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Abstract. We apply Path Relinking to a real life constrained optimiza-
tion problem concerning the scheduling of technicians due to activate on
site devices located on a water distribution network in case of a contam-
ination event, in order to reduce the amount of consumed contaminated
water. Teams travel on the road network when moving from one device to
the next, as in the Multiple Traveling Salesperson Problem. The objec-
tive, however, is not minimizing travel time but the minimization of con-
sumed contaminated water. This is computed through a computationally
demanding simulation given the devices activation times. We propose
alternative Path Relinking search strategies exploiting time-based and
precedence-based neighborhoods, and evaluate the improvement gained
by coupling Path Relinking with state of the art, previously developed,
hybrid Genetic Algorithms. Experimental results on a real network are
provided to support the efficacy of the methodology.
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1 Introduction

Hydroinformatics is a new, promising, interdisciplinary research field arising at
the junction of Hydraulic Engineering and Computer Science, in which com-
plex decision problems related to water management applications are modelled
and solved by way of quantitative solution tools developed within well assessed
computer science methodological paradigms, such as Constrained Programming
on Finite Domain and Mathematical Programming Optimization. Several such
examples can be found in the literature which exploit the network based prob-
lem structure, taking advantage of solution methodologies already developed for
transportation and communication networks, as earlier pointed out by Simonis
in a seminal work [34]. Among the most recent contributions, let us mention:
the design of the expansion of a Water Distribution System (WDS) combining
global search techniques with local search [5], the optimal location on the WDS
of water quality sensors in order to early detect water contamination exploiting
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integer programming based location models [27] and objective function sub-
modularity [23], the optimal scheduling of devices controlling field irrigation [20]
to meet farmers irrigation time demands, the optimal location of isolation valves
on the pipes of a WDS to minimize service disruption in case of maintenance op-
erations [7] and [9], and the scheduling of devices activation as a countermeasure
to contamination events [10], which is the problem we deal with in this paper.

In all cases, the feasible solutions have to meet complex technological re-
quirements which are modelled by the constraints of the optimization problem,
while the objective function describes how the hydraulic system reacts to certain
values of the parameters, which are the model variables. Quite often, the system
reaction can not be encoded by analytical closed formulas but it is the result of
a computational demanding simulation process, which poses a challenge to the
development of a solution methodologies able to scale efficiently and tackle real
life instances.

In this paper we deal with the last mentioned problem, namely computing
the optimal activation time of a set of devices located on the WDS. In case of
a contamination event, the devices activation times alter water flow, influence
how contaminant spreads in the network, and determine at which concentration
contaminant reaches demand nodes where drinking water is consumed by the
users. An optimal schedule is a set of activation times which minimizes the vol-
ume of consumed contaminated water. A feasible schedule is a set of activation
times according to which the teams of technicians, due to manually activate the
devices on site, can reach the selected device on time, travelling on the street
network when moving from a device to the next. Previous approaches [2], [10],
and [11] already improved the state of the art in hydroinformatics [18], where
schedules were computed by hand: Genetic Algorithms (GAs) can compute bet-
ter schedules automatically [28]. Hereby, we build upon previous contributions,
and we show how solution approaches for such complicated real life problems
can largely benefit from the integration of different search paradigms.

In the rest of the paper, first we introduce the problem and recall the solution
strategy based on hybrid GA developed so far, pointing out at some deficiencies.
Then, we describe a neighbourhood based search strategy, so called Path Relink-

ing (PR) originally proposed by Glover [16], which intensifies the search within
a section of the feasible region to which a set of high quality solutions belong.
We present how to use PR in our problem, compare two different neighbour-
hood structures to build the search path connecting two solutions, and asses the
efficacy of the approach by experimental results computed on real data for the
WDS of a medium size city in Italy, showing how by enhancing our GA with a
post optimization PR phase can improve the approach robustness and partially
mend the present flaws.

