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Caveolae are plasma membrane invaginations enriched in sterols and sphingolipids. Sphingosine kinase 1 (SK1) is
an oncogenic protein that converts sphingosine to sphingosine 1-phosphate (S1P), which is a messenger molecule
involved in calcium signaling. Caveolae contain calcium responsive proteins, but the effects of SK1 or S1P on caveolar
calcium signaling have not been investigated.We generated a Caveolin-1–Aequorin fusion protein (Cav1–Aeq) that
can be employed formonitoring the local calcium concentration at the caveolae ([Ca2+]cav). InHeLa cells, Cav1–Aeq
reported different [Ca2+] as compared to the plasmamembrane [Ca2+] in general (reported by SNAP25–Aeq) or as
compared to the cytosolic [Ca2+] (reported by cyt-Aeq). The Ca2+ signals detected by Cav1–Aeq were significantly
attenuatedwhen the caveolar structureswere disrupted bymethyl-β-cyclodextrin, suggesting that the caveolae are
specific targets for Ca2+ signaling. HeLa cells overexpressing SK1 showed increased [Ca2+]cav during histamine-in-
duced Ca2+ mobilization in the absence of extracellular Ca2+ as well as during receptor-operated Ca2+ entry
(ROCE). The SK1-induced increase in [Ca2+]cav during ROCE was reverted by S1P receptor antagonists. In accor-
dance, pharmacologic inhibition of SK1 reduced the [Ca2+]cav during ROCE. S1P treatment stimulated the
[Ca2+]cav upon ROCE. The Ca2+ responses at the plasmamembrane in generalwere not affected by SK1 expression.
In summary, our results show that SK1/S1P-signaling regulates Ca2+ signals at the caveolae. This article is part of a
Special Issue entitled: 13th European Symposium on Calcium.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Sphingosine kinase 1 (SK1) is an oncogenic protein that converts
sphingosine to the lipid messenger molecule sphingosine-1-phosphate
(S1P). Sphingosine and its metabolic precursor ceramide are considered
to be pro-apoptotic lipids whereas S1P is involved in promoting cell sur-
vival. SK1/S1P signaling acts through direct intracellular mechanisms as
well as through extracellular stimulation of specific G-protein coupled
S1P receptors (S1PR1-5), someofwhich are known to couple to phospho-
lipase C (PLC) [1,2]. Activation of PLC results in the hydrolysis of phos-
phatidylinositol 4,5-bisphosphate (PIP2) into two central Ca2+ signaling
molecules, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3).

Members of the transient receptor potential canonical channels
(TRPC1-7) are activated upon DAG-binding [3], thus facilitating
opean Symposium on Calcium.
receptor-operated Ca2+ entry (ROCE) and S1P has been shown to be in-
volved in this process [3,4]. In accordance, S1P treatment activates
TRPC2 in rat thyroid FRTL-5 cells [5]. IP3 is a major regulator of the in-
tracellular endoplasmic reticulum (ER) Ca2+ store and acts by ligating
the IP3 receptor (IP3R) Ca2+ channels in the ER membrane [6]. There
is also evidence for S1P to directly mediate the release of Ca2+ from
the intracellular stores [7]. However, the role of SK1 and S1P in regulat-
ing Ca2+ signaling in specific cellular sub-compartments is poorly
characterized.

Since the development of organelle-specific Ca2+ reporters, it has
become increasingly evident that highly localized Ca2+ signals regulate
various cell physiological phenomena. For instance, recent reports have
highlighted the importance of mitochondrial Ca2+ handling in multiple
(patho)physiological situations, and the long-soughtmolecular identity
of the mitochondrial Ca2+ uniporter (MCU) complex is now emerging
[8–11]. Also, the importance of the interplay between the major Ca2+

store, the endoplasmic reticulum (ER), and the mitochondria is being
characterized [12,13]. Furthermore, the lysosomal compartments are
involved in cellular Ca2+ handling [14].
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In addition to the Ca2+ domains in membrane enclosed organelles,
local micro domains of cytosolic Ca2+ play a role in cell physiological
events. Such Ca2+ micro domains may for instance arise near channels
and pumps involved in Ca2+ handling near the plasmamembrane (PM)
or the ER [15,16].Many components of the cellular Ca2+ handling reside
in the PM. These include the plasmamembrane Ca2+ ATPases (PMCAs),
ion channels of the transient receptor potential (TRP) family, and the
Orai channels with functions ranging from maintaining the Ca2+ ho-
meostasis to regulation of cell proliferation and migration. PM and ER
have been shown to interact to regulate Ca2+ fluxes. For instance, the
stromal interaction molecules (STIMs) that reside in the ER and sense
the luminal Ca2+ concentrations of the organelle can couple to the
Orai and TRP canonical (TRPC) channels to activate store-operated cal-
cium entry (SOCE) [17,18].

