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Abstract—The chop operator C is a binary modality that
plays an important role in interval temporal logics. Such an
operator, which is not definable in Halpern and Shoham’s
modal logic of time intervals HS, allows one to split an interval
into two parts and to specify what is true over them. C appears
both in Moszkowski’s PITL (that pairs it with a modal constant
π which is true on all and only the intervals with coincident
endpoints) and in Venema’s CDT (that also features the binary
modalities D and T , and π). Without the so-called locality
principle, which restricts the semantics of proposition letters,
the satisfiability problem for both PITL and CDT turns out
to be undecidable over all meaningful classes of linear orders.
The problem has been shown to be undecidable also for the
fragment C, that is, PITL without π, over infinite linear orders.
In this paper, we prove that the same holds for C over finite
linear orders. To this end, we exploit the close relation between
C and the reflexive version of the HS fragment BEHS, whose
modalities correspond to Allen’s relations starts and finishes:
we prove that the satisfiability problem for reflexive BEHS is
undecidable; undecidability of the same problem for C comes
as a corollary.

Keywords-Interval Temporal Logics; Satisfiability Checking;
Decidability.

I. INTRODUCTION

Time intervals, rather than time points, are regarded as
the primitive ontological entities in interval temporal logics
(ITLs for short). The truth of ITL formulae is defined
accordingly. ITLs turn out to be useful in many fields, in-
cluding hardware [20] and real-time system [27] verification,
language processing [23], and constraint satisfaction and
planning [1]. Moreover, ITLs have been considered as the
basis for temporal extensions of Description Logics [4], as
witnessed by various contributions over the years, e.g. [2],
[3], [5], [24].

Among the most influential ITLs there are Mozskowski’s
PITL [20], Halpern and Shoham’s modal logic of Allen’s
Relations HS [11], and Venema’s CDT [26]. CDT subsumes
both HS and PITL, and it inherits their bad computational
behaviour. As a matter of fact, HS is highly undecid-
able over all meaningful classes of linear orders; a few
decidable syntactic fragments have been identified in the
last years, whose complexities range from NP-complete to

NEXPTIME-complete, EXPSPACE-complete, and even non-
primitive recursive (see, among others, [6], [7], [8], [9],
[17], [18], [19]).

The semantics of the chop modality C can be described
as follows: given a pair of formulae φ and ψ, and an
interval [x, y], φC ψ holds over [x, y] if and only if we
can split it into a φ-part followed by a ψ-part (see Fig. 1).
ITLs with chop, such as, for instance, CDT, are of both
theoretical and practical interest. On the theoretical side,
Venema showed that, over linearly ordered sets, CDT is
expressively complete for the fragment of first-order logic
with 3 variables (at most 2 of which are free), with equality,
the pre-interpreted binary relation <, and uninterpreted
binary relations [26]. Moreover, he pointed out and explored
the close link between CDT and Relation Algebras [13]. On
the application side, the chop operator has proved itself very
useful in various contexts, including verification of access
control policies in PITL [10], compositional reasoning in
PITL [21], [22], and program verification in CDT [26].

Undecidability of (the satisfiability problem for) CDT
motivated the analysis of the computational behaviour of
its one-modality fragments C, D, and T. In [12], Hodkison
et al. showed that π (a modal constant which evaluates to
true precisely on intervals with coincident endpoints) is not
expressible by the modalities C,D, and T . Moreover, they
proved that the fragments D and T turn out to be undecidable
over all classes of linear orders, with the exception of the
class of all finite orders and N (resp. Z−) for which the
problem was left open. As for the fragment C, they only
showed that it is undecidable over the classes of all linear
orders and of all dense linear orders. Undecidability of C+π
over the class of finite linear orders, the class of (strongly)
discrete linear orders, N, and Z (as a matter of fact, C + π
is not able to distinguish among these classes, as it only
allows one to look inside the initial interval) was known
from [20]. The problem of establishing whether C (without
π) is decidable or not in the finite/discrete case was left
open.

As noticed by Lodaya in [14], the fragment C is closely
related to the HS fragments BEHS and DHS. The former
features two modalities 〈B〉 and 〈E〉 for Allen’s relations
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Figure 1. A pictorial account of the semantics of C,D, and T (the thick
line represents the current interval [x, y]).

starts and finishes, respectively, while the latter has only one
modality for the relation during. BEHS is definable in C+π,
while C (devoid of π) is able to express both 〈B〉 and 〈E〉
in their reflexive version. Reflexive BEHS, in turn, allows
one to define the reflexive version of 〈D〉. The standard,
irreflexive version of DHS is undecidable in the finite/discrete
case [15], implying the undecidability of irreflexive BEHS.
On the contrary, the reflexive version of DHS turns out to
be PSPACE-complete when interpreted over finite/discrete
linear orders [16], leaving the status of the satisfiability
problem for reflexive BEHS as an open problem.

In this paper, we solve this latter problem: we prove
the undecidability of reflexive BEHS in the finite/discrete
case by a reduction from the halting problem for Turing
Machines with an empty input. The undecidability of C in
the finite/discrete case comes as a corollary. In addition, we
show how to generalize the proposed reduction to the class
of all linear orders and the class of all dense linear orders.
The (already known) undecidability of C in these cases [12]
comes, again, as a corollary.

II. PRELIMINARIES

The language of Venema’s CDT [26] consists of a denu-
merable set of proposition letters P, the Boolean connectives
∧ and ¬ (the other ones can be viewed as abbreviations),
the modal constant π, and the three binary modalities C, D,
and T (C stands for ‘chop’; one may think of D and T as
shorthands for ‘Done’ and ‘To come’, respectively).

Well-formed CDT formulae, denoted by ϕ,ψ, . . ., are
generated by the following grammar:

ϕ := p | ¬ϕ | ϕ ∧ ψ | π | ϕCψ | ϕDψ | ϕTψ, with p ∈ P

For each S ⊆ {C,D, T}, we denote by S (resp., S + π) the
fragment of CDT that only features modalities in S and does
not include (resp., includes) the modal constant π. According
to such a notation, hereafter we will write CDT+π for CDT,
and we will denote by CDT the fragment devoid of π.