2 Problem Description

WDSs are essential components of our daily life as they bring clean, safe drink-
ing water to customers every day. At the same time, WDSs are among the most
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vulnerable infrastructures, highly exposed to the risk of contamination by chem-
ical and biological agents, either accidental or intentional. A WDS is a complex
arrangement of interconnected pipes, pumps, tanks, hydrants and valves, whose
large planimetric extent (a small city network may reach 200km and a thousand
of pipes and nodes) and sparse topology prevent full surveillance. Therefore mon-
itoring is the only viable alternative. In practice, a set of water quality sensors
is located on the WDS to test water safety in real time, looking for the pres-
ence of potential contaminants [27]. Their location is strategically determined
so that a contamination event is detected as soon as possible, based on a set of
contamination scenarios.

Contaminant quickly spreads through the network and population alerting
strategies may not entirely ward off users’ water consumption. When the net-
work is fully districted, the sector where the alarm is raised can be seamlessly
disconnected from the rest of the network, but this is rarely the case. In gen-
eral, despite of the hazard, water supply can not be completely cut off. The
shut down of the entire system would disrupt those security related functions
that rely on continuous water supply, such as fire police service or water based
cooling systems at large, production intensive, industrial facilities. Therefore,
beside population warning procedures, countermeasures devoted to divert the
contaminant flow away from high demand concentration sectors must be set up,
aiming at mitigating population harm.

An effective way of altering water flow is by activating some of the devices
which are part of the system, namely by closing isolation valves and opening
hydrants, in order to achieve contaminant isolation, containment, and flushing.
In particular, opening hydrants can expel contaminated water, while contami-
nated pipes can be isolated by closing their isolation valves. Due to the highly
non linear functional dependencies that link water flow and the time at which a
given device is operated, the global effect of a schedule, i.e., the vector of activa-
tion times for the selected devices, can not be decomposed into the sum of the
effects of the activation of each individual device, nor the effect of a local change
in the schedule can be anticipated. On the contrary, the only way to evaluate
the volume of consumed contaminated water due to a schedule is by a compu-
tationally intensive simulation. In other words, we are optimizing a black box
function and solving a so called simulation-optimization problem [3]. The cho-
sen simulation package is EPANET [32], a discrete event-based simulator which
represents the state of the art in Hydraulic Engineering. EPANET is given a
schedule, the description of the hydraulic network, the expected water demand,
and a contamination scenario, and it yields the volume of contaminated con-
sumed water (we speak of contamination when concentration level is above the
danger threshold of 0.3mg/ml that causes human death if ingested). Simulation
is computationally intensive and it is the bottleneck of any solution approach.

In our case study, each simulation call takes on average 5′′, which poses a limit
on the number of function evaluation calls, despite of the fact that the problem
is solved offline; this fact influences the choice of the search strategy, as discussed
in [11]. Moreover, there is no a priori information on what a good schedule should
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look like, and common sense inspired criteria such as “the sooner the better” lead
to low quality solutions. In conclusion, there is no way to distinguish between a
good and a bad schedule without simulation.
So far, it concerns the objective function of our simulation optimization problem.
Regarding the solution feasibility, a schedule tF is feasible provided that there
is an assignment of the n devices to the m teams available and, for each team,
its devices can be sequenced so that if device j follows device i the difference
between the respective activation times in the schedule is equal to τij , i.e., the
travelling time on the street network from the location of device i to the location
of device j. All teams gather at the mobilization point at a given time after the
alarm is raised (according to the protocol) and conventionally the departure
time is set to 0. This maps the feasible region of our problem into the one of a
well known optimization problem, the open m-Travelling Salesman Problem [4]
(mTSP), providing a graph representation of our problem where the mobilization
point is the depot, each device is a client node of the graph and each team visits
the assigned devices travelling along a route starting from the depot.

All these features motivated our choice of a Genetic Algorithm (GA) hy-
bridized with a Mixed Integer Linear Programming solver which encapsulates
the feasibility constraints within the cross over operators, as described in detail
in [11]. In that paper, several computational experiments were carried out to cal-
ibrate population size and number of generations for a single GA run. Moreover,
we verified the poor quality of the solutions obtained according to heuristic
criteria, such as minimum makespan or minimizing the sum of the activation
times. Besides, neighbourhood based local search were tested and proved to be
not competitive given the limited number of solution evaluations allowed, since
the search trajectory remains confined not far from the starting point. On the
contrary, the literature confirms that in such cases population based heuristics,
which carry on a broader search and are able to explore a wider part of the
feasible region, are able to provide better results.