To organize cellular signaling, the lipid and protein composition
of the PM is compartmentalized through cytoskeletal and integral
membrane protein scaffolding [19]. Caveolae are invaginated
cholesterol-rich compartments of the PMwhich are involved in facil-
itating and organizing cellular signals. Caveolin proteins (caveolin1–
3) are the main structural components of caveolae, caveolin-1 being
the most abundantly expressed isoform in most tissues. Caveolae
have numerous proposed functions including the regulation of
local Ca2+ signaling as well as contact coordination at the PM, ER
and mitochondrial interfaces. Multiple molecules that are related to
Ca2+ signaling have been shown to localize to caveolae, including
G-protein coupled receptors (GPCRs), receptor tyrosine kinases
(RTKs), ion channels (e.g. TRPC1 and 4) as well as PIP2, PLC and
IP3R. Also scaffolding functions for caveolin-1 mediating the activity
of TRPC1 upon SOCE have been proposed [20–22].

Depending on the cellular context, SK1 may translocate to the
caveolin-1 enriched domains in PM upon activation [23]. This PM trans-
location of SK1 is in part mediated by Ca2+ [24] and may facilitate S1P
secretion to the cell exterior, leading to autocrine S1P signaling [5,
24–26]. Since caveolae are versatile Ca2+ signaling domains with impli-
cated functions for all of the major cellular Ca2+ handling mechanisms
(i.e. ER Ca2+-release through the IP3R channels and Ca2+-uptake
through ROCE and SOCE), we wanted to investigate whether SK1-
mediated signaling would act locally at the caveolae to coordinate
some of these central Ca2+ signaling events.

Experimental methods for measuring Ca2+ at the caveolae are rela-
tively limited. Ca2+ signaling molecules interacting with caveolae-
associated structures are to some extent characterized, but experimen-
tal data for specific caveolar Ca2+ fluxes is scarce. To our knowledge,
two approaches to investigate Ca2+ signaling related to caveolae have
been reported. By employing targeted fluorescent Ca2+ reporters and
FRET, Isshiki et al. [27,28] have shown that caveolae are the preferred
plasma membrane domains for SOCE, and that the internalized
caveolin-enclosed vesicles may act as sealed compartments that are
able to release Ca2+ in an IP3R-dependent manner.

Here, we characterize a novel chimeric Ca2+ reporter protein com-
prising of the Asp119Ala-mutated aequorin [29] and caveolin-1 (desig-
nated here as Cav1–Aeq) that specifically reports Ca2+ signals from a
caveolar microdomain. These Ca2+ signals are registered at the cyto-
plasmic subcellular domain near to the caveolae and are distinct from
the Ca2+ signals from the overall near PM Ca2+ compartment. By
employing this approach,we shownovel roles for the oncogenic protein
SK1 in controlling the caveolar Ca2+ microdomain upon IP3R stimula-
tion, ROCE and SOCE.

2. Materials and methods

2.1. Cell culture, transduction and transfection

HeLa cellswere cultured in DMEM (#D5546, Sigma-Aldrich) supple-
mented with 10% FBS, 1% penicillin–streptomycin and 1% L-glutamine
(Life Technologies) at 37 °C and 5% CO2. The ML1 thyroid cancer cells
that were used in a supplementary experiment were grown in the
same medium as described here for HeLa cells. To overexpress SK1,
we used a previously described lentiviral expression vector [5]. Trans-
duction with the SK1 overexpression vector was performed by incubat-
ing the cells with polybrene (8 mg/ml) along with the viral particles at
multiplicity of infection 10 for 6 h. Control cells were created by
mock-vector transduction. The lentiviral particles for SK1 shRNA (sc-
156038-V), as well as the control vectors (sc-108080), were acquired
from Santa Cruz Biotechnology and the cells were transduced by incu-
bating the cells for 12 h with polybrene (8 mg/ml) along with the
lentiviral particles at multiplicity of infection 30. After 24 h the cells
were subjected to continuous selection with 0.5 mg/ml puromycin
(Life Technologies). Plasmid transfection mixtures were prepared by
using TurboFect transfection reagent (#R0531, Thermo Scientific),
OptiMEM media (#31985-070, Life Technologies) and 1 μg/ml plasmid
(final concentration). The transfections were conducted in the same
cell culture conditions as described above.