Let D = 〈D,<〉 be an (irreflexive) linearly ordered set.
A non-strict (resp., strict) interval over D is an ordered
pair [x, y], where x, y ∈ D and x ≤ y (resp., x < y).
Accordingly, non-strict (resp., strict) semantics evaluates
formulae over non-strict (resp., strict) intervals. Allen’s
Interval Algebra [1] assumes strict semantics, Halpern and
Shoham’s HS [11] non-strict one. Venema’s CDT + π was
proposed as a generalization of HS, and thus it assumes
non-strict semantics as well. The semantics of CDT + π is
given in terms of interval models M = 〈I(D), V 〉, where
I(D) is the set of all non-strict intervals over D and V is
a valuation function V : P 7→ 2I(D), that assigns to each
atomic proposition p ∈ P the set of intervals V (p) on which
p holds. Truth of formulae on an interval [x, y] in a model
M is defined by structural induction on formulae. While
proposition letters and Boolean operators are defined in the
standard way, the semantic rules for the modal operators are
as follows:

• M, [x, y]  π if and only if x = y;
• M, [x, y]  ϕCψ if and only if there exist two intervals

[z, t], [v, w] such that x = z, t = v, y = w, M, [z, t] 
ϕ, and M, [v, w]  ψ;

• M, [x, y]  ϕDψ if and only if there exist two intervals
[z, t], [v, w] such that z = v, x = t, y = w, M, [z, t] 
ψ, and M, [v, w]  ϕ;

• M, [x, y]  ϕTψ if and only if there exist two intervals
[z, t], [v, w] such that x = v, y = z, t = w, M, [z, t] 
ψ, and M, [v, w]  ϕ.

A graphical account of the semantics of the three modalities
C,D, and T is given in Fig. 1.

Halpern and Shoham’s HS features a (unary) modal
operator for each (binary) Allen relation. For X ∈
{A,L,B,E,O,D}, its formulae are generated by the fol-
lowing grammar:

ϕ := p | ¬ϕ | ϕ ∧ ψ | 〈X〉ψ | 〈X〉ψ, with p ∈ P

In particular, modalities 〈B〉 and 〈E〉 correspond to Allen’s
relations starts and finishes, respectively, and, along with the
transposed modalities 〈B〉 and 〈E〉, are semantically defined
as follows:

• M, [x, y]  〈B〉ψ if and only if there exists an interval
[z, t] such that x = z, x ≤ t < y, and M, [z, t]  ψ;

• M, [x, y]  〈B〉ψ if and only if there exists an interval
[z, t] such that x = z, t > y, and M, [z, t]  ψ;

• M, [x, y]  〈E〉ψ if and only if there exists an interval
[z, t] such that t = y, x < z ≤ y, and M, [z, t]  ψ;

• M, [x, y]  〈E〉ψ if and only if there exists an interval
[z, t] such that t = y, z < x, and M, [z, t]  ψ.

The fragment of HS featuring 〈B〉 and 〈E〉 is denoted by
BEHS, while the fragment of HS with the modality 〈D〉 only
is denoted by DHS.



It can be easily checked that 〈D〉ψ can be defined as
〈B〉〈E〉ψ in BEHS and that 〈B〉ψ and 〈E〉ψ can be respec-
tively defined as ψC¬π and ¬πCψ in C + π. Moreover, it
is possible to prove that 〈B〉 and 〈E〉 are not definable in
DHS and C is not definable BEHS. It immediately follows
that DHS ≺ BEHS ≺ C+π, where L ≺ L′ reads as L′ embeds
L, but not vice versa.

The reflexive versions of BEHS and DHS are obtained from
the original ones by replacing strict linear order < by the
non-strict one ≤. It still holds that DHS ≺ BEHS; moreover, it
holds that (reflexive) BEHS ≺ C. Notice that irreflexive 〈D〉
is definable in C+ π, but not in C. The same for irreflexive
〈B〉 and 〈E〉.

In the following, we focus our attention on reflexive
BEHS, and we prove that its satisfiability problem over
finite/discrete linear orders is undecidable1, in sharp contrast
with the PSPACE-completeness of the satisfiability problem
for reflexive DHS over finite/discrete linear orders [16]. The
undecidability of C, over finite/discrete linear orders, comes
as an immediate corollary.

III. UNDECIDABILITY OF C: THE FINITE/DISCRETE CASE

In this section, we prove the main result of the paper: the
undecidability of C in the finite/discrete case. As we already
pointed out, π is not definable in CDT, and thus in C. This
is not the case with (some fragments of) standard irreflexive
HS. As an example, π can be defined in the HS fragment
B by the constant formula [B]⊥, where [B] is a shorthand
for ¬〈B〉¬⊥, which evaluates to true on point-intervals only.
Now, one of the distinctive feature of C, when interpreted in
a linear order, is that its semantics is inherently reflexive: one
way of satisfying the formula φCψ over an interval [x, y] is
having φ true over [x, y] and ψ true over the point-interval
[y, y]. The lack of π makes it impossible to exclude such an
intepretation (in C + π, we can exclude it with the formula
φC(¬π ∧ ψ)). This makes it difficult to force the existence
of a chain of consecutive intervals with a constant formula,
which is a common ingredient of undecidability proofs in
the field of interval temporal logic. In [12], Hodkinson et al.
provide a formula of C that forces the existence of such a
chain, but it only works (that is, is satisfiable) when the chain
is infinite. In this paper, we show that a possibly (but not
necessarily) infinite chain can be forced in reflexive BEHS

by applying a more sophisticated technique.

To start with, we recall the basic characteristics of
Turing machines. A Turing Machine is a tuple MT =
(Q,Σ,Γ, δ, q0, qf ), where Q is a finite set of states, q0 (resp.,
qf ) is the initial (resp., final) state, Σ is the machine alphabet,
that does not contain the symbol t (blank), Γ = Σ ∪ {t}
is the tape alphabet, and δ : Q × Γ → Q × Γ × {L,R}

1By discrete linear orders we mean those linear orders where there exists
a finite number of points, possibly no one, between any two distinct points
(often called strongly discrete linear orders in the literature).

is the transition function (L, for left, and R, for right, are
the possible moves on the machine tape). It is well known
that both the halting and the non-halting problems for a
deterministic Turing Machine are undecidable (the former
is R.E.-complete, while the latter is CO-R.E.-complete). In
the following, we first provide a reduction of the halting
problem for Turing machines to the satisfiability problem for
reflexive BEHS, when the underlying linear order is discrete,
and then we show how to revise it in order to obtain a
reduction from the non-halting problem, with no discreteness
assumption. Observe that for the finite/discrete case, as well
as for infinite Dedekind-complete linear orders, our results
imply that both reflexive BEHS and C are not recursively
axiomatizable.

The key step of the construction is the representation of
the computation history of a Turing Machine MT . We in-
terpret every interval [x, y] as a point (x, y) of the Cartesian
half-plane x ≤ y (the so-called Compass Structure [25]),
and we provide interval modalities with a spatial semantics.
The spatial counterparts of Allen’s relations begins and ends
are the relations down and right on the Cartesian plane,
respectively. We identify a strictly increasing finite sequence
x0, x1, . . . , xm and a strictly decreasing finite sequence
y0, y1, . . . , ym, that define a finite grid, and then we exploit
such a grid to encode the computation history of MT . Let

Uϕ ≡ [B][E]ϕ

be a (definable) universal modality that forces ϕ to be true
everywhere in the current interval. We build the grid by
constraining every interval of the model to be labeled with
a proposition letter h (resp., v ), or its negation, as follows:

φ1 = h ∧ v ∧ U(h → [B]h) ∧ U(¬h → [B]¬h)
∧U(v → [E]v) ∧ U(¬v → [E]¬v).