Although we could improve by far and large the best solutions available for
our case study, that solution approach has a typical GA flaw, that is, it con-
verges to a local optimum which depends on the starting population. However,
the differences among different solutions quality varies depending on the con-
tamination scenario. Since the number of function evaluations is limited, in this
study we address the question concerning what is the best way of exploiting the
computational resources we are allowed, and if there is a way to take advantage
of the knowledge of a set of different, high quality solutions.

In the next section we describe how PR can provide a pattern search that
fulfils these expectations.

3 Intensification by Path Relinking

As mentioned, in this application GAs often yield high quality solutions that
depend on the initial population: this is due to the existence of several local
optima. These different solutions identify a promising subregion of the feasible
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space, which is worth further inspection, according to some exploration strategy.
Classical Local Search transforms a solution gradually: at each step it moves
from a solution to an improving one in the current neighbourhood, driven by
the objective function. In our case, the search goes from one local optimum to
another, by gradually making the current solution more similar to the final one.
This search is not guided by the objective function, but rather by a distance

criterion, and quite often a better solution is found along this search trajectory.
This philosophy lies at the heart of an intensification technique named PR [16].

Working on a reference set (rs) composed of several solutions, PR first selects
from rs an initial reference (r) and a guiding (often called target) (g) solution,
then it iterates valid moves to transform step by step r into g. Figure 1 shows a
graphical representation of the transformation of r into g, differing initially on
4 elements; so 3 intermediate solutions are selected, namely r1, r2, and r3. This
procedure allows for the exploration of the path between two good solutions,
according to the hypothesis that a better one can be found among the feasible
solutions in the middle.
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Fig. 1. Graphical representation of Path Relinking

Since PR builds a new solution starting from the features of two elite so-
lutions, it can be also seen as an evolutionary algorithm, in which randomness
is substituted by a deterministic search strategy that draws the possible path
between two feasible solutions.

The building blocks of a Path Relinking algorithm are:

– the reference set and its construction;

– the reference and the target solutions and their selection;

– the path between two solutions, i.e., the neighbourhood structure.

Several variants and generalizations of PR are possible, which are elegantly dis-
cussed in [17], such as truncating the search on a path to resume it on another
(either new or existing) path of the same g − r couple, or different policies for
choosing the move in the current neighbourhood rather than moving on the best
one. In this work we adopt this last classical strategy since we prefer to spend
the limited number of solution evaluations to explore the ”best” path between
different r − g pairs rather than several paths between the same r − g pair.
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In our case, the bunch of best populations given by some GA runs provides
naturally the dataset the reference set can be built up from, the target g can be
easily selected as the best solution in rs; and the reference r has to be selected
properly through quality and diversity criteria, as Section 3.1 reports.

3.1 Selection of reference candidates

As stated before, the reference set can be built up from the final populations of
the GAs. In particular, diversity from the target beside quality should be taken
into account, since the number of inspected solutions grows with the distance
to the target; thus, different metrics can be combined together to filter properly
the initial dataset.

The distance between two solutions can be evaluated considering the routes
of the teams as well as the activation times. Despite in the former studies the
diversity is measured on the graph representation of the routing problems [29,
31, 35, 21, 30], in this case the preferred way is to measure the diversity over
the time representation. In fact the graph representations of the solution would
introduce a huge amount of redundancy [6], this means that the same vector of
activation times can be mapped into different trees that may differ a lot wrt the
metrics defined for graph representations.

The metrics here proposed for the time representation are the Hamming
distance

h(g, r) =

Ndev
∑

i=1

di (1)

where gi (ri) is the activation time of device i in solution g (r) and di = 1 if
gi 6= ri while di = 0 otherwise, and the euclidean distance

e(g, r) =

√

√

√

√

Ndev
∑

i=1

(gi − ri)2 (2)

between two vectors of activation times g and r. The former gives a measure
about how many elements differ in the vectors, whereas the latter measures how
much the vectors differ in terms of activation times. In order to prevent the
inclusion of too similar vectors in rs, two thresholds β and γ are defined: given
the target g a solution r is included only if h(g, r) ≥ β and e(g, r) ≥ γ.