2.2. Construction of the caveolin-1–aequorin plasmid

For measurements in the caveolar compartment we created a plas-
mid chimera with the sequences for caveolin-1 and the previously de-
scribed Asp119Ala-mutated aequorin (mut-Aeq) [29]. Among other
targeting sequences (see Materials and methods, Section 2.6 for addi-
tional references), this mut-Aeq has been previously characterized for
the plasma membrane targeting SNAP25–Aeq chimera [29]. The Cav1–
Aeq was generated by amplifying Cav-1 using the primers (5-CGGGGT
ACCATGTCTGGGGGAAATAC-3; forward, 5-GGCGAATTCTATTTCTTTCT
GCAAGTTGAT-3; reverse). The PCR fragment was subcloned into a
pSC-A vector. The fragment coding Cav-1 was excised by KpnI and
EcoRI digestion, and the fragment encoding Cav-1 was ligated into
pcDNA3 to generate pcDNA3-Cav1. The mut-Aeq fragment was cut
from a pSC-A plasmid using EcoRI, and ligated into the pcDNA3-Cav1,
to generate the pcDNA3-Cav1–Aeq encoding a chimeric protein with
the N-terminus of mut-Aeq fused to the C-terminus of caveolin-1. N-
terminal modifications to the mut-Aeq have been shown not to affect
the luminescence production of the chimeric proteins [30].

2.3. Separation of detergent resistant membrane fractions on
Optiprep gradient

All steps were performed at +4 °C. Cells were washed 2× in PBS,
harvested and pelleted by centrifugation for 5 min at 2500 rpm. The
cells were homogenized in 250 μl TNE buffer (25 mM Tris–HCl pH 7.5,
150 mM NaCl, 5 mM EDTA, 0.1% Triton-X 100, 10% sucrose, 1 mM DTT
and protease inhibitor cocktail). The lysate was blended with 480 μl
60% Optiprep and mixed. The lysate was transferred to an ultracentri-
fuge tube, and TNE buffer with decreasing percent Optiprep were lay-
ered on top. The samples were centrifuged for 4 h, 40,000 rpm using a
Beckman Coulter centrifuge with a SW 60Ti rotor after which the frac-
tions were collected in Eppendorf tubes.

2.4. Western blot

For western blotting, the cells were grown to 70% confluence,
followed by three washes with phosphate buffered saline (PBS) on ice.
The cells were then lysed by addition of 3x Laemmli sample buffer
(LSB), where after the lysates were boiled for 5 min. Then, the proteins
were subjected to SDS-PAGE and transferred to a nitrocellulose mem-
brane. The membranes were then blocked with 5% milk in TBS (Tris-
buffered saline, 150 mM NaCl, 20 mM Tris base, pH 7.5) with 0.1%
Tween 20 (Sigma-Aldrich) and incubated overnight with the desired
primary antibody at +4 °C. The primary antibodies were diluted
1:1000 in PBS containing 0.5% bovine serum albumin (BSA). Then, the
membranes were washed and incubated with the secondary, horserad-
ish peroxidase (HRP) conjugated antibodies (1:3000 dilution in
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TBST + 5% milk). The proteins were then detected by chemilumi-
nescence using Western Lightning Plus-ECL substrate (Perkin
Elmer). The sphingosine kinase 1 antibody was from Cell Signaling
and the HSC70 antibody was from Enzo life sciences. The caveolin-
1 antibody was from Santa Cruz and the anti-HA antibody from
Sigma-Aldrich.

2.5. Immunocytochemistry and microscopy

For immunocytochemistry, the cells were grown on poly-L-lysine
coated coverslips and, when targeted fluorescent plasmids were used,
transfected with the desired plasmid constructs. Then, the cells were
washed three times with PBS and fixed with 4% paraformaldehyde in
PBS for 15 min, followed by three washes and a 5-minute treatment
with 1% Triton-X in PBS. Next, the cells were treated with 1% BSA in
PBS for 1 h followed by threewashes in PBS. Then, the cells were treated
overnight at +4 °C with the desired primary antibody. After this, the
Fig. 1.Caveolae sense Ca2+-signals differently from the plasmamembrane. (A)HeLa cells overex
vested and detergent resistant and soluble fractions were separated on an Optiprep gradient by
the indicated proteins was addressed by western blotting. (B) Confocal images showing the dis
versus SNAP–AEQ (pseudo color green). (C)HeLa cells transfectedwith Cav1–Aeq, SNAP–Aeq or
Representative traces are shown. The bar diagrams show the average change in [Ca2+]. The erro
(Cav1–AEQ compared to SNAP–Aeq+ Cav1) (D) HeLa cells were stimulated with 100 μMhista
agrams show the average change in [Ca2+]. The error bar depicts S.E.M., n = 12–13, ***P b 0.0
cells were washed, treated with the secondary antibodies andmounted
using Mowiol mounting medium. The primary antibodies used
were caveolin-1 (#sc-894, Santa Cruz) and anti-HA (#H9658,
Sigma-Aldrich). The AlexaFluor secondary antibodies were from
Life Technologies. The ER-GFP was described before in [31] and
the plasmids encoding RFP and EGFP tagged CAV1 were from
Addgene (plasmids #14434 and #27704, deposited by Ari Helenius,
described in [32]). TIRF microscopy was performed with a Nikon
Eclipse Ti-E microscope using a 100×/1.49 NA oil immersion ob-
jective. ER-GFP and Cav1-RFP were excited by the 488 nm and
561 nm laser lines, respectively. The calculated imaging depth was
~100 nm, and the microscope was controlled with NIS-Elements
Advanced Research 3.1 (Nikon). Widefield microscopy was done
using the same microscope with epifluorescence settings and a
40×/0.75 objective. Confocal microscopy was done on a Leica TCS
SP2 attached to a DM RXA2 microscope using a 63×/0.90 NA
water immersion objective.
pressing Caveolin-1–Aequorin (Cav1–Aeq) and SNAP25–Aequorin (SNAP–Aeq)were har-
ultracentrifugation. The gradient fractions were collected and the detergent resistance of
tribution of Cav1–Aeq (pseudo color red, indicated by white arrows in the magnification)
SNAP–Aeq+Cav1–EGFPwere stimulatedwith 100 μMhistamine in Ca2+-free conditions.
r bar depicts S.E.M., n= 4–20, ***P b 0.001 (SNAP–AEQ compared to Cav1–AEQ), ¤P b 0.01
mine in Ca2+-containing (1 mM) conditions. Representative traces are shown. The bar di-
01.
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2.6. Aequorin-based Ca2+ measurements