Notice that φ1 labels the endpoints of an interval with
h and v, respectively, and thus a form of locality principle
has been considered for these proposition letters. The role
of h and v can be formally expressed by the notions of
horizontal set seth(x) and vertical set setv (y), which are
defined as follows.

Definition 1: Let M be a model and [x, y] be an interval
such that M, [x, y]  φ1. For any z ∈ D, with x ≤ z ≤ y,
we define seth(z) as the maximal subset of D such that:
(i) z ∈ seth(z); (ii) if s, t ∈ seth(z), then u ∈ seth(z), for
all s ≤ u ≤ t; (iii) for all s, s′ ∈ seth(z), and t ∈ D, with
x ≤ t ≤ y, M, [s, t]  h if and only if M, [s′, t]  h . The
notion of setv (z) is defined in a symmetric way.

With a little abuse of notation, for any s ∈ D and ∼∈ {<,
≤, >,≥}, we write s ∼ seth(z) if (and only if) s ∼ t for
all t ∈ seth(z). Obviously, s ∼ seth(z) implies s ∼ z, but
not the other way around. Now, we show how to express
the immediate right- and down-successor of a point (xi, yj)
in the grid by means of the shortcuts Iri(p, q) and Ido(p, q)



below, where p and q are proposition letters. Iri(p, q) is
the conjunction of the universal formulae τ1, . . . , τ6 and the
formulae obtained from them by replacing each occurrence
of h (resp., ¬h) by ¬h (resp., h):

τ1 = U((p ∧ h)→ 〈E〉(q ∧ ¬h))
τ2 = U((p ∧ h)→ [E]p′) ∧ U((p′ ∧ ¬h)→ [E]¬p)
τ3 = U((q ∧ ¬h)→ [E]q′) ∧ U((q′ ∧ h)→ [E]¬q),
τ4 = U(p′ ∧ h ∧ 〈E〉(q ∧ ¬h)→ p)
τ5 = U((p′ ∧ ¬h ∧ 〈E〉q)→ q)
τ6 = U((q ∧ 〈E〉p)→ ⊥),

where, for every occurrence of Iri(p, q), p′ and q′ are
auxiliary fresh proposition letters.

Lemma 1: Let us assume that M, [x, y]  φ1. Then, for
all z, t such that x ≤ z ≤ t ≤ y and M, [z, t]  Iri(p, q)∧p,
there exists s > seth(z) such that M, [s, t]  q. Furthermore,
if M, [z, t]  h (resp., M, [z, t]  ¬h), then M, [s, t]  ¬h
(resp., M, [s, t]  h), and:

1) for each s′ > seth(z), M, [s′, t]  ¬p;
2) for each s′ > seth(s), M, [s′, t]  ¬q;
3) for each s′ ∈ seth(z), s′ ≥ z, M, [s′, t]  p;
4) for each s′ ∈ seth(s), s′ ≤ s, M, [s′, t]  q;
5) for each z ≤ s′ ≤ s, either s′ ∈ seth(z) or s′ ∈ seth(s).

Proof: Assume M, [z, t]  p ∧ h (the case in which
M, [z, t]  p ∧ ¬h can be dealt with in a similar way). By
formula τ1, there exists s > z such that M, [s, t]  q ∧ ¬h .
By definition of seth(z), s > seth(z). Now, if s′ > seth(z),
then there exists z < s′′ ≤ s such that M, [s′′, t]  ¬h .
By formula τ2, it holds that M, [s′′, t]  p′ and, for each
s′′ ≤ s′′′ ≤ t, M, [s′′′, t]  ¬p; therefore, M, [s′, t]  ¬p,
thus proving (1). Consider now a point s′ > seth(s). Since
M, [s, t]  q ∧ ¬h , there exists s < s′′ ≤ s′ such that
M, [s′′, t]  h . By the very same argument used to prove
(1), we can show that formula τ3 implies M, [s′, t]  ¬q,
thus proving (2). Let s′ ∈ seth(z) such that s′ ≥ z. Then,
M, [s′, t]  h and, by formula τ2, M, [s′, t]  p′. Since
s′ < s, we have that M, [s′, t]  〈E〉(q ∧ ¬h), and then,
by formula τ4, M, [s′, t]  p, thus proving (3). Consider
now some s′ ∈ seth(s) such that s′ ≤ s. Since M, [s, t] 
q∧¬h , it holds that M, [s′, t]  ¬h∧〈E〉q. Moreover, since
M, [z, t]  p ∧ h and s′ > z, by formula τ2, we have that
M, [s′, t]  p′. Hence, we can apply formula τ5 to deduce
that M, [s′, t]  q, thus proving (4). Finally, let s′ be such
that z ≤ s′ ≤ s. If M, [s′, t]  h , then, by formula τ2,
M, [s′, t]  p′ ∧ 〈E〉(q ∧ ¬h). Therefore, by formula τ4,
M, [s′, t]  p and, by item (1), we can conclude that s′ ∈
seth(z). If M, [s′, t]  ¬h , assume, by way of contradiction,
that s′ /∈ seth(s). Then, there exists s′′, with s′ < s′′ <
s, such that M, [s′′, t]  h . Now, since M, [s′, t]  ¬h ,
by formula τ2, it holds that M, [s′, t]  p′ ∧ 〈E〉q and, by
formula τ5, it holds that M, [s′, t]  q ∧¬h . By formula τ3,
it follows that M, [s′′, t]  q′ and M, [s, t]  ¬q, which is
a contradiction, thus proving (5).

The shortcut Ido(p, q) is obtained from Iri(p, q) by replac-
ing each occurrence of h by v , ¬h by ¬v , 〈E〉ϕ by 〈B〉ϕ,
and [E]ϕ by [B]ϕ, and the above lemma can be restated
accordingly.

On the basis on Lemma 1 and the corresponding lemma
for Ido(p, q), and taking into account that we are in the
discrete/finite setting, we can give the following definition.

Definition 2: Let M, [x, y]  φ1. Then, for every x ≤
z ≤ y, let (i) nexth(z) = min{s | s > seth(z)} and (ii)
nextv(z) = max{s | s < setv (z)}.

Notice that, by Lemma 1, if M, [x, y]  φ1 and M, [z, t] 
Iri(p, q) ∧ p, then M, [nexth(z), t]  q. Similarly, if
M, [z, t]  Ido(p, q) ∧ p, then M, [z, nextv(t)]  q.