As far as the quality of the reference set, a proper metric is to consider only
solutions having quality within a certain percentage distance δ from the target’s

one, i.e., q(r)−q(g)
q(g) ≤ δ holds for any r ∈ rs.

Finally, the choice of β, γ, and δ is really important, even more whenever
the number of evaluations is limited. In fact, in this case excluding a promising
solution may affect hugely the effectiveness of the approach.
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3.2 A Path Relinking Based on Sequences

Path Relinking for routing problems works on symbolic representations of routes,
in which any route is expressed by an ordered set of visited customers [21, 35,
30]. For 3 vehicles v1,v2, and v3, and 7 customers, namely c1, . . . , c7, a feasible
solution assigns a route to each vehicle, e.g., v1 = {c1, c2}, v2 = {c3, c4}, v3 =
{c5, c6, c7}. Equal solutions visit the customers along same routes. To transform
a solution into a different one, every customer should be relocated into the right
position of the right route. In Path Relinking for routing problems, this is done
iteratively by relocating one customer at each step.

The same representation can be used in this mTSP variant. Since the routes
have no names, the order of the devices within the routes is the valuable infor-
mation; moreover, in a route any device precedes only one other, thus the order
of activation within the routes can be stated by listing the devices’ predecessors,
i.e., a list of tuples “(hp, hs)” meaning that the device hp precedes hs in the
solution. For example, in the solutions in Figure 2, 3 teams work overall on 7
hydraulic devices, namely 1, . . . , 7; the initial solution r and the guiding g can
be represented by the following predecessor lists:

Pr = {(d, 3), (d, 4), (d, 6), (1, 5), (4, 7), (6, 1), (7, 2)},

Pg = {(d, 3), (d, 4), (d, 6), (1, 7), (3, 5), (4, 1), (5, 2)}.

In general, two solutions a and b are equal iff Pa = Pb; whereas, whenever two
solutions differ, the predecessors of a that are not in b are Pa−b = Pa\Pa∩Pb, vice
versa for b is Pb−a = Pb \Pa∩Pb. Moreover, the cardinality card(Pa−b) measures
the distance of a from b, and vice versa being card(Pa−b) = card(Pb−a). For
example, for r and g we have that Pr−g = {(1, 5), (4, 7), (6, 1), (7, 2)}, Pg−r =
{(1, 7), (3, 5), (4, 1), (5, 2)}; so, the distance between r and g is 4.

To get closer to b starting from the configuration of a, at least one device
hs | (hp, hs) ∈ Pb−a should be relocated after its predecessor hp in b; in this sense,
the set Pb−a contains the possible moves to transform a into b. For example,
(5, 2) ∈ Pg−r means that the device 2 needs to be relocated right after 5, making
r more similar and closer to g. This means that the neighbourhood of r with
respect to g is the set of solutions N (r, g) = {rn | card(Pg−r \ Pg−rn) = 1}. In
other words, the neighbourhood of r with respect to g is the set of solutions rn
obtained by relocating 1 device in r according with Pg−r.

At the k-th iteration, PR has to choose which device hs | (hs, hp) ∈ P k
g−r is

relocated, in order to move to rk+1. To make this choice it evaluates by EPANET
every rkn ∈ N k, and moves to the one with the lowest volume; this solution
becomes the reference of the next step, and it is called rk+1.

Every time a device has been relocated after its new predecessor their link
becomes permanent and no further moves can break it. Thus, whenever a device
is chosen to be relocated after another one, it carries the following chain of fixed
edges along with it; this prevents the current choice to destroy the previous ones.
To implement this behaviour the procedure should be enriched with a memory,
which stores the previous moves.
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Figure 2 shows a possible path from r to g consisting of 4 intermediate steps.
Table 1 reports at any step the values of Pg−r, the chosen move to rk+1, and the
fixed edges, for the example in Figure 2. The first move transforms the initial
solution into r1 by relocating 2 after 5; this edge is now fixed and this move is
stored into the memory, represented by a the dashed box. The second move from
r1 to r2 relocates the chain 5 − 2 after 3. Then 7 is relocated after 1 achieving
r3. Finally 1 is relocated together with its fixed successor 7 after 4. The target
is finally reached.
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Fig. 2. Feasible References and Target solutions for 7 devices differing on 4 predecessors