Measurements of subplasmalemmal [Ca2+] and cytosolic [Ca2+]
were conducted by employing the SNAP25-fused aequorin or the non-
targeted aequorin (cyt-Aeq), respectively, as described in [29]. Cav1–
Aeq was employed for the measurements of [Ca2+]cav. The general ex-
perimental setup was as described in [33]. Briefly, one hundred thou-
sand cells per well were seeded on 12-well plates containing poly-L-
lysine (Sigma-Aldrich) coated round 13 mm coverslips. The following
day, the cells were transfected with the desired plasmid constructs as
described in Section 2.1. Twenty-four hours after transfection the cells
werewashed three timeswith Ca2+ freeHEPES-buffered saline solution
(HBSS: 118 mM NaCl, 4.6 mM KCl, 10 mM glucose and 20 mM HEPES)
Fig. 2. Disrupting caveolae by depleting plasmamembrane cholesterol leads to an attenuation o
aged by confocalmicroscopy before and after treatmentwith 10mMMβCD for 30min. (B) Cav1
cells transfected with cytosolic Aeq (cyt-Aeq), SNAP25–Aeq or cav1–Aeq were treated with or
membrane (PM) or at the caveolae, respectively, were measured upon stimulation with 100 μM
iments are shown. Please note the different scale in cytosolic measurements. (D) TIRF microsco
cations from the area within the rectangles (dotted line) in the upper panels.
supplemented with 150 μM EGTA. Thereafter, the cells were incubated
for 1 h in HBSS containing 150 μM EGTA and 5 μM wild-type
coelenterazine (#s053, Synchem). To record the luminescence the
cells were transferred to a purpose-built chamber and perfused with
the desired solutions at 37 °C. The sampling rate of the luminescence re-
cordings was set to one measurement per second. The intracellular
Ca2+ storeswere replenished by incubating the cells in HBSS containing
1 mM Ca2+ for 2–3 min before starting the experimental treatments.
Themaximal luminescence of each samplewas obtained by permeating
the cells with 100 μM digitonin (Sigma-Aldrich) in HBSS containing
10 mM Ca2+. The results were then calibrated using the calibration
values for Asp119Ala-mutated aequorins as described in [29,34–39].
Histamine was from Sigma-Aldrich, the sphingosine kinase inhibitor
f the Ca2+-signal sensed by Cav1–Aeq. (A) Hela cells overexpressing Cav1–EGFP were im-
–EGFP intensity along the line displayed in (A), before and afterMβCD treatment. (C) HeLa
without 10 mM MβCD for 30 min, and Ca2+ transients at the bulk cytosol, at the plasma
Histamine in the presence of 1 mM Ca2+. Representative traces of 4–10 separate exper-

py pictures of HeLa cells expressing Cav1–RFP and ER-GFP. The lower panels are magnifi-