We are now ready to start the encoding of the computation
history of a Turing machine. The plan of the construction can
be summarized as follows: (i) tape and auxiliary symbols are
placed on u-intervals (intervals labeled by the proposition
letter u, later referred to as units); (ii) the symbol ∗ labels
those u-intervals that represent cells of the tape (later called
cells); (iii) the proposition letters Do, Up, and Ab encode
the correspondences between symbols on the tape from
one configuration to the next one, while Ne deals with
neighboring symbols on the same configuration; (iv) the
proposition letter Stop is used to place the last configuration
which contains the final state qf . We use also Ne?, Up? and
Ab? in order to ensure that the sequence of u-intervals has
to continue until the last configuration has been constructed.
The u-intervals will be placed on a segment starting with
the initial interval [x, y] and ending on the diagonal of the
first quadrant at some z such that x ≤ z ≤ y (see Fig. 2).
To represent the situation of MT at a given moment of
the computation, we defineMT -configurations, that include
the content of the tape, the position of the reading head,
and the current state. Moreover, we distinguish between
MT -configurations and, simply, configurations: the latter
indicate the portion of the model that represent the former
in the construction. Those units that help us to separate one
configuration from the next one will be denoted by ∗, and
we will use 0, 1, and t to represent tape cells not under
the machine’s head, and the propositional symbols qc, with
q ∈ Q \ {qf} and c ∈ {0, 1,t}, to represent the tape
cell under the head and the current (non-final) state of the
machine. Let us define:

L = {0, 1,t, ∗} ∪ {qc | q ∈ Q ∧ c ∈ {0, 1,t}} ∪ {qf}.

By a little abuse of notation, we assume that all symbols qcf
are equal to qf . To prove our result, we reduce the halting
problem for a deterministic Turing machineMT with a tape
infinite to the left and finite to the right. The chain of u-
intervals, the first configuration, and the position of the final
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state are set as follows:

φ2 = Start ∧ u ∧ ∗ ∧ U(u→ (∗ ∨ ∗)) ∧ 〈B〉Stop ∧
U(Stop → ([E]Stop ∧ [B][E]Stop))

φ3 = Ido(Start ,Ups) ∧ Ido(u,Ne?) ∧ Iri(Ne, u)∧
Ido(Up,Ab?) ∧ Ido(Ups,Ab) ∧ Ido(Start ,Ne)
Ido(Ab,Do) ∧ Ido(Start ,Nes) ∧ Iri(Nes , qt0 )∧
Iri(Nef , qf )

φ4 = U((Ne? ∧ ¬Stop)→ Ne)∧
U((Ne? ∧ Stop)→ Nef ) ∧ U(qf → uf )
U((Nes ∧Nef )→ ⊥) ∧ U((u ∧ ¬Stop)→ ¬qf )

φ5 =
∧
l∈L

U(l→ ∗) ∧
∧
l 6=l′

U((l ∧ l′)→ ⊥)

φ6 = U((∗ ∧ ∗)→ ⊥)

Lemma 2: Let us assume that M, [x, y]  φ1 ∧ . . . ∧ φ6.
Then, there exist two finite sequences x = x0 < x1 < . . . <
xm and y = y0 > y1 > . . . > ym such that:

1) M, [x0, y0]  u and if M, [xi, yi]  u, then either
M, [xi+1, yi+1]  u or M, [xi+1, yi+1]  qf ∧ uf and

m = i+ 1;
2) for all i < m, either M, [xi, yi]  ∗ or M, [xi, yi]  ∗.
3) if M, [x, y]  Iri(p, q) and M, [xi, yj ]  p, then

M, [xi+1, yj ]  q;
4) if M, [x, y]  Ido(p, q) and M, [xi, yj ]  p, then

M, [xi, yj+1]  q.

Proof: The initial elements of the sequences are the
two points x = x0 and y = y0 such that M, [x0, y0] 
φ1 ∧ . . . ∧ φ5. By φ2, it holds that M, [x0, y0]  u.
Thanks to φ3, Lemma 1, and Definition 2, if we put y1 =
nextv(y0) and x1 = nexth(x0), then M, [x0, y1]  Ne
and M, [x1, y1]  u. Assume now that we have already
generated the sequences x0 < x1 < x2 < . . . < xi and
y0 > y1 > y2 > . . . > yi such that M, [xi, yi]  u. Again by
φ3, following the same reasoning path as above, we define
yi+1 = nextv(yi) such that M, [xi, yi+1]  Ne?. Now we
have to consider two possibilities: if M, [xi, yi+1]  ¬Stop,
then we apply φ4 and φ3 to obtain xi+1 = nexth(xi) such
that M, [xi+1, yi+1]  u; otherwise, if M, [xi, yi+1]  Stop,



then we apply φ4 and φ3, and we put xi+1 = nexth(xi) so
that M, [xi+1, yi+1]  qf . Moreover, we set m = i+ 1. The
existence of such an m > 1 is guaranteed by φ2 and φ5, by
the construction of the sequences, and by the fact that we
are dealing with the discrete/finite case, thus proving (1).
Finally, (2) is a direct consequence of (1), the last clause
of φ2, and φ6, while (3) and (4) easily follow from the
definition of the sequence, Lemma 1, and Definition 2.

We require Ab and Abf to connect ∗-intervals with ∗-
intervals, and similarly for ∗-intervals:

φ7 = U((u ∧ ∗)→ [B]S1) ∧ U((S1 ∧Ab)→ [E]S2)∧
U((S2 ∧ u)→ ∗)

φ8 = U((u ∧ ∗)→ [B]S1) ∧ U((S2 ∧ (u ∨ uf ))→ ∗)
U((S1 ∧ (Ab ∨Abf ))→ [E]S2)

Now, we suitably place Ab, Up, and Do to create the chain
of configurations, and Abf ,Upf to guarantee its finiteness:

φ9 = U((u ∧ ∗)→ [B]S3) ∧ U((u ∧ ∗)→ [B]S4)
φ10 = U((S3 ∧Do)→ S5) ∧ Iri(S5,Up?)
φ11 = U((S4 ∧Ab)→ S6) ∧ Iri(S6,Up)
φ12 = U((u ∧ ∗)→ u∗) ∧ Ido(u∗,Ne∗) ∧ Iri(Ne∗, ∗)
φ13 = U((Up? ∧ ¬Stop)→ Up)∧

U((Up? ∧ Stop)→ Upf )∧
U((Ab? ∧ ¬Stop)→ Ab)∧
U((Ab? ∧ Stop)→ Abf )

Lemma 3: Let M, [x, y]  φ1 ∧ . . . ∧ φ13 and let x =
x0 < x1 < . . . < xm and y = y0 > y1 > . . . > ym be
the two finite sequences whose existence is guaranteed by
Lemma 2. Then, for each 0 ≤ i < m:

1) if M, [xi, yi]  u ∧ ∗ and M, [xi, yj ]  Ab for some
j > i (j + 2 < m), then it holds that M, [xj , yj ]  ∗,
M, [xi+1, yj+1]  Up, and M, [xi+1, yj+2]  Ab;

2) if M, [xi, yi]  u ∧ ∗ and M, [xi, yj ]  Ab for some
j > i (j < m), then M, [xj , yj ]  ∗, M, [xi+1, yj ] 
Up, and M, [xi+1, yj+1]  Ab ∨Abf ;

3) if M, [xi, yi]  u ∧ ∗, then M, [xi+1, yi+1]  ∗.