Table 1. Iterations of the PR algorithm for the example in Figure 2

k ri Pi
g−r move fixed edges

0 r {(1, 7), (3, 5), (4, 1), (5, 2)} (5, 2) {}
1 r1 {(1, 7), (3, 5), (4, 1)} (3, 5) {(5, 2)}
2 r2 {(1, 7), (4, 1), } (1, 7) {(5, 2), (3, 5)}
3 r3 {(4, 1)} (4, 1) {(5, 2), (3, 5), (1, 7)}
4 g {} {(5, 2), (3, 5), (1, 7), (4, 1)}

Recall that in this real application only solutions with 3 routes are considered
to be feasible. So we exclude from P k the moves that vary the number of routes,
i.e., moves that either empty a route or add a new route.

This version of PR moves at most Ndev times and calls EPANET at most
Ndev(Ndev+1)

2 times. Sometimes the procedure visits the same solution twice or
more, in such a case the solution would be evaluated by EPANET more times,
wasting precious computing resources. For this reason the solving architecture
is enriched with a cache, which stores the explored solutions and allows for
saving a call to EPANET. It is worth noting that the procedure may explore the
entire path between initial and guiding before the maximum number of EPANET
calls was expired. In such a case, the procedure selects another reference, and
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iterates over it. The algorithm continues until it reaches the maximum number
of EPANET calls or reference solutions.

From now, we refer to this version as the “routing” PR (PRr).

3.3 The time based variant

Another representation for the mTSP encodes a solution as a vector of activation
times [11]. Given the feasible solutions r and g, the indexes of the differing
elements is given by Ir−g = {i | ri 6= gi}. If r equals g then Ir−g = ∅. To
transform r into g iteratively, at each step k one element in Ir−g should be fixed
to its value in g. This decreases by one the distance between rk and g. Let rk be
the reference vector at the k-th step, Ik = Irk−g, and let F k = Ir−g \ Ik be the
set of indexes that have been already fixed. The next solution rk+1 in the path
between r and g is obtained by keeping rk+1

f = gf for all f ∈ F k and fixing the

new element rk+1
i = gi for one i ∈ Ik.

If the remaining elements of rk+1 were the same as in r (or rk) the resulting
vector could not correspond to a feasible schedule. So, these elements are chosen
by solving a constrained optimisation problem whose constraints depict a mTSP,
the elements in F k ∪ {i} are fixed, whereas the other (non-fixed) elements are
the actual integer variables of the program; the objective is to optimise these
variables, so that their values are as close as possible to the ones in r. To do
that, the program minimizes the Euclidean distance of the non-fixed elements
from r [11], i.e., given i ∈ Ik:

dist(rk, r) =
∑

j∈Ik\{i}

|rk+1
j − rj | (3)

Notice that a feasible vector always exists, being g a feasible solution of the
program. The neighbourhood of rk is then defined as follows:

N k = {rk+1 | card(Ik \ Ik+1) = 1,minimizes (3)}.

The procedure explores every solution by varying the index i ∈ Ik, and for
each i it calls the optimiser to compute a new feasible vector, finally it evaluates
the solution by calling EPANET. The solution in Nk having the lowest volume
is selected to be the reference solution for the next step. Figure 3 shows, on a
graph with 7 devices, how routes change when an additional element becomes
fixed; e.g., in r6 the activation time “(26)”, which was (20) in r5, has been fixed,
and the related device is now visited by another route. The minimization of
dist(r6, r) also transforms (28) in r5 into (29) in r6, by changing the route of
the concerned device; this new activation time is clearly very close to (27) in r.

The constrained optimisation program minimizing (3) can be stated by any
declarative paradigm, such as Constraint Programming [8], Constraint Logic
Programming [22], Answer Set Programming [15, 24], Mixed Integer Linear Pro-
gramming [26]; so some suitable solvers are: Gecode [14], ECLiPSe [33], DLV [25],
Clasp [13, 12], SCIP [1], Gurobi [19].
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Since the number of feasible moves decreases at each iteration of at least one
unit, the maximum number of EPANET calls is again Ndev(Ndev+1)

2 . Also this
PR uses a cache to store the explored solution, so it ends up whenever either no
more EPANET calls are available, or rs is empty.