Fig. 3. The effect of SK1-overexpression on [Ca2+] at the plasmamembrane as reported by
SNAP25–aequorin (SNAP–Aeq) and in the cytosol as reported by Fura-2 AM.
(A) Representative traces showing [Ca2+]PM during histamine (100 μM) stimulation in
presence of EGTA (150 μM), and Ca2+ (1 mM) re-addition (ROCE). Bar diagrams show
the mean with S.E.M. indicating the change in [Ca2+]PM during histamine-stimulation
(B), and during Ca2+ re-addition (C), n = 5. (D) Average traces showing the Fura-2 AM
fluorescence ratio (F340/F380) upon the same experimental conditions as in (A). The bar di-
agrams show themeanwith S.E.M. indicating the change in the fluorescence ratio (ΔF340/
F380) during histamine stimulation in the presence of EGTA (E) and during Ca2+ re-addi-
tion (F), n = 6, *P b 0.05.
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was from Calbiochem (#567731), JTE013 was from Tocris (#2391) and
VPC23019 was from Avanti Polar Lipids (#857360P). Sphingosine 1-
phosphate (S1P) was from Enzo Life Sciences. JTE013 and sphingosine
kinase inhibitor were dissolved in DMSO. VPC23019 was dissolved ac-
cording to the compounddatasheet (95 parts of 3% fatty acid free bovine
serum albumin and 5 parts acidified DMSO). S1P was dissolved in HBSS
buffer containing 4 mg/mL fatty acid free bovine serum albumin. The
solvents served as controls.

2.7. Ca2+ measurements using Fura-2 AM

For Ca2+ experiments where Fura-2 AM (Life Technologies) was
employed, the cells were grown on 25 mm poly-L-lysine coated cover-
slips, washed three times in HBSS and incubated for 30 min with 2 μM
Fura-2 AMat room temperature (RT). Then the cellswerewashed and in-
cubated for 15min at RT. The coverslipswere then transferred to a Sykes-
Moore gasket which was mounted on a custom-made holder for perfu-
sions. The excitationfilterswere set to 340 and 380 nanometers (nm), re-
spectively, and the emission was recorded at 510 nm. The filters were
controlled by a Lambda10-2device (Sutter Instruments, USA) and the ex-
citation light was produced by an XBO 75W/2 xenon lamp. To collect the
images, we used an inverted Zeiss Axiovert 35 microscope with a Hama-
matsu ORCA2 camera. The recordings were operatedwith an Axon Imag-
ing Workbench software (version 6.0, Axon Instruments, USA). The
recording frequency was set to one image per second and the fluores-
cence ratio (F340/F380) at each measured time point was used to evaluate
the changes in cytosolic Ca2+.

2.8. Statistics

Statistical analysis of the data was conducted by unpaired Student's
t-test when two variables were compared or by One-Way Anova with
Tukey's post-hoc test when three or more variables were compared.
P-values below 0.05 were considered as statistically significant. The re-
sults are shown with S.E.M.

3. Results

3.1. Caveolin-1-aequorin chimera reports Ca2+ signals specifically from the
caveolar microdomain

Caveolae are rich in sphingolipids and cholesterol and form distinct
“raft-like” domains in the PM. The caveolae are associatedwith proteins
central to Ca2+ signaling cascades [40–43] and thus likely play an im-
portant role in coordinating Ca2+ signaling events. In order to study
Ca2+ signaling in caveolae, we generated a novel chimeric protein of
caveolin-1 and aequorin (Cav1–Aeq). First, we validated the correct
subcellular localization of Cav1–Aeq and its usefulness as reporter of
caveolar Ca2+ signals in HeLa cells.

Cav1–Aeq partitioned similarly to endogenous caveolin-1 to the de-
tergent resistant membrane fractions on an Optiprep gradient, while
the general PM reporter SNAP–Aeq was found mainly in the soluble
fraction (Fig. 1A). Immunofluorescence staining showed that Cav1–
Aeq separated into small domains on the cell surface (Fig. 1B) in a sim-
ilar fashion as Cav1-RFP (Supplementary Fig. 1), while SNAP–Aeq was
distributed uniformly on the PM (Fig. 1B), as reported previously [34].
The caveolar Ca2+ responses ([Ca2+]cav) reported by Cav1–Aeq dif-
fered substantially from the Ca2+ responses in the PM ([Ca2+]PM) re-
ported by SNAP25–aequorin chimera (SNAP–Aeq). When intracellular
Ca2+ stores were mobilized by histamine stimulation in Ca2+ free me-
dium, the peak of [Ca2+]cav was higher than [Ca2+]PM. Importantly,
[Ca2+]PM was not affected by caveolin-1 expression (Fig. 1C). Also,
[Ca2+]cav was higher than [Ca2+]PM upon histamine stimulation in a
Ca2+-containing buffer (Fig. 1D).

