, ERβ, AR AhR and PXR; moreover, only in this area infertile men had 

higher BPA and PFOS levels, as well as AhR expression, compared to fertile subjects.  

The significantly higher levels of BPA in men from metropolitan area may reflect the greater 

presence of economic activities employing these chemicals, as well as characteristic usage patterns of 
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food commodities and consumer products, suggesting a repeated and continuous uptake of the 

compound from aggregate exposure. Although, in the same area, statistically higher concentrations of 

BPA and PFOS were detected in infertile compared to fertile subjects, the exposure to BPA and PFOS 

did not represent risk factors for infertility. Previous studies reported an inverse association between 

BPA internal levels in men and semen quality parameters, such as sperm concentration, sperm 

motility, sperm vitality, used to assess infertility: in male partners of sub-fertile couples [12];  

in workers exposed to BPA [36] and in young men from the general population [37]. For PFOS 

exposure, a negative association with semen quality was also reported in the general population [38]. 

The overexpression of AhR we observed in infertile subjects has been previously reported in 

Sertoli, Leydig and spermatid cells of infertile men [39]. Therefore, our results may lend further 

support to AhR overexpression as a characteristic of infertility in males. 

Subjects from urban area are more exposed to both MEHP and PFOA, whereas highest PFOA 

levels, in both blood and seminal plasma, were quantified in men from rural area. The expression 

levels of all NRs but PPARγ, were lower in the urban and much lower in the rural areas, compared to 

the metropolitan area, ranging from about 10- to 500-fold depending on each NR. No differences in 

expression levels between infertile and fertile men from these areas were measured. 

MEHP levels measured in this study are comparable to those in Danish men (7.88 ng/mL) [40].  

Our findings indicate a potential inverse correlation between MEHP exposure in all subjects 

considered and the risk of infertility, although this association disappeared when stratifying by area. 

DEHP and its active metabolite, MEHP, do impair male reproductive development in laboratory  

rodents [41] and possibly also human semen quality [42–44]. We cannot currently make any hypothesis 

about whether the observed inverse correlation between MEHP exposure and infertility derives from 

undetected confounder(s) or bears a relationship with MEHP biological activity and metabolism. 

With respect to PFOA, its presence in more than 50% of men from urban and rural areas, but not in 

metropolitan area, suggests the possible presence of specific environmental source of exposure. 

Indeed, PFOA is known as contaminant of groundwater and water surface from different sources, 

hinting to a possible relationship with the water sources used in local activities [45]. 

Results on PFOA and PFOS levels measured in the semen were quite consistent with those obtained 

in blood samples: detectable PFOA levels were higher in the rural area compared to the other two 

areas, in both semen and blood matrices. We found no association between PFOA and PFOS for both 

blood and semen levels and infertility. Literature data on the correlation of perfluorinated compounds 

with male infertility or sperm quality are not consistent. Altered sperm parameters in highly exposed 

men were observed in some studies [14,15], including one performed in Siena, another Italian urban 

area, where PFOA and PFOS internal levels were comparable to those found in our study. On the other 

hand, another study found no association between PFOA or PFOS exposure and seminal volume, 

sperm concentration and motility [46]. 

Interestingly, in our study a significant correlation between PFOA levels in the semen and in blood 

was observed in infertile but not in fertile subjects which may be considered belonging to the general 

population. A previous study conducted on the male general population found no correlation between 

PFOA’s semen and plasma concentrations [47], thus supporting our observation and suggesting that in 

infertile men an increased circulating blood level of PFOA may be reflected by an increased 

concentration in the semen. 
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One goal of the study was to evaluate NR expression as a potentially suitable and toxicologically 

relevant biomarker in association with environmental exposures and male infertility.  

Indeed, we observed that ERα, ERβ, AR, AhR and PXR expression is correlated positively with 

BPA levels and negatively with PFOA levels, in both infertile and fertile subjects. In effect, higher 

BPA levels correspond to higher NRs expression, as observed in the metropolitan area, whereas higher 

PFOA levels correspond to lower NRs expression, as observed in the rural area. The inverse 

correlation between PFOA and NRs expression in blood and the observed positive correlation between 

blood and seminal plasma PFOA levels prompt investigating if the same decrease of NRs expression 

would occur also in spermatozoa, supporting the role of PFOA in male infertility. Indeed, a decrease or 

a depletion of at least ERs and AR in spermatozoa have been observed in some male reproductive 

disorders [41,42]. 