Proof: Assume that M, [xi, yi]  u ∧ ∗ and that, for
some j > i (j + 2 < m), M, [xi, yj ]  Ab. By applying
the first conjunct of φ7, we can conclude that M, [xi, yj ] 
S1 ∧ Ab. Then, by the second conjunct of φ7, it holds that
M, [xj , yj ]  S2∧u, which implies (by the third conjunct of
φ7) that M, [xj , yj ]  ∗. Moreover, since M, [xi, yj ]  Ab
and, by φ3, M, [x, y]  Ido(Ab,Do), we apply Lemma 2
(point (3)) to conclude that M, [xi, yj+1]  Do and thus, by
the first conjunct of φ9, M, [xi, yj+1]  S3. Hence, we can
apply the first conjunct of φ10 to prove that M, [xi, yj+1] 
S5. By the second conjunct of φ10, φ13, and Lemma 2 (point
(2)), we have that M, [xi+1, yj+1]  Up and, by φ3, φ13, and
Lemma 2 (point (3)), we have that M, [xi+1, yj+2]  Ab,
which completes the proof of (1). To prove (2), we reason as
in (1) by using φ8 and φ11, instead of φ7 and φ10,. Finally,

property (3) is a direct consequence of φ12 and Lemma 2.

From the above lemmas, we obtain a structure (see
Fig. 2), where, for any given unit [xi, yi], we can define the
correspondent unit as the unit [xj , yj ] such that M, [xi, yj ] 
Ab∨Abf . In this setting, we call a (non-final) configuration
any interval [xi, yj ], with j < m, such that Up ∨Ups holds
and the first unit [xi, yi] satisfies ∗. The interval [xs, ym],
for some s < m, such that the first unit [xs, ys] satisfies ∗
and [xm, ym] satisfies qf is called final pseudo-configuration.
Such an interval may not be a configuration, but it represents
the initial part of the final configuration, as we will see later.

Lemma 4: Let M, [x, y]  φ1 ∧ . . . ∧ φ13 and let x =
x0 < x1 < . . . < xm and y = y0 > y1 > . . . > ym be
the two finite sequences whose existence is guaranteed by
Lemma 2. Then,

1) [x0, y1] is the first configuration and there exists
0 ≤ s < m such that [xs, ym] is the final pseudo-
configuration;

2) for each i, j ≥ 0, j ≤ m, if [xi, yj ] is a configuration,
then, for each 0 < l ≤ j−i, the unit [xi+l, yi+l] satisfies
∗ (all units, but the first one, are ∗);

3) for each i, j ≥ 0, j < m, if [xi, yj ] is a config-
uration, then the unit [xi, yi] corresponds to the unit
[xj+1, yj+1];

4) for each i, j ≥ 0 and j < s − 1, if [xi, yj ] is a
configuration, then, for each 0 < l ≤ j − i, the unit
[xi+l, yi+l] corresponds to the unit [xj+l+2, yj+l+2];

5) for each i, j ≥ 0, if [xi, yj ] is a configuration and j <
s−1, then [xj+1, y2j−i+2] is a configuration (existence
of the next configuration).

Proof: Let us prove point (1). First of all, M, [x0, y0] 
∗ ∧ Start ∧ Ido(Start ,Ups) implies M, [x0, y1]  Ups,
which proves that [x0, y1] is the first configuration. Now,
thanks to Lemma 2 (point (2)), we can define s = max{i <
m | M, [xi, yi]  ∗}, and thus, by Lemma 2 (point
(1)), M, [xm, ym]  qf , proving that [xs, ym] is the final
configuration. We prove points from (2) to (5) by induction
on the configurations, the base case being [x0, y1]. Point (2)
of the base case is a direct consequence of Lemma 3 (point
(3). In order to prove (3) of the base case, we use φ2, φ3,
and Lemma 2 (point (4)) to get M [x0, y2]  Ab. To prove
(4), consider the unit [x1, y1]. By point (3), we know that
M, [x0, y2]  Ab and, by φ2, that M, [x0, y0]  u ∧ ∗.
Now, if m = 3, then [x2, y3] is the last configuration
and (4) is true. Otherwise, if m ≥ 4, then, by Lemma 3
(point (1)), we have that M, [x1, y4]  Ab and thus [x1, y1]
corresponds to [x4, y4]. Finally, to prove point (5), consider
the unit [x2, y2]. By point (3) and Lemma 3 (point (1)), we
have that M, [x2, y2]  ∗. Moreover, since M, [x1, y1]  ∗
and M, [x1, y4]  Ab, by Lemma 3 (point (2)), we can
conclude that M, [x2, y4]  Up, thus proving that [x2, y4]



is a configuration. As for the inductive case, assume that
[xi, xj ] is a configuration and that (2)–(5) hold for the
previous configuration [x2i−j , yi−1]. By the definition of
configuration, we have that [xi, yi] is a ∗-interval, and thus,
by Lemma 3 (point (3)), we have that [xi+1, yi+1] is a ∗-
interval, proving (2) when l = 1. By the inductive hypoth-
esis, [x2j−i+l, y2j−i+l] is a ∗-interval that corresponds to
the unit [xi+l+1, yi+l+1], for each 0 < l ≤ j − i − 1.
By Lemma 3 (point (2)), [xi+l+1, yi+l+1] must be a ∗
interval, thus concluding the proof of (2). To prove (3),
consider the last unit of the configuration [xj , yj ]. By the
inductive hypothesis, we have that it is in correspondence
with the ∗-unit [xi−1, yi−1] of the previous configuration.
This implies that [xi−1, yj ] is a Ab-interval and thus, by
Lemma 3 (point (2)), we have that M, [xi, yj+1]  Ab∨Abf .
By Lemma 3 (point (1)), we can conclude that [xj+1, yj+1]
is a ∗-unit in correspondence with [xi, yi]. We prove (4)
by induction on l. Let l = 1. By (3), we have that the ∗-
unit [xi, yi] corresponds to [xj+1, yj+1]. This implies that
M, [xi, yj+1]  Ab and thus, by Lemma 3 (point (1)),
[xi+1, yj+3]  Ab, proving that [xi+1, yi+1] corresponds to
[xj+3, xj+3]. Now, let 1 < l ≤ j − i and suppose that (4)
holds for l − 1. By the inductive hypothesis and (2), the ∗-
unit [xi+l−1, yi+l−1] corresponds to [xj+l+1, yj+l+1]. This
implies that M, [xi+l−1, yj+l+1]  Ab ∨ Abf and thus, by
Lemma 3 (point (2)), [xi+l, yj+l+2]  Ab ∨ Abf , proving
that [xi+l, yi+l] corresponds to [xj+l+2, xj+l+2]. To prove
(5), consider the unit [xj+1, yj+1]. By point (3), we have that
M, [xj+1, yj+1]  ∗. Moreover, by point (2), it holds that
M, [xj , yj ]  ∗ and, by (4), we get M, [xj , y2j−i+2]  Ab.
Hence, by Lemma 3 (point (2)), we can conclude that
M, [xj+1, y2j−i+2]  Up, thus proving that [xj+1, y2j−i+2]
is the next configuration.