To further verify that Cav1–Aeq reports Ca2+ transients in caveolar
domains, we disrupted the caveolar structures by removing PM
cholesterol using methyl-β-cyclodextrin (MβCD) (Fig. 2A, B). The
MβCD treatment did not affect the cytosolic Ca2+ response upon hista-
mine treatment suggesting that MβCD does not interfere with the mo-
bilization of intracellular Ca2+ stores (Fig. 2C, left panel, the average
Δ[Ca2+] ± S.E.M. were 2.24 ± 0.14 (control) and 1.84 ± 0.11
(MβCD), P N 0.05). The [Ca2+]PM was reduced by approximately 40%
(Fig. 2C, middle panel, the average Δ[Ca2+] ± S.E.M. were 8.5 ± 0.6
(control) and 5.1 ± 0.27 (MβCD), P b 0.01) which may be due to the
cholesterol-dependence of SNAP-25 for effective PM localization [44].
However, the Ca2+ transient reported by the dispersed Cav1–Aeq in
MβCD treated cells was blunted by approximately 80% (Fig. 2C, right
panel, the average Δ[Ca2+] ± S.E.M. were 14.3 ± 1.9 (control) and
2.7 ± 1.1 (MβCD), P b 0.001), indicating that the Ca2+ signaling is
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directed towards properly assembled caveolae and not the caveolin-1
protein by itself.

In HeLa cells, histamine is known to mobilize Ca2+ from the ER by
activating the PLC/IP3/IP3R pathway [45]. Interestingly, TIRF microsco-
py showed that ER tubules in close proximity to the PM tend to associate
with caveolae (Fig. 2D). These results establish that Cav1–Aeq is a useful
probe formeasuring caveolar Ca2+ transients.Moreover, the histamine-
induced Ca2+ mobilization seems to be concentrated in the vicinity of
caveolae.

3.2. Sphingosine kinase 1 regulates [Ca2+] specifically at
caveolar microdomains

As caveolae are enriched in sphingomyelin [46] and have been re-
ported to associate with receptors for the sphingomyelin metabolite
S1P [47], we next utilized the Cav1–Aeq probe to test whether sphingo-
sine kinase 1/S1P induced Ca2+ signaling is integrated at caveolae.

To investigate the importance of SK1 in HeLa cells, we created cell
lines where SK1 is either overexpressed (hSK1 cells) or downregulated
(shSK1 cells) with the respective control cell lines (mock and shC cells).
The SK1 protein levels were approximately 4-fold higher in the hSK1 as
compared to the mock control cells (Supplementary Fig. 2). Since cave-
olae are rich in sphingolipids and caveolae have shown to contain mul-
tiple components of the Ca2+ signaling machinery, we wanted to
investigate whether SK1 could be involved in Ca2+ signaling locally at
the caveolar sub-compartment of the PM. To test this hypothesis, we
employed Cav1–Aeq reporter and compared the caveolar Ca2+ signals
to the overall PM Ca2+ signals by utilizing the previously characterized
SNAP–Aeq [29].

First, we performed experiments where the cells were stimulated
with 100 μM histamine in presence of 150 μM EGTA, which was
Fig. 4.Overexpression of SK1 induces an increase in [Ca2+]cav during histamine-stimulated rele
were pretreated for 1 h with either 1 μM VPC and 10 μM JTE in combination, or with the cont
experiments. A) Representative traces of experiments showing [Ca2+]cav during histamine (1
B) Quantification of the change in [Ca2+] at the caveolae during histamine-induced Ca2+

[Ca2+]cav during Ca2+ re-addition in the presence of histamine. The bar diagrams show the
¤P b 0.001 (hSK1 control vs hSK1 VPC + JTE).
followed by Ca2+ 1 mM re-addition (induction of ROCE). During the
both phases of this experiment, the [Ca2+]PM response remained un-
changed upon SK1 overexpression, compared with control cells
(Fig. 3A, B, C). The cytosolic Ca2+ responses ([Ca2+]i), as reported by
the Ca2+ indicator Fura-2 AM, were unaffected by SK1 overexpression
during 100 μM histamine stimulation in the presence of 150 μM EGTA
(Fig. 3D & E) and slightly but significantly increased upon ROCE
(Fig. 3D & F). However, we found that [Ca2+]cav was increased by SK1
overexpression during both phases of the experiment, as compared
with control cells. Furthermore, the SK1-induced increase in [Ca2+]cav
during ROCE was sensitive to the S1PR inhibitors JTE013 (10 μM) and
VPC23019 (1 μM) (Fig. 4). Interestingly, stable SK1 overexpression in
ML1 thyroid cancer cells showed increased [Ca2+]cav during 40 μM
ATP stimulation in the presence of 150 μM EGTA but not during the
1mMCa2+ re-addition (Supplementary Fig. 3). Also, please note the ef-
fect of the control solutions (seeMaterials andmethods, Section 2.6) on
[Ca2+]cav as evidenced by comparison of Fig. 4 and Supplementary
Fig. 4.