Notice how this technique integrates MILP, hydraulic simulators, and PR
into the solving architecture; thus, we will refer to it as the “hybrid” PR (PRh).

3.4 Computational results

The experiments were performed on the Ferrara’s hydraulic network, which sup-
plies drinking water to about 120, 000 inhabitants. 20 contamination scenarios
(A . . . T ) were tested. Basing on the techniques proposed in [18], 3 teams of tech-
nicians were considered to be available to operate on 13 hydraulic devices, namely
7 valves and 6 hydrants. The hydraulic simulator we used was EPANET [32],
and takes about 5 seconds to evaluate a schedule of the selected devices on each
contamination scenario. Even though EPANET is open-source, the simulation
procedures and the network specifications are sensitive data for hydraulic engi-
neers and can not be disclosed.

Genetic Algorithms proposed in [11] were allowed a maximum of 500 EPANET
calls, and the population was sized to 20 individuals. These values were calibrated
in previous works, and the GAs typically converge within the 500 EPANET calls.
As mentioned, we observed that the final solution depends on the initial pop-
ulation as the GA get stuck on different local optima, so parallel small sized
independent GAs explore the search space better than one big sized GA. In this
study, Path Relinking is tested to explore the region enclosing such solutions.

The hypothesis tested hereby is that either PRr or PRh may improve the
best solution starting from the final populations of 10 independent GAs; in
other words, the reference set was built up from the 10 final populations. The
two PRs were compared to an additional independent GA run, to be considered a
strengthening run of the same first 10. In this way all the approaches are directly
comparable. PRr, PRh, and the additional GA were equipped with 500 EPANET
calls each; the total amount of calls is then 5500 for any configuration. To weaken
the randomness, the tests were repeated 10 times on each contamination scenario.
To disambiguate, these runs are considered to be global, wrt the 10 local GA
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runs. So we denote the best of the c-th trial of 10 GAs as s∗c , while the global
optimum is defined as s∗ = minc{s∗c}. The constrained model minimizing (3)
was implemented in Mixed Integer Linear Programming and solved by Gurobi;
its solving time was negligible.

Table 2 reports the best volumes computed by the different approaches for
each scenario. The additional GA (+1 GA) never improves s∗; this is quite

Table 2. The Table reports for each scenario and in this order: the averaged volume
of contaminated water in litres (l), the ratio between variance and averaged volume,
and the best volume (l) for 10 independent global runs of 10 GA; it also reports for 10
independent global runs of +1 GA, PRr and PRh: the best volume (l), the number of
improvements, the averaged improvement in l; last row reports the average of some of
these columns; min(best), max(impr.♯), and max(impr.ave) are highlighted in bold.

scen

10 GA +1 GA PRr PRh

↓ (sorting key) impr. impr. impr.
ave

var

ave

best (s∗) best
♯
ave best

♯
ave best

♯
ave

l l l l l l l l

A 6,022 0.04 6,000 6,000 0 0 5,997 8 9 6,000 7 9

B 7,170 0.10 7,170 7,170 0 0 7,170 1 2 7,156 5 14

C 10,868 1.51 10,672 10,672 0 0 10,569 3 49 10,623 7 47
D 11,229 1.16 11,021 11,021 0 0 11,021 0 0 10,993 7 44

E 12,732 0.21 12,698 12,698 1 5 12,698 1 4 12,698 3 15

F 13,938 0.76 13,793 13,793 1 2 13,624 4 69 13,723 7 44
G 15,841 0.22 15,758 15,758 0 0 15,758 4 29 15,692 8 57

H 16,991 2.44 16,571 16,571 1 3 15,708 7 207 16,351 9 137
I 20,792 7.21 20,122 20,122 0 0 20,122 2 50 20,122 5 22
J 22,273 0.39 22,164 22,164 0 0 22,164 2 8 22,105 9 85