To our knowledge, only a recent study performed on Italian adult men from two rural communities 

of Tuscany (Central Italy) investigated BPA levels and expression of ERα, ERβ and AR, plus ESRRα 

and ESSRRβ (estrogen related receptors alpha, and -beta), in PBMCs; BPA exposure was significantly 

correlated with ERβ and ESRRα, but not with the other NRs considered [48]. Although the design of 

that study was different from PREVIENI, since it included only healthy subjects from rural 

communities, BPA was measured in urine and a different NRs panel was used, the overall evidence 

points to a link between BPA exposure and increased NRs expression in PBMCs.  

Within the PREVIENI project, infertile and fertile subjects were enrolled from the selected three 

areas: as data on women have been already published [29], we will briefly summarize the main 

overlaps and differences between men and women per area, intending to perform deeper comparison 

between them in a further study.  

The exposure patterns to BPA and PFOA in men are coherent with those observed in women [29]. 

Indeed, significant higher BPA levels were detected in subjects living in the metropolitan area, while 

PFOA was present at significantly higher concentration in subjects from rural and urban areas.  

The overlap of the results obtained in women and men supports the hypothesis that the general 

population exposure to BPA and PFOA is strongly influenced by the living environment.  

Moreover, statistically higher concentrations of BPA were detected in infertile men and women, 

compared to fertile subjects, but the association between BPA exposure and infertility was highlighted 

only for women. 

A discrepancy was observed as regards MEHP exposure, since higher levels were observed in men 

from the urban area and in women from the metropolitan area [29]. This finding might hint to some, 

yet unidentified, gender-related factor differentially present in living environments. 

With respect to biomarkers of effect, both men and women from the metropolitan area showed 

significant higher ERα, ERβ, AR, AhR and PXR genes expression in PMBCs compared to subjects 

from the other two areas. However, men and women differed as regards the expression of the NRs in 

fertile and infertile subjects. In fact, infertile women had higher levels of all the NRs compared to 

fertile women, whereas infertile men had only higher AhR levels than fertile subjects. 

A significant positive correlation between BPA serum levels and the expression of all NRs but 

PPARγ, was observed in infertile subjects, consistently with previous observations in women [35].  

On the other hand, while a significant negative correlation between PFOA and all NRs included in the 
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panel, with the exception of PPARγ, was found in infertile men, in infertile women such negative 

correlation was observed only with AhR. 

Overall, our present data support the relevance of the living environment on the exposure of the 

population, prompting to investigate the contribution of each main route of exposure related to each 

ED as well as to a combination of co-occurring EDs.  

The highlighted correlations between EDs concentration and the expression of NRs provide a panel 

of biomarkers of effect related to biomarkers of exposure, thus supporting their use in the frame of 

biomonitoring studies. 

While acknowledging the unavoidable limitations of cross-sectional studies, and uncertainties 

related to the lack of EDs measurements in environmental matrices from the investigated areas, 

nevertheless, this study highlights significant results on male exposure to several EDs, the relationship 

with living environments and its potential impact on fertility. 

5. Conclusions 

Our results reinforce the concept that the living environment mainly determines the pattern of EDs 

exposure in the population. Furthermore, our study confirms the feasibility of NRs panel as biomarkers 

of effect in association with biomarkers of exposure linked to particular EDs. 

The results support the need to assess the possible link between specific EDs, in particular BPA and 

PFOA, and male infertility.  
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Abbreviation 

PFOA perfluorooctanoic acid 

PFOS perfluorooctane sulfonate 

DEHP di-2-ethylhexyl-phthalate 

MEHP mono-(2-ethylhexyl)-phthalate 

BPA bisphenol A 

ERα estrogen receptor α 

ERβ estrogen receptor β 

AR androgen receptor 

PPARγ peroxisome proliferator-activated receptor γ 

AhR aryl hydrocarbon receptor 

PXR pregnane X receptor 
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