To study the possibility that extracellular S1P regulates the caveolar
Ca2+ microdomain, we acutely treated HeLa cells with 700 nM S1P and
conducted caveolar Ca2+ measurements with the same experimental
protocol as in Fig. 3. Interestingly, we found that acute S1P treatment
was without an effect during the histamine-induced Ca2+-release
from the intracellular Ca2+ stores (Fig. 5A), whereas upon ROCE the up-
take of Ca2+ via caveolae was augmented by S1P (Fig. 5A & B).We next
asked whether pharmacological inhibition of SK1 might have an effect.
For this purpose, we treated HeLa cells with a SK inhibitor (SKi; 10 μM
for 1 h), followed by the same experimental procedures as in Fig. 3.
SKi, or the vehicle DMSO, were present throughout the whole experi-
ment. This experiment showed that SKi blocked the Ca2+-uptake dur-
ing ROCE (Fig. 5C & D), whereas Ca2+-release upon histamine
ase of endoplasmic Ca2+, aswell as during receptor-operated Ca2+ entry (ROCE). The cells
rol solutions. Following the pre-incubation, the compounds were present throughout the
00 μM) stimulation in presence of EGTA (150 μM), and Ca2+ (1 mM) re-addition (ROCE).
mobilization in the absence of extracellular Ca2+. C) Quantification of the change in
mean with S.E.M., n = 7–10, *P b 0.05, ***P b 0.001 (mock control vs hSK1 control), ¤¤
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stimulation in extracellular Ca2+ free condition was not significantly
changed (Fig. 5C). The [Ca2+]PM was unaffected by S1P treatment
whereas the SKi treatment diminished the Ca2+ during ROCE (Supple-
mentary Fig. 5).

To indirectly assess whether SK1 induces the increase in [Ca2+]cav
through increased physical interactions between the ER and caveolae,
we performed an experiment where the ER Ca2+ is passively released
by ionomycin (5 μM) treatment in the absence of extracellular Ca2+. In
this case, SK1 did not affect [Ca2+]cav (Fig. 6) indicating that the physical
ER-caveolae contact sites remain unaltered upon SK1 overexpression.

Sphingosine, the substrate for SK1, is known to block the interac-
tions between STIM1 and Orai1 at the cell membrane, thus attenuating
store-operated Ca2+ entry in the cells [48]. Therefore, we performed
thapsigargin (TG, 1 μM) induced store-operated Ca2+ entry (SOCE) ex-
periments. Overexpression of SK1 did not affect the [Ca2+] at the cave-
olae or at the PM during SOCE (Fig. 7), whereas cells with SK1 down-
regulation (Supplementary Fig. 2) displayed slightly reduced
[Ca2+]cav upon SOCE, leaving the [Ca2+]PM fluxes unchanged (Fig. 7).
Cellular sphingosine has been shown to accumulate upon SK1downreg-
ulation [49]. Therefore,we find it possible that sphingosine levels are in-
creased in our shSK1 HeLa cells, whichmight facilitate the sphingosine-
induced inhibition of SOC channels, and reduced SOCE at the caveolae.
4. Discussion

Caveolin-1 expression has been associated to regulation of cancer pro-
gression in a multifaceted and context-dependent manner. Caveolin-1
has both anti-tumorigenic as well as cancer-promoting qualities [20,50,
51]. In thiswork, we describe a novel probe for investigating Ca2+ signal-
ing at the cytoplasmic face of the caveolae. Further, we establish thatwith
our approach it is possible to detect truly distinguishable Ca2+
Fig. 5. Sphingosine 1-phosphate (S1P) treatment increases Ca2+ at the caveolar compart
A) Representative traces of an experiment where the cells were acutely treated with 700
(150 μM) in the presence of 150 μM EGTA and 1 mM Ca2+, respectively. B) Quantificat
C) Representative traces from an experiment where the cells were pre-treated for 60 min wit
1 mM Ca2+ re-addition. SKi or DMSO was present throughout the whole experiment. D) Quan
for DMSO, n = 7 for SK inhibitor.
microdomains at the caveolae that functionally differ from the overall
PM Ca2+ domain (Figs. 1 & 2).

By comparing overall PM Ca2+ levels to those reported by Cav1–Aeq
we show that specific Ca2+ signaling events are taking place locally at
the caveolae upon altered expression levels of the oncogenic protein
SK1. These findings represent interesting examples for the local Ca2+

microdomain signaling that has been proposed to be coordinated at
the caveolae or directly controlled via scaffolding functions of caveolin-1.

Deranged regulation of Ca2+ handling is an emerging concept in
cancer biology affecting many aspects of cancer cell physiology such
as proliferation, cellularmigration and deregulated apoptotic pathways.
These physiological processes are in part regulated by intricate Ca2+

signaling events that are controlled by a multitude of specialized Ca2+

channels, Ca2+ pumps and exchangers, Ca2+ binding proteins, as well
as cellular organelles and compartments [52,53]. In this context, our
findings on the SK1-mediated caveolar Ca2+ microdomain may have
several functional implications.