K 25,138 0.56 25,043 25,043 0 0 25,043 2 21 25,043 7 68

L 35,067 1.00 34,662 34,662 0 0 34,662 4 136 34,536 7 120
M 36,706 0.52 36,706 36,706 0 0 36,706 1 2 36,706 5 103

N 40,121 4.74 39,230 39,230 1 21 39,230 4 121 39,128 10 215

O 42,019 1.68 41,595 41,595 0 0 41,595 0 0 41,595 6 79

P 44,470 0.34 44,286 44,286 1 10 44,286 0 0 44,188 2 13

Q 46,452 1.11 46,175 46,175 1 2 46,175 0 0 46,144 8 137

R 52,531 1.47 52,210 52,210 1 15 52,210 3 57 52,205 5 77

S 77,397 0.16 77,232 77,232 0 0 77,232 2 21 76,999 6 123

T 144,622 0.07 144,409 144,409 1 8 144,409 2 24 144,350 8 82

ave 0 3 3 38 7 76

expected because the additional GA follows the same exploration pattern as any
other GA. Anyway, for 8 scenarios, for one c of 10 the additional GA improves
s∗c . On average PRr improves s∗c 3 times of 10, while PRh does it 7 times. For 5
scenarios out of 20 neither PRr nor PRh were able to improve s∗; in 4 scenarios
(A,C,F, and H), PRr outperforms PRh in terms of global best (s∗), and only
for one of these scenarios PRh was not able to improve s∗. On the contrary,
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in 11 scenarios PRh improves s∗ whereas PRr doesn’t. Only in scenario A PRr
improves s∗c more times than PRh. Moreover, PRh on average improves the s∗c
twice as many times as PRr (see last row), decreasing the volume of contaminated
water than double the PRr (76 vs 38).

Notice that, the higher is the averaged volume the higher is the outperform-
ing rate of PRh wrt +1 GA and PRr. In fact, from the scenario M onwards,
PRh outperforms the others in terms of global best (s∗), averaged number of
improvements and averaged improvement in volume.

The variance of s∗c , whose normalization over the average is given by var
ave

in Table 2, is not correlated to number of improvements the PRs may achieve.
In fact, PR is able to improve s∗ even for scenarios whose variance is low; this
happens mostly when distant local optima have similar quality. Also, since PR’s
exploration capability grows with the distance between r and g, PR should
be always coupled to strengthen parallel Genetic Algorithms, even when low
variance would suggest that no further improvement is possible.

Finally, despite of the fact that PRh is generally better performing than
PRr, there is not a real dominance (A,C,F,H), which suggests to integrate both
techniques in future works.

4 Conclusions

Genetic Algorithms are used to optimise the scheduling of operations in case of
contamination events in Water Distribution Systems [11]; the final populations
may contain distant solutions both in terms of similarity and quality. A local
search paradigm can improve the solutions by exploiting the knowledge about
these local optima.

Two Path Relinking (PR) variants have been developed and tested for a
real life hydraulic network, namely the Ferrara’s one, to optimise the scheduling
of 3 technicians teams over a set of 13 among valves and hydrants, with the
aim of reacting to contamination events and minimizing the volume of contami-
nated water consumed by the users. 20 contamination scenarios were simulated
and tested. The hydraulic simulator EPANET was used to compute the vol-
ume given a scheduling of the devices; since EPANET takes about 5 seconds to
evaluate each solution, we tackled with a computationally intensive consuming
simulation-optimisation problem.

A PR was developed to optimise the routes of the teams and was named PRr.
The other was developed to design directly the activation times of the devices; it
was named PRh, from hybrid, because it exploits solvers for constrained optimi-
sation programs to compute feasible times; a Mixed Integer Linear Programming
implementation was used in this specific case. The two PRs proved to be very
effective in improving solutions’ quality starting from the final populations of
parallel Genetic Algorithms. In the future, more sophisticated PR variants will
be tested, e.g., truncated PR, greedy randomized adaptative PR, and others.
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35. K. Sörensen and P. Schittekat. Statistical analysis of distance-based path relinking

for the capacitated vehicle routing problem. Computers & Operations Research,
40(12):3197 – 3205, 2013.