The above lemma guarantees the existence of a finite
sequence of configurations of the correct length. Notice
that the final pseudo-configuration does not necessarily
correspond to the final configuration of MT . Nevertheless,
when the conjunction of all requirements is satisfiable, we
can actually prove that it contains enough information to
reconstruct the computation history of MT including its
final configuration.

Let k0, k1, . . . , kn be the finite sequence of indices, which
is inductively defined as follows: k0 = 0, k1 = 2, and, for
each i > 1, ki = 2ki−1 − ki−2 + 1. In such a way, for
each i > 0, [xki , yki+1−1] turns out to be a configuration.
In our construction, we cannot deal with neighboring units
with a single application of a modal operator. Let us denote
by L∗ the set L \ {qf} and let us use symbols of the form
Lt = {(l1, l2, l3) | ∀i(1 ≤ i ≤ 3 → li ∈ L∗)}, considered
as proposition letters, to overcome this technical problem
by placing them over cells. We also introduce the auxiliary
proposition letters (l1, l2), (l1, l2), (l1, l2), (l1, l2, l3), Rl, Al,
Al,l′ , Nl,l′ , where li, l, l′ ∈ L∗, and we impose the following

conditions in order to create the triples:

φ14 =
∧
l∈L∗

U(Ne ∧ 〈E〉l→ Rl)∧∧
l1,l2∈L∗

U((l1 ∧ 〈B〉Rl2)→ (l1, l2))

φ15 =
∧

l1,l2∈L∗
U((l1, l2)→ [B](l1, l2)∧

((l1, l2) ∧Ne)→ (l1, l2))

φ16 =
∧

l1,l2,l3∈L∗
(U(((l1, l2) ∧ 〈E〉(l2, l3))→

[E](l1, l2, l3))∧
U(((l1, l2, l3) ∧ u)→ (l1, l2, l3)))

φ17 =
∧
l∈L∗

U((Al ∧Ab)→ 〈E〉l)

φ18 =
∧

l,l′∈L∗
U(Al,l′ ∧Ab → [E]Nl,l′)

φ19 =
∧

l,l′∈L∗
U((u ∧ 〈B〉Nl,l′)→ l)

φ20 =
∧

l,l′∈L∗
U((Nl,l′ ∧Ne)→ 〈E〉l′)

To establish the proper link between MT -configurations
and configurations, we make use of the following notions.

Definition 3: We say that an MT -configuration is initial
(resp., final) if its state is q0 (resp., qf ). For any two MT -
configurations C,C ′, we say that C ′ is the MT -successor
of C if and only if C ′ is obtained by C after exactly
one application of δ. Finally, a configuration is said to be
coherent if and only if (i) there exists exactly one cell
labeled by a proposition symbol representing the current
state, (ii) every non-∗-interval is a cell, and (iii) the content
of every cell is unique.

The following formulae are used to ensure that the correct
transitions take place:

φ21 =
∧

(c1,c2,c3)∈Lt,c3 6=∗

U((c1, c2, c3)→ [B]Ac2)

φ22 =
∧

(∗,c2,c3)∈Lt

U((∗, c2, c3)→ [B]At,c2)

φ23 =

δ(q,c)=(q′,c′,R)∧
(c1,qc,c3)∈Lt,c1 6=∗

U((c1, q
c, c3)→ [B]Ac′)

φ24 =

δ(q,c)=(q′,c′,R)∧
(∗,qc,c3)∈Lt,c3 6=∗

U((∗, qc, c3)→ [B]At,c′)

φ25 =

δ(q,c)=(q′,c′,R)∧
(c1,qc,∗)∈Lt,c1 6=∗

U((c1, q
c, ∗)→ [B]Aq′c′ )



φ26 =

δ(q,c)=(q′,c′,R)∧
(∗,qc,∗)∈Lt

U((∗, qc, ∗)→ [B]Aq′c′ )

φ27 =

δ(q,c)=(q′,c′,R)∧
(qc,c2,c3)∈Lt,c2 6=∗

U((qc, c2, c3)→ [B]Aq′c2 )

φ28 =

δ(q,c)=(q′,c′,R)∧
(c1,c2,qc)∈Lt,c1 6=∗

U((c1, c2, q
c)→ [B]Ac2))

φ29 =

δ(q,c)=(q′,c′,R)∧
(∗,c2,qc)∈Lt

U((∗, c2, qc)→ [B]At,c2)

φ30 =

δ(q,c)=(q′,c′,L)∧
(c1,qc,c3)∈Lt,c1 6=∗

U((c1, q
c, c3)→ [B]Ac′)

φ31 =

δ(q,c)=(q′,c′,L)∧
(∗,qc,c3)∈Lt

U((∗, qc, c3)→ [B]Aq′t,c′)

φ32 =

δ(q,c)=(q′,c′,L)∧
(qc,c2,c3)∈Lt

U((qc, c2, c3)→ [B]Ac2)

φ33 =

δ(q,c)=(q′,c′,L)∧
(c1,c2,qc)∈Lt,c2 6=∗

U((c1, c2, q
c)→ [B]Aq′c2 )

φ34 =

δ(q,c)=(q′,c′,L)∧
(∗,c2,qc)∈Lt

U((∗, c2, qc)→ [B]At,q′c2 )

Lemma 5: Let M, [x, y]  φ1∧ . . .∧φ34 and consider the
finite sequence of indexes k0, k1, . . . kn whose existence is
guaranteed by Lemma 4. Then,

1) the interval [xk0 , yk1−1] represents the initial MT -
configuration of the Turing Machine MT with empty
input and it is coherent.

2) for each 0 < i < n, the interval [xki , yki+1−1]
is coherent and it is the MT -successor of (the
MT -configuration represented by) the interval [xki−1 ,
yki−1].

Proof: As for (1), the fact that the interval
[xk0 , yk1−1] = [x0, y1] represents the initial configuration
of the Turing Machine is a direct consequence of Lemma 4
(point (1)). Its coherence is guaranteed by Lemma 4 (point
(2)) and φ6.

To prove (2), let us consider an index i > 0 and suppose
that the property holds for the index i − 1 (when i = 1,
we assume that (1) holds). Let C be the MT -configuration
represented by the interval [xki−1

, yki−1], which is coherent
by the inductive hypothesis. Assume that the state in C is q
and that the head is reading the l-th cell, labeled with c 6= ∗.
There are several cases to take into consideration, depending

on the movement required by δ and the position of the head
in the tape. We recall here that we assumed the tape of the
Turing Machine to be infinite to the left and finite to the
right: at every transition, we add a new blank cell at the
beginning of the configuration.