As we demonstrate here, overexpression of SK1 induces an increase
in [Ca2+]cav upon the histamine-stimulated, IP3-receptor mediated
Ca2+-release when extracellular Ca2+ is chelated, while the [Ca2+]PM
remains unaltered. This effect of SK1was not blocked by S1PR1-3 antag-
onism indicating that autocrine S1P signaling might not play a major
role here.

However, IP3Rs and ERmay be found in close association to caveolae
[21], and S1P has been shown to directly release Ca2+ from the ER [54].
Also, SK1 is known to be activated and translocated in a Ca2+-
dependent manner [24] and Serine225 phosphorylation of SK1 guides
the activated kinase to caveolin-1 enriched lipid raft domains of the
PM [23]. Thus, it may be feasible to motivate this SK1-induced increase
in [Ca2+]cav by a Ca2+-activated local S1P production. Further, local
Ca2+-induced Ca2+ release (CICR) [6] might play a role in amplifying
the SK1-induced [Ca2+]cav.
ment during receptor-operated Ca2+ entry whereas SK inhibitor (SKi) blocks ROCE.
nM S1P as indicated in the figure, followed by consecutive perfusions with histamine
ion of the Ca2+ addition in (A), showing the mean with S.E.M., **p b 0.01, n = 5.
h 10 μM SKi and stimulated with histamine in the presence of 150 μM EGTA, followed by
tification of the Ca2+ re-addition in (C) showing the mean with S.E.M., **p b 0.01, n = 5



Fig. 7. Store-operated Ca2+ entry (SOCE) at the caveolae and at the plasma membrane upon SK1 overexpression and downregulation, respectively. The cells were pre-treated with 1 μM
thapsigargin (TG) inHBSS containing EGTA (150 μM) for 4min. Then, the cells were perfusedwith 1mMCa2+ in the presence of 1 μMTG. SOCEwas not affected by SK1 overexpression at
the caveolae (A, B) nor at the PM (C, D), whereas knock-down of SK1 resulted in diminished SOCE specifically at the caveolae (E, F) but not at the overall PM (G, H). The bar diagrams
indicate the means with S.E.M., n = 3–6, *P b 0.05.

Fig. 6. Ionomycin treatment in presence of EGTA does not show a SK1-induced caveolar microdomain. The cells were perfused with HBSS containing 150 μMEGTA followed by perfusion
with EGTA and 5 μM ionomycin. Representative traces (A) and bar diagrams indicating the mean with S.E.M. (B) are shown, n = 3, ns = not significant.
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Also, we show that caveolar ROCE is increased upon SK1overexpres-
sion and this effect of SK1 is reversed by antagonizing the S1PR1-3. Fur-
ther, we demonstrate that S1P treatmentmimics SK1 overexpression by
increasing [Ca2+]cav upon ROCE, whereas SK1 inhibition attenuates
ROCE in the caveolar domain. It has been shown that S1PR1 is localized
to the caveolar fraction [47] and as noted above, SK1 translocates to
caveolin-1 enriched lipid rafts upon activation. The increased ROCE
through caveolae could thus be explained by autocrine S1P signaling,
where S1P receptor activation leads to generation of DAG to promote
ROC channel opening [55] upon histamine stimulation locally at the
caveolae.

Interestingly, SK1 seems to affect Ca2+ mobilization and ROCE via
two partially independent signaling pathways. The SK1 effect on ROCE
is highly dependent on S1PR1-3 and can be reproduced by acute addi-
tion of S1P and antagonized by SK1-inhibition. In contrast, the effect
of SK1 on histamine-induced Ca2+ mobilization is largely independent
of S1PR1-3 and is not significantly affected by short term treatment
with S1P or by acute inhibition of SK1. These results suggest that SK1 af-
fects Ca2+ mobilization by a process requiring long term adaptation of
the cells, while ROCE can be regulated on short notice.

Further, our results may have implications for the oncogenic actions
of SK1. As SK1 activity and translocation are controlled by Ca2+, it is
possible that aberrant SK1 overexpression could lead to deranged am-
plification of other cellular Ca2+ signals through over-activated
autocrine or intracellular S1P signaling. This would, in turn, lead to
aberrant activation of ROCE or increased local Ca2+ release from the
intracellular stores. SK1 induced increase in [Ca2+]cav, during both
IP3-receptor stimulation and ROCE, might then have importance for
oncogenic processes such as deregulated cytoskeletal and focal adhe-
sion assembly, leading to altered migratory capacity of the cells [53].

Taken together, we describe here a novel tool for Ca2+measurement
that reports Ca2+ concentrations from the caveolar domain of the PM.
By employing this method, we show for the first time the importance
of SK1 for regulating local Ca2+ signaling at this PM microdomain.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbamcr.2015.04.005.
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