(a) δ(q, c) = (q′, c′, R) and neither the (l − 1)-th nor the
(l + 1)-th unit is ∗. By φ14, φ15, and φ16, the l-th unit is
labeled with (c1, q

c, c3), for some c1, c3 6= ∗. By φ23 and
φ17, the corresponding unit, that is, the (l + 1)-th unit, on
the configuration [xki , yki+1−1] is labeled with c′. By φ14,
φ15, and φ16, it follows that the (l − 1)-th unit is labeled
with (c0, c1, q

c), for some c0. If c0 6= ∗, then φ28 and φ17
apply, and thus the l-th unit of [xki , yki+1−1] is labeled with
c1. On the other hand, if c0 = ∗, then φ29, φ18, φ19, and
φ20 apply, implying that the second unit of [xki , yki+1−1] is
labeled with c1 and that the (new) first unit of [xki , yki+1−1]
is labeled with t. Similarly, the (l + 1)-th unit is labeled
with (qc, c3, c4), for some c4, and, by φ27 and φ17, we have
that the (l+ 2)-th unit of [xki , yki+1−1] is labeled with q′c3 .

(b) δ(q, c) = (q′, c′, R), the (l − 1)-th unit is ∗, and the
(l+1)-th unit is not ∗. It immediately follows that l = 1. By
φ14, φ15, and φ16, the first unit of the i−1-th configuration is
labeled with (∗, qc, c3), for some c3 6= ∗. By φ24, φ18, φ19,
and φ20, the second unit of the configuration [xki , yki+1−1]
is labeled with c′, while the first unit is t. Similarly, the
second unit of the i − 1-th configuration is labeled with
(qc, c3, c4), for some c4, and, by φ27 and φ17, we have that
the third unit of [xki , yki+1−1] is labeled with q′c3 .

(c) δ(q, c) = (q′, c′, R), the (l−1)-th unit is not ∗, and the
(l+ 1)-th unit is ∗. In this case, we proceed as before, only
applying φ25 to set the unit corresponding to the l-th one,
and φ28 or φ29 to set the one corresponding to the (l−1)-th
unit.

(d) δ(q, c) = (q′, c′, R) and both the (l − 1)-th and the
(l + 1)-th unit are ∗. It immediately follows that l = 1 and
i−1 = 0 (C is the initial configuration). By φ14 and φ15, the
first unit of the initial configuration is labeled with (∗, qc, ∗),
with c = t. By φ26, φ18, φ19, and φ20, the second unit of
the configuration [xk1 , yk2−1] is labeled with c′, while the
first unit is t.

(e) δ(q, c) = (q′, c′, L) and the (l − 1)-th unit is not ∗.
By φ14 and φ15, the l-th unit is labeled with (c1, q

c, c3), for
some c1, c3 with c1 6= ∗. By φ30 and φ17, the corresponding
unit, that is, the (l + 1)-th unit in the i-th configuration
[xki , yki+1−1], is labeled with c′. Since the (l− 1)-th unit is
labeled with (c0, c1, q

c), for some c0, if c0 6= ∗, then φ33 and
φ17 apply, and thus the l-th unit of [xki , yki+1−1] is labeled
with q′c1 . On the other hand, if c0 = ∗, then φ34, φ18, φ19,
and φ20 apply, forcing the second unit of [xki , yki+1−1] to be
labeled with q′c1 and the (new) first one with t. Similarly,
the (l + 1)-th unit is labeled with (qc, c3, c4), for some c4,
and, by φ32 and φ17, we have that the (l + 2)-th unit of
[xki , yki+1−1] is labeled with c3.

(f) δ(q, c) = (q′, c′, L) and the (l − 1)-th unit is ∗. We



proceed as in case (e), but using φ32 and φ33.
Finally, by the coherence of [xki−1 , yki−1], which holds

by the inductive hypothesis, every unit before the (l− 1)-th
one (excluding the 0-th unit) is a ∗ unit, as well as every
unit after the (l + 1)-th one. Therefore, φ14 and φ15 apply,
and, by φ21 and φ22, their content is preserved, guaranteeing
both the coherency of [xki , yki+1−1] and the fact that it is
the MT -successor of [xki−1 , yki−1].

Theorem 1: Let MT be a deterministic Turing Machine.
Then, MT converges on empty input if and only if the
reflexive BEHS-formula

Haltsre = φ1 ∧ . . . ∧ φ34

is satisfiable on a model built over a finite or a discrete linear
order.

Proof: Let us assume that the C-formula Halts is
satisfiable. Then, by Lemma 5, there exists a sequence of
MT -configurations represented by the intervals [xk0 , yk1−1],
. . . [xkn−1 , ykn−1] which encodes the computation history of
MT . Moreover, by Lemma 4 (point (1)), [xs, ym] represents
the final pseudo-configuration, where s = kn. In order to
construct the final MT -configuration, we have to consider
the units corresponding to the units of the previous MT -
configuration [xkn−1 , ykn−1] which are not in [xs, ym]. By
hypothesis, it holds that, for some kn−1 < r ≤ kn − 1,
the unit [xr, yr] satisfies qc and either δ(q, c) = (qf , c

′, L)
or δ(q, c) = (qf , c

′, R), for some c′ ∈ {0, 1}. Let us
assume that δ(q, c) = (qf , c

′, L) (the other case can be
dealt with in a similar way). In this case, proceeding as
in the proof of Lemma 4 (points (3) and (4)), we can show
that [xr−1, yr−1] corresponds to [xm, ym]m which satisfies
qf , and that every unit [xj , yj ], with j ≤ r − 1, has a
corresponding unit in [xs, ym]. Now, we only need to use
δ in order to extend the final pseudo-configuration [xs, ym]
to the final MT -configuration [x′s, y

′
p], with p ≥ m, in such

a way that it contains all the corresponding elements from
the previous configuration, in particular those corresponding
to the units [xj , yj ], for j ≥ r, that were not included in
[xs, ym], thus proving that the satisfiability of the C-formula
Halts implies that A converges. The opposite implication
is straightforward.

Corollary 1: The satisfiability problem for reflexive BEHS

and for C, interpreted on finite or discrete linear orders, is
undecidable.

IV. GENERALIZATION TO THE INFINITE CASE

When we deal with linear orders which are infinite, but
not necessarily discrete, we have to consider the non-halting
problem for a Turing Machine and to modify the formulae

φ2, . . . , φ13 in order to obtain an infinite sequence of units:

ψ1 = Start ∧ u ∧ ∗ ∧ Ido(Start ,Up)∧
Ido(Start ,Nes) ∧ Iri(Nes , qt0 )

ψ2 = Ido(u,Ne) ∧ Iri(Ne, u) ∧ Ido(Up,Ab)∧
Ido(Ab,Do)

ψ3 =
∧
l∈L U(l→ ∗) ∧

∧
l 6=l′ U((l ∧ l′)→ ⊥)

ψ4 = U((u ∧ ∗)→ [B]S1)∧
U((S1 ∧Ab)→ [E]S2) ∧ U((S2 ∧ u)→ ∗)

ψ5 = U((u ∧ ∗)→ [B]S1)∧
U((S1 ∧Ab)→ [E]S2) ∧ U((S2 ∧ u)→ ∗)

ψ6 = U((∗ ∧ ∗)→ ⊥)
ψ7 = U((u ∧ ∗)→ [B]S3) ∧ U((u ∧ ∗)→ [B]S4)
ψ8 = U((S3 ∧Do)→ S5) ∧ Iri(S5,Up)
ψ9 = U((S4 ∧Ab)→ S6) ∧ Iri(S6,Up)
ψ10 = U((u ∧ ∗)→ u∗) ∧ Ido(u∗,Ne∗) ∧ Iri(Ne∗, ∗)

Now, we can suitably adapt the statement of the theorem and
prove it in a similar (but not identical) way. In particular,
we cannot refer to the successor of a set anymore; instead,
we have to build the u-chain step-by-step, by choosing the
representative of a set at a certain stage and, then, possibly
modifying that choice in the next stage, as shown by the
following result which replaces Lemma 2 and Lemma 3.

Lemma 6: Let M, [x, y]  φ1 ∧ ψ1 ∧ . . . ∧ ψ10. Then,
there exist two infinite sequences x = x0 < x1 < . . . and
y = y0 > y1 > . . . such that, for every i ≥ 0,

1) M, [xi, yi]  u;
2) if M, [xi, yi]  u ∧ ∗, then M, [xi+1, yi+1]  ∗;
3) there exists j > i + 1 such that M, [xi, yj−1]  Up,

M, [xi, yj ]  Ab, M, [xi, yj+1]  Do, and:
a) if M, [xi, yi]  ∗, then M, [xj , yj ]  ∗ and
M, [xi+1, yj+1]  Up;

b) if M, [xi, yi]  ∗, then M, [xj , yj ]  ∗ and
M, [xi+1, yj ]  Up.

Proof: By ψ1, ψ2, and ψ10, it holds that M, [x0, y0] 
u ∧ Ido(u,Ne) ∧ u∗ ∧ Ido(u∗,Ne∗). Next, we apply twice
Lemma 1 (for Ido) to obtain t, t′ < setv (y0) such that
M, [x0, t]  Ne and M, [x0, t

′]  Ne∗. Now, let y1 =
max{t, t′}. By Lemma 1 (point (4)), we get M, [x0, y1] 
Ne ∧ Ne∗. Since M, [x0, y1]  Iri(Ne, u) ∧ Iri(Ne∗, ∗),
we obtain s, s′ > seth(x0) such that M, [s, y1]  u and
M, [s′, y′1]  ∗. We define now x1 = min{s, s′} to get
M, [x1, y1]  u ∧ ∗.

We can inductively repeat the above reasoning step (or an
easier one, in case M, [x′i, y

′
i]  u ∧ ∗) in order to obtain

two infinite sequences x = x0 < x1 < x2 < . . . and
y = y0 > y1 > y2 > . . . such that, for every i ≥ 0, we
have that M, [xi, yi]  u and if M, [xi, yi]  u ∧ ∗, then
M, [xi+1, yi+1]  ∗, proving (1) and (2).

The proof of (3) is by induction on i. As for the base case,
by ψ1, we have that M, [x0, y0]  Start ∧ Ido(Start ,Up).
Hence, by Lemma 1, there exists t > setv (y0) such that



M, [x0, t]  Up. We now re-define y1 as the maximum
between the previous value of y1 and t, and apply again the
same reasoning as in points (1) and (2) to re-construct the
u-chain for every i ≥ 1 2. The same reasoning process can
be followed to determine y2, y3 such that M, [x0, y2]  Ab
and M, [x0, y3]  Do, reconstructing again the u-chain for
i ≥ 2 and i ≥ 3, respectively. Now, as M, [x2, y2]  u,
we apply ψ4 to get M, [x2, y2]  ∗. We can apply now
ψ7 and ψ8 and reasoning as above we obtain x1 such that
M, [x1, y3]  Up, proving (3) in the base case. As for the
inductive step, let us assume that (3) holds up to i−1 and let
us prove it for i. By (1), we have that M, [xi−1, yi−1]  u
and, by the inductive hypothesis, there exists j > i − 1
such that M, [xi−1, yj−1]  Up, M, [xi−1, yj ]  Ab, and
M, [xi−1, yj+1]  Do. Moreover, if M, [xi−1, yi−1]  ∗
(the other case is similar), then M, [xj , yj ]  ∗ and
M, [xi, yj ]  Up. Now, we apply again ψ2 and we proceed
as in the base case to obtain yj+1, yj+2 (re-constructing
the u-chain for all values greater than or equal to j − 1
and j − 2, respectively) such that M, [xi, yj+1]  Ab
and M, [xi, yj+2]  Do. If M, [xi, yi]  ∗ (the other
case is similar), then, by ψ5, we get M, [xj+1, yj+1]  ∗
and, by ψ7 and ψ9, we can determine xi+1 such that
M, [xi+1, yj+1]  Up, proving (3).

Minor changes to Lemmas 4 and 5 lead us to the final
result.

Theorem 2: Let MT be a deterministic Turing Machine.
Then, MT diverges on empty input if and only if the
reflexive BEHS-formula

NonHalts = φ1∧ψ1∧. . .∧ψ10∧φ14∧· · ·∧φ34∧U(qf → ⊥)

is satisfiable on a model built over the class of all linear
orders or the class of all dense linear orders.

Corollary 2: The satisfiability problem for reflexive BEHS

and for C, interpreted in the class of all linear orders or the
class of all dense linear orders, is undecidable.

V. CONCLUSIONS

In this paper, we traced Lodaya’s steps [14] by analyzing
the relationship between the fragments DHS, BEHS, and
C in the special case in which π is not included in the
language and DHS and BEHS are interpreted in a reflexive
fashion. In their standard version (irreflexive fragments of
HS and C enriched with π), undecidability of BEHS in the
finite/discrete case is a consequence of the undecidability
of the DHS[15]; in contrast, in the reflexive case, the un-
decidability area includes BEHS, in any meaningful class
of linear orders, but not DHS, which is decidable at least in
the finite/discrete case [16]. Our results close a major gap in
the study, started in [12], of the fragments of Venema’s CDT

2Thanks to Definition 1 and Lemma 1 (point (5)), this reconstruction is
well defined as all the elements remain in the same set.

(which is reflexive in nature) devoid of π, as well as sharpen
both the undecidability of PITL without locality principle
and that of fragments of HS in their reflexive version.

It should be mentioned that there might be the possibility
of designing a simpler undecidibility proof for C, devoid of
π, based on a reduction from the undecidable satisfiability
problem for irreflexive DHS over finite/discrete linear or-
ders [15], which still exploits the ideas underlying our proof
(in particular, Definition 1)3. In any case, such a reduction
would not work for reflexive BEHS.
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